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Abstract

Providers of Emergency Medical Services (EMS) face the online ambulance
dispatch problem, in which they decide which ambulance to send to an incom-
ing incident. Their objective is to minimize the fraction of arrivals later than
a target time. Today, the gap between existing solutions and the optimum
is unknown, and we provide a bound for this gap.

Motivated by this, we propose a benchmark model (referred to as the
offline model) to calculate the optimal dispatch decisions assuming that all
incidents are known in advance. For this model, we introduce and implement
three different methods to compute the optimal offline dispatch policy for
problems with a finite number of incidents. The performance of the offline
optimal solution serves as a bound for the performance of an - unknown -
optimal online dispatching policy.

We show that the competitive ratio (i.e., the worst case performance
ratio between the optimal online and the optimal offline solution) of the
dispatch problem is infinitely large; that is, even an optimal online dispatch
algorithm can perform arbitrarily bad compared to the offline solution. Then,
we performed benchmark experiments for a large ambulance provider in the
Netherlands. The results show that for this realistic EMS system, when
dispatching the closest idle vehicle to every incident, one obtains a fraction
of late arrivals that is approximately 2.7 times that of the optimal offline
policy. We also analyze another online dispatch heuristic, that manages to
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reduce this gap to approximately 1.9. This constitutes the first quantification
of the gap between online and offline dispatch policies.

Keywords: OR in health services, Ambulances, Emergency medical
services, Dispatch, Online Optimization.

1. Introduction

In serious life-threatening situations where every second counts, the timely
presence of emergency aid at the incident scene can make the difference be-
tween life and death. Motivated by this, recently there has been a wide
interest in planning of Emergency Medical Services (EMS) and many models
and approaches have been developed in order to use ambulances efficiently.
EMS planning often revolves around response times: the time between the
occurrence of an incident and the time that an ambulance arrives on scene.
A key performance metric is the fraction of incidents that have a response
time greater than a certain threshold time. EMS call center agents have to
make on-the-fly choices about which vehicle to dispatch to a newly incoming
incident, such that the fraction of arrivals later than a target time is mini-
mized. The classical dispatch policy often used in practice is the closest idle
vehicle approach. Also, most literature uses the ‘closest idle’ policy with-
out questioning it, even though it was already shown to be suboptimal in
1972 [2]. Recently, Jagtenberg et al. [8] showed that this policy is in fact
quite far from optimal, and developed an algorithm that outperforms the
closest idle dispatch method.

The question addressed in this paper is how to benchmark dispatch poli-
cies against optimal policies with full information: suppose we would know
all incident arrivals and locations in advance, then how much better would
the performance of the optimal dispatch policy be? What is the potential im-
provement if we were able to perfectly predict future incidents? The answer
to such questions addresses the value of information about future incidents,
and give insight into how far we are from the optimum under full informa-
tion and what is the potential for developing accurate forecasting models for
emergency incidents.

By analyzing the dispatch process from a new angle, this paper provides a
contribution that will be of interest to researchers who develop mathematical
models for EMS planning. This new perspective helps to develop a deeper
understanding of EMS planning models. Furthermore, we link ambulance
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dispatching to the literature on online/offline optimization. For a general
introduction to the concept of online versus offline algorithms, see [9].

In the literature, many models are available for ambulance planning. First
of all, there are models that deal with planning on the strategic level. Typi-
cally, such models determine the best locations for ambulance bases [3], and
they sometimes also determine the number of vehicles that should be posi-
tioned at each base [5], [6]. The majority of these solutions use mixed integer
linear programming to solve the problem. Second, there is previous work on
operational ambulance planning. This can be divided in two categories: (1)
methods that relocate idle ambulances, and (2) methods that dynamically
decide which ambulance to dispatch to incidents.

Dynamic relocations
The vast majority of the papers on dynamic ambulance management focuses
on how to redeploy idle vehicles, (e.g., [1], [12] and [18]). Perhaps in order
not to overcomplicate things, they assume a basic dispatch rule: whenever
an incident occurs, they decide to send the ambulance that is closest (in
time). Although this is a common dispatch policy, it was already shown to
be suboptimal in 1972 [2]. Regardless, most authors make this assumption
without much discussion or justification; for example, Maxwell et al. [12]
claim that it is an accurate enough representation of reality; however, they
do not address the question of whether it is an optimal choice with respect
to the objective (which is the fraction of incidents that are reached within
the threshold time). Alanis et al. [1] do not address the assumption at all.

Dynamic dispatching
Few papers focus on dynamic dispatch methods. One exception is [16], in
which the authors combine both decisions on repositioning and dispatching.
They report that adding a dynamic dispatch method improves the average
response time from 4.05 to 4.01 minutes (as compared to ‘only’ dynamic
repositioning). It is not mentioned how much dynamic dispatching improves
the response time compared to static ambulance planning. Furthermore,
their objective differs from ours as they do not consider a response time
threshold (RTT).

A paper that explicitly searches for dynamic dispatch methods in com-
bination with a RTT is [8]. It includes an easy to implement heuristic and
shows that we can indeed improve the objective - the fraction of late arrivals
- by changing the dispatch policy. However, since the topic has been under-
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exposed in the literature, it is still unknown how much profit can be expected
from an optimal dispatch rule.

Bounds for dynamic ambulance planning
The concept of bounds on the performance of EMS systems is relatively new.
There is one recent paper that provides a bound for the performance of an
optimal ambulance redeployment policy [11]. However, for a bound on the
performance of dispatch policies, we are not aware of any result.

Offline dispatching
There is previous work on ambulance planning that uses ideas similar to
offline dispatching. However, authors typically do not recognize the idea as
such. For example, [18] aims to analyze and evaluate repositioning algo-
rithms, and to that end uses optimal offline dispatch policies as an upper
bound on the possible performance. Instead of calling it an offline version of
an online problem, the authors refer to the offline approach as ‘the omniscient
observer’. Most importantly, this paper differs from ours because it does not
include a comparison with online dispatch methods. Other researchers use
offline dispatching to compute the number of vehicles needed to serve all in-
cidents, without noting that this is perhaps a rather optimistic approach [17].

