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1
Introduction

In 1792, Napoleon Bonaparte decided to have his injured soldiers dragged off
the battle field by horse-drawn carriages. At the time, these so-called flying am-
bulances were a novel idea, and they proved a complete success: not only did
they increase the chances of survival of the wounded soldiers, they also lifted the
morale and the confidence of the French troops [105]. Nowadays, ambulances
are commonplace: in the Netherlands alone there are more than one million am-
bulance trips per year [89]. Emergency medical services (EMS) have evolved
into a complex system of interacting ambulances, dispatch centers and hospitals,
providing us with a challenge to model and optimize their dynamics. A timely
response can literally be a matter of life or death, so naturally research is focused
on reducing response times. One solution to improve response times is simply
to drive faster. While Top Gear has looked into this option [10], this disserta-
tion takes a different approach. We introduce mathematical models for various
planning stages in the EMS process, aiming to reduce response times by a more
efficient use of resources.

We continue this chapter by describing the events and processes that occur
in an EMS system, and the typical planning questions an ambulance provider
might face. Additionally, we give an overview of the literature in this field. Since
most of the case studies in this thesis involve the Dutch EMS system, we also
include a brief description of ambulance care in the Netherlands. We finish with
an outline of the remaining chapters of this thesis.

1.1 Background and motivation

Emergency medical services deal with urgent requests for medical care and/or
patient transport. A typical response process is as follows. The EMS provider
learns about a requests when a call arrives at the dispatch centre. The call
is answered by a dispatcher, who starts the triage: a process to determine the
location of the patient and the urgency of the request. If an ambulance is needed,
the dispatcher decides which vehicle to send to the scene of the incident. Almost
always, this will be the closest idle ambulance - except if a special vehicle is
needed due to the specifics of the incident. The ambulance drives to the scene
of the incident, where the paramedics spend a certain amount of time with the
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Call
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Ambulance
dispatched

Arrival at
incident
scene

Treat
patient
at scene
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Patient
transferred
at hospital

Ambulance
becomes

idle

Ambulance
at base Return to base

Response time

Figure 1.1 A typical response process for an emergency call.

patient. Then, it is decided whether or not the patient needs to be transported
to a hospital. If not, the ambulance becomes idle at the scene of the incident.
Otherwise, there is a travel time to the hospital, followed by a drop-off time
during which the crew transfers the patient to the emergency department. If an
ambulance becomes idle, it returns to one of the predefined waiting sites or bases.
This response process is depicted in Figure 1.1.

In case a call arrives while all ambulances are busy, the dispatcher places the
request in a queue, in order for it to be served as soon as a vehicle becomes idle.
This situation, sometimes called code red, is quite rare in the Netherlands, but it
appears to be more common in other places (e.g., Edmonton, Canada [58]).

Although there can be some differences between countries, the main goal
of ambulance providers world wide is the same: provide good health care at
a reasonable cost. Naturally, a tradeoff arises, and this warrants research for
efficient operations. Medical decisions aside, in order to obtain efficiency there
are many logistic aspects worth considering.

When ambulance providers face questions regarding their planning, geograph-
ical aspects and service level agreements are often involved. Typical questions
are, for example: ‘Can we improve performance by placing bases in different lo-
cations?’ or ‘If we were to purchase one extra vehicle, would we be able to serve
95% of all calls on time?’ Other questions might be staff-related, such as whether
to hire more paramedics, or reconsidering the roster. Perhaps an EMS provider
is thinking about merging with a neighbouring provider, and wants to know
how this will affect response times. Furthermore, EMS managers may anticipate
to new scenarios, due to changing circumstances that they want to evaluate in
theory before it occurs in practice. These what if scenarios could for example
be: ‘What if this hospital closes their emergency department?’ or ‘What if the
demand for ambulances increases by 5%?’

The effects of EMS related changes or decisions can be difficult to oversee
due to the stochastic nature of incidents. Furthermore, the decisions involved
are often interrelated. This creates challenging mathematical problems, which -
combined with the importance of high-quality EMS operations to society - have
led Operations Research practitioners to pay much attention to EMS systems.
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Over the years, numerous mathematical models have been developed that deal
with planning and efficiency questions.

The decisions involved in planning EMS operations can be divided in three
different planning stages: (1) at the strategic level, long-term decisions are made
such as the opening and closing of base locations, the purchase of vehicles and
the hiring and firing of staff; (2) the tactical level deals with the medium-long
term, which may include decisions like how many vehicles to position at each
base and how to design a staff roster, and (3) operational planning involves day
to day or even real-time decisions. The latter includes decisions regarding the
dispatch policy, which hospital to choose and where to send idle vehicles.

In practice, the same ambulance providers that serve emergency requests also
handle non-urgent patient transport. These transports are often ordered and
scheduled in advance, which make them intrinsically different from the urgent
requests. The transports can be planned, and consequently have led to a separate
set of models in literature. While some decisions may involve both the urgent
and non-urgent ambulance operations - for example, when they are executed by
the same fleet - this thesis focuses on the urgent requests only.

1.2 Literature review

This section discusses the literature on ambulance planning and gives a short
overview of the various techniques used. We focus on models that can be solved
analytically, which we divide in two types: (1) static models, which deal with
problems at the strategic and tactical level, and (2) dynamic models, which are
concerned with daily or even real-time planning.

1.2.1 Static planning

When it comes to ambulance planning, strategic and tactical problems are often
solved simultaneously. At this planning stage the problems are often emergency
facility location problems. They deal with two types of decisions: ‘Which bases
should be opened?’ and ‘How many vehicles should be placed at each base?’

At this point, static models are often used to describe the problem. Here,
‘static’ means that each ambulance is assigned to a base location, and after serv-
ing an incident the ambulance is assumed to return its own home base. Typically
there is a limited number of vehicles that need to be distributed over a set of
possible base locations. These static models often use integer linear programming
(ILP) to solve the problem.

Numerous objectives exist in literature, inspired by either the local EMS rules
or a researcher’s belief of what is a relevant measure. This section gives a brief
overview of the literature; for a more elaborate discussion, see [71] and [22].

A common way to measure the performance of an EMS provider is in terms
of the fraction of late arrivals, i.e., the fraction of all calls for which the response
time is larger than a certain response time threshold (RTT). This is probably the
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most widely used objective - and certainly the most relevant for the work in this
thesis.

Early research in ambulance planning focused on deterministic location prob-
lems. These formulations ignore the stochastic aspects of an EMS system, for
example by assuming that one vehicle is enough to cover a demand point. This
is done, e.g., in the Location Set Covering Problem (LSCP) [110], which searches
for the minimal number of bases to cover a region, and in the Maximal Covering
Location Problem (MCLP) [34], which searches for the best possible locations for
a given number of bases. Slightly more advanced models such as [51] recognize
that one vehicle per base is most likely not enough to cover the demand; they
include backup coverage by requiring a constant number of vehicles within reach
of each demand point.

Later, research turned to probabilistic models: these explicitly model the
probability that a vehicle is busy (due to serving other patients). A well-
known example is the Maximum Expected Covering Location Problem formu-
lation (MEXCLP) [36]. The MEXCLP model is particularly relevant for this
thesis, as the underlying idea of MEXCLP is used throughout several chapters.
Therefore, we next recap the full model as it was originally published.

The MEXCLP model. In this formulation there is a set of ambulances, de-
noted A, that needs to be distributed over a set of possible base locations W .
Each ambulance is modeled to be unavailable with a pre-determined probabil-
ity q, called the busy fraction. Consider a node i ∈ V that is within range of
k ambulances. The travel times τij , i, j ∈ V are assumed to be deterministic,
which allow us to straightforwardly determine this number k. If we let di be the
demand at node i, the expected covered demand of this vertex is

Ek = di(1− qk). (1.1)

The marginal contribution of the kth ambulance to this expected value is Ek −
Ek−1 = di(1−q)qk−1. We introduce a binary variable yik that is equal to 1 if and
only if vertex i ∈ V is within range of at least k ambulances. The variables xj (for
j ∈ W ) represent the number of vehicles at each base. Let Wi denote the set of
bases that are within range of demand point i, that is: Wi = {j ∈W : τij ≤ T},
then we can formulate the MEXCLP model as:

Maximize
∑
i∈V

p∑
k=1

di(1− q)qk−1yik

subject to∑
j∈Wi

xj ≥
p∑
k=1

yik, i ∈ V,

∑
j∈W

xj ≤ |A|,
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xj ∈ N, j ∈W,
yik ∈ {0, 1}, i ∈ V, k = 1, . . . , p.

Note that there is no need to add the constraint yih ≤ yik for h ≤ k. This will
always hold for an optimal solution, since Ek − Ek−1 is decreasing in k.

Using a busy fraction makes the MEXCLP model elegant in its simplicity,
but the underlying assumptions are quite strong. For example, in the definition
of Ek in Equation (1.1) the underlying assumption is that vehicles operate inde-
pendently. Furthermore, the busy fraction is the same for all vehicles, regardless
of their position with respect to the demand and the other vehicles.

Despite these assumptions, the MEXCLP model has several upsides. First of
all, the simplicity of the model ensures it is scalable. Second, it is a suitable base
for many extensions. For example, there are extensions with stochastic travel
times [17, 54], and a time-dependent version that divides the time horizon in a
set of time periods [15].

A slightly different approach is taken in the Maximum Available Location
Problem (MALP). MALP also uses a busy fraction q, but maximizes the pop-
ulation that will find a vehicle available within a time standard with a certain
(fixed) reliability [97].

Some of the strong assumptions in MEXCLP - independent vehicles all having
and the same busy probability - are relaxed in the Hypercube Queuing Models
(HQM) [69], providing a more accurate representation of real systems. However,
it should be noted that while restrictive assumptions limit a model’s applica-
bility, improving the modelling of the system performance makes the problem
increasingly complicated and correspondingly more difficult to optimize.

There are other models that consider more than just response time thresh-
olds. We leave the definition of other performance indicators open, but examples
include an average response time, or a probability of survival. To compute such
performance measures, it is useful to condition on the incident location and the
base location of the responding ambulance. These models implicitly or explicitly
assume that the closest idle vehicle is sent to an incident.

1.2.2 Dynamic planning
Dynamic models are used in the operational planning. They concern on-the-fly
decisions, based on real-time information such as the current position and status
of vehicles. Note that this stands in contrast to the static models described
earlier. Dynamic solutions often outperform static solutions; however, optimality
can usually not be guaranteed. This section briefly summarizes the literature on
dynamic models; a more elaborate overview can be found in [11].

Most dynamic models concern redeployment : they aim to find good
(re)distributions of vehicles when a number of ambulances is busy responding
to incidents. This is sometimes referred to as repositioning, dynamic ambulance
management or move-up. Over the last few years, redeployment has become
increasingly popular in practice. Surveys of North American EMS operators
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showed that the percentage of operators who used a dynamic strategy increased
from 23% in 2001 [28] to 37% in 2009 [117] (see also [2]). This indicates that
the EMS community is becoming more aware that a dynamic policy can help to
perform better without increasing capacity.

Dynamic models usually do not search for good base locations, but instead
consider the bases as a given, fixed set. The point of issue is to make decisions
based on real-time information on the state of all vehicles and incidents. This
makes for a complex problem, and systems quickly become intractable when the
number of vehicles grows.

Perhaps it is due to the difficulty of the problem, that dynamic models attract
a wide range of solution methods. For example, there are approaches using
dynamic programming [18], Integer Linear Programming (ILP) [46], stochastic
programming [87], simulation-based optimization [20] and approximate dynamic
programming [77]. The redeployment policies that have been published so far are
roughly dividable in two subclasses, which we will refer to as compliance tables
and real-time optimization.

Compliance tables are essentially lookup tables describing the desired con-
figuration for each number of available ambulances. In order to obtain such a
table, the system’s state is defined as the number of available ambulances, and a
model is formulated to find an optimal configuration for each state. Typically,
such a model is an ILP that maximizes some objective for all possible system
states. Constraints may be added to control the number of vehicles relocated
between states. The model is solved once (a priori), and the result is stored in a
compliance table, to be looked up and applied when needed. Examples of such
models are [46, 86].

In general, it is hard to give a reasonable estimate for the performance of a
lookup table policy without simulating the system. However, [2] introduces a
Markov chain model that provides a good approximation to several performance
measures. This model can thus be used to identify near-optimal lookup tables.

A redeployment policy in the form of a lookup table has advantages and
disadvantages. On the upside, a lookup table is easy to explain, and many EMS
providers are familiar with this type of policy. Note that the job of steering the
set of available vehicles towards the prescribed configuration is usually left to the
dispatchers. This brings us to a downside: a poorly executed redeployment can
devaluate even the most crafty lookup table. Furthermore, a lookup table is in
general not able to suggest the most effective move-ups, because the amount of
information used is limited. Another type of policy - that also uses the current
locations of vehicles - may therefore perform better or require fewer move-ups, or
both. Moreover, note that in busy regions, where the number of idle ambulances
changes rapidly, the system will not be in compliance with the lookup table for
most of the time.

Real-time optimization models calculate the ‘best’ ambulance movement in
real time. The first of such models is known as the Dynamic Double Standard
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Model (DDSM), published in 2001 [45]. This is an extension of the static Double
Standard Model [44]. The model is an integer program (IP) that maximizes
the demand covered twice, subject to two coverage constraints with different
thresholds. The suggested moves are balanced with a certain cost that takes into
account ambulance activity history: this reduces the number of moves that are
undesirable from the crew’s perspective (such as round trips).

Various papers model the randomness in the system explicitly, for example, by
formulating the problem as a Markov decision process. When the model has only
a few ambulances, one can solve it using exact dynamic programming (e.g., [121]).
However, when the state space grows - for example due to the number of vehicles
considered - the problem quickly becomes intractable. This is known as the curse
of dimensionality [93].1 Hence, in order to compute results for realistically-sized
EMS regions, one needs to turn to alternative solution methods.

One way to deal with this curse of dimensionality is by looking only one time-
step ahead. This is done in [6], which classifies possible redeployment actions
by constructing several scenarios that may occur one time-step later and eval-
uates each feasible action under these scenarios. Another example of a myopic
approach is [118], which determines redeployments of idle ambulances from a
greedy algorithm that attempts to minimize a weighted sum of expected late and
lost calls, as evaluated through simulations.

