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a b s t r a c t 

Providers of Emergency Medical Services (EMS) face the online ambulance dispatch problem, in which 

they decide which ambulance to send to an incoming incident. Their objective is to minimize the frac- 

tion of arrivals later than a target time. Today, the gap between existing solutions and the optimum is 

unknown, and we provide a bound for this gap. 

Motivated by this, we propose a benchmark model (referred to as the offline model) to calculate the 

optimal dispatch decisions assuming that all incidents are known in advance. For this model, we intro- 

duce and implement three different methods to compute the optimal offline dispatch policy for problems 

with a finite number of incidents. The performance of the offline optimal solution serves as a bound for 

the performance of an – unknown – optimal online dispatching policy. 

We show that the competitive ratio (i.e., the worst case performance ratio between the optimal online 

and the optimal offline solution) of the dispatch problem is infinitely large; that is, even an optimal online 

dispatch algorithm can perform arbitrarily bad compared to the offline solution. Then, we performed 

benchmark experiments for a large ambulance provider in the Netherlands. The results show that for this 

realistic EMS system, when dispatching the closest idle vehicle to every incident, one obtains a fraction 

of late arrivals that is approximately 2.7 times that of the optimal offline policy. We also analyze another 

online dispatch heuristic, that manages to reduce this gap to approximately 1.9. This constitutes the first 

quantification of the gap between online and offline dispatch policies. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

In serious life-threatening situations where every second

ounts, the timely presence of emergency aid at the incident scene

an make the difference between life and death. Motivated by this,

ecently there has been a wide interest in planning of Emergency

edical Services (EMS) and many models and approaches have

een developed in order to use ambulances efficiently. EMS plan-

ing often revolves around response times: the time between the

ccurrence of an incident and the time that an ambulance arrives

n scene. A key performance metric is the fraction of incidents that

ave a response time greater than a certain threshold time. EMS

all center agents have to make on-the-fly choices about which ve-

icle to dispatch to a newly incoming incident, such that the frac-

ion of arrivals later than a target time is minimized. The classical

ispatch policy often used in practice is the closest idle vehicle ap-
∗ Corresponding author. 

E-mail address: c.j.jagtenberg@cwi.nl (C.J. Jagtenberg). 
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roach. Also, most literature uses the ‘closest idle’ policy without

uestioning it, even though it was already shown to be suboptimal

n 1972 ( Carter, Chaiken, & Ignall, 1972 ). Recently, Jagtenberg, Bhu-

ai, and van der Mei (2016) showed that this policy is in fact quite

ar from optimal, and developed an algorithm that outperforms the

losest idle dispatch method. 

The question addressed in this paper is how to benchmark

ispatch policies against optimal policies with full information:

uppose we would know all incident arrivals and locations in

dvance , then how much better would the performance of the op-

imal dispatch policy be? What is the potential improvement if we

ere able to perfectly predict future incidents? The answer to such

uestions addresses the value of information about future incidents,

nd give insight into how far we are from the optimum under full

nformation and what is the potential for developing accurate fore-

asting models for emergency incidents. 

By analyzing the dispatch process from a new angle, this pa-

er provides a contribution that will be of interest to researchers

ho develop mathematical models for EMS planning. This new

erspective helps to develop a deeper understanding of EMS

https://core.ac.uk/display/301650233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ejor.2016.08.061
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.08.061&domain=pdf
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planning models. Furthermore, we link ambulance dispatching to

the literature on online/offline optimization. For a general intro-

duction to the concept of online versus offline algorithms, see Karp

(1992) . 

In the literature, many models are available for ambulance

planning. First of all, there are models that deal with planning

on the strategic level. Typically, such models determine the best

locations for ambulance bases ( Church & Revelle, 1974 ), and they

sometimes also determine the number of vehicles that should be

positioned at each base ( Daskin, 1983; Goldberg, Dietrich, Chen, &

Mitwasi, 1990 ). The majority of these solutions use mixed integer

linear programming to solve the problem. Second, there is previ-

ous work on operational ambulance planning. This can be divided

in two categories: (1) methods that relocate idle ambulances, and

(2) methods that dynamically decide which ambulance to dispatch

to incidents. 

Dynamic relocations 

The vast majority of the papers on dynamic ambulance man-

agement focuses on how to redeploy idle vehicles, (e.g., Alanis,

Ingolfsson, & Kolfal, 2013; Maxwell, Restrepo, Henderson, &

Topaloglu, 2010; Yue, Marla, & Krishnan, 2012 ). Perhaps in order

not to overcomplicate things, they assume a basic dispatch rule:

whenever an incident occurs, they decide to send the ambulance

that is closest (in time). Although this is a common dispatch policy,

it was already shown to be suboptimal in 1972 ( Carter et al., 1972 ).

Regardless, most authors make this assumption without much dis-

cussion or justification; for example, Maxwell et al. (2010) claim

that it is an accurate enough representation of reality; however,

they do not address the question of whether it is an optimal choice

with respect to the objective (which is the fraction of incidents

that are reached within the threshold time). Alanis et al. (2013) do

not address the assumption at all. 

Dynamic dispatching 

Few papers focus on dynamic dispatch methods. One exception

is Schmid (2012) , in which the authors combine both decisions on

repositioning and dispatching. They report that adding a dynamic

dispatch method improves the average response time from 4.05 to

4.01 minutes (as compared to ‘only’ dynamic repositioning). It is

not mentioned how much dynamic dispatching improves the re-

sponse time compared to static ambulance planning. Furthermore,

their objective differs from ours as they do not consider a response

time threshold (RTT). 

A paper that explicitly searches for dynamic dispatch methods

in combination with a RTT is Jagtenberg et al. (2016) . It includes

an easy to implement heuristic and shows that we can indeed im-

prove the objective – the fraction of late arrivals – by changing the

dispatch policy. However, since the topic has been underexposed in

the literature, it is still unknown how much profit can be expected

from an optimal dispatch rule. 

Bounds for dynamic ambulance planning 

The concept of bounds on the performance of EMS systems is

relatively new. There is one recent paper that provides a bound

for the performance of an optimal ambulance redeployment pol-

icy ( Maxwell et al., 2014 ). However, for a bound on the perfor-

mance of dispatch policies, we are not aware of any result. 

Offline dispatching 

There is previous work on ambulance planning that uses ideas

similar to offline dispatching. However, authors typically do not

recognize the idea as such. For example, Yue et al. (2012) aim

to analyze and evaluate repositioning algorithms, and to that end

uses optimal offline dispatch policies as an upper bound on the

possible performance. Instead of calling it an offline version of

an online problem, the authors refer to the offline approach as

‘the omniscient observer’. Most importantly, this paper differs from
urs because it does not include a comparison with online dispatch

ethods. Other researchers use offline dispatching to compute the

umber of vehicles needed to serve all incidents, without noting

hat this is perhaps a rather optimistic approach ( van Essen, 2013 ).