A related problem is the dial-a-ride problem, which deals with online
arriving requests for transports between an origin and destination. For an
overview of literature on this problem, see [4]. The dial-a-ride problem is
similar in the sense that routes are created; however, it typically allows for
flexibility in the execution time of each request, whereas the (urgent) am-
bulance requests require a vehicle to be sent immediately. Furthermore, in
dial-a-ride problems the objective is typically either related to efficiency (such
as transportation cost or travel time) or based on customers’ inconvenience
(such as lateness or excess drive time). There is literature that considers dial-
a-ride problems specifically in the ambulance context. However, this usually
concerns the non-urgent patient transports, see e.g. [13, 15, 14]. Due to the
fact that their objectives are not related to a response time threshold, we
cannot directly use their results or formulations.

Another related problem is the k-server problem [10], which is one of the
classical problems in competitive analysis. In this problem, each time step
corresponds to a request arriving somewhere in a metric space. There is a
set of k servers available, and an algorithm prescribes for each request which
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server should respond. The objective is to minimize the total distance moved
by all servers. The competitive ratio of the k-server problem is currently un-
known, although it can be shown that it is at least k, and there exists a
conjecture stating that the competitive ratio is exactly k [10]. This problem
differs from our ambulance problem in three crucial ways. First of all, in the
k-server problem requests do not overlap in time. Second, servers await their
next move at the location of their last request, whereas ambulances return to
their home base. Third, there is no response time threshold in the k-server
problem.

Contribution
The contribution of this paper is twofold: (1) to give a bound for the fraction
of late arrivals that can be achieved by any ambulance dispatch policy, even
if all future incident times and locations would be known in advance, and (2)
to benchmark and assess the potential for improvement of existing dispatch
algorithms. To this end, we introduce three different methods to compute the
optimal offline dispatch decisions in case future incident arrivals are known
in advance. The first method is Constraint Programming (CP); to the best
of our knowledge, this paper is the first to apply CP to ambulance planning.
Next, as an alternative, we also formulate the offline dispatch problem as a
Dynamic Programming (DP), and we discuss how this DP provides insight
into the problem. We introduce a third method, that is the fastest among
the three, using Binary Linear Programming (BLP). We emphasize that all
three methods result in the same solution, that is, the optimal solution for
the offline problem. Subsequently, we determine the performance of two key
online algorithms: the classical ‘closest idle ambulance’ rule, and the heuristic
method described in [8]. These performances are obtained by a discrete event
simulation model of an urban EMS region.

Our interest in quantifying the gap between online and offline algorithms
is twofold. From a theoretical point of view, we are interested in the compet-
itive ratio of the dispatch problem (i.e., a worst case measure for an optimal
online algorithm). Conversely, from a practical point of view, we are in-
terested in the performance ratio between online and offline algorithms for
realistic incident chains. This gives an indication of how much performance
improvement can be obtained by developing better dispatch methods, and
simultaneously shows how much one can benefit from developing accurate
incident prediction models.

We do a worst case analysis by constructing a toy example that shows
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that the so-called competitive ratio (i.e., the worst case performance ratio of
the fraction of late arrivals between the optimal online and the optimal offline
solution) of the dispatch problem is infinitely large; in other words, the opti-
mal online dispatch algorithms can perform arbitrarily bad compared to the
offline solution. We also analyze realistic problem instances by performing
benchmark experiments for a large ambulance provider in the Netherlands.
The results show that for this realistic EMS system, the fraction of late ar-
rivals of the classical ‘closest idle’ dispatch heuristic is approximately 3.5%,
whereas the offline optimum is 1.5%. What is perhaps most surprising, is that
our results show there exists an online dispatch heuristic that closes roughly
half of this gap between ‘closest idle’ and the offline optimum. This is the
so-called DMEXCLP dispatch heuristic, that results in 2.6% late arrivals
(and thereby performs only 1.9 times worse than the optimal offline policy).
The remainder of this paper is structured as follows. In Section 2, we give a
formal problem definition. In Section 3, we describe the two online policies,
and introduce - and analyze - three methods to find optimal offline solutions.
In Section 4, we perform a worst case analysis of the problem, and show that
the competitive ratio is infinitely large. We end with computational results
for the average case in Section 5 and a discussion in Section 6.

2. Problem formulation

We consider the problem of ambulance dispatching. In this problem,
incidents occur randomly in time and space, and the task is to determine
which ambulance to send to each incident. At first sight, the ambulance
problem may seem similar to, e.g., that of a police or taxi crew. However,
there is a crucial difference: taxis typically generate more requests simply by
driving through locations with potential customers. On the other hand, the
presence of police cars in an area usually reduces crime rates, and thereby
the number of requests. For ambulances, however, we assume the following.

Assumption 1. The occurrence of incidents is independent of previous in-
cidents and the chosen dispatch policy.

We consider this assumption to be very realistic, and will use it through-
out this paper. From Assumption 1 follows that we can generate incidents
in a preparatory phase, prior to determining the decisions made by each
dispatch policy.
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2.1. Model and notation

We generate incidents in time and space as follows1. Define V as the set of
locations at which incidents can occur. These demand locations are modeled
as a set of discrete points. Incidents at locations in V occur according to
a Poisson process with rate λ. Let di be the fraction of the demand rate λ
that occurs at node i, i ∈ V . Then, on a smaller scale, incidents occur at
node i with rate λdi. According to these Poisson processes, we can simulate
sequences of incidents.

Let A be the set of ambulances, and Aidle ⊆ A the set of currently idle
ambulances. When an incident has occurred, we require an idle ambulance to
immediately drive to the scene of the incident. The decision which ambulance
to send is the main question of interest in this paper. Throughout this paper,
we assume the following.

Assumption 2. There are sufficiently many ambulances, such that at least
one ambulance is idle whenever an incident occurs.