Other authors overcome the curse of dimensionality by applying Approximate
Dynamic Programming (ADP). ADP is a powerful tool for solving stochastic and
dynamic problems, and scales well to high-dimensional applications. There are
multiple ways to apply ADP. In [102] the authors use a combination of aggrega-
tion and the post-decision state. The original problem is aggregated by placing
a spatial grid over the geographic area, and dividing the time horizon in sub-
intervals. The value function is then approximated by computing estimates for
the aggregated states. The post-decision state describes the state of the system
immediately after making the decision but before any new information arrives.
Approximating the value function around the post-decision state removes the
stochasticity at this point. For an elaborate discussion of the post-decision state,
see [93]. In [77] ADP is applied in a different way. The value function is approxi-
mated by a linear combination of so-called base functions: well-chosen functions
that each use limited state information, and are considered to hold explanatory
power over the value of a state. The parameters that define the importance
of each base function are tuned using simulated cost trajectories of the system.
The mechanism to tune parameters to the use case is described in more detail in
subsequent work [78]. This approach is a novel one, but it is time consuming to
both implement and execute: for a large city the tuning process can take a year,
which is reduced to twelve hours by using the post-decision state. It remains
possible to calculate the repositioning decision in real time, because these heavy
computations are done in a preparatory phase. The performance of the method

1 In fact, [93] mentions three curses of dimensionality: the state space, the outcome space
and the action space.
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is highly dependent on the choice of base functions. In [78], base functions are
essentially Erlang loss functions: the city is decoupled into smaller, independent
regions each containing only a single ambulance base, and each region is modeled
as an Erlang loss system. Note that this includes the implicit assumption that
an incident is likely to be served late if there are no idle vehicles present at the
nearest base.

In [120, Chapter 8] the authors introduce an IP model that they claim can
be viewed as an extension of the ADP model in [77]. The model is extended in
multiple ways, including the use of at-hospital ambulances and adding a cost for
moving an ambulance to a base. Furthermore, the tuning process is updated,
although the general idea that simulations are employed for function evaluations
remains the same. The article mentions that future research may be directed to-
wards rewards collected on the road during ambulance moves, which is relatively
unexplored in current literature.

Although it appears that the majority of the dynamic models has not been
implemented in practice, [75] is an exception. It describes an IP model that has
been implemented in a commercial software package called Optima Live [75].
The method is a real-time optimization system that maximizes the total value
from user-defined coverage reward functions minus redeployment costs.

In order to evaluate and validate move-up models, researchers typically use
simulation. This makes it possible to get realistic estimates of the performance of
an EMS system. Simulation is also useful stand-alone, to evaluate and compare
scenarios. This is done for example in [53], which estimates the impact if all
ambulances in Edmonton were to begin and end their shifts at the same loca-
tion. Finally, simulation is used in so-called simulation optimization approaches
(e.g., [122]). An overview of computer simulation models used for the analysis
and improvement of EMS can be found in [1].

1.2.3 Model features

Several choices can be made regarding the modelling of EMS processes. In
general, it is safe to say that George E. P. Box was right when he said: “All
models are wrong, but some are useful.” [21, p.424]. This section discusses
the most important model features, motivates the choices in this thesis and
summarizes alternative approaches in literature.

Response times
A response time is defined as the time between the receipt of a call until an am-
bulance arrives on-scene (see also Figure 1.1). It consists of several components.
First of all, the triage process takes place. Then, the dispatcher decides which
ambulance to send. Subsequently, the crew makes their way to its ambulance.
Together, these three events constitute the pre-trip delay. The total response
time is given by the pre-trip delay plus the actual driving time.

In literature we see several ways to incorporate this pre-trip delay. It is not
uncommon to simply add the average delay to the travel time. However, in [54] it
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is argued that the duration of the pre-trip delay is highly variable, and that hence
such a deterministic approach is insufficient to accurately predict performance.
This article includes a small case study showing that it may lead to either an
under- or overestimation, but being only a couple of percent off, the magnitude
of these mistakes seems small.

In this dissertation we take the same approach as Dutch ambulance providers:
three minutes are ‘reserved’ for the pre-trip delay. This leaves at most twelve
minutes of driving time in order to reach the incident within the prescribed
fifteen minutes.

It is also debatable whether the driving times should be modeled as deter-
ministic or stochastic. In literature many examples can be found taking either
approach. Although the stochastic approach seems realistic, authors do not seem
to agree on which distribution to use. For example, [54] suggests a lognormal dis-
tribution, whereas [17] proposes a normal distribution. Differences may depend
on many things, including the country where the case study took place. Most
chapters in this thesis assume driving times to be deterministic. This is perhaps
the biggest simplification done in our models. Although they could be extended
to stochastic driving times, this would make the notation more cumbersome -
and solutions harder to compute.

Other literature includes approaches based on the distance between two
points as the crow flies [3] and using Google Maps data [62] (perhaps multiplying
the result with a factor to correct for the fact that EMS vehicles usually drive
faster than regular cars).

Vehicle and patient types
Recall from Section 1.3 that an EMS provider may use several types of vehi-
cles. Each vehicle type has its own characteristics, such as travel speed or the
ability to reach a certain area. Vehicles and the corresponding crew may also
differ in their capabilities regarding the handling of patients. For example, less
equipped vehicles may not be able to help the most severely injured patients.
Other vehicles may serve a patient at the incident scene, but do not provide
patient transportation. Not only the vehicles, but also the patients may fall into
different categories: the nature of the request may cause a need for a specifically
equipped vehicle, for example with an incubator or a psychiatric nurse. Also, the
patient’s urgency may dictate the use of a different response time target.

The EMS system is rather complex, and to accurately capture it one also
needs a complex model. Incorporating one or several of the features above
would make the problem even less tractable. Furthermore, such a model would
lead to a solution that is highly tailored to the specific situation. Instead, this
dissertation focuses on a single type of patients, all equally urgent, and one type
of vehicle which is capable of serving any patient.

Variations over time
Several aspects of the EMS process may vary throughout the day or week. Some
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models in literature anticipate time-dependent fluctuations, generally by con-
sidering the redeployment of ambulances to be pre-planned. These models are
extensively surveyed in [71] and [22]. The rest of this section explores variations
in demand and travel times in more detail.

It is commonly assumed that EMS call volumes follow a Poisson process.
However, call volumes may vary by month, day of the week, and hour of the day
(see for example [52]). If this is the case, the arrival process may be modelled
as a time-varying Poisson process. To predict the arrival intensity in the fu-
ture, there are several methods available. Successful approaches in an ambulance
context include classical time series models [30] and Singular Spectrum Analysis
(SSA) [114].

The travel times, and the corresponding coverage, may also vary over time.
Some papers consider this explicitly (e.g., [103]). However, we point out that
emergency services do not always experience the impact of the time of day on their
response velocities. For example, empirical evidence shows only a minor impact
for fire fighters in New York [64] and ambulances in Calgary [24]. Furthermore,
even if one is certain that the time of day is relevant for the response velocities,
the task remains to estimate the different velocities accurately. Care has to be
taken of how to handle the data, for example, there is a risk of overfitting due
to the data containing only a small number of trips from i to j in each time
segment.

The methods and models introduced in this thesis assume fixed values for the
demand and travel times. This assumption simplifies the notation and discussion,
and allows the reader to focus on the core ideas of the proposed methods. When
used in practice, the correct usage of models should be discussed with EMS
managers. For example, one can simply use the peak demand (this is done, e.g.,
in [76]), or the week may be split up into different time blocks, using different
parameters for each block.

1.3 Ambulance care in the Netherlands

The Netherlands is divided in 24 EMS regions, called Regionale Ambulance-
voorzieningen (RAVs), depicted in Figure 1.2. The RAVs operate independently,
although occasionally a neighboring RAV may be contacted for help.

In the Netherlands, ambulance providers distinguish four different call pri-
orities. The most urgent calls are labeled A1, and require an ambulance to be
at the scene within 15 minutes in 95% of the cases. A1 calls would include,
for example, heart attacks or strokes. A response to A1 calls generally includes
lights and sirens. Non-life-threatening yet urgent calls get an A2 label, which
corresponds to a response time threshold of 30 minutes. Although lights and
sirens are usually omitted for A2 calls, an ambulance is dispatched immediately.
Both A1 and A2 calls have to be served by Advanced Life Support (ALS) ambu-
lances. Additionally, there are B calls, which are non-urgent patient transports.
These transports are often ordered in advance, and consequently there is no time
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Figure 1.2 Currently, the Netherlands has 24 EMS regions.

standard for B calls. The B calls are further subdivided: B1 patients need to
be transported in an ALS ambulance, while for B2 patients a cheaper Basic Life
Support (BLS) ambulance would also be sufficient. All vehicles can transport at
most one patient at a time. Unlike some other countries, the Netherlands uses
the same standards for urban and rural areas2.

The association Ambulancezorg Nederland (AZN) reports on the numbers of
production and performance of RAVs on an annual basis. In 2014, 1,190,320
incidents were served in the Netherlands. Roughly 49% of these were A1 calls,
24% were A2 calls and 27% B calls. They were served using 231 bases and 755
vehicles nationwide. For 93.4% of the A1 requests an ambulance arrived within
the prescribed fifteen minutes. The average A1 response time, however, was a
lot smaller: 6 minutes and 41 seconds [89].

The Dutch National Institute for Public Health and the Environ-
ment (RIVM) [98] distributes the national budget for ambulance care among
the different RAVs. This is done using several mathematical models, which are
updated and published every few years (see, e.g., [65, 67]). The RAVs are free
to spend their budget whichever way they choose, for example by investing in
different vehicle types that they deem appropriate. Currently, there exist con-
figurations ranging from a paramedic on a bike to a mobile intensive care unit
(micu) - pretty much an operating room on wheels - with three staff members
on board. Additionally, some RAVs use helicopters and boats to extend their
service.

When it comes to modelling Dutch EMS systems, there are a few standard
approaches. For example, demand is typically aggregated by using the first four
digits of postal codes. This leads to regions of moderate sizes, with 40 to 456
demand points. The demand per point can then be estimated in a few different
ways. One may use the observed demand in recent years, albeit at the risk of
overfitting. Alternatively, one may assume that demand is roughly proportional
to the number of inhabitants per demand point. This assumption may not be
completely correct, but on the upside the number of inhabitants is known with

2although one might argue that the Netherlands does not have truly rural areas
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great accuracy.
The RIVM estimated ambulance driving times between any two postal codes

in the Netherlands [66, Chapter 3]. For this purpose, the RIVM used historical
data from ambulances that drove from a base location to an incident. These
measurements were further differentiated by time of day and type of region (urban
or not). The travel times were then predicted by distinguishing twelve different
road types, and estimating the travel speed at each road type.

1.4 Thesis outline

This thesis contains research that focuses both on theoretical results and practical
applications. The content of this thesis is organized in six chapters.

Chapter 2 deals with the dispatch process. Most literature assumes that the
closest idle ambulance is always sent, but this is not necessarily optimal. We
provide two alternatives for the ‘closest idle’ method: one method is obtained by
modelling the dispatch process as a Markov decision process, the other method
is a heuristic. The optimal dispatch policy, however, remains unknown.

In Chapter 3 we bound the performance of an optimal dispatch policy. We do
this by computing the optimum for the offline version of the dispatch problem.
In the offline dispatch problem, the time and location of incidents are known in
advance, which allows us to get better solutions than for the online problem. We
analyze the problem from both a worst-case as well as the average-case point of
view. By benchmarking the offline optimum against online policies, we give the
first quantification of the ‘performance gap’ between online and offline dispatch
policies.

Chapter 4 introduces an algorithm for proactive ambulance redeployment.
Unlike many other redeployment algorithms in literature, our proposed solution
is a polynomial-time heuristic that is easy to implement. We evaluate its per-
formance in a simulation model of (EMS) operations and compare it to static
solutions. The practical relevance of this chapter is demonstrated by the imple-
mentation of our heuristic in practice.

In Chapters 5 and 6 we focus on fairness in ambulance planning. Most models
in ambulance planning maximize the number of people served, regardless of where
they are living. This approach benefits people living in cities, at the expense of
people living in remote areas. While most alternative models tend to aim for
equity (providing the same service to people in every location), we seek for a
compromise between these two options. This is done by viewing the ambulance
location problem from a social welfare perspective: we show that maximizing
the so-called Bernoulli-Nash social welfare results in a solution that we consider
fair. Chapter 5 and 6 approach fairness in different ways: Chapter 5 introduces a
facility location problem: we compute where to locate vehicles such that the
Bernoulli-Nash social welfare is maximized. This requires the use of a non-
linear model, which we approximate with piecewise linear functions and solve
using a Mixed-Integer Linear Programming (MILP) solver. Chapter 6, on the
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other hand, proposes to improve fairness by time-sharing several static ambulance
configurations. The individual configurations are evaluated by simulation, and
the optimal mix between configurations is then computed using an Interior Point
optimizer.

Finally, Chapter 7 deals with stochastic scheduling: the scheduling of jobs
with a stochastic processing time, on parallel, identical machines. In particular,
we focus on Smith’s rule - scheduling jobs according to ratios weight over
processing time - for minimizing the weighted sum of completion times. For
jobs with deterministic processing times, Smith’s rule is known to have a tight
performance guarantee of (1 +

√
2)/2. We recap the instance that proves this

performance bound is tight, and analyze its stochastic counterpart with exponen-
tially distributed processing times. Our analysis allows us to derive new quali-
tative insights, and sheds light on previously unknown phenomena in stochastic
scheduling.

The work that resulted in this thesis was part of a larger project, called ‘From
REactive to PROactive planning of ambulance services’, shortly REPRO. The
REPRO project was focused on several areas, including (1) the development of
relocation algorithms for dynamic ambulance management, using for example
compliance tables [5] or taking into account different vehicle types [8], (2) the
development of facility location models, incorporating aspects such as fractional
coverage [17] and time dependency [15], and (3) the development of capacity
models for EMS call centers [25]. A key aspect of REPRO is that the research not
only led to a range of academic contributions, but that the tool implementations
of the models were also successfully applied in real life, supporting the operational
processes of several ambulance service providers in the Netherlands [27] and in
Norway [100].





2
Dynamic ambulance dispatching: is the

closest-idle policy always optimal?