A related problem is the dial-a-ride problem, which deals with

nline arriving requests for transports between an origin and des-

ination. For an overview of literature on this problem, see Cordeau

nd Laporte (2007) . The dial-a-ride problem is similar in the sense

hat routes are created; however, it typically allows for flexibility

n the execution time of each request, whereas the (urgent) am-

ulance requests require a vehicle to be sent immediately. Fur-

hermore, in dial-a-ride problems the objective is typically either

elated to efficiency (such as transportation cost or travel time)

r based on customers’ inconvenience (such as lateness or excess

rive time). There is literature that considers dial-a-ride problems

pecifically in the ambulance context. However, this usually con-

erns the non-urgent patient transports, see e.g. Melachrinoudi, Il-

an, and Min (2007) , Parragh, Doerner, and Hartl (2009) , Ritzinge,

uchinge, and Hartl (2016) . Due to the fact that their objectives

re not related to a response time threshold, we cannot directly

se their results or formulations. 

Another related problem is the k -server problem ( Manasse, Mc-

eoch, & Sleator, 1990 ), which is one of the classical problems in

ompetitive analysis. In this problem, each time step corresponds

o a request arriving somewhere in a metric space. There is a set

f k servers available, and an algorithm prescribes for each request

hich server should respond. The objective is to minimize the total

istance moved by all servers. The competitive ratio of the k -server

roblem is currently unknown, although it can be shown that it is

t least k , and there exists a conjecture stating that the competitive

atio is exactly k ( Manasse et al., 1990 ). This problem differs from

ur ambulance problem in three crucial ways. First of all, in the

 -server problem requests do not overlap in time. Second, servers

wait their next move at the location of their last request, whereas

mbulances return to their home base. Third, there is no response

ime threshold in the k -server problem. 

Contribution 

The contribution of this paper is twofold: (1) to give a bound

or the fraction of late arrivals that can be achieved by any ambu-

ance dispatch policy, even if all future incident times and locations

ould be known in advance, and (2) to benchmark and assess the

otential for improvement of existing dispatch algorithms. To this

nd, we introduce three different methods to compute the optimal

ffline dispatch decisions in case future incident arrivals are known

n advance. The first method is Constraint Programming (CP); to

he best of our knowledge, this paper is the first to apply CP to

mbulance planning. Next, as an alternative, we also formulate the

ffline dispatch problem as a Dynamic Programming (DP), and we

iscuss how this DP provides insight into the problem. We intro-

uce a third method, that is the fastest among the three, using Bi-

ary Linear Programming (BLP). We emphasize that all three meth-

ds result in the same solution, that is, the optimal solution for

he offline problem. Subsequently, we determine the performance

f two key online algorithms: the classical ‘closest idle ambulance’

ule, and the heuristic method described in Jagtenberg et al. (2016) .

hese performances are obtained by a discrete event simulation

odel of an urban EMS region. 

Our interest in quantifying the gap between online and offline

lgorithms is twofold. From a theoretical point of view, we are

nterested in the competitive ratio of the dispatch problem (i.e., a

orst case measure for an optimal online algorithm). Conversely,

rom a practical point of view, we are interested in the perfor-

ance ratio between online and offline algorithms for realistic

ncident chains. This gives an indication of how much performance

mprovement can be obtained by developing better dispatch
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2 This problem description is similar to the one defined in Jagtenberg et al. 
ethods, and simultaneously shows how much one can benefit

rom developing accurate incident prediction models. 

We do a worst case analysis by constructing a toy example that

hows that the so-called competitive ratio (i.e., the worst case per-

ormance ratio of the fraction of late arrivals between the optimal

nline and the optimal offline solution) of the dispatch problem

s infinitely large; in other words, the optimal online dispatch al-

orithms can perform arbitrarily bad compared to the offline so-

ution. We also analyze realistic problem instances by perform-

ng benchmark experiments for a large ambulance provider in the

etherlands. The results show that for this realistic EMS system,

he fraction of late arrivals of the classical ‘closest idle’ dispatch

euristic is approximately 3.5%, whereas the offline optimum is

.5%. What is perhaps most surprising, is that our results show

here exists an online dispatch heuristic that closes roughly half

f this gap between ‘closest idle’ and the offline optimum. This

s the so-called DMEXCLP dispatch heuristic, that results in 2.6%

ate arrivals (and thereby performs only 1.9 times worse than the

ptimal offline policy). The remainder of this paper is structured

s follows. In Section 2 , we give a formal problem definition. In

ection 3 , we describe the two online policies, and introduce –

nd analyze – three methods to find optimal offline solutions. In

ection 4 , we perform a worst case analysis of the problem, and

how that the competitive ratio is infinitely large. We end with

omputational results for the average case in Section 5 and a dis-

ussion in Section 6 . 

. Problem formulation 

We consider the problem of ambulance dispatching. In this

roblem, incidents occur randomly in time and space, and the task

s to determine which ambulance to send to each incident. At first

ight, the ambulance problem may seem similar to, e.g., that of

 police or taxi crew. However, there is a crucial difference: taxis

ypically generate more requests simply by driving through loca-

ions with potential customers. On the other hand, the presence

f police cars in an area usually reduces crime rates, and thereby

he number of requests. For ambulances, however, we assume the

ollowing. 

ssumption 1. The occurrence of incidents is independent of previ-

us incidents and the chosen dispatch policy . 

We consider this assumption to be very realistic, and will use

t throughout this paper. From Assumption 1 follows that we can

enerate incidents in a preparatory phase, prior to determining the

ecisions made by each dispatch policy. 

.1. Model and notation 

We generate incidents in time and space as follows. 1 Define V

s the set of locations at which incidents can occur. These demand

ocations are modeled as a set of discrete points. Incidents at loca-

ions in V occur according to a Poisson process with rate λ. Let d i 
e the fraction of the demand rate λ that occurs at node i , i ∈ V .

hen, on a smaller scale, incidents occur at node i with rate λd i .

ccording to these Poisson processes, we can simulate sequences

f incidents. 

Let A be the set of ambulances, and A idle ⊆A the set of currently

dle ambulances. When an incident has occurred, we require an

dle ambulance to immediately drive to the scene of the incident.

he decision which ambulance to send is the main question of

nterest in this paper. Throughout this paper, we assume the

ollowing. 
1 The call generation described here is equivalent to the system defined 

n Jagtenberg, Bhulai, and van der Mei (2015) and Jagtenberg et al. (2016) . 

(

c

t

p

ssumption 2. There are sufficiently many ambulances, such that at

east one ambulance is idle whenever an incident occurs . 

We consider two types of problems: (1) online problems, and

2) offline problems. In the online problem, the decision which am-

ulance to send has to be made at the moment the incident oc-

urs; future incidents are unknown and can at best be predicted.

n the offline version of the problem, all incidents (i.e., their time

tamps and locations) are known in advance . 