We consider two types of problems: (1) online problems, and (2) offline
problems. In the online problem, the decision which ambulance to send has
to be made at the moment the incident occurs; future incidents are unknown
and can at best be predicted. In the offline version of the problem, all
incidents (i.e., their time stamps and locations) are known in advance.

Our objective is formulated in terms of response times, defined as the
time between an incident and the arrival of an ambulance at the emergency
scene. In practice, incidents have the requirement that an ambulance must
be present within T time units. Therefore, we want to minimize the fraction
of late arrivals, defined as the fraction of incidents for which the response
time is larger than T .

Assumption 3. We assume that the travel time τi,j between two nodes i, j ∈
V is deterministic, and known in advance.

Our objective can be formalized as follows. Recall that incidents are
generated according to the Poisson process described above. Let C denote
our set of incidents (also known as calls), and let n be the number of incidents,
i.e., n = |C|. Straightforwardly, t(c) denotes the time that incident c occurs

1The call generation described here is equivalent to the system defined in [7] and [8].

7



(c ∈ C). Let furthermore, hπ(c) represents the time a vehicle arrives at the
scene of incident c, under policy π. Now we can express our objective as:

arg min
π∈Π

lim
n→∞

∑n
c=1 1[hπ(c)− t(c) > T ]

n
. (1)

Sending an ambulance to an incident is followed by a chain of events, such
as spending time on scene with the patient, deciding whether the patient
needs transport to a hospital (and if so: additional travel time and a drop-
off time at the emergency department). In practice, these events will take a
random amount of time. However, this makes for a very complex problem, to
which both the online and offline optimal solution is not known. Thereto, we
use a simplified model of the EMS process, which ensures that the optimal
offline solution can be computed.

Assumption 4. The busy time, excluding travel time, is known and deter-
ministic and the same for all calls.

We define an ambulance to be busy for X minutes after arriving at the
scene of an incident. Note that this parameter X is assumed to be indepen-
dent of the incident location and the base location the ambulance departed
from. After these X minutes, the ambulance becomes idle at its (predefined)
base location.

We denote the base location of ambulance a by Wa, for a ∈ A. Note that
it is possible for multiple ambulances to have the same base location. As soon
as an ambulance has reached its base location, it is ready to be dispatched
again2. An overview of the notation can be found in Table 1.

2.2. Goal

In this paper, we focus on bounding the performance of any online solution
to the ambulance dispatch problem. Since the optimal solution to the online
problem (in which future incidents are unknown) is not known, we use the
optimal solution to the offline version of the problem (in which all incidents
are known in advance) as a bound.

2This problem description is similar to the one defined in [8], with the following two
main differences. In [8] vehicles are allowed to be dispatched while returning to their home
base (i.e., when they are on the road) and the ambulance service times are modeled as a
stochastic process, rather than a constant time X.
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V The set of demand locations.
A The set of ambulances.
Aidle The set of idle ambulances.
Wa The base location for ambulance a, a ∈ A, Wa ∈ V .
T The time threshold.
X The time an ambulance is busy with one incident,

from the moment of arrival at the scene.
λ Incident rate.
di The fraction of demand in i, i ∈ V .
τi,j The driving time between i and j with siren turned on, i, j ∈ V .
n The number of incidents, for a certain chain of incidents.
t(c) The time that incident c occurs, c ∈ C
loc(c) The location of incident c, c ∈ C, where loc(c) ∈ V .

Table 1: Notation.

Our first goal is to formulate a model that allows us to compute the
optimal (offline) dispatch policy. Our second goal is to compare this offline
optimum to the performance of existing online (heuristic) methods.

3. Method

We introduce and implement three different methods to find the optimal
offline solution for a general instance of the dispatch problem (with a finite
number of calls). The first method, constraint programming (CP), has the
advantage that it is easy and quick to implement. The second, dynamic
programming (DP), is able to find the same solution with somewhat shorter
running times, and on top of that allows us to investigate which properties
make an instance hard to solve. The downside of this method is that it
has the most labour-intensive implementation. The third method, Binary
Linear Programming (BLP) solves the problem the fastest. In this section
we describe the BLP; the DP and CP model can be found in Appendix A.

We also define the online dispatch policies that we use in our analysis.
These solution methods are eventually used to compare the performance on
several problem instances.
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3.1. The Optimal Offline Solution using Binary Linear Programming
In order to formulate the problem as a BLP, we first introduce parameters

pcj ∈ {0, 1}, for c ∈ C, j ∈ A. This parameter is the penalty of assigning
ambulance j to incident c: it will be set to 0 if ambulance j arrives within
threshold time T , and 1 otherwise. Note that the values of pcj can be de-
duced from the problem specification, using the base locations, driving times
between those bases and the incident locations, and the (fixed) parameter T .

Our decision variables will be xcj ∈ {0, 1}, for c ∈ C, j ∈ A, which will
be 1 if and only if ambulance j is assigned to incident c.

The most important constraint of our problem, is that two incidents han-
dled by the same ambulance may not overlap in time. At first sight, it seems
hard to model this in a linear way: recall that the travel time depends on the
ambulance that is chosen. However, we can precompute for each combination
of incidents c and c′, whether or not they overlap in time if they were to be
served by ambulance j. Denote this with parameter occ′j, for c, c′ ∈ C, j ∈ A,
which is equal to 1 if the incidents overlap in time, and 0 otherwise. If occ′j
equals 1, we add a constraint that at most one incident in {c, c′} may be
served by ambulance j. Then, the offline ambulance dispatch problem can
be modeled as a BLP as follows.

Minimize
∑
c∈C

∑
j∈A

pcjxcj

subject to∑
j∈A

xcj = 1, c ∈ C

occ′j · (xcj + xc′j) ≤ 1, j ∈ A, c, c′ ∈ C, c 6= c′

xcj ∈ {0, 1}, c ∈ C, j ∈ A

3.2. Online Solutions
In this section, we describe two online dispatch methods. The first is

often used in practice, and the second was shown to give good performance
for our objective (the fraction of late arrivals).