This chapter addresses the problem of ambulance dispatching, in which one must
decide which ambulance to send to an incident in real time. In practice, it is com-
monly believed that the ‘closest idle ambulance’ rule is near-optimal and it is used
throughout most literature. In this paper, we present alternatives to the classical
closest idle ambulance rule. The first alternative is based on a Markov decision
problem (MDP) that remains computationally tractable for reasonably-sized am-
bulance fleets. The second alternative is a heuristic for ambulance dispatching
that can handle regions with large numbers of ambulances. Our main focus is
on minimizing the fraction of arrivals later than a certain threshold time, but
we show that with a small adaptation our MDP can also be used to minimize
the average response time. We evaluate our policies by simulating a large EMS
region in the Netherlands. For this region, we show that our heuristic reduces
the fraction of late arrivals by 18% compared to the ‘closest idle’ benchmark
policy. A drawback is that this heuristic increases the average response time (for
this problem instance with 37%). Therefore, we do not claim that our heuristic is
practically preferable over the closest-idle method. However, our result sheds new
light on the popular belief that the closest idle dispatch policy is near-optimal
when minimizing the fraction of late arrivals.

This chapter is based on:
C.J. Jagtenberg, S. Bhulai and R.D. van der Mei. Dynamic ambulance dispatch-
ing: is the closest-idle policy always optimal? Health Care Management Science,
To appear.

2.1 Introduction

The vast majority of the papers on dynamic ambulance management focus on how
to redeploy idle vehicles (e.g., [2, 77, 118]). Perhaps in order not to overcomplicate
things, they assume a basic dispatch rule: whenever an incident occurs, they send
the ambulance that is closest to the incident (in time). Although this is a common
dispatch policy, it was already shown to be suboptimal in 1972 [29]. Regardless,
most authors make this assumption without much discussion or motivation.
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The relatively few papers that have discussed alternatives to the ‘closest idle’
rule generally do so using simple, pragmatic rules. For example, [20] divides the
region into separate subregions, and each subregion has a list of stations from
which a vehicle should preferably depart. Another example is [109], which com-
pares two different dispatch rules; the so-called ‘closest-ambulance response’ ver-
sus ‘regionalized response’. Under regionalized response, each ambulance serves
its own region first, even if it is temporarily outside its region. Only if it is un-
available, the closest idle ambulance is sent. However, note that both examples
still ignore important information: the outcome does not depend on whether
some regions remain uncovered after the dispatch is performed.

There exists a series of papers that considers a dispatch problem with priori-
tized patients [4, 80, 81]. Their main idea is to allow increased response times for
the non-urgent patients, such that shorter response times can be realized for the
urgent patients. Although this approach makes sense from a practical point of
view, categorizing patients by their priority level is not the goal of this chapter.
Instead, we assume that all patients have high priority, and investigate how to
dispatch vehicles in order to maximize the fraction of arrivals within a response
time threshold.

We seek for a policy that dispatches an ambulance such that remaining idle
vehicles are in a good position with respect to expected incidents in the near
future. This ensures that future incidents get a larger likelihood of being reached
in time, thereby increasing the total expected fraction of incidents that can be
reached within the time threshold. It should be clear that an EMS system can
benefit from an improved dispatch policy, but since the topic has been underex-
posed in current literature, it is still unknown how much benefit can be expected.
Furthermore, a dispatch policy can be combined with a relocation rule to realize
even larger improvements in the objective value.

This chapter introduces two methods for ambulance dispatching, the first of
which is a Markov Decision Problem (MDP). We mainly focus on minimizing
the fraction of arrivals later than a target time - a typical objective in ambu-
lance planning. However, we show that with a small change, our model can also
minimize the average response time. A few authors have previously used MDPs
to solve the dispatch problem. In [56] the authors define ‘costs’ in their MDP,
but they do not discuss the meaning or interpretation of this. In their numerical
work, they use randomly drawn instances. Moreover, they do not compare their
solution with the closest-idle method. The authors of [4] maximize patient sur-
vivability, and furthermore use extremely small problem instances: two vehicles
and two or three demand nodes. We conclude that neither [56] nor [4] analyzes
the fraction of late arrivals. Second, we propose a heuristic for ambulance dis-
patching that behaves similarly to the policy obtained from our MDP. However,
it is able to determine more accurately what the response time would be when
dispatching a driving ambulance. Furthermore, the heuristic can be computed
in polynomial time, which allows us to apply it to regions with a large number
of vehicles.
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We validate both our policies by a discrete-event simulation model of an ur-
ban EMS region. These simulations indicate that our proposed dispatch heuristic
can decrease the fraction of late arrivals by as much as 18% relatively compared
to the closest idle ambulance dispatch method. Our results provide a better un-
derstanding of dispatch policies and their potential to improve the objective. In
the field of ambulance management, an improvement of 18% is considered large.
However, it should be noted that there is a tradeoff: our policy significantly in-
creases the average response time. Although we do not advise all EMS managers
to immediately discard the closest idle dispatch method, we do show that the
typical argument - that it would not lead to large improvements in the fraction
of late arrivals - should be changed.

The rest of this chapter is structured as follows. In Section 2.2, we give a
formal problem definition. In Section 2.3, we present our proposed solution using
MDPs, followed by a solution based on a scalable heuristic in Section 2.4. We
show our results for a small, intuitive region in Section 2.6 and in two more
realistic case studies for the area of Utrecht in Section 2.7. We end with a
discussion in Section 2.8.

2.2 Problem formulation

Define the set V as the set of locations at which incidents can occur. Note that
these demand locations are modeled as a set of discrete points. Incidents at
locations in V occur according to a Poisson process with rate λ.1 Let di be the
fraction of the demand rate λ that occurs at node i, i ∈ V . Then, on a smaller
scale, incidents occur at node i with rate λdi.

Let A be the set of ambulances, and Aidle ⊆ A the set of currently idle
ambulances. When an incident has occurred, we require an idle ambulance to
immediately drive to the scene of the incident. The decision which ambulance to
send has to be made at the moment we learn about the incident, and is the main
question of interest in this chapter. When an incident occurs and there are no
idle ambulances, the call goes to a first-come first-served queue. Note that when
an incident occurs and an ambulance is available, it is not allowed to postpone
the dispatch. Although in some practical situations dispatchers may queue a low
priority call when the number of idle servers is small, in this chapter we focus on
the most urgent incidents, which require service immediately.

Our objectives are formulated in terms of response times (see Figure 1.1).
We want to minimize the fraction of incidents for which the response time is
larger than T . Another observation is that we want response times to be short,
regardless of whether they are smaller or larger than T . We translate this into a
separate objective, which is to minimize the average response time. We assume
that the travel time τi,j from node i to j (i, j ∈ V ) is deterministic, and known
in advance.

1We will discretize the arrival process in the next section.
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V The set of demand locations.
H The set of hospital locations, H ⊆ V .
A The set of ambulances.
Aidle The set of idle ambulances.
Wa The base location for ambulance a, a ∈ A, Wa ∈ V .
T The time threshold.
λ incident rate per minute.
di The fraction of demand in i, i ∈ V .
τi,j The driving time between i and j with siren turned on, i, j ∈ V .

Table 2.1 Notation.

Sending an ambulance to an incident is followed by a chain of events, most of
which are random. When an ambulance arrives at the incident scene, it provides
service for a certain random time τonscene. Then it is decided whether the patient
needs transport to a hospital. If not, the ambulance immediately becomes idle.
Otherwise, the ambulance drives to the nearest hospital in the set H ⊆ V . Upon
arrival, the patient is transferred to the emergency department, taking a random
time τhospital, after which the ambulance becomes idle.

An ambulance that becomes idle may be dispatched to another incident im-
mediately. Alternatively, it may return to its base location. Throughout this
chapter, we will assume that we are dealing with a static ambulance system, i.e.,
each ambulance has a fixed, given base and may not drive to a different base.
However, it is possible that multiple ambulances have the same base location.
We denote the base location of ambulance a by Wa, for a ∈ A. An overview of
the notation can be found in Table 2.1.

2.3 MDP-based solution

In this section we model the ambulance dispatch problem as a discrete-time MDP.
In each state s (further defined in Section 2.3.1), we must choose an action from
the set of allowed actions, denoted as As ⊆ A, described in detail in Section 2.3.2.
The process evolves in time according to transition probabilities that depend on
the chosen actions (as described in Section 2.3.4 below). We are dealing with
an infinite planning horizon, and our goal is to maximize the average ‘reward’.
We eventually find our solution by performing value iteration [94]. Our choice
to use value iteration was motivated by it being simple in implementation, and
sufficient to answer our central question on the closest idle policy.

In our model, we assume that at most one incident occurs within a time
step. Therefore, the smaller the time steps, the more accurate the model will be.
However, there is a tradeoff, as small time steps will increase the computation
time. Throughout this chapter, we take time steps to be one minute, which
balances the accuracy and the computation time.
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2.3.1 State space
When designing a state space, it is important to store the most crucial infor-
mation from the system in the states. However, when dealing with complex
problems - such as real-time ambulance planning - it is tempting to store large
amounts of information, resulting in an intractable state space. This would lead
to the so-called curse of dimensionality [13], which makes it impossible to solve
the problem with well-known MDP approaches.

As discussed before, there is little previous work on how to choose a good
dispatch policy, but to some extent we can draw parallels with work on dy-
namic ambulance redeployment (which relocates idle vehicles): some researchers
overcome the problem of an intractable state space by turning to Approximate
Dynamic Programming (ADP), which allows for an elaborate state space to be
solved approximately [77]. Alternatively, some researchers choose a rather lim-
ited state space, for example, by describing a state merely by the number of idle
vehicles [2].

For the purpose of determining which ambulance to send, it is important
to know whether the ambulance we might send will arrive within T time units.
Therefore, it is crucial to know where the incident took place. Furthermore, we
require some knowledge of where the idle ambulances are. Clearly, storing only
the number of idle vehicles would be insufficient. However, storing the location of
each idle ambulance would already lead to an intractable state space for practical
purposes. Instead, we can benefit from the fact that we are trying to improve a
static solution. In a static solution, the home base for any ambulance is known
in advance. Note that an idle ambulance must be either residing at its base
location, or travelling towards the base. Hence, if we allow for an inaccuracy in
the location of idle ambulances, in the sense that we use their destination rather
than their actual location, their location does not need to be part of the state.
Merely keeping track of a simple status for each ambulance (idle or not), now
suffices. Thereto, let stati denote this status for ambulance i:

stati ∈ {idle, busy}, i ∈ A.
This leads us to a state s, defined as follows:

(Locacc, stat1, stat2, . . . , stat|A|), (2.1)

where Locacc denotes the location of the incident that has just occurred in the
last time step. In case no incident occurred in the last time step, we denote this
by a dummy location, hence

Locacc ∈ V ∪ {0}.
This leads to a state space of size (|V | + 1)2|A|. For future reference, let

Locacc(s) denote the location of the incident that has occurred in the previous
time step when the system is in state s. For ease of notation, we introduce
boolean variables idlei(s) and busyi(s) to denote whether stati is idle or busy in
state s, i ∈ A, s ∈ S.
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2.3.2 Policy definition
In general, a policy Π can be defined as a mapping from the set of states to a set
of actions: S → A. In our specific case, we define A = A∪ {0}; that is if Π(s) =
a, for a ∈ A, ambulance a should be sent to the incident that has just occurred
at Locacc(s). Action 0 may be interpreted as sending no ambulance at all (this is
typically the choice when no incident occurred in the last time step, or when no
ambulance is available). In a certain state, not all actions are necessarily allowed.
Denote the set of feasible actions in state s as

As ⊆ A, s ∈ S.
For example, it is not possible to send an ambulance that is already busy with
another incident. This implies

busya(s)→ a /∈ As, a ∈ A, s ∈ S. (2.2)

Furthermore, let us require that when an incident has taken place, we must
always send an ambulance - if any are idle.

∃a ∈ A : idlea(s) ∧ Locacc(s) 6= 0→ 0 /∈ As, s ∈ S. (2.3)

Moreover, if no incident has occurred, we may simplify our MDP by requiring
that we do not send an ambulance:

Locacc(s) = 0→ As = {0}, s ∈ S. (2.4)

All other actions from A that are not restricted by (2.2)–(2.4) are feasible. This
completely defines the allowed action space for each state.

2.3.3 Rewards
In ambulance planning practice, a typical goal is to minimize the fraction
of late arrivals. Since our decisions have no influence on the number of
incidents, this is equivalent to minimizing the number of late arrivals. An
alternative goal might be to minimize average response times. Our MDP
approach may serve either of these objectives, simply by changing the reward
function. Define R(s, a) as the reward received when choosing action a in state
s, s ∈ S, a ∈ As. Note that in this definition, the reward does not depend
on the next state. Keep in mind that our goal is to maximize the average rewards.

Fraction of late arrivals
To minimize the fraction of late arrivals, i.e., the fraction of incidents for which
the response time is larger than T , we define the following rewards:

R(s, a) =


0 if Locacc(s) = 0;
−N if Locacc(s) 6= 0 ∧ a = 0, i.e., no idle ambulances;
0 if Locacc(s) 6= 0 ∧ a ∈ A ∧ τWa, Locacc(s) ≤ T ;
−1 otherwise.
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Here N is a number that is typically larger than 1. We discuss the choice of
this parameter further in Section 2.3.6.

Average response time
To minimize the average response time, one may use the same MDPmodel, except
with a different reward function. LetM be a large enough number, typically such
that M > τi,j , i, j ∈ V . Then we can define the rewards as follows.

R(s, a) =

 0 if Locacc(s) = 0;
−M if Locacc(s) 6= 0 ∧ a = 0, i.e., no idle ambulances;
−τWa, Locacc(s) if Locacc(s) 6= 0 ∧ a ∈ A.

2.3.4 Transition probabilities

Denote the probability of moving from state s to s′, given that action a is chosen,
as:

pa(s, s′), a ∈ As, s, s′ ∈ S.

To compute the transition probabilities, note that the location of the next in-
cident is independent of the set of idle ambulances. Thereto, pa(s, s′) can be
defined as a product of two probabilities. We write

pa(s, s′) = P1(s′) · P a2 (s, s′),

which stands for the product of the probability that an incident happened at
a specific location (P1), and the probability that specific ambulances became
available (P2), respectively.

First of all, let us define P1(s′). Since incidents occur according to a Poisson
process, we can use the arrival rate λ (the probability of an arrival anywhere in
the region per discrete time step) to obtain

P1(s′) =

{
λ · dLocacc(s′) if Locacc(s′) ∈ V ;
1− λ else.