Our objective is formulated in terms of response times, defined

s the time between an incident and the arrival of an ambulance at

he emergency scene. In practice, incidents have the requirement

hat an ambulance must be present within T time units. There-

ore, we want to minimize the fraction of late arrivals , defined as the

raction of incidents for which the response time is larger than T . 

ssumption 3. We assume that the travel time τ i , j between two

odes i , j ∈ V is deterministic, and known in advance . 

Our objective can be formalized as follows. Recall that incidents

re generated according to the Poisson process described above.

et C denote our set of incidents (also known as calls), and let n

e the number of incidents, i.e., n = | C| . Straightforwardly, t ( c ) de-

otes the time that incident c occurs ( c ∈ C ). Let furthermore, h π ( c )

epresents the time a vehicle arrives at the scene of incident c , un-

er policy π . Now we can express our objective as: 

rg min 

π∈ �
lim 

n →∞ 

∑ n 
c=1 1 [ h 

π (c) − t(c) > T ] 

n 

. (1) 

Sending an ambulance to an incident is followed by a chain of

vents, such as spending time on scene with the patient, decid-

ng whether the patient needs transport to a hospital (and if so:

dditional travel time and a drop-off time at the emergency de-

artment). In practice, these events will take a random amount of

ime. However, this makes for a very complex problem, to which

oth the online and offline optimal solution is not known. Thereto,

e use a simplified model of the EMS process, which ensures that

he optimal offline solution can be computed. 

ssumption 4. The busy time, excluding travel time, is known and

eterministic and the same for all calls . 

We define an ambulance to be busy for X minutes after arriving

t the scene of an incident. Note that this parameter X is assumed

o be independent of the incident location and the base location

he ambulance departed from. After these X minutes, the ambu-

ance becomes idle at its (predefined) base location. 

We denote the base location of ambulance a by W a , for a ∈ A .

ote that it is possible for multiple ambulances to have the same

ase location. As soon as an ambulance has reached its base loca-

ion, it is ready to be dispatched again. 2 An overview of the nota-

ion can be found in Table 1 . 

.2. Goal 

In this paper, we focus on bounding the performance of any on-

ine solution to the ambulance dispatch problem. Since the optimal

olution to the online problem (in which future incidents are un-

nown) is not known, we use the optimal solution to the offline

ersion of the problem (in which all incidents are known in ad-

ance) as a bound. 
2016) , with the following two main differences. In Jagtenber g et al. (2016) vehi- 

les are allowed to be dispatched while returning to their home base (i.e., when 

hey are on the road) and the ambulance service times are modeled as a stochastic 

rocess, rather than a constant time X . 
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Table 1 

Notation. 

V The set of demand locations. 

A The set of ambulances. 

A idle The set of idle ambulances. 

W a The base location for ambulance a , a ∈ A , W a ∈ V . 
T The time threshold. 

X The time an ambulance is busy with one incident, 

from the moment of arrival at the scene. 

λ Incident rate. 

d i The fraction of demand in i , i ∈ V . 
τ i , j The driving time between i and j with siren turned on, i , j ∈ V . 
n The number of incidents, for a certain chain of incidents. 

t ( c ) The time that incident c occurs, c ∈ C 
loc ( c ) The location of incident c , c ∈ C , where loc ( c ) ∈ V . 
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3 Closest in time, not necessarily in space. 
4 In Jagtenberg et al. (2016) , the region considered is also Utrecht. However, the 

incident rate as well as the number of vehicles used is slightly lower than in the 

current paper. 
Our first goal is to formulate a model that allows us to compute

the optimal (offline) dispatch policy. Our second goal is to compare

this offline optimum to the performance of existing online (heuris-

tic) methods. 

3. Method 

We introduce and implement three different methods to find

the optimal offline solution for a general instance of the dispatch

problem (with a finite number of calls). The first method, con-

straint programming (CP), has the advantage that it is easy and

quick to implement. The second, dynamic programming (DP), is

able to find the same solution with somewhat shorter running

times, and on top of that allows us to investigate which proper-

ties make an instance hard to solve. The downside of this method

is that it has the most labour-intensive implementation. The third

method, Binary Linear Programming (BLP) solves the problem the

fastest. In this section we describe the BLP; the DP and CP model

can be found in Appendix A . 

We also define the online dispatch policies that we use in our

analysis. These solution methods are eventually used to compare

the performance on several problem instances. 

3.1. The optimal offline solution using binary linear programming 

In order to formulate the problem as a BLP, we first introduce

parameters p cj ∈ {0, 1}, for c ∈ C , j ∈ A . This parameter is the

penalty of assigning ambulance j to incident c : it will be set to 0 if

ambulance j arrives within threshold time T , and 1 otherwise. Note

that the values of p cj can be deduced from the problem specifica-

tion, using the base locations, driving times between those bases

and the incident locations, and the (fixed) parameter T . 

Our decision variables will be x cj ∈ {0, 1}, for c ∈ C , j ∈ A , which

will be 1 if and only if ambulance j is assigned to incident c . 

The most important constraint of our problem, is that two inci-

dents handled by the same ambulance may not overlap in time. At

first sight, it seems hard to model this in a linear way: recall that

the travel time depends on the ambulance that is chosen. How-

ever, we can precompute for each combination of incidents c and

c ′ , whether or not they overlap in time if they were to be served

by ambulance j . Denote this with parameter o cc ′ j , for c , c ′ ∈ C , j

∈ A , which is equal to 1 if the incidents overlap in time, and 0

otherwise. If o cc ′ j equals 1, we add a constraint that at most one

incident in { c , c ′ } may be served by ambulance j . Then, the offline

ambulance dispatch problem can be modeled as a BLP as follows. 

Minimize 
∑ 

c∈ C 

∑ 

j∈ A 
p c j x c j 

subject to ∑ 

j∈ A 
x c j = 1 , c ∈ C 
 cc ′ j · (x c j + x c ′ j ) ≤ 1 , j ∈ A, c, c ′ ∈ C, c 	 = c ′ 

 c j ∈ { 0 , 1 } , c ∈ C, j ∈ A 

.2. Online solutions 

In this section, we describe two online dispatch methods. The

rst is often used in practice, and the second was shown to give

ood performance for our objective (the fraction of late arrivals). 

.2.1. The ‘closest idle’ dispatch method 

When an incident occurs, all idle ambulances are considered.

he idle ambulance that is closest 3 to the incident location, is then

ispatched. This notion can be formally expressed as follows. 

rg min 

a ∈ A idle 

(τW a ,loc(i ) ) 

.e., the ambulance a for which the travel time τ is the smallest

mongst all idle ambulances. 

.2.2. The DMEXCLP dispatch heuristic 

In this section, we briefly describe the online dispatch method

hat we shall refer to as the ‘DMEXCLP dispatch heuristic’. This

euristic was first defined in Jagtenberg et al. (2016) , and applied

o test data similar to region Utrecht as defined in this paper. 4 This

howed that the heuristic reduces the fraction of late arrivals by

8% compared to the ‘closest idle’ benchmark policy. A mentioned

rawback is that this heuristic increases the average response time.

herefore, the authors do not claim that this heuristic is practically

referable over the closest-idle method. However, the mentioned

mprovement of 18% is considerable, and hence it would be inter-

sting to see how the heuristic performs compared to the offline

ptimum. 