3.2.1. The ‘closest idle’ dispatch method

When an incident occurs, all idle ambulances are considered. The idle
ambulance that is closest3 to the incident location, is then dispatched. This

3closest in time, not necessarily in space
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notion can be formally expressed as follows.

arg min
a∈Aidle

(τWa,loc(i))

i.e., the ambulance a for which the travel time τ is the smallest amongst all
idle ambulances.

3.2.2. The DMEXCLP dispatch heuristic

In this section, we briefly describe the online dispatch method that we
shall refer to as the ‘DMEXCLP dispatch heuristic’. This heuristic was first
defined in [8], and applied to test data similar to region Utrecht as defined
in this paper4. This showed that the heuristic reduces the fraction of late ar-
rivals by 18% compared to the ‘closest idle’ benchmark policy. A mentioned
drawback is that this heuristic increases the average response time. There-
fore, the authors do not claim that this heuristic is practically preferable
over the closest-idle method. However, the mentioned improvement of 18%
is considerable, and hence it would be interesting to see how the heuristic
performs compared to the offline optimum.

The general idea of the DMEXCLP dispatch heuristic is that we choose
an ambulance such that the remaining idle ambulances provide good coverage
of the region. Coverage can be interpreted as a number that indicates how
well we can serve the incidents that might occur in the (near) future.

The definition of coverage for the DMEXCLP dispatch heuristic was bor-
rowed from the well-known MEXCLP model [7], which we briefly describe
next. MEXCLP was originally designed to optimize the distribution of a
limited number, say |A|, ambulances over a set of possible base locations W .
Ambulances are modeled to be unavailable with a pre-determined probability
q, that is the same for all vehicles. Input parameter q can be estimated by
computing the total workload based on expected calls divided by the num-
ber of ambulances. For any node i ∈ V , the MEXCLP model determines the
coverage based on the number of ambulances (k) that can serve this node
within the time standard. Since the travel times τi,j (i, j ∈ V ) are assumed
to be deterministic, one can straightforwardly determine this number k. De-
note the demand at node i by di, and define the expected covered demand
of this vertex to be Ek = di(1− qk). Note that the marginal contribution of

4In [8], the region considered is also Utrecht. However, the incident rate as well as the
number of vehicles used is slightly lower than in the current paper.
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the kth ambulance to this expected value is Ek − Ek−1 = di(1 − q)qk−1. In
order to model the problem as an ILP, the authors use binary variables yik
that are equal to 1 if and only if vertex i ∈ V is within range of at least k
ambulances. The objective of the MEXCLP model can now be written as:

Maximize
∑
i∈V

|A|∑
k=1

di(1− q)qk−1yik.

The dispatch problem requires us to decide which (idle) ambulance to
send, at the moment an incident occurs. Thereto, we compute the marginal
coverage that each ambulance provides for the region, at this point in time.
The ambulance that provides the smallest marginal coverage, is the best
choice for dispatch, in terms of remaining coverage for future incidents. How-
ever, this does not incorporate the desire to reach the current incident within
target time T . We propose to combine the two objectives – reaching the in-
cident in time and remaining a well-covered region – by always sending an
ambulance that will reach the incident in time, if possible. This still leaves
a certain amount of freedom in determining which particular ambulance to
send.

If none of the idle ambulances can reach the incident in time, all idle
ambulances are eligible for dispatch. To summarize, the DMEXCLP dispatch
heuristic chooses the ambulance - within the set of eligible ambulances - that
maximizes the coverage provided by the remaining idle ambulances. The
calculations are done by brute force, which can easily be performed in real-
time for realistic problem sizes.

3.3. Benchmarking solutions

In this section, we describe how we calculated the performance ratio be-
tween an online and an offline dispatch policy. By definition, the performance
of an online policy must be equal to or worse than the offline optimum. Re-
call that our objectives are defined as the fraction of late arrivals. Since
we are minimizing our objective, we can immediately conclude that the on-
line/offline performance ratio will be ≥ 1.

Given a specific EMS region, we drew a finite sequence of incidents ac-
cording to the Poisson process defined in Section 2.1. Denote the fraction of
late arrivals for a certain policy P and incident sequence s by FracLateP (s).
We repeated this process multiple times, using a large set of incident se-
quences (S), in order to determine the objective more accurately. Our final
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estimate for the performance ratio is then computed as the ratio of the av-
erage performances:

Performance Ratio :=

1
|S|
∑

s∈S FracLateOnline(s)
1
|S|
∑

s∈S FracLateOffline(s)
(2)

Note that we do not compute the performance ratio of each individual
incident sequence. The reason for this, is that when the offline optimum
results in 0 late arrivals, the performance ratio becomes infinitely large, and
this does not lead to a meaningful average performance ratio.

4. Worst case analysis

In this section, we describe a worst case realization of incidents. This
example is meant to illustrate to what extent an ‘unfortunate’ chain of inci-
dents can affect the performance of online dispatch algorithms. The example
directly leads to the so-called competitive ratio of the dispatch problem.

Consider a region where the time threshold T = 12 minutes, and the
busy time for an ambulance is X = 37 minutes. There are two nodes in
which incidents can occur, and the driving time between these nodes is 13
minutes. Each node is the base location for one ambulance. For simplicity,
let us say ambulance 1 has base location 1, and ambulance 2 is stationed at
location 2. For a graphic representation, see Figure 1. It is easy to see that
an ambulance will reach an incident in time, if and only if the ambulance at
the location of the incident is available.

Figure 1: Region with two towns, each being the home base for one ambulance.

Table 2 shows a chain of incident realizations for which the closest idle
dispatch policy performs particularly poorly. Typical about this example is
that a dispatch algorithm only has a choice for the first incident (at time
0). After that, the sequence of incidents is timed such that there is only one
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incidents optimal offline closest idle (online)
number time location send ambu in time? send ambu in time?