Note that the occurrence of incidents does not depend on the previous state (s).
Secondly, we need to model the process of ambulances that become busy or

idle. For tractability, we will define our transition probabilities as if ambulances
become idle according to a geometric distribution. In reality - and in our verifi-
cation of the model - this is not the case, but since our objective is the long term
average cost, this modelling choice leads to the same performance. Let us define
a parameter r ∈ [0, 1], which represents the rate at which an ambulance becomes
idle. We discuss the parameter choice for r in Section 2.3.6.

We include a special definition to cover the case where an ambulance was
just dispatched. In such a case, the ambulance cannot be idle in the next time
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step. Furthermore, ambulances do not become busy, unless they have just been
dispatched. We now define

P a2 (s, s′) = Π
|A|
i=1P

a
change

(
stati(s), stati(s

′)
)
, s, s′ ∈ S,

where

P achange
(
stati(s), stati(s

′)
)

=



1 if a = i ∧ busyi(s′);
0 if a = i ∧ idlei(s′);
r if a 6= i ∧ busyi(s)

∧ idlei(s′);
1− r if a 6= i ∧ busyi(s)

∧ busyi(s′);
0 if a 6= i ∧ idlei(s)

∧ busyi(s′);
1 a 6= i ∧ idlei(s)

∧ idlei(s′).

(2.5)

2.3.5 Value iteration
Now that we have defined the states, actions, rewards and transition probabilities,
we can perform value iteration to solve the MDP. Value iteration, also known as
backward induction, calculates a value V (s) for each state s ∈ S. The optimal
policy, i.e., the best action to take in each state, is the action that maximizes the
expected value of the resulting state s′. V (s) is calculated iteratively, starting
with an arbitrary value V0(s) s ∈ S. (In our case, we start with V0(s) = 0 s ∈ S.)
In each iteration i, one computes the values Vi(s) given Vi−1(s) s ∈ S as follows:

Vi(s) := max
a∈As

{
∑
s′

pa(s, s′)(R(s, a) + Vi−1(s′))}. (2.6)

This is known as the Bellman equation [12].
When the span of Vi (i.e., maxVi(s) − minVi(s)) converges, the left-hand

side becomes equal to the right-hand side in Equation (2.6), except for an ad-
ditive constant. After this convergence is reached, the value of V (s) is equal to
Vi(s) s ∈ S. Note that the MDP we defined is unichain. Hence, value iteration
is guaranteed to converge.

Small regions, such as the region in Section 2.6, allow us to reach convergence
and accurately determine the value function V . However, for larger regions (such
as Utrecht in Section 2.7.1), value iteration simply takes too much time to reach
convergence. Instead, we use the non-converged values Vi and analyze the per-
formance of the corresponding policy.

2.3.6 Parameter choices
Recall that −N is the reward given in the situation that there occurs an incident
while all ambulances are busy, in the MDP that attempts to minimize the fraction
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of late arrivals. If N > 1, this implies that when all ambulances are busy, the
rewards are smaller than when we send an ambulance that takes longer than T
to arrive. This is in agreement with the general idea that having no ambulances
available is a very bad situation. One might be tempted to make the reward for
the only possible action (a = 0) in these states even smaller than we did, in order
to influence the optimal actions in other states: the purpose would be to steer the
process away from states with no ambulances available. However, note that this
would not be useful, because our actions do not affect how often we end up in a
state where all ambulances are busy. This is merely determined by the outcome
of an external process, i.e., an unfortunate sequence of incidents. Therefore, an
extremely small reward for action a = 0 in states where all ambulances are busy,
would only blur the differences between rewards for actions in other states. In
our numerical experiments, we use N = 5.

For the MDP that minimizes the average response times, the reward given in
the situation that there occurs an incident while all ambulances are busy is given
by −M . In our numerical experiments, we use M = 15 for the small region, and
M = 30 for the region Utrecht. In our implementation, time steps are equal to
minutes.

Recall that r is the rate at which an ambulance becomes idle. We should set
it in such a way, that the expected duration is equal to the average in practice.
So this includes an average travel time, and an average time spent on scene. We
add an average driving time to a hospital to that, as well as a realistic hospital
drop off time - both multiplied with the probability that a patient needs to go
to the hospital. For Dutch ambulances, this results in an average of roughly 38
minutes to become available after departing to an incident. For the geometric
distribution, we know that the maximum likelihood estimate r̂ is given by one
divided by the sample mean. In this case, r̂ = 1

38 ≈ 0.0263, which we use as the
value for r in our numerical experiments.

2.4 Heuristic solution

In this section we describe a dispatch heuristic that is easy to implement and
scales well. It can be computed in real time, for any number of vehicles and
ambulance bases that is likely to occur in practice. The general idea is that, at any
time, we can calculate the coverage provided by the currently idle ambulances.
This results in a number that indicates how well we can serve the incidents that
might occur in the (near) future. More specifically, coverage is defined as in the
MEXCLP model [36], that we will describe next.

2.4.1 Coverage according to the MEXCLP model

In this section we briefly recap the objective of the well-known MEXCLP model
(see Section 1.2.1. MEXCLP was originally designed to optimize the distribution
of a set of ambulances (denoted A) over a set of possible base locations. The



24 Chapter 2. Is the closest-idle policy always optimal?

objective is to maximize the total coverage of the region, which can be written
as:

Maximize
∑
i∈V

|A|∑
k=1

di(1− q)qk−1yik.

For the definitions of the variables and parameters we refer to Section 1.2.1. The
original LP formulation in [36] requires several constraints to ensure that the
variables yik are set in a feasible manner. For our purpose, we do not need these
constraints, as we shall determine how many ambulances are within reach of our
demand points - the equivalent of yik - in a different way.

2.4.2 Applying MEXCLP to the dispatch process

The dispatch problem requires us to decide which (idle) ambulance to send, at
the moment an incident occurs. Thereto, we compute the marginal coverage
that each ambulance provides for the region. The ambulance that provides the
smallest marginal coverage is the best choice for dispatch in terms of remaining
coverage for future incidents. However, this does not incorporate the desire to
reach the current incident within target time T . We propose to combine the two
objectives - reaching the incident in time and remaining a well-covered region -
by always sending an ambulance that will reach the incident in time, if possible.
This still leaves a certain amount of freedom in determining which particular
ambulance to send.

The computations require information about the location of the (idle) ambu-
lances. Denote this by Loc(a) for all a ∈ Aidle. We evaluate two different options
for Loc(a), that we describe next.

Using actual positions of ambulances is the most accurate information one
could use. In practice, Loc(a) may be determined by GPS signals. For simulation
purposes, the current position of the ambulance while driving may be determined
using, e.g., interpolation between the origin and destination, taking into account
the travel speed. In either case, the location should be rounded to the nearest
point in V , because travel times τi,j are only known between any i, j ∈ V .

Using destinations of ambulances is a far simpler, albeit somewhat inaccu-
rate alternative. The simplicity, however, does make it a practical and accessible
option. When determining Loc(a), simply take the destination of ambulance
a. This is a good option, e.g., when no - or not enough - GPS information is
available. Furthermore, this solution has a certain fairness in comparison to the
MDP solution in Section 2.3, which is also required to make decisions based on
the destinations of ambulances.

Let A+
idle denote the set of idle ambulances that are able to reach the incident

in time, i.e., the ambulances a ∈ Aidle for which τLoc(a),i ≤ T (where i denotes the
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incident location). Note that this definition depends on how Loc(a) was chosen:
when based on the true locations of ambulances, the set A+

idle can be determined
correctly. When one uses the destinations of ambulances, the decision of which
ambulances are in A+

idle may contain errors: some ambulances may in fact be
closer to the incident than they appear (because they are driving towards a base
that is further away from the incident), or the other way around they may in
reality be further away from the incident than Loca suggests.

Similarly, let A−idle denote the set of idle ambulances that cannot reach the
incident in time, which implies that A+

idle ∪ A−idle = Aidle. Then, if A+
idle 6= ∅,

we decide to dispatch a vehicle that will arrive within the threshold time, but
chosen such that the coverage provided by the remaining idle vehicles is as large
as possible:

arg min
x∈A+

idle

∑
i∈V

di(1− q)qk(i,Aidle)−1 · 1{τLoc(x),i ≤ T}. (2.7)

Otherwise, simply dispatch a vehicle such that the coverage provided by the
remaining idle vehicles is as large as possible (without requiring an arrival within
the threshold time):

arg min
x∈A−idle

∑
i∈V

di(1− q)qk(i,Aidle)−1 · 1{τLoc(x),i ≤ T}. (2.8)

Note that in our notation, k is a function of i and Aidle. k(i, Aidle) represents
the number of idle ambulances that are currently within reach of vertex i. After
choosing the locations of ambulances that one wishes to use - the real locations
or the destinations - k(i, Aidle) can be counted in a straightforward manner.

We have seen that the way one measures the location of ambulances - either
the true location or just the destination - affects the definition of the set A+

idle

(resp. A−idle), and thereby also the number k(i, Aidle) in Equation 2.8. There is,
however, one more aspect that is affected by the location of the ambulance: this
is incorporated in 1τLoc(x),i≤T in Equation 2.8. Hence, using the destination of
ambulances results in a small error in three different places. It is reasonable to
assume that using the destinations of ambulances performs worse than using the
real locations, but the magnitude of the performance difference is hard to oversee
beforehand. Instead, we will show the performance difference in retrospect in our
numerical examples in Sections 2.6, 2.7.1 and 2.7.2.

2.5 Simulation model

To compare the results of different policies, we measure their performance using
simulation. All results mentioned, including the fraction of late arrivals and the
average response times, are estimates based on the observed response times in
our simulation model. This section explains the need for simulation to verify the
results from the MDP.



26 Chapter 2. Is the closest-idle policy always optimal?

The reason for using simulation is that the EMS process is rather complex.
The aforementioned MDP does not capture all details and is therefore not able
to estimate the performance accurately. We will next highlight the two main
differences between the MDP and the simulation.

One reason why the MDP is not entirely accurate is that incidents that occur
while no vehicles are available are ‘lost’. This assumption is made to improve
scalability: it avoids the need to expand the state with a queue of calls that
are waiting for vehicles to become idle. However, counting these calls as lost is
technically incorrect for two reasons. First of all, an ambulance might become
available shortly after, and it is - although unlikely - still possible that it arrives
within the time threshold. Second, a lost call in the MDP is not counted in the
total workload, which leads to an overestimation in the number of idle vehicles
in the time steps shortly after the lost call. In our simulation, we place the
incidents that arrive while all vehicles are busy in a first come first serve queue.
Ambulances that become idle are immediately dispatched to a waiting incident
(if any), or else head back to their home base.

Our simulations are also able to handle the complex course of events that
take place when an ambulance is dispatched while on the road. Such vehicles are
typically returning to the home base, already idle and ready to serve an incoming
call. Our simulation computes the current location of the vehicle based on an
interpolation between the origin (typically a hospital where a patient was just
dropped off) and the destination (the vehicle’s home base) of the trip, taking into
account the total time of that particular trip. The MDP is unable to distinguish
between idle vehicles on the road and vehicles at the base. Adding on-the-road
information to the MDP would require a state definition that includes (at least)
the drop off location of the last patient. This alone would already lead to a state
space explosion and therefore we do not recommend solving this for realistic
instances.

In our simulation, τonscene is exponentially distributed with an expectation of
12 minutes. τhospital is drawn from a Weibull distribution with an expectation of
15 minutes. In our simulations, patients need hospital treatment with probability
0.8. This value was estimated from Dutch data [112]. (Similar numbers (78%
nation-wide) can be deduced from [89].) Note that none of these parameters
are explicitly part of our solution methods. Instead, they subtly affect the busy
fraction q (for the heuristic) or the transition probabilities with rate r (for the
MDP).

2.6 A motivating example

In this section, we consider a small region for which there is some intuition
with respect to the best dispatch policy. We show that the intuitive dispatch
policy that minimizes the fraction of late arrivals is in fact obtained by both our
solution methods (based on MDP and MEXCLP). We will address the alternative
objective - minimizing the average response times - as well.
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Figure 2.1 shows a small example for demonstrative purposes. We let calls
arrive according to a Poisson process with on average one incident per 45 minutes.
Furthermore, incidents occur w.p. 0.1 in Town 1 and w.p. 0.9 in Town 2. 80
percent of all incidents require transport to the hospital, which is located in
Town 2.

Town 1 W1 Town 2 W225 6

Figure 2.1 A graph representation of the region. The numbers on the edges represent
the driving times in minutes with siren turned on. W1 and W2 represent the base
locations of ambulance 1 and 2, respectively. Incidents occur only in Town 1 and Town
2. There is a single hospital, located in Town 2.

2.6.1 Fraction of late arrivals

This section deals with minimizing the fraction of response times exceeding twelve
minutes. A quick analysis of the region in Figure 2.1 leads to the observation
that the ‘closest idle’ dispatch strategy must be suboptimal. To serve as many
incidents as possible within twelve minutes, it is evident that the optimal dis-
patch strategy should be as follows: when an incident occurs in Town 2, send
ambulance 2 (if available). When an incident occurs in Town 1, send ambulance
1 (if available). Both the MDP solution that attempts to minimize the fraction
of late arrivals (with, e.g., N = 5), as well as the dispatch heuristic based on
MEXCLP, lead to this policy.

The response times obtained by simulating the closest-idle policy and MDP
(frac) solution are compared in Figure 2.2a. This clearly shows that the MDP
solution outperforms the closest idle method, as was expected.

Note that in our model it is mandatory to send an ambulance if at least one is
idle. Furthermore, our proposed solutions do not base their decision on the loca-
tions of idle ambulances (instead, we pretend they are at their destination, which
is fixed for each ambulance). Therefore, in this example with two ambulances,
one can describe a dispatch policy completely by defining which ambulance to
send when both are idle, for each possible incident location. For an overview of
the various policies, see Table 2.2.

Solution method Locacc = Town 1 Locacc = Town 2
MEXCLP(dest) W1 W2

MDP(frac) W1 W2

MDP(avg) W1 W1

Table 2.2 An overview of the various dispatch policies when both ambulances are
idle. The value in the table represents the base from which an ambulance should be
dispatched.
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Figure 2.2 Box plots showing the performance as observed in a simulation of the
small region. Each policy was evaluated with twenty runs of 5,000 simulated hours.
The red plus-signs indicate outliers.