The general idea of the DMEXCLP dispatch heuristic is that we

hoose an ambulance such that the remaining idle ambulances

rovide good coverage of the region. Coverage can be interpreted

s a number that indicates how well we can serve the incidents

hat might occur in the (near) future. 

The definition of coverage for the DMEXCLP dispatch heuristic

as borrowed from the well-known MEXCLP model ( Jagtenberg

t al., 2015 ), which we briefly describe next. MEXCLP was origi-

ally designed to optimize the distribution of a limited number,

ay | A |, ambulances over a set of possible base locations W . Ambu-

ances are modeled to be unavailable with a pre-determined prob-

bility q , that is the same for all vehicles. Input parameter q can

e estimated by computing the total workload based on expected

alls divided by the number of ambulances. For any node i ∈ V ,

he MEXCLP model determines the coverage based on the num-

er of ambulances ( k ) that can serve this node within the time

tandard. Since the travel times τ i , j ( i , j ∈ V ) are assumed to be

eterministic, one can straightforwardly determine this number k .

enote the demand at node i by d i , and define the expected cov-

red demand of this vertex to be E k = d i (1 − q k ) . Note that the

arginal contribution of the k th ambulance to this expected value

s E k − E k −1 = d i (1 − q ) q k −1 . In order to model the problem as an

LP, the authors use binary variables y ik that are equal to 1 if and

nly if vertex i ∈ V is within range of at least k ambulances. The

bjective of the MEXCLP model can now be written as: 

aximize 
∑ 

i ∈ V 

| A | ∑ 

k =1 

d i (1 − q ) q k −1 y ik . 
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Fig. 1. Region with two towns, each being the home base for one ambulance. 
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5 Note that incidents in each location are 51 minutes apart, while the busy time 

of an ambulance is at most 13+37 = 50 minutes. 
6 One might argue that in this particular case the ambulance dispatcher should 

be allowed to change his mind and send a different ambulance whenever new in- 

formation becomes available – like a new vehicle becoming idle – as long as the 

originally dispatched ambulance still has not arrived. That is, the dispatcher might 

be able to perform better if he is allowed to schedule with preemption during the 

travel time. However, one can easily see that preemption does not change the worst 

case: suppose we change the problem instance in Table 2 by increasing the time of 

incident 2 from 5 to 13, and update the consecutive (odd) incidents accordingly. 

Then, the new information arrives too late, i.e., the originally dispatched ambulance 

has already arrived, and hence the infinitely large ratio also holds for the dispatch 

problem with preemption. 
The dispatch problem requires us to decide which (idle) am-

ulance to send, at the moment an incident occurs. Thereto, we

ompute the marginal coverage that each ambulance provides for

he region, at this point in time. The ambulance that provides

he smallest marginal coverage, is the best choice for dispatch,

n terms of remaining coverage for future incidents. However,

his does not incorporate the desire to reach the current incident

ithin target time T . We propose to combine the two objectives –

eaching the incident in time and remaining a well-covered region

by always sending an ambulance that will reach the incident in 

ime, if possible. This still leaves a certain amount of freedom in

etermining which particular ambulance to send. 

If none of the idle ambulances can reach the incident in time,

ll idle ambulances are eligible for dispatch. To summarize, the

MEXCLP dispatch heuristic chooses the ambulance – within the

et of eligible ambulances – that maximizes the coverage provided

y the remaining idle ambulances. The calculations are done by

rute force, which can easily be performed in real-time for realis-

ic problem sizes. 

.3. Benchmarking solutions 

In this section, we describe how we calculated the performance

atio between an online and an offline dispatch policy. By defi-

ition, the performance of an online policy must be equal to or

orse than the offline optimum. Recall that our objectives are de-

ned as the fraction of late arrivals. Since we are minimizing our

bjective, we can immediately conclude that the online/offline per-

ormance ratio will be ≥ 1. 

Given a specific EMS region, we drew a finite sequence of in-

idents according to the Poisson process defined in Section 2.1 .

enote the fraction of late arrivals for a certain policy P and in-

ident sequence s by FracLate P ( s ). We repeated this process mul-

iple times, using a large set of incident sequences ( S ), in order

o determine the objective more accurately. Our final estimate for

he performance ratio is then computed as the ratio of the average

erformances: 

erformance Ratio := 

1 
| S| 

∑ 

s ∈ S F racLate Online (s ) 

1 
| S| 

∑ 

s ∈ S F racLate Offline (s ) 
(2) 

Note that we do not compute the performance ratio of each in-

ividual incident sequence. The reason for this, is that when the

ffline optimum results in 0 late arrivals, the performance ratio

ecomes infinitely large, and this does not lead to a meaningful

verage performance ratio. 

. Worst case analysis 

In this section, we describe a worst case realization of incidents.

his example is meant to illustrate to what extent an ‘unfortunate’

hain of incidents can affect the performance of online dispatch

lgorithms. The example directly leads to the so-called competitive

atio of the dispatch problem. 

Consider a region where the time threshold T = 12 minutes,

nd the busy time for an ambulance is X = 37 minutes. There are

wo nodes in which incidents can occur, and the driving time be-

ween these nodes is 13 minutes. Each node is the base location

or one ambulance. For simplicity, let us say ambulance 1 has base

ocation 1, and ambulance 2 is stationed at location 2. For a graphic

epresentation, see Fig. 1 . It is easy to see that an ambulance will

each an incident in time, if and only if the ambulance at the loca-

ion of the incident is available. 

Table 2 shows a chain of incident realizations for which the

losest idle dispatch policy performs particularly poorly. Typical

bout this example is that a dispatch algorithm only has a choice
or the first incident (at time 0). After that, the sequence of in-

idents is timed such that there is only one ambulance idle at

ny decision moment 5 . By our problem definition, that ambulance

ust then be dispatched immediately. So, if an algorithm makes

he wrong decision in the first time step – like the closest idle

olicy does – all following incidents except the first one the am-

ulance will arrive later than the threshold time. Alternatively, if

he correct decision is made in the first time step, only the first

ncident’s ambulance will arrive late. 

Note that it is impossible for any online algorithm to know

hat is the best decision in the first time step. To see this, imagine

n (online) algorithm that upon seeing the first incident in location

, sends ambulance 2 (hence it does the opposite of the closest idle

ethod.) The worst case instance for this algorithm, would have

he same incident times as in Table 2 , but have the locations of in-

ident 2 . . . n swapped (i.e. location 1 ↔ 2). Then, again, only the

rst incident would be reached in time. Thereto, we conclude that

he performance ratio of any online algorithm can be a factor 

(n − 1) /n 

1 /n 

= 

n − 1 

1 

→ n →∞ 

∞ . 

arger than the optimal offline policy. 6 

Although this worst case is interesting from a theoretical per-

pective, we want to clarify that this is not a case that is likely to

ccur in practice. Since ambulance planning is a topic of practical

mportance, the rest of this paper focuses on the performance ratio

etween online and offline algorithms for realistic incident chains.

ore specifically, we are interested in the expected performance ra-

io for incident chains that originate from an incident distribution

s described in Section 2.1 . 