1 0 1 2 no 1 yes
2 5 1 1 yes 2 no
3 51 2 2 yes 1 no
4 56 1 1 yes 2 no
5 102 2 2 yes 1 no
6 107 1 1 yes 2 no
...

n = 2m+1 m·51 1 1 yes 2 no

Table 2: A worst case example of incidents for the region described in Section 4. The
corresponding solution of two policies is denoted, as well as whether or not they can serve
each incident within the threshold time. Note that the incidents in each location are
exactly 51 minutes apart.

ambulance idle at any decision moment5. By our problem definition, that
ambulance must then be dispatched immediately. So, if an algorithm makes
the wrong decision in the first time step - like the closest idle policy does - all
following incidents except the first one the ambulance will arrive later than
the threshold time. Alternatively, if the correct decision is made in the first
time step, only the first incident’s ambulance will arrive late.

Note that it is impossible for any online algorithm to know what is the
best decision in the first time step. To see this, imagine an (online) algorithm
that upon seeing the first incident in location 1, sends ambulance 2 (hence
it does the opposite of the closest idle method.) The worst case instance for
this algorithm, would have the same incident times as in Table 2, but have
the locations of incident 2 . . . n swapped (i.e. location 1 ↔ 2). Then, again,
only the first incident would be reached in time. Thereto, we conclude that
the performance ratio of any online algorithm can be a factor

(n− 1)/n

1/n
=
n− 1

1
→n→∞ ∞.

5Note that incidents in each location are 51 minutes apart, while the busy time of an
ambulance is at most 13+37=50 minutes.
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larger than the optimal offline policy.6

Although this worst case is interesting from a theoretical perspective, we
want to clarify that this is not a case that is likely to occur in practice. Since
ambulance planning is a topic of practical importance, the rest of this pa-
per focuses on the performance ratio between online and offline algorithms
for realistic incident chains. More specifically, we are interested in the ex-
pected performance ratio for incident chains that originate from an incident
distribution as described in Section 2.1.

5. Computational results

In this section, we analyze the ambulance dispatch problem based on an
EMS system that represents Utrecht, one of the largest EMS regions in the
Netherlands. Figure 2 shows a map of the region and the base locations
that we used. Utrecht is a densely populated area, with approximately 1.2
million inhabitants and an area of approximately 1,400 square kilometers.
The ambulance provider for this region handles more than 100,000 incidents
per year - a number equal to roughly 10% of all ambulance demand in the
Netherlands.

We chose realistic parameters to model the EMS region Utrecht. For
example, the base locations that we used are equal to the ones used in prac-
tice (for - at least - the period between 2013 and 2015). Furthermore, we
divided the region by postal codes, and model the incident arrivals in each
postal code as a Poisson process with a rate proportional to the population.
Ambulance travel times were provided by the Dutch National Institute for
Public Health and the Environment (RIVM). For the exact parameters used
in the implementation, see Table 3.

6One might argue that in this particular case the ambulance dispatcher should be
allowed to change his mind and send a different ambulance whenever new information
becomes available - like a new vehicle becoming idle - as long as the originally dispatched
ambulance still has not arrived. That is, the dispatcher might be able to perform better if
he is allowed to schedule with preemption during the travel time. However, one can easily
see that preemption does not change the worst case: suppose we change the problem
instance in Table 2 by increasing the time of incident 2 from 5 to 13, and update the
consecutive (odd) incidents accordingly. Then, the new information arrives too late, i.e.,
the originally dispatched ambulance has already arrived, and hence the infinitely large
ratio also holds for the dispatch problem with preemption.
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Parameter Magnitude Choice
λ1 0.9 · λ2 A 10% lower rate than normal for this

region.
λ2 1/6.4 min Realistic for urgent calls on a weekday

in this region.
λ3 1.1 · λ2 A 10% higher rate than normal for this

region.
A 25 Fleet sized such that performance is re-

alistic (near 5% late arrivals).
W 19 Base locations as existing in 2013-2015.

We divide the ambulances over the
bases according to the static MEXCLP
solution.

V 217 4 digit postal codes.
τij Driving times as estimated by the

RIVM, rounded to minutes.
di Fraction of inhabitants as known in

2009.
T 12 min Typical time standard for high priority

incidents in the Netherlands.
X 37 min Realistic average busy time for

ambulances7.

Table 3: Parameter choices for our implementation of the region of Utrecht.
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Figure 2: The 19 existing ambulance base locations in the region of Utrecht, The Nether-
lands. We distribute the 25 available ambulances over the bases according to the MEXCLP
solution with busy fraction q = 0.3.

It is clear that we can only analyze finite incident chains; however, it is
not immediately clear what the length of such chains should be. One might
argue that longer chains will lead to a larger performance difference between
online and offline solutions - simply because the offline solution is able to look
further into the future. On the other hand, it seems reasonable to assume
that incidents that are very far in the future do not greatly affect current
decisions. Thereto, we analyzed incident chains of four different lengths:
6, 12, 18 and 24 hours. One might also argue that the result depends on
the value of λ, thereto we analyzed three different values (λ1, λ2 and λ3, as
described in Table 3).

The parameters described above lead to the analysis of 12 different cases.

7This number may seem small, but note that this includes some ambulances that do
not need to transport the patient to a hospital
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For each of those cases, we drew |S|=1000 incident chains according to the
Poisson process described in Section 2.1, for the region Utrecht defined in
Table 3.

In order to compute the optimal offline performance, we implemented all
three methods from Section 3. First, we tried the CP, which we implemented
in the MiniZinc modeling language, using its standard G12 finite domain
solver. This could only handle very small problem instances. The largest
instances we tried to solve with CP had a simulation time of six hours. The
computation time varied widely among the different instances, the longest
ones taking more than a day. Next, we implemented the DP in C++, which
reduced computation times (again for instances of six hours simulation time)
to a range of 20 minutes to a few hours. Finally, we implemented the BLP in
Java using solver CPLEX 12.6, which solves all instances, including ones for
24 hours simulation time, in a fraction of a second. As stated in Section 3, the
performance of the two online dispatch policies is calculated by simulating
the EMS system.