As shown in this table, the MDP solution minimizing the fraction of late
arrivals - in this particular instance - comes down to exactly the same policy as
the MEXCLP dispatch heuristic using destinations of vehicles. Therefore, the
results mentioned for either of those two policies, also hold for the other. For
this problem instance the closest-idle dispatch method turns out to be roughly
equivalent with the MDP solution minimizing the average response time (except
for the fact that the MDP can only use destinations of vehicles, whereas closest-
idle uses their true positions).
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2.6.2 Average response time

We used the MDP method described in Section 2.3.3 to obtain a policy that
should minimize the average response time. Let us denote this policy by
MDP(avg). We evaluate the performance of the obtained policy, again by simu-
lating the EMS activities in the region. These simulations show that the MDP
solution indeed reduces the average response time significantly, compared to the
policy that minimizes the fraction of late arrivals, denoted MDP(frac), see Figure
2.2b.

2.7 Computational results

In this section, we validate our redeployment method on two realistic problem
instances. Both instances are based on the county of Utrecht, which is hosted by
one of the largest ambulance providers of the Netherlands. Utrecht is a densely
populated area, with approximately 1.2 million inhabitants and an area of ap-
proximately 1,400 square kilometers. The ambulance provider for this region
handles more than 100,000 incidents per year - a number equal to roughly 10%
of all ambulance demand in the Netherlands.

parameter magnitude choice
V 217 4 digit postal codes.
H 10 The hospitals within the region in 2013, ex-

cluding private clinics.
τi,j Driving times as estimated by the RIVM.
di Fraction of inhabitants as known in 2009.

Table 2.3 Parameter choices for our implementation of the region of Utrecht.

The area contains several cities, including Amersfoort and Utrecht city. How-
ever, the whole region may - by international standards - be considered an urban
area. The two problem instances differ in two ways: the number of vehicles and
the incident arrival rate. We consider one problem instance with eight vehicles,
for which we can compare the MDP and the heuristic. The second problem
instance has nineteen vehicles, which only allows us to compute the results for
the heuristic. Apart from this, the problem instances use the same model for
the region, which we summarize in Table 2.3. Utrecht is a region with multiple
hospitals, and for simplicity we assume that the patient is always transported to
the nearest hospital, if necessary.

Note that we used the fraction of inhabitants as our choice for di. In reality,
the fraction of demand could differ from the fraction of inhabitants. However, the
number of inhabitants is known with great accuracy, and this is a straightforward
way to obtain a realistic setting. Furthermore, the analysis of robust optimization
for uncertain ambulance demand in [61] indicates that we are likely to find good
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solutions, even if we use inaccurate estimates for di.
In the Netherlands, the time target for the highest priority emergency calls is

15 minutes. Usually, three minutes are reserved for answering the call, therefore
we choose to run our simulations with T = 12 minutes. The driving times for
EMS vehicles between any two nodes in V were estimated by the Dutch National
Institute for Public Health and the Environment (RIVM) in 2009 [66, Chapter
3]. The RIVM uses measurements of a full year of ambulance movements for this,
and differentiates between road type, region and time of day. The driving times
we use are estimates for ambulance movements with the siren turned on, at the
time of day with most traffic congestion. Therefore, they could be considered a
pessimistic or safe approximation. Note that these travel times are deterministic.
For ambulance movements without siren (e.g., when repositioning) we used 0.9
times the speed with siren.

2.7.1 Region Utrecht with eight vehicles

parameter magnitude choice
A 8 Small enough for a tractable MDP.
λ 1/15 A reasonable workload for 8 ambulances.

Wa (a ∈ A) Postal codes 3582, 3645, 3958, 3582, 3991,
3447, 3811, 3417.

Table 2.4 Parameter choices for our implementation of the region of Utrecht.

In this section, we do a case study for the region Utrecht with eight vehicles.
This number is small enough such that the MDP is still tractable. For the
parameters used in the implementation, see Table 2.4. The locations we used as
home bases are depicted in Figure 2.3, and correspond to actual base locations
in the EMS region.

For this problem instance, one value iteration takes approximately 70 minutes
to calculate on a 2.4 GHz Intel Core i5. Although this seems to be rather long,
we emphasize that these calculations take place in a preparatory phase. We
perform 21 iterations after which the current solution is used as policy. After
these calculations, the final policy constitutes a lookup table for which online
decision making can be done without additional computation time.

Analysis of the MDP solution
In this section, we highlight some features of the MDP solution that attempts
to minimize the fraction of late arrivals for the region Utrecht. In particular,
we focus on the states for which the MDP solution differs from the closest idle
policy.

The output of the MDP is a table with the incident location, the status of the
different ambulances (idle or not), and the optimal action. This output is a rather
large table that does not easily reveal insight into the optimal policy. Therefore,
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Figure 2.3 The home bases for each of the eight ambulances in region Utrecht. The
chosen locations currently exist as base locations operated by the ambulance provider
for this region. Note that in this figure, two vehicles are stationed at the base in the
center of Utrecht.
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Figure 2.4 Each node represents a postal code in Utrecht. Nodes with the same
colour have similar MDP solutions. The numbers indicate the ambulance bases. (Two
vehicles are stationed at base number 1.)

we used classification and regression trees (referred to as CART trees) [68] on
the table to find structure in the form of a decision tree. We used random
forests to create the decision tree, since it is known that a basic CART has
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poor predictive performance (see [68, Chapter 14]). Another option is to use
bagging (i.e., bootstrap aggregation) trees. This effectively generates several
bootstrap samples of the original table, trains CART trees on the sample, and
finally averages the results. While bagging trees reduces the variance in the
prediction, random forests also cancel any correlation structure in the generation
of the trees that may present while bagging.

The outcome that describes the best policy after 21 value iterations is a
decision tree that divides the state space into five regions, see Figure 2.4. If an
incident occurs in the red region, then in most cases the closest idle ambulance
is dispatched. If the ambulance at base 4 is idle, this is even more often the case
than when it is busy. The location of the base stations plays an essential role in
the final decision tree.

For some nodes, whether or not the closest idle ambulance should be dis-
patched depends even more heavily on which ambulances are idle. For example,
if an incident occurs in the dark blue region while the ambulance at base 6 is
idle, the MDP tells us to almost always (in more than 98% of the states) send
the closest idle ambulance. Conversely, if the ambulance at base 6 is busy, it is
better to strategically choose a different ambulance instead of simply applying
the closest idle policy.

This may be intuitively understood as follows. Generally speaking, the dark
blue nodes can be reached within the time threshold from base 6, and only base
6. Therefore, if the ambulance at base 6 is busy, incidents on the dark blue nodes
will not be reached in time. For those dark blue nodes, the next closest base is
base 3. But dispatching this vehicle (if it is idle) will leave the entire East side
of the region without idle ambulances. Therefore, it is in this case better to use
an ambulance from the west side of the region. The enlarged response time is
- using our objective of the fraction of late arrivals - not a downside, since the
incident could not be reached in time anyway.

For incidents on the purple and cyan nodes, the best decision depends
mostly on the state of the ambulance at base 3 and 6. If both ambulances are
simultaneously busy, then the best ambulance to send to incidents in the purple
region is usually the closest idle one. In the same scenario, incidents in the cyan
region are typically not helped by the closest idle one. Note that this is the
scenario when the entire East side of the region is not covered. This behaviour
can be interpreted in a way similar to the case above (regarding dark blue
nodes). When an incident cannot be reached in time, we might as well choose a
vehicle other than the closest idle one. This can be beneficial, because the choice
can be made such that the remaining ambulances are in a favourable position
with respect to possible future incidents. Note that this is also the general idea
that forms the basis of our MEXCLP dispatch heuristic.

Results
In this section, we show the results from our simulations of the EMS region of
Utrecht. We ran simulations using four different dispatch policies: the closest idle



2.7. Computational results 33

method, the MEXCLP-based heuristic (using both destinations and real locations
of vehicles) and the MDP solution after 21 value iterations. Figure 2.5 compares
their performance in terms of the observed fraction of response times larger than
the threshold time.

Figure 2.5 Comparing the performance of the MDP solution after 21 value iterations,
with two variants of the Dynamic MEXCLP dispatch method (where q = 0.3). The
benchmark is the ‘closest idle’ policy. Each policy was evaluated with twenty runs of
5,000 simulated hours.

The results show that the MDP solution that was designed to minimize
the fraction of late arrivals has approximately the same performance as the
MEXCLP-based dispatch heuristic that uses the destinations of vehicles. Both
policies perform better (on average) than the ‘closest idle’ policy. In addition,
the MEXCLP-based dispatch heuristic that uses the real locations of vehicles
performs even better.

For the region Utrecht with eight ambulances, value iteration took a long
time to converge. Instead of waiting for convergence, we applied the policy
we get after a fixed number of value iterations. Figure 2.6 indicates that the
performance increases when we increase the number of value iterations.

Up until now we have focused on the fraction of late arrivals, a key perfor-
mance measure in ambulance operations. However, other aspects of the response
times can also be important. For example, it is considered a drawback if patients
have to wait an extremely long time for their ambulance to arrive (i.e., the re-
sponse time distribution is heavy tailed). In this example - as well as in others -
there exist trade offs between performance indicators.

Next, we visualize the cumulative distribution of response times, as obtained
from our simulation. Figure 2.7 shows - just like Figure 2.5 - that the MEXCLP
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Figure 2.6 The performance of the MDP solution for region Utrecht after 6, 9, 15
and 21 value iterations. Each policy was evaluated with twenty runs of 5,000 simulated
hours. The ‘closest idle’ dispatch policy is the benchmark.

heuristic outperforms the other policies for response times within the time thresh-
old (720 seconds). However, it also shows significant differences in response times
for response times greater than T , for which the MEXCLP heuristic performs
worse than the benchmark.

How much one is willing to sacrifice on one performance indicator in order to
realize an improvement in the other, is typically the source of a lively discussion.
Although such choices depend on how the different aspects of the response times
are weighted, we expect that in realistic cases decision makers will prefer the
closest idle policy over the MEXCLP heuristic. The reason for this is in the tail
of the response times (see Figure 2.7).

When taking a closer look at Figure 2.7, we make two other observations. First
of all, the line of the MDP(frac)21 solution is very close to the MEXCLP(dest)
line. Remember that these two policies base their decisions on the same infor-
mation (that is, the destinations of idle vehicles and the location of a possible
incident). This observation confirms our belief that these two policies have a
similar underlying idea: they attempt to balance the response time for a current
incident with the coverage for possible future incidents. Secondly, one may note
that the line for the MDP(avg) solution is remarkably similar to the line for the
closest idle method.

Sensitivity to the parameter q

The dispatch heuristic based on MEXCLP has an input parameter q, which
represents the busy fraction. In this section we analyse the sensitivity of the
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Figure 2.7 The cumulative distribution of response times observed in a simulation of
5,000 hours per dispatch policy, for the region Utrecht with eight ambulances. For the
MEXCLP algorithms, a value of q = 0.2 was used. For the Markov Decision Problems,
the notation MDP(objective)#iterations was used.

performance to the value of q that is used. Thereto, we simulated the EMS
system several times for several values of q.

In theory, q should be equal to the true busy fraction throughout the system.
However, one may observe different behaviour for different values of q, and the
true busy fraction need not necessarily be the one with optimal performance.
This may seem counter-intuitive at first, but fact is that dynamic ambulance
management is such a difficult problem, that we cannot hope to find a model
that captures everything perfectly. Generally speaking, using MEXCLP with
q ≈ 0 puts emphasis on covering the next incident. Using a higher busy fraction
is equivalent with creating preparedness for incidents further into the future - at
the cost of performing worse with respect to incidents in the near future. The
true busy fraction could be a good starting point, but in practice one may choose
a different value based on performance in simulations.

We simulated the EMS system of Utrecht, again with eight ambulances and
(on average) four incidents per hour. We executed the MEXCLP dispatch heuris-
tic for values of q between 0.1 and 0.8. The performance is shown in Figure 2.8.
We observed that the true busy fraction throughout the simulations was between
37.5% and 38.1% (as measured when using q = 0.2 and q = 0.8, respectively).

First, analysis of Figure 2.8 suggests that q = 0.2 would be a good choice
for this particular scenario: it seems to result in the lowest fraction of late ar-
rivals. Second, note that q varies between 0.1 and 0.8 in this analysis, which
are quite extreme values. In practice, discussions will typically be about smaller
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perturbations, e.g., should we use q = 0.2 or q = 0.3? Furthermore, it is also
important to recognize the scale on the vertical axis, as well as the overlap in
the boxes of the box plot. Recall that the performance of the benchmark (the
closest idle policy) is approximately 36%, which is significantly worse than our
heuristic for any value of q. We conclude that the MEXCLP dispatch method is
fairly insensitive to the value of the parameter q.
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Figure 2.8 The performance observed for the MEXCLP dispatch heuristic, for dif-
ferent values of parameter q. Each box consists of 10 simulations of 5,000 hours each,
for the region Utrecht with eight ambulances.

2.7.2 Region Utrecht with nineteen vehicles

In the previous section, we used eight vehicles in the region of Utrecht, due to
the scaling limitations of our MDP solution. In this section, we analyze a more
realistic representation of Utrecht: we increase the incident frequency to one
incident per 10 minutes (on average). This is quite a reasonable estimate for this
region during the summer period2. Simultaneously, we increase the total number
of ambulances to nineteen. For the other simulation parameters, we use the same
values as in Section 2.7.1.

We allow ambulances to be stationed only at locations that match the EMS
base locations that exist in reality (using data from 2013). Throughout this
section, we assign ambulances to the available bases according to the solution
of the static MEXCLP model, which is generally assumed to give reasonable
solutions (for a comparison of static methods, see [16]).

Figure 2.9 compares the performance of the MEXCLP dispatch heuristic with
the benchmark (the closest idle policy). Note that the obtained fraction of late

2Our dataset for this region in the month of August 2008 shows 4775 urgent ambulance
requests, which is on average 9.4 minutes between incidents.
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Figure 2.9 The objective (fraction of late arrivals), as observed in a simulation of
5,000 hours per dispatch policy, for the region Utrecht with 19 ambulances.
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Figure 2.10 The cumulative distribution of response times, as observed in a simula-
tion of 5,000 hours per dispatch policy, for the region Utrecht with 19 ambulances.

arrivals - roughly 5% - is realistic for this region in practice. The MEXCLP
dispatch heuristic reduces the fraction of late arrivals from 0.053 to 0.043 (on
average), a relative improvement of approximately 18%. To the best of our
knowledge, no previous literature on ambulance dispatching has described a per-
formance improvement of this magnitude - except perhaps for artificial problem
instances that were designed for this purpose. Moreover, it was often assumed
that changing the dispatch policy - as opposed to changing the position of idle
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vehicles - would not lead to major improvements (see, e.g., [118]). Our results
shed new light on this belief. Note that an improvement of 18% is considered
large, even with respect to algorithms that are allowed to reposition idle vehicles.