. Computational results 

In this section, we analyze the ambulance dispatch problem

ased on an EMS system that represents Utrecht, one of the largest

MS regions in the Netherlands. Fig. 2 shows a map of the region

nd the base locations that we used. Utrecht is a densely popu-

ated area, with approximately 1.2 million inhabitants and an area

f approximately 1400 square kilometers. The ambulance provider

or this region handles more than 10 0,0 0 0 incidents per year –

 number equal to roughly 10% of all ambulance demand in the

etherlands. 

We chose realistic parameters to model the EMS region Utrecht.

or example, the base locations that we used are equal to the ones

sed in practice (for – at least – the period between 2013 and
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Fig. 2. The 19 existing ambulance base locations in the region of Utrecht, The Netherlands. We distribute the 25 available ambulances over the bases according to the 

MEXCLP solution with busy fraction q = 0 . 3 . 

Table 2 

A worst case example of incidents for the region described in Section 4 . The corresponding 

solution of two policies is denoted, as well as whether or not they can serve each incident 

within the threshold time. Note that the incidents in each location are exactly 51 minutes 

apart. 

Incidents Optimal offline Closest idle (online) 

Number Time Location Send ambu In time? Send ambu In time? 

1 0 1 2 No 1 Yes 

2 5 1 1 Yes 2 No 

3 51 2 2 Yes 1 No 

4 56 1 1 Yes 2 No 

5 102 2 2 Yes 1 No 

6 107 1 1 Yes 2 No 

�

n = 2m+1 m · 51 1 1 Yes 2 No 

Table 3 

Parameter choices for our implementation of the region of Utrecht. 

Parameter Magnitude Choice 

λ1 0.9 · λ2 A 10% lower rate than normal for this region. 

λ2 1/6.4 min Realistic for urgent calls on a weekday in this region. 

λ3 1.1 · λ2 A 10% higher rate than normal for this region. 

A 25 Fleet sized such that performance is realistic (near 5% late arrivals). 

W 19 Base locations as existing in 2013–2015. We divide the ambulances over the bases according to the static MEXCLP solution. 

V 217 4 digit postal codes. 

τ ij Driving times as estimated by the RIVM, rounded to minutes. 

d i Fraction of inhabitants as known in 2009. 

T 12 min Typical time standard for high priority incidents in the Netherlands. 

X 37 min Realistic average busy time for ambulances. 
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7 This number may seem small, but note that this includes some ambulances that 
2015). Furthermore, we divided the region by postal codes, and

model the incident arrivals in each postal code as a Poisson process

with a rate proportional to the population. Ambulance travel times

were provided by the Dutch National Institute for Public Health

and the Environment (RIVM). For the exact parameters used in the

implementation, see Table 3 . 

It is clear that we can only analyze finite incident chains; how-

ever, it is not immediately clear what the length of such chains

should be. One might argue that longer chains will lead to a larger

performance difference between online and offline solutions – sim-

ply because the offline solution is able to look further into the fu-
ure. On the other hand, it seems reasonable to assume that inci-

ents that are very far in the future do not greatly affect current

ecisions. Thereto, we analyzed incident chains of four different

engths: 6, 12, 18 and 24 hours. One might also argue that the re-

ult depends on the value of λ, thereto we analyzed three different

alues ( λ1 , λ2 and λ3 , as described in Table 3 ). 7 

The parameters described above lead to the analysis of 12 dif-

erent cases. For each of those cases, we drew | S | = 10 0 0 incident
do not need to transport the patient to a hospital. 
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Fig. 3. Average fraction of late arrivals for 10 0 0 chains of incidents, with different incident intensities and chain lengths. A 95% confidence interval is displayed. 
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Table 4 

The observed Performance Ratio and 95% confidence interval 

of online dispatch policies. 

λ1 λ2 λ3 

DMEXCLP 

6 hours 1.72 ± 0.07 1.86 ± 0.07 1.96 ± 0.12 

12 hours 1.67 ± 0.05 1.87 ± 0.07 2.06 ± 0.06 

18 hours 1.72 ± 0.07 1.88 ± 0.07 2.00 ± 0.05 

24 hours 1.74 ± 0.05 1.87 ± 0.05 2.04 ± 0.06 

Closest idle 

6 hours 2.48 ± 0.19 2.73 ± 0.11 2.91 ± 0.17 

12 hours 2.39 ± 0.09 2.72 ± 0.14 3.05 ± 0.09 

18 hours 2.40 ± 0.11 2.73 ± 0.11 2.94 ± 0.09 

24 hours 2.46 ± 0.06 2.72 ± 0.10 3.00 ± 0.09 
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hains according to the Poisson process described in Section 2.1 ,

or the region Utrecht defined in Table 3 . 

In order to compute the optimal offline performance, we im-

lemented all three methods from Section 3 . First, we tried the CP,

hich we implemented in the MiniZinc modeling language, using

ts standard G12 finite domain solver. This could only handle very

mall problem instances. The largest instances we tried to solve

ith CP had a simulation time of six hours. The computation time

aried widely among the different instances, the longest ones tak-

ng more than a day. Next, we implemented the DP in C++, which

educed computation times (again for instances of six hours sim-

lation time) to a range of 20 minutes to a few hours. Finally,

e implemented the BLP in Java using solver CPLEX 12.6, which

olves all instances, including ones for 24 hours simulation time,

n a fraction of a second. As stated in Section 3 , the performance

f the two online dispatch policies is calculated by simulating the

MS system. 

Ambulance optimization is a complex topic, and it is often hard

o oversee whether stated theoretical results will hold up in prac-

ice - even for experts. It is our opinion that in order for results to

e meaningful, at least the performance should be close to the per-

ormance in practice. In the Netherlands, urgent incidents should

e served within the time standard in at least 95% of all cases. The

mbulance provider for Utrecht performs slightly better than this

5% on average. Thereto, we decided to use a number of vehicles

uch that the average fraction of late arrivals for the online dis-

atch methods is roughly between 3 and 5%. We believe that this

hoice leads to the most realistic and insightful results. 

The obtained fraction of late arrivals for each of the 12 cases is

epicted in Fig. 3 . Recall that we compute the performance ratio

s described in Eq. (2) . The results from Fig. 3 then lead to the

erformance ratios found in Table 4 . 