Ambulance optimization is a complex topic, and it is often hard to oversee
whether stated theoretical results will hold up in practice - even for experts.
It is our opinion that in order for results to be meaningful, at least the per-
formance should be close to the performance in practice. In the Netherlands,
urgent incidents should be served within the time standard in at least 95% of
all cases. The ambulance provider for Utrecht performs slightly better than
this 95% on average. Thereto, we decided to use a number of vehicles such
that the average fraction of late arrivals for the online dispatch methods is
roughly between 3 and 5%. We believe that this choice leads to the most
realistic and insightful results.

The obtained fraction of late arrivals for each of the 12 cases is depicted
in Figure 3. Recall that we compute the performance ratio as described in
Equation 2. The results from Figure 3 then lead to the performance ratios
found in Table 4.

A bound on optimal online algorithms
Our offline optimum constitutes the first known bound on the performance
of an optimal online ambulance dispatch policy. Above, we have shown that
the DMEXCLP dispatch policy performs approximately 1.9 times worse than
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Figure 3: Average fraction of late arrivals for 1000 chains of incidents, with different
incident intensities and chain lengths. A 95% confidence interval is displayed.

λ1 λ2 λ3

DMEXCLP
6 hours 1.72 ± 0.07 1.86 ± 0.07 1.96 ± 0.12
12 hours 1.67 ± 0.05 1.87 ± 0.07 2.06 ± 0.06
18 hours 1.72 ± 0.07 1.88 ± 0.07 2.00 ± 0.05
24 hours 1.74 ± 0.05 1.87 ± 0.05 2.04 ± 0.06

Closest idle
6 hours 2.48 ± 0.19 2.73 ± 0.11 2.91 ± 0.17
12 hours 2.39 ± 0.09 2.72 ± 0.14 3.05 ± 0.09
18 hours 2.40 ± 0.11 2.73 ± 0.11 2.94 ± 0.09
24 hours 2.46 ± 0.06 2.72 ± 0.10 3.00 ± 0.09

Table 4: The observed Performance Ratio and 95% confidence interval of online dispatch
policies.

the offline optimum8. This means that there cannot exist an online dispatch

8Note that for this numerical result, we focused on λ2, since it is realistic for this
particular EMS region. Furthermore, Table 4 indicates that the Performance Ratio does
not vary greatly between cases of 12, 18 and 24 hours. Therefore we use the 24 hour case
as a estimate of the true Performance Ratio.
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method that improves the performance of the DMEXCLP dispatch method
by more than a factor 1.9 on average. We emphasize that this bound is an
optimistic one, since it is obtained using information - on future incidents -
that is inaccessible to online policies, but it is a bound nonetheless.

The value of information
Generally speaking, the competitive ratio of a problem shows the importance
of knowing the future for this problem. In terms of the ambulance dispatch
problem, it gives an indication of ‘unfortunate decisions’ made by online poli-
cies - even an optimal one - that could not have been avoided unless one knew
about future incidents. Our results are perhaps surprising: the authors of
this paper had previously expected that knowing incidents in advance would
have a greater impact on performance. However, our results show that even
an omniscient dispatcher will still be left with 1

1.9
≈ 53% of the late arrivals,

compared to a dispatcher that executes DMEXCLP.

6. Discussion

We have introduced three methods to compute the offline optimal solu-
tion to the ambulance dispatch problem. Note that, due to scalability issues,
the CP and DP method are not advisable for most numerical work; we rec-
ommend the BLP to solve the problem practically.

One may perform the analysis as described in this paper for multiple
EMS regions. Different regions typically have different characteristics, such
as the average busy fraction of ambulances, or the distance between bases and
demand. These differences will most likely result in a different online/offline
performance ratio, and it would be interesting to see how these ratios vary
over different regions. However, regions are always hard to compare, and
therefore instead of simulating different regions we chose to analyze the effect
of different arrival intensities.

Table 4 shows that the Performance Ratio between the online policies
and the offline optimum increases with λ. This may be explained as follows.
A larger λ leads to more incidents within a short time frame. As we have
seen in Appendix B, this makes for a more complex problem, because many
decisions are now dependent on one another. In particular, an unfortunate
choice at some point can have an effect on many incidents after that. It is
therefore not surprising that the gap between the online heuristics and the
offline optimum increases with λ.
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Although it was previously known that the closest idle method is not
optimal, it is often assumed to be quite a good policy. In fact, the insight
that the ‘closest idle’ performance is still a factor 2.7 away from the offline
optimum, is something that many researchers in the field of ambulance plan-
ning may be tempted to attribute to the value of information: to the fact
that the offline policy has much more knowledge. However, as Figure 3 de-
picts, the DMEXCLP dispatch heuristic is able to close about half the gap
between the ‘closest idle’ and the offline optimum. We find this observation
rather surprising, as it implies that the value of information for the dispatch
problem is smaller than we had previously anticipated.

In order to compute the Performance Ratio, we drew random chains of
incidents. However, we always started at time 0 with all ambulances idle.
This may perhaps be interpreted as the start of the day, for EMS providers
that serve few calls at night. However, one might also argue that we should
focus more on the system in steady state. We conjecture that our result - a
Performance Ratio of 1.9 - will roughly hold for steady state as well, since the
value did not change much between incident chains of 12, 18 and 24 hours
(see Table 4).

Finally, one might suggest to make the model more realistic, e.g., by
defining the busy time of an ambulance after arrival at an incident to be
a random variable. Then, however, determining the optimal offline policy
becomes a very difficult task. We see only one way to overcome this difficulty,
and that is to let the offline solution have knowledge of the realizations of
these random times. Since online policies can only use the busy times in
distribution, this would increase the gap between information given to the
offline and online policies. This deviates further from our main research
question, which was how much it helps to have information on when and
where incidents will occur. Increasing the gap between what is known in the
online and offline case will not help us to gain more insight in this matter.
Therefore, we decided not to proceed in this direction.