It should be clear that - when solely focusing on the fraction of late arrivals -
the MEXCLP dispatch heuristic can offer great improvements compared to the
closest idle policy. However, decision makers are often interested in more than
just the fraction of late arrivals. They should be warned that changing from
the closest idle dispatch policy to the MEXCLP heuristic comes at a price: it
considerably diminishes the performance of other quality indicators, as can be
seen in Figure 2.10. We highlight the difference in the average response time:
when switching from the closest idle method to our heuristic, the average response
time increased from 390 seconds to 535 seconds (an increase of 37%).

2.8 Discussion

This chapter provides new insight into the popular belief that deviating from the
closest idle dispatch policy cannot greatly improve the objective (the expected
fraction of late arrivals). We found an improvement of 18%, which was unexpect-
edly large. We consider this the main contribution of our work. Practitioners
and researchers who define the fraction of late arrivals as their sole objective,
should no longer claim that the closest idle method is near-optimal. Our meth-
ods yield in a great improvement in this KPI, however: one should be careful if
one is also interested in other aspects of the response time. It is important to
remember that our policies were designed with emphasis on the fraction of late
arrivals only. Therefore, we do not claim that our dispatch policies are practically
preferable over the closest idle policy, but we have shown that the argumenta-
tion for not using alternatives should be different. One should argue that we do
not deviate from the closest idle policy, because we do not know how to do this
while improving response times overall - and not because the alternatives fail to
improve the fraction of late arrivals.

Next, we discuss the limitations of our work. Although it is possible to apply
our MDP in practice for reasonably-sized ambulance fleets, we do not recommend
it: computation times are rather long and the performance improvement is small.
The MDP is in our opinion mostly of theoretical interest. On the other hand, the
heuristic could very well be applied in practice, but decision makers should be
aware of its side effects: the heuristic aims to minimize the fraction of late arrivals,
which does not reduce - and can in fact increase - response times overall.3 We
recognize this as an important downside and emphasize that practitioners should
carefully consider whether the response time threshold really is the way they
want to evaluate their performance.

Finally, we adress some topics for further research. One might consider mak-
ing small changes to the MDP that could benefit the performance. For example,

3Note that the same effect holds for the MDP that aims to minimize the fraction of late
arrivals.
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one idea is to artificially increase the rate with which busy ambulances become
idle. This extra time would allow for ambulances to drive back to their home
base, before the MDP considers them to be idle again. That way, we avoid the
error where the MDP decides that an ambulance will reach an incident within the
time threshold, but in fact the ambulance is still returning to base and happens
to be further away from the incident. We suspect that this approach might give
a small improvement; however, it should be noted that there is also a downside
to making this change: ambulances are considered to be busy even though they
are free, and hence suboptimal decisions will be made from time to time. In fact,
sometimes an ambulance is closer than the MDP knows, because its previous
patient was in the same area as the next patient. Other changes could be, to add
more information in the state about the ambulance’s actual location while driv-
ing back to the home base. This, however, would lead to a state space explosion
and the resulting model will - for realistically-sized regions - most certainly not
be solvable by value iteration.





3
Benchmarking online dispatch algorithms

Providers of EMS face the online ambulance dispatch problem, in which they
decide which ambulance to send to an incoming incident. Their objective is to
minimize the fraction of arrivals later than a target time. Today, the performance
gap between existing solutions and the optimum is unknown, and we provide a
bound for this gap.

Thereto, we propose a benchmark model (referred to as the offline dispatch
model) to calculate the optimal dispatch decisions assuming that all incidents are
known in advance. For this model, we introduce and implement three different
methods to compute the optimal offline dispatch policy for problems with a finite
number of incidents. The performance of the offline optimal solution serves as a
bound for the performance of an - unknown - optimal online dispatching policy.

We show that the competitive ratio (i.e., the worst case performance ratio be-
tween the optimal online and the optimal offline solution) of the dispatch problem
is unbounded; that is, even an optimal online dispatch algorithm can perform ar-
bitrarily bad compared to the offline solution. Then, we performed benchmark
experiments for a large ambulance provider in the Netherlands. The results show
that for this realistic EMS system, when dispatching the closest idle vehicle to
each incident, one obtains a fraction late arrivals that is approximately 2.7 times
that of the optimal offline policy. We also analyze another online dispatch heuris-
tic, that manages to reduce this gap to approximately 1.9. This constitutes the
first quantification of the performance gap between online and offline dispatch
policies.

This chapter is based on:
C.J. Jagtenberg, P.L. van den Berg and R.D. van der Mei. Benchmarking online
dispatch algorithms for Emergency Medical Services. To appear in European
Journal of Operational Research.

3.1 Introduction

In the previous chapter, we obtained dispatch policies that attempt to minimize
the fraction late arrivals. This showed that we can in fact do better than the
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classical ‘closest idle’ policy; however, the optimal dispatch policy remains un-
known. The question addressed in the present chapter is how to benchmark
dispatch policies against optimal policies with full information: suppose we were
to know all incident arrivals and locations in advance, then how much better
would the performance of the optimal dispatch policy be? What is the potential
improvement if we were able to perfectly predict future incidents? The answer
to such questions addresses the value of information about future incidents, and
give insight into how far we are from the optimum under full information and
what is the potential for developing accurate forecasting models for emergency
incidents.

By analyzing the dispatch process from a new angle, this chapter provides
a contribution that will be of interest to researchers who develop mathematical
models for EMS planning. This new perspective helps to develop a deeper under-
standing of EMS planning models. Furthermore, we link ambulance dispatching
to the literature on online/offline optimization. For a general introduction to the
concept of online versus offline algorithms, see [59].

The concept of bounds on the performance of EMS systems is relatively new.
There is one recent paper that provides a bound for the performance of an optimal
ambulance redeployment policy [79]. However, for a bound on the performance
of dispatch policies, we are not aware of any result.

There is previous work on ambulance planning that uses ideas similar to off-
line dispatching, although authors typically do not recognize the idea as such.
For example, [118] aims to analyze and evaluate repositioning algorithms, and to
that end uses optimal offline dispatch policies as an upper bound on the possible
performance. Instead of calling it an offline version of an online problem, the au-
thors refer to the offline approach as ‘the omniscient observer’. Most importantly,
this paper differs from our work because it does not include a comparison with
online dispatch methods. Other researchers use offline dispatching to compute
the number of vehicles needed to serve all incidents, without noting that this is
perhaps a rather optimistic approach [39, Chapter 3].

A related problem is the dial-a-ride problem, which deals with online arriving
requests for transports between an origin and destination. For an overview of
literature on this problem, see [35]. The dial-a-ride problem is similar in the sense
that routes are created; however, it typically allows for flexibility in the execution
time of each request, whereas the (urgent) ambulance requests require a vehicle
to be sent immediately. Furthermore, in dial-a-ride problems the objective is
typically either related to efficiency (such as transportation cost or travel time) or
based on customers’ inconvenience (such as lateness or excess drive time). There
is literature that considers dial-a-ride problems specifically in the ambulance
context. However, this usually concerns the non-urgent patient transports, see
e.g. [82, 91, 99]. Due to the fact that their objectives are not related to a response
time threshold, we cannot directly use their results or formulations.

Another related problem is the k-server problem [74], which is one of the
classical problems in competitive analysis. In this problem, each time step cor-
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responds to a request arriving somewhere in a metric space. There is a set of
k servers available, and an algorithm prescribes for each request which server
should respond. The objective is to minimize the total distance moved by all
servers. The competitive ratio of the k-server problem is currently unknown, al-
though it can be shown that it is at least k, and there exists a conjecture stating
that the competitive ratio is exactly k [74]. This problem differs from our ambu-
lance problem in three crucial ways. First of all, in the k-server problem requests
do not overlap in time. Second, servers await their next move at the location of
their last request, whereas ambulances return to their home base. Third, there
is no response time threshold in the k-server problem.

The contribution of this chapter is twofold: (1) to give a bound for the frac-
tion of late arrivals that can be achieved by any ambulance dispatch policy, even
if all future incident times and locations would be known in advance, and (2) to
benchmark and assess the potential for improvement of existing dispatch algo-
rithms. To this end, we introduce three different methods to compute the optimal
offline dispatch decisions in case future incident arrivals are known in advance.
The first method is Constraint Programming (CP); to the best of our knowledge,
this chapter is the first to apply CP to ambulance planning. Next, as an alterna-
tive, we also formulate the offline dispatch problem as a Dynamic Programming
(DP) problem, and we discuss how this DP provides insight into the problem.
We introduce a third method, that is the fastest among the three, using Binary
Linear Programming (BLP). We emphasize that all three methods result in the
same solution, that is, the optimal solution for the offline problem. Subsequently,
we determine the performance of two key online algorithms: the classical ‘closest
idle ambulance’ rule, and the heuristic method described in Chapter 2. These
performances are obtained by a discrete event simulation model of an urban EMS
region.

Our interest in quantifying the performance gap between online and offline
algorithms is twofold. From a theoretical point of view, we are interested in
the competitive ratio of the dispatch problem (i.e., a worst case measure for
an optimal online algorithm). Conversely, from a practical point of view, we
are interested in the performance ratio between online and offline algorithms
for realistic incident chains. This gives an indication of how much performance
improvement can be obtained by developing better dispatch methods, and at the
same time shows how much one can benefit from developing accurate incident
prediction models.

We do a worst case analysis by constructing a toy example that shows that the
so-called competitive ratio (i.e., the worst case performance ratio of the fraction
of late arrivals between the optimal online and the optimal offline solution) of the
dispatch problem is infinitely large; in other words, the optimal online dispatch
algorithms can perform arbitrarily bad compared to the offline solution. We
also analyze realistic problem instances by performing benchmark experiments
for a large ambulance provider in the Netherlands. The results show that for
this realistic EMS system, the fraction late arrivals of the classical ‘closest idle’
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dispatch heuristic is approximately 3.5%, whereas the offline optimum is 1.5%.
What is perhaps most surprising, is that our results show there exists an online
dispatch heuristic that closes roughly half of this gap between ‘closest idle’ and
the offline optimum. This is the so-called DMEXCLP dispatch heuristic, that
results in 2.6% late arrivals (and thereby performs only 1.9 times worse than the
optimal offline policy). The remainder of this chapter is structured as follows.
In Section 3.2, we give a formal problem definition. In Section 3.3, we describe
the two online policies, and introduce - and analyze - three methods to find
optimal offline solutions. In Section 3.4, we perform a worst case analysis of
the problem, and show that the competitive ratio is infinitely large. We end
with computational results for the average case in Section 3.5 and a discussion
in Section 3.6.

3.2 Problem formulation

We consider the problem of ambulance dispatching. In this problem, incidents
occur randomly in time and space, and the task is to determine which ambulance
to send to each incident. Throughout this chapter, we assume the following.

Assumption 1. The occurrence of incidents is independent of previous incidents
and the chosen dispatch policy.

We consider this assumption to be very realistic. From Assumption 1 follows
that we can generate incidents in a preparatory phase, prior to determining the
decisions made by each dispatch policy.

3.2.1 Model and notation
We generate incidents in time and space as follows. Define V as the set of
locations at which incidents can occur. These demand locations are modeled as
a set of discrete points. Incidents at locations in V occur according to a Poisson
process with rate λ. Let di be the fraction of the demand rate λ that occurs at
node i, i ∈ V . Then, on a smaller scale, incidents occur at node i with rate λdi.
According to these Poisson processes, we can simulate sequences of incidents.

Let A be the set of ambulances, and Aidle ⊆ A the set of currently idle
ambulances. When an incident has occurred, we require an idle ambulance to
immediately drive to the scene of the incident. The decision which ambulance to
send is the main question of interest in this chapter. Throughout this chapter,
we assume the following.

Assumption 2. There are sufficiently many ambulances, such that at least one
ambulance is idle whenever an incident occurs.

We consider two types of problems: (1) online problems, and (2) offline prob-
lems. In the online problem, the decision which ambulance to send has to be
made at the moment the incident occurs; future incidents are unknown and can



3.2. Problem formulation 45

at best be predicted. In the offline version of the problem, all incidents (i.e., their
time stamps and locations) are known in advance.

Our objective is formulated in terms of response times, defined as the time
between an incident and the arrival of an ambulance at the emergency scene.
In practice, incidents have the requirement that an ambulance must be present
within T time units. Therefore, we want to minimize the fraction late arrivals,
defined as the fraction of incidents for which the response time is larger than T .

Assumption 3. We assume that the travel time τi,j between two nodes i, j ∈ V
is deterministic, and known in advance.

Our objective can be formalized as follows. Recall that incidents are generated
according to the Poisson process described above. Let C denote a finite set of
generated incidents (also known as calls), and let n be the number of incidents,
i.e., n = |C|. Straightforwardly, t(c) denotes the time that incident c occurs
(c ∈ C). Let furthermore, hπ(c) represent the time a vehicle arrives at the scene
of incident c, under policy π. Now we can express our objective as:

arg min
π∈Π

lim
n→∞

∑n
c=1 1[hπ(c)− t(c) > T ]

n
. (3.1)

Sending an ambulance to an incident is followed by a chain of events, such
as spending time on scene with the patient, deciding whether the patient needs
transport to a hospital (and if so: additional travel time and a drop-off time
at the emergency department). In practice, these events will take a random
amount of time. However, this creates a very complex problem, to which both
the online and offline optimal solution is not known. Thereto, we use a simplified
model of the EMS process, which ensures that the optimal offline solution can
be computed.

Assumption 4. The busy time, excluding travel time, is known and determin-
istic and the same for all calls.

We define an ambulance to be busy for x minutes after arriving at the scene
of an incident. Note that this parameter x is assumed to be independent of the
incident location and the base location the ambulance departed from. After these
x minutes, the ambulance becomes idle at its (predefined) base location.

We denote the base location of ambulance a by Wa, for a ∈ A. Note that it
is possible for multiple ambulances to have the same base location. As soon as
an ambulance has reached its base location, it is ready to be dispatched again1.
An overview of the notation can be found in Table 3.1.