A bound on optimal online algorithms 

Our offline optimum constitutes the first known bound on

he performance of an optimal online ambulance dispatch policy.

bove, we have shown that the DMEXCLP dispatch policy performs

pproximately 1.9 times worse than the offline optimum. 8 This
8 Note that for this numerical result, we focused on λ2 , since it is realistic for this 

articular EMS region. Furthermore, Table 4 indicates that the Performance Ratio 

d

2

eans that there cannot exist an online dispatch method that im-

roves the performance of the DMEXCLP dispatch method by more

han a factor 1.9 on average. We emphasize that this bound is an

ptimistic one, since it is obtained using information – on future

ncidents – that is inaccessible to online policies, but it is a bound

onetheless. 

The value of information 

Generally speaking, the competitive ratio of a problem shows

he importance of knowing the future for this problem. In terms of

he ambulance dispatch problem, it gives an indication of ‘unfor-

unate decisions’ made by online policies – even an optimal one

that could not have been avoided unless one knew about fu-

ure incidents. Our results are perhaps surprising: the authors of

his paper had previously expected that knowing incidents in ad-

ance would have a greater impact on performance. However, our

esults show that even an omniscient dispatcher will still be left

ith 

1 
1 . 9 ≈ 53% of the late arrivals, compared to a dispatcher that

xecutes DMEXCLP. 
oes not vary greatly between cases of 12, 18 and 24 hours. Therefore we use the 

4 hour case as a estimate of the true Performance Ratio. 
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9 We also added other – redundant – constraints in order to find solutions faster. 

However, they do not change the result and therefore we do not mention them 

here. 
6. Discussion 

We have introduced three methods to compute the offline op-

timal solution to the ambulance dispatch problem. Note that, due

to scalability issues, the CP and DP methods are not advisable for

most numerical work; we recommend the BLP to solve the prob-

lem practically. 

One may perform the analysis as described in this paper for

multiple EMS regions. Different regions typically have different

characteristics, such as the average busy fraction of ambulances,

or the distance between bases and demand. These differences will

most likely result in a different online/offline performance ratio,

and it would be interesting to see how these ratios vary over dif-

ferent regions. However, regions are always hard to compare, and

therefore instead of simulating different regions we chose to ana-

lyze the effect of different arrival intensities. 

Table 4 shows that the Performance Ratio between the online

policies and the offline optimum increases with λ. This may be

explained as follows. A larger λ leads to more incidents within a

short time frame. As we have seen in Appendix B , this makes for

a more complex problem, because many decisions are now depen-

dent on one another. In particular, an unfortunate choice at some

point can have an effect on many incidents after that. It is there-

fore not surprising that the gap between the online heuristics and

the offline optimum increases with λ. 

Although it was previously known that the closest idle method

is not optimal, it is often assumed to be quite a good policy. In

fact, the insight that the ‘closest idle’ performance is still a factor

2.7 away from the offline optimum, is something that many re-

searchers in the field of ambulance planning may be tempted to at-

tribute to the value of information : to the fact that the offline policy

has much more knowledge. However, as Fig. 3 depicts, the DMEX-

CLP dispatch heuristic is able to close about half the gap between

the ‘closest idle’ and the offline optimum. We find this observation

rather surprising, as it implies that the value of information for the

dispatch problem is smaller than we had previously anticipated. 

In order to compute the Performance Ratio, we drew random

chains of incidents. However, we always started at time 0 with all

ambulances idle. This may perhaps be interpreted as the start of

the day, for EMS providers that serve few calls at night. However,

one might also argue that we should focus more on the system in

steady state . We conjecture that our result – a Performance Ratio of

1.9 – will roughly hold for steady state as well, since the value did

not change much between incident chains of 12, 18 and 24 hours

(see Table 4 ). 

Finally, one might suggest to make the model more realistic,

e.g., by defining the busy time of an ambulance after arrival at an

incident to be a random variable. Then, however, determining the

optimal offline policy becomes a very difficult task. We see only

one way to overcome this difficulty, and that is to let the offline

solution have knowledge of the realizations of these random times.

Since online policies can only use the busy times in distribution ,

this would increase the gap between information given to the of-

fline and online policies. This deviates further from our main re-

search question, which was how much it helps to have informa-

tion on when and where incidents will occur. Increasing the gap

between what is known in the online and offline case will not help

us to gain more insight in this matter. Therefore, we decided not

to proceed in this direction. 
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ppendix A. Constraint Programming formulation 

In this appendix, we describe how we found the optimal offline

olution with CP. For this purpose, we used the MiniZinc constraint

odeling language. We modeled a set of n incidents by the follow-

ng variables: 

• t ( c ), the cth element of vector � t . This is the time that incident c

occurs, c ∈ { 1 , . . . , n } . 
• loc ( c ), the cth element of vector � loc . This is the location of each

incident, where loc ( c ) ∈ V for c ∈ { 1 , . . . , n } . 
The input further consists of the base location W a of each am-

ulance a , as well as the driving times τ i , j ∀ i , j ∈ V (in minutes).

or each incident c we introduced a variable A (c) , which can take

 value between 1 and | A |. These variables indicate which ambu-

ance is assigned to each incident. 

We aimed to minimize the fraction of arrivals later than thresh-

ld time T . Note that since the number of incidents – and therefore

he number of arrivals – is known in advance, this is equivalent to

inimizing the number of late arrivals. In our implementation, we

ocused on the number of late arrivals, denoted by N . 

Finally, we needed to ensure feasibility of the solution. Thereto,

e added two constraints. 9 Eq. (A.1) makes sure variable N is set

orrectly, i.e., it is the number of incidents for which the dis-

atched ambulance was further than T minutes away. Eq. (A.2) en-

ures that two incidents ( c 1 and c 2 ) assigned to the same ambu-

ance do not overlap in time. 

Note that this is not the only CP model one could formulate.

n fact, a model similar to the BLP model that we have seen in

ection 3.1 is also possible for CP. However, we chose to keep the

odels diverse. 

inimize N 

.t. 

 = 

∑ 

c∈ C 
1 (τW A (c) ,loc(c) > T ) (A.1)

nd 

� c 1 , c 2 ∈ C such that 
c 1 < c 2 ∧ A (c 1 ) = A (c 2 ) ∧ t(c 1 ) + τW A (c 1 ) 

,loc(c 1 ) 

+ X > t(c 2 ) . 

(A.2)

ote that in the formulation of Eq. (A.2) , we used the assumption

hat incidents are ordered chronologically. 

One can immediately see the benefit of the flexibility that CP

as to offer: we were able to write the problem using just two

onstraints, which look very similar to the way one might naturally

hink about the dispatch problem. 

ppendix B. Dynamic Programming formulation 

In this section, we describe how we built the dynamic program

DP), and what extra features could be added to it in order to

http://dx.doi.org/10.13039/501100003958
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10 The cases considered here are for the region Utrecht. Due to the scalability is- 

sues of the DP, we used only 10 ambulances in this example. 
peed up the computation. Note that we only need to make de-

isions right after an incident has occurred. Therefore, we define

tates at time steps that coincide with the incidents - and just

ike the incidents, we denote them c from 1 to n . That way, time

tep c corresponds to the actual time t ( c ). Additionally, we add a

ummy time step n + 1 , with t(n + 1) large enough such that all

ehicles are idle again, regardless of the dispatch decisions made

n the past. The only allowed action at this time step is a dummy

ction with reward 0. 