Acknowledgements

We thank the Dutch National Institute for Public Health and the Envi-
ronment (RIVM) for giving access to the travel times for EMS vehicles in the
Netherlands. The first author of this paper would like to thank Kim Mari-
ott, Mark Carman and Maria Garcia de la Banda from Monash University,
Melbourne, for introducing her to Constraint Programming in general, and

21



MiniZinc in particular. We thank Gerhard Woeginger for his suggestions
regarding the dynamic programming solution. This research was financed
in part by Technology Foundation STW under contract 11986, which we
gratefully acknowledge.

Appendix A. Constraint Programming Formulation

In this appendix, we describe how we found the optimal offline solution
with CP. For this purpose, we used the MiniZinc constraint modeling lan-
guage. We modelled a set of n incidents by the following variables:

• t(c), the cth element of vector ~t. This is the time that incident c occurs,
c ∈ {1, . . . , n}.

• loc(c), the cth element of vector ~loc. This is the location of each incident,
where loc(c) ∈ V for c ∈ {1, . . . , n}.

The input further consists of the base location Wa of each ambulance a, as
well as the driving times τi,j ∀i, j ∈ V (in minutes). For each incident c
we introduced a variable A (c), which can take a value between 1 and |A|.
These variables indicate which ambulance is assigned to each incident.

We aimed to minimize the fraction of arrivals later than threshold time
T . Note that since the number of incidents - and therefore the number of
arrivals - is known in advance, this is equivalent to minimizing the number
of late arrivals. In our implementation, we focused on the number of late
arrivals, denoted by N .

Finally, we needed to ensure feasibility of the solution. Thereto, we added
two constraints9. Equation (A.1) makes sure variable N is set correctly, i.e.,
it is the number of incidents for which the dispatched ambulance was further
than T minutes away. Equation (A.2) ensures that two incidents (c1 and c2)
assigned to the same ambulance do not overlap in time.

Note that this is not the only CP model one could formulate. In fact,
a model similar to the BLP model that we have seen in Section 3.1 is also
possible for CP. However, we chose to keep the models diverse.

minimize N

9We also added other - redundant - constraints in order to find solutions faster. How-
ever, they do not change the result and therefore we do not mention them here.
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s.t.

N =
∑
c∈C

1(τWA (c),loc(c) > T ) (A.1)

and

@ c1, c2 ∈ C such that

c1 < c2 ∧ A (c1) = A (c2) ∧ t(c1) + τWA (c1)
,loc(c1) +X > t(c2).

(A.2)

Note that in the formulation of Equation (A.2), we used the assumption that
incidents are ordered chronologically.

One can immediately see the benefit of the flexibility that CP has to offer:
we were able to write the problem using just two constraints, which look very
similar to the way one might naturally think about the dispatch problem.

Appendix B. Dynamic Programming Formulation

In this section, we describe how we built the dynamic program (DP), and
what extra features could be added to it in order to speed up the computation.
Note that we only need to make decisions right after an incident has occurred.
Therefore, we define states at time steps that coincide with the incidents -
and just like the incidents, we denote them c from 1 to n. That way, time
step c corresponds to the actual time t(c). Additionally, we add a dummy
time step n + 1, with t(n + 1) large enough such that all vehicles are idle
again, regardless of the dispatch decisions made in the past. The only allowed
action at this time step is a dummy action with reward 0.

States, actions and rewards
We define our states to be vectors containing the time in minutes until each
ambulance becomes idle. This implies that a state s is a vector of length
|A|, the number of ambulances in the system. Let s[a] denote the number of
minutes until ambulance a becomes idle, for a ∈ A. If this is 0 minutes, that
means the vehicle is already idle. At time 0, nothing has happened yet, and
all ambulances are idle. Therefore, we start with the zero vector, having a
value of 0. In any state s, the allowed actions, i.e., the ambulances that are
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eligible for dispatch, are given by: a ∈ A for which sc[a] = 0. At time step c,
c ≤ n, the penalty corresponding to action ac (ac ∈ A) is given by

R(sc, ac) =

{
1 if τWac,loc(c)

> T ;

0 otherwise.

Note that the reward for c = n+ 1 is defined as 0.
To know how to update the states, we can precompute the time differences

between the incidents. Thereto, we define:

diffc = t(c+ 1)− t(c) for c ∈ C,

Next is described how to update any state sc to state sc+1, where ac
denotes the chosen action in time step c. Let Γ be the transition function,
that depends on sc and ac. Define sc+1 = Γ(sc, ac) such that

sc+1[a] =

{
max(τWa,loc(c)

+X − diffc, 0) if a = ac;

max(sc[a]− diffc, 0) otherwise.

The value of being in state sc′ at time step c′ can then be defined as:

Vc′(s) = min
{ac}c

′
c=0

c′∑
c=0

R(sc, ac)

subject to

ac ∈ A and sc[ac] = 0

and

sc+1 = Γ(sc, ac), ∀c = 0, 1, 2, . . . n

The objective is to minimize the fraction of late arrivals, which - for any
fixed number of incidents - is equal to minimizing the number of late arrivals.
So we are interested in the value Vn+1(~0).

Note that decisions made in the past have a large effect on the set of
states that we need to analyze in the future. In fact, only a small subset
of all states we can think of, will ever be reached. That is, one can obtain
sc+1 from sc, but not the other way around. Therefore, a backward recursion
does not make sense for this problem; instead, we used a forward recursion
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to obtain the set of states that we need to analyze. Hence, for each state
s, we computed the value at time step c based on the value in the previous
time step, as follows.

Vc+1(sc+1) = min
ac+1

{Vc(sc) +R(sc+1, ac+1)}.