1This problem description is similar to the one defined in Chapter 2, with the following two
main differences. In Chapter 2 vehicles are allowed to be dispatched while returning to their
home base (i.e., when they are on the road) and the ambulance service times are modeled as a
stochastic process, rather than a constant time x.
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V The set of demand locations.
A The set of ambulances.
Aidle The set of idle ambulances.
Wa The base location for ambulance a, a ∈ A, Wa ∈ V .
T The time threshold.
x The time an ambulance is busy with one incident,

from the moment of arrival at the scene.
λ Incident rate.
di The fraction of demand in i, i ∈ V .
τi,j The driving time between i and j with siren turned on, i, j ∈ V .
C A finite chain of incidents.
n The number of incidents, |C|.
t(c) The time that incident c occurs, c ∈ C.
loc(c) The location of incident c, c ∈ C, where loc(c) ∈ V .

Table 3.1 Notation.

3.2.2 Goal

In this chapter, we focus on bounding the performance of any online solution
to the ambulance dispatch problem. Since the optimal solution to the online
problem (in which future incidents are unknown) is not known, we use the optimal
solution to the offline version of the problem (in which all incidents are known
in advance) as a bound.

Our first goal is to formulate a model that allows us to compute the optimal
(offline) dispatch policy. Our second goal is to compare this offline optimum to
the performance of existing online (heuristic) methods.

3.3 Solution methods

We introduce and implement three different methods to find the optimal offline
solution for a general instance of the dispatch problem (with a finite number of
calls). The first method, constraint programming (CP), has the advantage that
it is easy to implement. The second, dynamic programming (DP), is able to
find the same solution with somewhat shorter running times, and on top of that
allows us to investigate which properties make an instance hard to solve. The
downside of this method is that it is the most time consuming to implement. The
third method, Binary Linear Programming (BLP) solves the problem the fastest.
In this section we describe the DP and the BLP; the CP model can be found in
Appendix 3.A.

We also define the online dispatch policies that we use in our analysis. These
solution methods are eventually used to compare the performance on several
problem instances.
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3.3.1 The optimal offline solution using dynamic program-
ming

In this section, we describe how we built the dynamic program, and what extra
features could be added to it in order to speed up the computation. Note that
we only need to make decisions right after an incident has occurred. Therefore,
we define states at time steps that coincide with the incidents - and just like
the incidents, we denote them c from 1 to n. That way, time step c corresponds
to the actual time t(c). Additionally, we add a dummy time step n + 1, with
t(n + 1) large enough such that all vehicles are idle again, regardless of the
dispatch decisions made in the past. The only allowed action at this time step
is a dummy action with reward 0.

States, actions and rewards
We define our states to be vectors containing the time in minutes until each
ambulance becomes idle. This implies that a state s is a vector of length |A|,
the number of ambulances in the system. Let s[a] denote the number of minutes
until ambulance a becomes idle, for a ∈ A. If this is 0 minutes, that means the
vehicle is already idle. At time 0, nothing has happened yet, and all ambulances
are idle. Therefore, we start with the zero vector, having a value of 0. In any
state s, the allowed actions, i.e., the ambulances that are eligible for dispatch, are
given by: a ∈ A for which sc[a] = 0. At time step c, the penalty corresponding
to action ac (ac ∈ A) is given by

R(sc, ac) =

{
1 if τWac ,loc(c)

> T ;
0 otherwise.

Note that the reward for c = n+ 1 is defined as 0.
To know how to update the states, we can precompute the time differences

between the incidents. Thereto, we define:

diffc = t(c+ 1)− t(c) for c ∈ C,

and define diffn = 0.
Next, we describe how to update any state sc to state sc+1, where ac denotes

the chosen action at time step c. Let Γ be the transition function, that depends
on sc and ac. Define sc+1 = Γ(sc, ac) such that

sc+1[a] =

{
max(τWa,loc(c) + x− diffc, 0) if a = ac;
max(sc[a]− diffc, 0) otherwise.

The value of being in state sc′ at time step c′ can then be defined as:

Vc′(sc′) = min
{ac}c

′
c=0

c′∑
c=0

R(sc, ac)
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subject to

ac ∈ A and sc[ac] = 0

and

sc+1 = Γ(sc, ac), ∀c = 0, 1, 2, . . . n− 1.

The objective is to minimize the fraction of late arrivals, which - for any fixed
number of incidents - is equal to minimizing the number of late arrivals. So we
are interested in the value Vn(~0).

Note that decisions made in the past have a large effect on the set of states
that we need to analyze in the future. In fact, only a small subset of all states
we can think of will ever be reached. That is, one can obtain sc+1 from sc, but
not the other way around. Therefore, a backward recursion does not make sense
for this problem; instead, we used a forward recursion to obtain the set of states
that we need to analyze. Hence, for each state s, we computed the value at time
step c based on the value in the previous time step, as follows:

Vc+1(sc+1) = min
ac+1

{Vc(sc) +R(sc+1, ac+1)}.

Although this method in theory computes the optimal solution to any instance
of the offline ambulance dispatch problem, practical difficulties can occur. The
difficulty is that many situations need to be considered (in a DP context, that
means many states need to be stored).

Note that it is hard to give an exact formula that describes the number
of states that need to be computed in order to find the solution. There are,
however, two formulas that both give an upper bound on the number states.
The first one follows straightforwardly when one realizes that the time until each
ambulance becomes available completely defines a state (and that we should
consider this n times). This means there are at most nM |A| relevant states, where
M is the maximum driving time between any base location and demand point.
Furthermore, there is a bound on the number of decisions that can be made.
Assuming all possible combinations of ambulance assignments are allowed, this
leads to a maximum |A|n decisions, and hence states, to be considered.

There are some ways to reduce the total number of states required to store,
which directly lead to shorter computation times. Appendix 3.B describes three
ways to accomplish this.

3.3.2 The optimal offline solution using binary linear pro-
gramming

To formulate the problem as a BLP, we first introduce parameters pcj ∈ {0, 1},
for c ∈ C, j ∈ A. This parameter is the penalty of assigning ambulance j to
incident c: it will be set to 0 if ambulance j arrives within threshold time T .
Note that the values of pcj can be deduced from the problem specification, using
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the base locations, driving times between those bases and the incident locations,
and the (fixed) parameter T . Our decision variables will be xcj ∈ {0, 1}, for
c ∈ C, j ∈ A, which will be 1 if and only if ambulance j is assigned to incident c.

The most important constraint of our problem is that two incidents handled
by the same ambulance may not overlap in time. At first sight, it seems hard to
model this in a linear way: recall that the travel time depends on the ambulance
that is chosen. However, we can precompute for each combination of incidents c
and c′, whether or not they overlap in time if they were to be served by ambulance
j. Denote this with parameter occ′j , for c, c′ ∈ C, j ∈ A, which is equal to 1 if the
incidents overlap in time, and 0 otherwise. If occ′j equals 1, we add a constraint
that at most one incident in {c, c′} may be served by ambulance j. Then, the
offline ambulance dispatch problem can be modeled as a BLP as follows:

Minimize
∑
c∈C

∑
j∈A

pcjxcj

subject to∑
j∈A

xcj = 1, c ∈ C,

occ′j · (xcj + xc′j) ≤ 1, j ∈ A, c, c′ ∈ C, c 6= c′,

xcj ∈ {0, 1}, c ∈ C, j ∈ A.

3.3.3 Online solutions

In this section, we describe two online dispatch methods. The first is often
used in practice, and the second was shown to give good performance for our
objective (the fraction of late arrivals).

The ‘closest idle’ dispatch method
When an incident occurs, all idle ambulances are considered. The idle ambulance
that is closest to the incident location (in time, not necessarily in space), is then
dispatched. This notion can be formally expressed as follows:

arg min
a∈Aidle

(τWa,loc(i)),

i.e., the ambulance a for which the travel time τ is the smallest amongst all idle
ambulances.

The DMEXCLP dispatch heuristic
This heuristic was introduced in Chapter 2, and applied to test data similar
to the data we will use in this chapter2. In Chapter 2 we showed that the

2In Chapter 2, the region considered is also Utrecht. However, the incident rate as well as
the number of vehicles used is slightly lower than in the current chapter.
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heuristic reduces the fraction of late arrivals by 18% compared to the ‘closest
idle’ benchmark policy. A mentioned drawback is that this heuristic increases the
average response time. Therefore, we do not claim that this heuristic is practically
preferable over the closest-idle method. However, the mentioned improvement of
18% is considerable, and hence it would be interesting to see how the heuristic
performs compared to the offline optimum.

The general idea of the DMEXCLP dispatch heuristic is that we choose an
ambulance such that the remaining idle ambulances provide good coverage of
the region. Coverage can be interpreted as a number that indicates how well
we can serve the incidents that might occur in the (near) future. The definition
of coverage for the DMEXCLP dispatch heuristic was borrowed from the well-
known MEXCLP model [55], that is described in Section 1.2.1. At the moment
an incident occurs, the DMEXCLP dispatch heuristic computes the marginal
coverage that each ambulance provides for the region, at this point in time.
The ambulance that provides the smallest marginal coverage, is the best choice
for dispatch, in terms of remaining coverage for future incidents. The heuristic
limits the set of ambulances to choose from, by requiring that we always send
an ambulance that will reach the incident in time, if possible. This still leaves a
certain amount of freedom in determining which particular ambulance to send.

3.3.4 Benchmarking solutions

In this section, we describe how we calculated the performance ratio between
an online and an offline dispatch policy. By definition, the performance of an
online policy must be equal to or worse than the offline optimum. Recall that
our objectives are defined as the fraction of late arrivals. Since we are minimizing
our objective, we can immediately conclude that the online/offline performance
ratio will be ≥ 1.

Given a specific EMS region, we drew a finite sequence of incidents according
to the Poisson process defined in Section 3.2.1. Denote the fraction of late arrivals
for a certain policy P and incident sequence s by FracLateP (s). We repeated
this process multiple times, using a large set of incident sequences (S), in order to
determine the objective more accurately. Our final estimate for the performance
ratio is then computed as the ratio of the average performances:

Performance Ratio :=

1
|S|
∑
s∈S FracLateOnline(s)

1
|S|
∑
s∈S FracLateOffline(s)

. (3.2)

Note that we do not compute the performance ratio of each individual incident
sequence. The reason for this, is that when the offline optimum results in 0 late
arrivals, the performance ratio becomes infinitely large, and this does not lead to
a meaningful average performance ratio.
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3.4 Worst case analysis

In this section, we describe a worst case realization of incidents. This example is
meant to illustrate to what extent an ‘unfortunate’ chain of incidents can affect
the performance of online dispatch algorithms. The example directly leads to the
so-called competitive ratio of the dispatch problem.

Consider a region where the time threshold T = 12 minutes, and the busy
time for an ambulance is x = 37 minutes. There are two nodes in which incidents
can occur, and the driving time between these nodes is 13 minutes. Each node
is the base location for one ambulance. For simplicity, let us say ambulance 1
has base location 1, and ambulance 2 is stationed at location 2. For a graphic
representation, see Figure 3.1. It is easy to see that an ambulance will reach an
incident in time, if and only if the ambulance at the location of the incident is
available.

Figure 3.1 Region with two towns, each being the home base for one ambulance.

Incidents Optimal offline Closest idle (online)
Number Time Location Send ambu In time? Send ambu In time?

1 0 1 2 No 1 Yes
2 5 1 1 Yes 2 No
3 51 2 2 Yes 1 No
4 56 1 1 Yes 2 No
5 102 2 2 Yes 1 No
6 107 1 1 Yes 2 No
...

n = 2m+ 1 m·51 1 1 yes 2 no

Table 3.2 A worst case example of incidents for the region described in Section 3.4.
The corresponding solution of two policies is denoted, as well as whether or not they can
serve each incident within the threshold time. Note that the incidents in each location
are exactly 51 minutes apart.

Table 3.2 shows a chain of incident realizations for which the closest idle
dispatch policy performs particularly poorly. Typical about this example is that
a dispatch algorithm only has a choice for the first incident (at time 0). After
that, the sequence of incidents is timed such that there is only one ambulance idle
at any decision moment3. By our problem definition, that ambulance must then
be dispatched immediately. So, if an algorithm makes the wrong decision in the

3Note that incidents in each location are 51 minutes apart, while the busy time of an
ambulance is at most 13+37=50 minutes.
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first time step - like the closest idle policy does - all following incidents except the
first one the ambulance will arrive later than the threshold time. Alternatively,
if the correct decision is made in the first time step, only the first incident’s
ambulance will arrive late.

Note that it is impossible for any online algorithm to know what is the best
decision in the first time step. To see this, imagine an (online) algorithm that
upon seeing the first incident at location 1, sends ambulance 2 (hence it does the
opposite of the closest idle method.) The worst case instance for this algorithm,
would have the same incident times as in Table 3.2, but have the locations of
incidents 2 . . . n swapped (i.e., location 1 ↔ 2). Then, again, only the first
incident would be reached in time. Thereto, we conclude that the performance
ratio of any online algorithm can be a factor

(n− 1)/n

1/n
=
n− 1

1
→n→∞ ∞.

larger than the optimal offline policy.
One might argue that the ambulance dispatcher should be allowed to change

his mind and send a different ambulance whenever new information becomes
available - like a new vehicle becoming idle - as long as the originally dispatched
ambulance still has not arrived. That is, the dispatcher might be able to perform
better if he is allowed to schedule with preemption during the travel time. How-
ever, with a small adaptation to the problem instance in Table 3.2, we obtain a
problem instance that again leads to an unbounded competitive ratio, even when
preemption is allowed. To see this, change the problem instance in Table 3.2
by increasing the time of incident 2 from 5 to 13, and update the consecutive
(odd) incidents accordingly. Then, the new information arrives too late, i.e., the
originally dispatched ambulance has already arrived, and hence the competitive
ratio remains infinitely large.

Although this worst case is interesting from a theoretical perspective, we want
to clarify that this is not a case that is likely to occur in practice. Since ambulance
planning is a topic of practical importance, the rest of this chapter focuses on
the performance ratio between online and offline algorithms for realistic incident
chains. More specifically, we are interested in the expected performance ratio
for incident chains that originate from an incident distribution as described in
Section 3.2.1.

3.5 Computational results

In this section, we analyze the ambulance dispatch problem based on an EMS
system that represents Utrecht. Figure 3.2 shows a map of the region and the
base locations that we used. For more information on the region, we refer to
Section 2.7.