States, actions and rewards 

We define our states to be vectors containing the time in min-

tes until each ambulance becomes idle. This implies that a state s

s a vector of length | A |, the number of ambulances in the system.

et s [ a ] denote the number of minutes until ambulance a becomes

dle, for a ∈ A . If this is 0 minutes, that means the vehicle is already

dle. At time 0, nothing has happened yet, and all ambulances are

dle. Therefore, we start with the zero vector, having a value of 0.

n any state s , the allowed actions, i.e., the ambulances that are el-

gible for dispatch, are given by: a ∈ A for which s c [ a ] = 0 . At time

tep c , c ≤ n , the penalty corresponding to action a c ( a c ∈ A ) is

iven by 

 (s c , a c ) = 

{
1 if τW a c ,loc(c) 

> T ;
0 otherwise. 

ote that the reward for c = n + 1 is defined as 0. 

To know how to update the states, we can precompute the time

ifferences between the incidents. Thereto, we define: 

i f f c = t(c + 1) − t(c) for c ∈ C, 

Next is described how to update any state s c to state s c+1 ,

here a c denotes the chosen action in time step c . Let � be

he transition function, that depends on s c and a c . Define s c+1 =
(s c , a c ) such that 

 c+1 [ a ] = 

{
max (τW a,loc(c) 

+ X − di f f c , 0) if a = a c ;
max (s c [ a ] − di f f c , 0) otherwise. 

The value of being in state s c ′ at time step c ′ can then be de-

ned as: 

 c ′ (s ) = min 

{ a c } c ′ c=0 

c ′ ∑ 

c=0 

R (s c , a c ) 

ubject to 

 c ∈ A and s c [ a c ] = 0 

nd 

 c+1 = �(s c , a c ) , ∀ c = 0 , 1 , 2 , . . . , n 

The objective is to minimize the fraction of late arrivals, which

 for any fixed number of incidents - is equal to minimizing the

umber of late arrivals. So we are interested in the value V n +1 ( � 0 ) . 

Note that decisions made in the past have a large effect on the

et of states that we need to analyze in the future. In fact, only

 small subset of all states we can think of, will ever be reached.

hat is, one can obtain s c+1 from s c , but not the other way around.

herefore, a backward recursion does not make sense for this prob-

em; instead, we used a forward recursion to obtain the set of states

hat we need to analyze. Hence, for each state s , we computed the

alue at time step c based on the value in the previous time step,

s follows. 

 c+1 (s c+1 ) = min 

a c+1 

{ V c (s c ) + R (s c+1 , a c+1 ) } . 
Although this method in theory computes the optimal solution

o any instance of the offline ambulance dispatch problem, practi-

al difficulties can occur. Just like in the Constraint Programming
pproach, the difficulty is that many situations need to be consid-

red (in the Dynamic Programming case, that means many states

eed to be stored). 

Note that it is hard to give an exact formula that describes the

umber of states that need to be computed in order to find the

olution. There are, however, two formulas that both give an up-

er bound on the number states. The first one follows straight-

orwardly when one realizes that the time until each ambulance

ecomes available completely defines a state (and that we should

onsider this n times). This means there are at most nM 

| A | relevant

tates, where M is the maximum driving time between any base

ocation and demand point. Furthermore, there is a maximum on

he number of decisions that can be made. Assuming all possible

ombinations of ambulance assignments are allowed, this leads to

 maximum | A | n decisions, and hence states, to be considered. 

There are some ways to reduce the total number of states re-

uired to store, which directly lead to shorter computation times.

e next describe three ways to accomplish this. 

.1. DP speed-up 

In this appendix, we describe three ways to speed up the

omputation time of the DP. We illustrate the usefulness of each

echnique, by the effect it has on the following two problem in-

tances. 10 In both examples, T = 12 . 

nstance 1. 

�
 t = [9 , 13 , 35 , 47 , 70 , 95 , 104 , 105 , 115 , 127 , 152 , 169] . 

�
 oc = [34 , 54 , 23 , 159 , 81 , 81 , 39 , 10 , 142 , 146 , 140 , 156] . 

(For this instance, the closest idle dispatch policy results in one

ate arrival. The offline optimum is also one late arrival.) 

nstance 2. 

�
 t = [1 , 1 , 30 , 33 , 34 , 43 , 43 , 62 , 63 , 81 , 103 , 114 , 124 , 135 , 138 , 

139 , 168 , 174] . 

�
 oc = [200 , 182 , 135 , 217 , 67 , 131 , 74 , 179 , 95 , 15 , 74 , 37 , 206 , 206 ,

142 , 54 , 145 , 44] . 

(For this instance, the closest idle dispatch policy results in four

ate arrivals. The offline optimum is equal to three late arrivals.) 

Eliminating dominated states 

One well-known way to reduce the number of states, is to elim-

nate so-called dominated states. We define a state s to be domi-

ated at time c , if there exists another state s ′ , such that: 

 

′ [ a ] ≤ s [ a ] ∀ a ∈ A and V c (s ′ ) ≤ V c (s ) . 

hat is, there exists another state for which all vehicles will be idle

t earlier (or equal) times, while resulting in fewer (or equal) late

rrivals. We iteratively removed dominated states until none are

eft in our state space. 

Bounding the objective 

Another way to reduce the time and memory spent on the dy-

amic program, is to bound the solution by any feasible objective

alue. For example, we can quickly pre-compute the objective from

he ‘closest idle’ dispatch heuristic and eliminate any state that has

 larger value. We show the benefit of this approach by exam-

le: Fig. B.1 depicts the number of states that we need to analyze

t each time step. (Note that Fig. B.1 b has more time steps than

ig. B.1 a, simply because more incidents occur.) 
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Fig. B.1. Comparison of the number of states stored for each time step in the dynamic program, with and without bounding the solution by the value of the ‘closest idle’ 

policy. 
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Fig. B.1 shows that, in the first few time steps, the number of

states for the bounded and unbounded DP are more or less equal.

Let us explain why this makes sense, by the example of Instance 2.

Here, the closest idle method results in four late arrivals. Therefore,

bounding the states by the ones with values ≤ 4 does not have any

effect before time c = 5 (since the value can increase by at most 1

per incident). 11 

Also note that the number of states does not always increase

over time. So what is it exactly, that causes the need to store many

states? A key insight is that an incident that occurs at time t , only

has an indirect effect on the system 

12 after time t + τi, j + 37 , for

some travel time τ i , j , i , j ∈ V . That is, the ambulance will be idle

by time t + τi, j + 37 , and can be used for any incident after that

time, regardless of whether it is dispatched to the incident at time

t . However, whether or not this particular ambulance is dispatched

at time t , does have an effect on which ambulances are eligible for

dispatch to incidents between time t and t + τi, j + 37 . Hence, we

regard the effect as an indirect one. Note that this indirect effect

occurs only when incidents arise within this time frame. This leads

to the following observation. 