Although this method in theory computes the optimal solution to any
instance of the offline ambulance dispatch problem, practical difficulties can
occur. Just like in the Constraint Programming approach, the difficulty is
that many situations need to be considered (in the Dynamic Programming
case, that means many states need to be stored).

Note that it is hard to give an exact formula that describes the number
of states that need to be computed in order to find the solution. There are,
however, two formulas that both give an upper bound on the number states.
The first one follows straightforwardly when one realizes that the time until
each ambulance becomes available completely defines a state (and that we
should consider this n times). This means there are at most nM |A| relevant
states, where M is the maximum driving time between any base location
and demand point. Furthermore, there is a maximum on the number of
decisions that can be made. Assuming all possible combinations of ambulance
assignments are allowed, this leads to a maximum |A|n decisions, and hence
states, to be considered.

There are some ways to reduce the total number of states required to
store, which directly lead to shorter computation times. We next describe
three ways to accomplish this.

Appendix B.1. DP speed-up

In this appendix, we describe three ways to speed up the computation
time of the DP. We illustrate the usefulness of each technique, by the effect
it has on the following two problem instances10. In both examples, T = 12.

Instance 1.

~t = [9, 13, 35, 47, 70, 95, 104, 105, 115, 127, 152, 169].

~loc = [34, 54, 23, 159, 81, 81, 39, 10, 142, 146, 140, 156].

10The cases considered here are for the region Utrecht. Due to the scalability issues of
the DP, we used only 10 ambulances in this example.
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(For this instance, the closest idle dispatch policy results in one late arrival.
The offline optimum is also one late arrival.)

Instance 2.

~t = [1, 1, 30, 33, 34, 43, 43, 62, 63, 81, 103, 114, 124, 135, 138, 139, 168, 174].

~loc = [200, 182, 135, 217, 67, 131, 74, 179, 95, 15, 74, 37, 206, 206, 142, 54, 145, 44].

(For this instance, the closest idle dispatch policy results in four late arrivals.
The offline optimum is equal to three late arrivals.)

Eliminating dominated states
One well-known way to reduce the number of states, is to eliminate so-called
dominated states. We define a state s to be dominated at time c, if there
exists another state s′, such that:

s′[a] ≤ s[a] ∀a ∈ A and Vc(s
′) ≤ Vc(s).

That is, there exists another state for which all vehicles will be idle at earlier
(or equal) times, while resulting in fewer (or equal) late arrivals. We itera-
tively removed dominated states until none are left in our state space.

Bounding the objective
Another way to reduce the time and memory spent on the dynamic program,
is to bound the solution by any feasible objective value. For example, we can
quickly pre-compute the objective from the ‘closest idle’ dispatch heuristic
and eliminate any state that has a larger value. We show the benefit of this
approach by example: Figure B.4 depicts the number of states that we need
to analyze at each time step. (Note that Figure B.4b has more time steps
than Figure B.4a, simply because more incidents occur.)

Figure B.4 shows that, in the first few time steps, the number of states
for the bounded and unbounded DP are more or less equal. Let us explain
why this makes sense, by the example of Instance 2. Here, the closest idle
method results in four late arrivals. Therefore, bounding the states by the
ones with values ≤ 4 does not have any effect before time c = 5 (since the
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Figure B.4: Comparison of the number of states stored for each time step in the dynamic
program, with and without bounding the solution by the value of the ’closest idle’ policy.

value can increase by at most 1 per incident).11

Also note that the number of states does not always increase over time.
So what is it exactly, that causes the need to store many states? A key
insight is that an incident that occurs at time t, only has an indirect effect
on the system12 after time t+τi,j+37, for some travel time τi,j, i, j ∈ V . That
is, the ambulance will be idle by time t + τi,j + 37, and can be used for any
incident after that time, regardless of whether it is dispatched to the incident
at time t. However, whether or not this particular ambulance is dispatched
at time t, does have an effect on which ambulances are eligible for dispatch
to incidents between time t and t + τi,j + 37. Hence, we regard the effect

11An alternative, more elaborate way to bound the DP would be to store all states that
the (online) heuristic passes through over time. That is, after each incident, store the
remaining busy time for each ambulance, as well as the number of late arrivals observed in
the past. Then, when computing the offline optimum in the DP, remove all states that are
dominated by the states observed in the online solution. Note that we did not implement
this idea.

12assuming that we never run out of ambulances
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as an indirect one. Note that this indirect effect occurs only when incidents
arise within this time frame. This leads to the following observation.

Observation 1. Longer inter-arrival times lead to a reduction in the number
of states.

In particular, if the inter-arrival time between two consecutive incidents
is larger than 37 minutes plus the response time from any base to the first
incident (of the two), then the state space reduces to a single state (all
ambulances are idle). This can be viewed as a ‘reset’ of the system, i.e., all
information on past decisions are irrelevant for future decisions. When this
occurs, it avoids an explosion of the state space that we would otherwise see
for instances with a long horizon.

Roughly speaking, the computation time should scale linearly with the
simulation horizon (given a fixed λ). However, what makes an instance harder
to solve is the number of incidents that occur quickly after one another.
Many incidents in a short time window imply many dependent decisions -
and precisely this increases the number of states. This effect can be seen in
the ‘spikes’ in Figures B.4a and B.4b (one can manually confirm this using
the incidents times given in Instance 1 and 2. Conversely, the time steps with
a very small number of states correspond to large inter-arrival times between
incidents.

Rounding the numbers in the input
Another way to speed up the computations is by rounding the driving times
and incident times. For example, instead of rounding to minutes, we could
round the times to multiples of five minutes. The reason why this would
result in fewer states, is that more states will be dominated.

Unfortunately, rounding means some accuracy will be lost: we make use
of a trade-off between running time and accuracy here. At the very least,
one should make sure to also round the times in the input for the heuristic
solutions, or else the computed ratio is meaningless. Then, one might argue
that the computed ratio will be similar to the unrounded case. Note that we
did not implement this method, but instead suggest to use a Binary Linear
Programming approach as described in Section 3.1.
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