Observation 1. Longer inter-arrival times lead to a reduction in the

number of states . 

In particular, if the inter-arrival time between two consecutive

incidents is larger than 37 minutes plus the response time from

any base to the first incident (of the two), then the state space

reduces to a single state (all ambulances are idle). This can be

viewed as a ‘reset’ of the system, i.e., all information on past deci-

sions are irrelevant for future decisions. When this occurs, it avoids

an explosion of the state space that we would otherwise see for

instances with a long horizon. 

Roughly speaking, the computation time should scale linearly

with the simulation horizon (given a fixed λ). However, what

makes an instance harder to solve is the number of incidents that
11 An alternative, more elaborate way to bound the DP would be to store all states 

that the (online) heuristic passes through over time. That is, after each incident, 

store the remaining busy time for each ambulance, as well as the number of late 

arrivals observed in the past. Then, when computing the offline optimum in the DP, 

remove all states that are dominated by the states observed in the online solution. 

Note that we did not implement this idea. 
12 Assuming that we never run out of ambulances. 

G  

 

J  

 

 

K  

 

ccur quickly after one another. Many incidents in a short time

indow imply many dependent decisions – and precisely this in-

reases the number of states. This effect can be seen in the ‘spikes’

n Fig. B.1 a and b (one can manually confirm this using the inci-

ents times given in Instance 1 and 2. Conversely, the time steps

ith a very small number of states correspond to large inter-arrival

imes between incidents. 

Rounding the numbers in the input 

Another way to speed up the computations is by rounding the

riving times and incident times. For example, instead of round-

ng to minutes, we could round the times to multiples of 5 min-

tes. The reason why this would result in fewer states, is that more

tates will be dominated. 

Unfortunately, rounding means some accuracy will be lost: we

ake use of a trade-off between running time and accuracy here.

t the very least, one should make sure to also round the times in

he input for the heuristic solutions, or else the computed ratio is

eaningless. Then, one might argue that the computed ratio will

e similar to the unrounded case. Note that we did not implement

his method, but instead suggest to use a Binary Linear Program-

ing approach as described in Section 3.1 . 

eferences 

lanis, R. , Ingolfsson, A. , & Kolfal, B. (2013). A Markov chain model for an EMS sys-

tem with repositioning. Production and Operations Management, 22 (1), 216–231 . 
Carter, G. , Chaiken, J. , & Ignall, E. (1972). Response areas for two emergency units.

Operations Research, 20 (3), 571–594 . 
hurch, R. , & Revelle, C. (1974). The maximal covering location problem. Papers of

the Regional Science Association, 32 , 101–118 . 
ordeau, J. , & Laporte, G. (2007). The dial-a-ride problem: models and algorithms.

Annals of Operations Research, 153 (1), 29–46 . 

Daskin, M. (1983). A maximum expected location model: Formulation, properties
and heuristic solution. Transportation Science, 7 , 48–70 . 

an Essen, J. (2013). Flowing through hospitals, Chapter 3 . University of Twente (Ph.D.
thesis) . 

oldberg, J. , Dietrich, R. , Chen, J. , & Mitwasi, M. (1990). Validating and applying a
model for locating emergency medical services in Tucson, AZ. Euro, 34 , 308–324 .

agtenberg, C. , Bhulai, S. , & van der Mei, R. (2015). An efficient heuristic for real-time
ambulance redeployment. Operations Research for Health Care, 4 , 27–35 . 

Jagtenberg, C., Bhulai, S., & van der Mei, R. (2016). Dynamic ambulance dispatching:

is the closest-idle policy always optimal? Operations Research for Health Care ,
1–15. doi: 10.1007/s10729- 016- 9368- 0 . 

arp, R. (1992). On-line algorthms versus off-line algorithms: How much is it worth
to know the future? International Federation for Information Processing Congress,

12 (1), 416–429 . 

http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0001
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0002
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0003
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0004
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0005
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0006
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0007
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0008
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0008
http://dx.doi.org/10.1007/s10729-016-9368-0
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0010
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0010


C.J. Jagtenberg et al. / European Journal of Operational Research 258 (2017) 715–725 725 

M  

M  

 

M  

 

M  

 

P  

R  

 

S  

 

Y  

 

anasse, M. , McGeoch, L. , & Sleator, D. (1990). Competitive algorithms for server
problems. Journal of Algorithms, 11 (2), 208–230 . 

axwell, M. , Ni, E. , Tong, C. , Hunter, S. , Henderson, S. , & Topaloglu, H. (2014). A
bound on the performance of an optimal ambulance redeployment policy. Op-

erations Research, 62 (5), 1014–1027 . 
axwell, M. , Restrepo, M. , Henderson, S. , & Topaloglu, H. (2010). Approximate dy-

namic programming for ambulance redeployment. INFORMS Journal on Comput-
ing, 22 , 226–281 . 

elachrinoudi, E. , Ilhan, A. , & Min, H. (2007). A dial-a-ride problem for client

transportation in a health-care organization. Computers and Operations Research,
34 (3), 742–759 . 
arragh, S. , Doerner, K. , & Hartl, R. (2009). A heuristic two-phase solution approach
for the multi-objective dial-a-ride problem. Networks, 54 (4), 227–242 . 

itzinge, U. , Puchinge, J. , & Hartl, R. (2016). Dynamic programming based meta-
heuristics for the dial-a-ride problem. Annals of Operations Research, 236 (2),

341–358 . 
chmid, V. (2012). Solving the dynamic ambulance relocation and dispatching prob-

lem using approximate dynamic programming. European Journal of Operational
Research, 219 , 611–621 . 

ue, Y. , Marla, L. , & Krishnan, R. (2012). An efficient simulation-based approach to

ambulance fleet allocation and dynamic redeployment. In AAAI conference on
artificial intelligence (AAAI) . 

http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0011
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0012
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0013
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0014
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0015
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0016
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0017
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0018
http://refhub.elsevier.com/S0377-2217(16)30700-7/sbref0018

	Benchmarking online dispatch algorithms for Emergency Medical Services
	1 Introduction
	2 Problem formulation
	2.1 Model and notation
	2.2 Goal

	3 Method
	3.1 The optimal offline solution using binary linear programming
	3.2 Online solutions
	3.2.1 The ‘closest idle’ dispatch method
	3.2.2 The DMEXCLP dispatch heuristic

	3.3 Benchmarking solutions

	4 Worst case analysis
	5 Computational results
	6 Discussion
	 Acknowledgments
	Appendix A Constraint Programming formulation
	Appendix B Dynamic Programming formulation
	B.1 DP speed-up

	 References