We chose realistic parameters to model the EMS region Utrecht. For example,
the base locations that we used are equal to the ones used in practice (for at
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Figure 3.2 The 19 existing ambulance base locations in the region of Utrecht, The
Netherlands. We distribute the 25 available ambulances over the bases according to the
MEXCLP solution with busy fraction q = 0.3.

least the period between 2013 and 2015). Furthermore, we divided the region by
postal codes, and model the incident arrivals in each postal code as a Poisson
process with a rate proportional to the population. Ambulance travel times were
provided by the Dutch National Institute for Public Health and the Environment
(RIVM). For the exact parameters used in the implementation, see Table 3.3.

It is clear that we can only analyze finite incident chains; however, it is not
immediately clear what the length of such chains should be. One might argue
that longer chains will lead to a larger performance difference between online and
offline solutions - simply because the offline solution is able to look further into
the future. On the other hand, it seems reasonable to assume that incidents that
are very far in the future do not greatly affect current decisions. Thereto, we
analyzed incident chains of four different lengths: 6, 12, 18 and 24 hours. One
might also argue that the result depends on the value of λ, thereto we analyzed
three different values (λ1, λ2 and λ3, as described in Table 3.3).

The parameters described above lead to the analysis of 12 different cases. For
each of those cases, we drew |S|=1000 incident chains according to the Poisson
process described in Section 3.2.1, for the region Utrecht defined in Table 3.3.

In order to compute the optimal offline performance, we implemented all three
methods from Section 3.3. First, we tried the CP, which we implemented in the
MiniZinc modeling language, using its standard G12 finite domain solver. This
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Parameter Magnitude Choice
λ1 0.9 · λ2 A 10% lower rate than normal for this region.
λ2 1/6.4 Rate per minute, realistic for urgent calls on

a weekday in this region.
λ3 1.1 · λ2 A 10% higher rate than normal for this region.
A 25 A number chosen such that performance is re-

alistic (near 5% late arrivals).
W 19 Base locations as existing in 2013-2015. We

divide the ambulances over the bases accord-
ing to the static MEXCLP solution.

V 217 4 digit postal codes.
τij Driving times as estimated by the RIVM,

rounded to minutes.
di Fraction of inhabitants as known in 2009.
T 12 min Typical time standard for high priority inci-

dents in the Netherlands.
x 37 min Realistic average busy time for ambulances.

Table 3.3 Parameter choices for our implementation of the region of Utrecht.

could only handle very small problem instances. The largest instances we tried
to solve with CP had a simulation time of six hours. The computation time
varied widely among the different instances, the longest ones taking more than a
day. Next, we implemented the DP in C++, which reduced computation times -
again for instances of six hours simulation time - to a range of 20 minutes to a few
hours. Finally, we implemented the BLP in Java using solver CPLEX 12.6, which
solves all instances, including ones for 24 hours simulation time, in a fraction of
a second. As stated in Section 3.3, the performance of the two online dispatch
policies is calculated by simulating the EMS system.

Ambulance optimization is a complex topic, and it is often hard to oversee
whether stated theoretical results will hold up in practice - even for experts. It is
our opinion that in order for results to be meaningful, at least the performance
should be close to the performance in practice. In the Netherlands, urgent in-
cidents should be served within the time standard in at least 95% of all cases.
The ambulance provider for Utrecht performs slightly better than this 95% on
average. Thereto, we decided to use a number of vehicles such that the average
fraction of late arrivals for the online dispatch methods is roughly between 3 and
5%. We believe that this choice leads to the most realistic and insightful results.

In practice as well as in our experiments, it is rather unlikely that EMS
region Utrecht faces a situation in which all vehicles are busy. This means that
Assumption 2 is quite realistic. We validated this assumption for all incident
chains in our numerical work.

The obtained fraction of late arrivals for each of the twelve cases is depicted
in Figure 3.3. Recall that we compute the performance ratio as described in
Equation 3.2. The results from Figure 3.3 then lead to the performance ratios
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Figure 3.3 Average fraction late arrivals for 1000 chains of incidents, with different
incident intensities and chain lengths. A 95% confidence interval is displayed.

λ1 λ2 λ3

DMEXCLP
6 hours 1.72 ± 0.07 1.86 ± 0.07 1.96 ± 0.12
12 hours 1.67 ± 0.05 1.87 ± 0.07 2.06 ± 0.06
18 hours 1.72 ± 0.07 1.88 ± 0.07 2.00 ± 0.05
24 hours 1.74 ± 0.05 1.87 ± 0.05 2.04 ± 0.06

Closest idle
6 hours 2.48 ± 0.19 2.73 ± 0.11 2.91 ± 0.17
12 hours 2.39 ± 0.09 2.72 ± 0.14 3.05 ± 0.09
18 hours 2.40 ± 0.11 2.73 ± 0.11 2.94 ± 0.09
24 hours 2.46 ± 0.06 2.72 ± 0.10 3.00 ± 0.09

Table 3.4 The observed Performance Ratio and 95% confidence interval of online
dispatch policies.

found in Table 3.4.

A bound on optimal online algorithms
Our offline optimum constitutes the first known bound on the performance of
an optimal online ambulance dispatch policy. Let us focus on incident arrival
rate λ2, since it is realistic for this particular EMS region. Then Table 3.4
shows that the DMEXCLP dispatch policy performs approximately 1.9 times
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worse than the offline optimum.4 This means that there cannot exist an online
dispatch method that improves the performance of the DMEXCLP dispatch
method by more than a factor 1.9 on average. We emphasize that this bound is
an optimistic one, since it is obtained using information - on future incidents -
that is inaccessible to online policies, but it is a bound nonetheless.

The value of information
Generally speaking, the competitive ratio of a problem shows the importance
of knowing the future for this problem. In terms of the ambulance dispatch
problem, it gives an indication of ‘unfortunate decisions’ made by online policies
- even an optimal one - that could not have been avoided unless one knew about
future incidents. Our results are perhaps surprising: we had previously expected
that knowing incidents in advance would have a greater impact on performance.
However, our results show that even an omniscient dispatcher will still be left
with 1

1.9 ≈ 53% of the late arrivals, compared to a dispatcher that executes
DMEXCLP.

3.6 Discussion

We have introduced three methods to compute the offline optimal solution to the
ambulance dispatch problem. Note that, due to scalability issues, the CP and
DP method are not advisable for most numerical work; we recommend the BLP
to solve the problem practically.

One may perform the analysis as described in this chapter for multiple EMS
regions. Different regions typically have different characteristics, such as the
average busy fraction of ambulances, or the distance between bases and demand.
These differences will most likely result in a different online/offline performance
ratio, and it would be interesting to see how these ratios vary over different
regions. However, regions are always hard to compare, and therefore instead
of simulating different regions we chose to analyze the effect of different arrival
intensities.

Table 3.4 shows that the Performance Ratio between the online policies and
the offline optimum increases with λ. This may be explained as follows. A
larger λ leads to more incidents within a short time frame. As we have seen in
Section 3.3.1, this makes for a more complex problem, because many decisions
are now dependent on one another. In particular, an unfortunate choice at some
point can have an effect on many incidents after that. It is therefore not surprising
that the performance gap between the online heuristics and the offline optimum
increases with λ.

4Furthermore, Table 3.4 indicates that the Performance Ratio does not vary greatly between
cases of 12, 18 and 24 hours. Therefore we conjecture that the 24 hour case gives a reasonable
estimate of the true Performance Ratio.
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Although it was previously known that the closest idle method is not optimal,
it is often assumed to be quite a good policy. In fact, the insight that the ‘closest
idle’ performance is still a factor 2.7 away from the offline optimum, is something
that many researchers in the field of ambulance planning may be tempted to
attribute to the value of information: to the fact that the offline policy has
much more knowledge. However, as Figure 3.3 depicts, the DMEXCLP dispatch
heuristic is able to close about half the gap between the ‘closest idle’ and the
offline optimum. We find this observation rather surprising, as it implies that the
value of information for the dispatch problem is smaller than we had previously
anticipated.

In order to compute the Performance Ratio, we drew random chains of inci-
dents. However, we always started at time 0 with all ambulances idle. This may
perhaps be interpreted as the start of the day, for EMS providers that serve few
calls at night. However, one might also argue that we should focus more on the
system in steady state. We conjecture that our result - a Performance Ratio of
1.9 - will roughly hold for steady state as well, since the value did not change
much between incident chains of 12, 18 and 24 hours (see Table 3.4).

Finally, one might suggest to make the model more realistic, e.g., by defining
the busy time of an ambulance after arrival at an incident to be a random
variable. Then, however, determining the optimal offline policy becomes a very
difficult task. We see only one way to overcome this difficulty, and that is to let
the offline solution have knowledge of the realizations of these random times.
Since online policies can only use the busy times in distribution, this would
increase the gap between information given to the offline and online policies.
This deviates further from our main research question, which was how much it
helps to have information on when and where incidents will occur. Increasing
the gap between what is known in the online and offline case will not help us to
gain more insight in this matter. Therefore, we decided not to proceed in this
direction.
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Appendices

3.A Constraint Programming formulation

In this appendix, we describe how we found the optimal offline solution with
CP. For this purpose, we used the MiniZinc constraint modeling language. We
modelled a set of n incidents by the following variables:

• t(c), the cth element of vector ~t. This is the time that incident c occurs,
c ∈ {1, . . . , n}.

• loc(c), the cth element of vector ~loc. This is the location of each incident,
where loc(c) ∈ V , c ∈ {1, . . . , n}.

The input further consists of the base locationWa of each ambulance a, as well as
the driving times τi,j ∀i, j ∈ V (in minutes). For each incident c we introduced
a variable A (c), which can take a value between 1 and |A|. These variables
indicate which ambulance is assigned to each incident.

We aimed to minimize the fraction of arrivals later than threshold time T .
Note that since the number of incidents - and therefore the number of arrivals -
is known in advance, this is equivalent to minimizing the number of late arrivals.
In our implementation, we focused on the number of late arrivals, denoted by
N .

Finally, we needed to ensure feasibility of the solution. Thereto, we added
two constraints5. Equation (3.3) makes sure variable N is set correctly, i.e., it
is the number of incidents for which the dispatched ambulance was further than
T minutes away. Equation (3.4) ensures that two incidents (c1 and c2) assigned
to the same ambulance do not overlap in time.

Note that this is not the only CP model one could formulate. In fact, a model
similar to the BLP model that we have seen in Section 3.3.2 is also possible for
CP. However, we chose to keep the models diverse.

minimize N

s.t.

N =
∑
c∈C

1(τWA (c),loc(c) > T ) (3.3)

and

@ c1, c2 ∈ C such that
c1 < c2 ∧ A (c1) = A (c2) ∧ t(c1) + τWA (c1),loc(c1) + x > t(c2).

(3.4)

5We also added other - redundant - constraints in order to find solutions faster. However,
they do not change the result and therefore we do not mention them here.
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Note that in the formulation of Equation (3.4), we used the assumption that
incidents are ordered chronologically.

One can immediately see the benefit of the flexibility that CP has to offer:
we were able to write the problem using just two constraints, which look very
similar to the way one might naturally think about the dispatch problem.

3.B DP speed-up

In this appendix, we describe three ways to speed up the computation time of
the DP. We illustrate the usefulness of each technique, by the effect it has on the
following two problem instances6. In both examples, T = 12.
Instance 1.

~t = [9, 13, 35, 47, 70, 95, 104, 105, 115, 127, 152, 169].

~loc = [34, 54, 23, 159, 81, 81, 39, 10, 142, 146, 140, 156].

For this instance, the closest idle dispatch policy results in one late arrival. The
offline optimum is also one late arrival.
Instance 2.

~t = [1, 1, 30, 33, 34, 43, 43, 62, 63, 81, 103, 114, 124, 135, 138, 139, 168, 174].

~loc = [200, 182, 135, 217, 67, 131, 74, 179, 95, 15, 74, 37, 206, 206, 142, 54, 145, 44].

For this instance, the closest idle dispatch policy results in four late arrivals.
The offline optimum is equal to three late arrivals.

Eliminating dominated states
One well-known way to reduce the number of states, is to eliminate so-called
dominated states. We define a state s to be dominated at time c, if there exists
another state s′, such that:

s′[a] ≤ s[a] ∀a ∈ A and Vc(s
′) ≤ Vc(s).

That is, there exists another state for which all vehicles will be idle at earlier
(or equal) times, while resulting in fewer (or equal) late arrivals. We iteratively
removed dominated states until none are left in our state space.

Bounding the objective
Another way to reduce the time and memory spent on the dynamic program,
is to bound the solution by any feasible objective value. For example, we can
quickly pre-compute the objective from the ‘closest idle’ dispatch heuristic and
eliminate any state that has a larger value. We show the benefit of this approach
by example: Figure 3.4 depicts the number of states that we need to analyze
at each time step. Note that Figure 3.4b has more time steps than Figure 3.4a,
simply because more incidents occur.

6The cases considered here are for the region Utrecht. Due to the scalability issues of the
DP, we used only 10 ambulances in this example.
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Figure 3.4 Comparison of the number of states stored for each time step in the
dynamic program, with and without bounding the solution by the value of the ‘closest
idle’ policy.

Figure 3.4 shows that in the first few time steps the number of states for the
bounded and unbounded DP are more or less equal. Let us explain why this
makes sense, by the example of Instance 2. Here, the closest idle method results
in four late arrivals. Therefore, bounding the states by the ones with values ≤ 4
does not have any effect before time c = 5 (since the value can increase by at
most 1 per incident).7

Also note that the number of states does not always increase over time. So
what is it exactly, that causes the need to store many states? A key insight is
that an incident that occurs at time t, only has an indirect effect on the system8

after time t+ τi,j + 37, for some travel time τi,j , i, j ∈ V . That is, the ambulance
will be idle by time t + τi,j + 37, and can be used for any incident after that
time, regardless of whether it is dispatched to the incident at time t. However,
whether or not this particular ambulance is dispatched at time t, does have an
effect on which ambulances are eligible for dispatch to incidents between time
t and t + τi,j + 37. Hence, we regard the effect as an indirect one. Note that
this indirect effect occurs only when incidents arise within this time frame. This
leads to the following observation.

7An alternative, more elaborate way to bound the DP would be to store all states that the
(online) heuristic passes through over time. That is, after each incident, store the remaining
busy time for each ambulance, as well as the number of late arrivals observed in the past. Then,
when computing the offline optimum in the DP, remove all states that are dominated by the
states observed in the online solution. Note that we did not implement this idea.

8assuming that we never run out of ambulances
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Observation 1. Longer inter-arrival times lead to a reduction in the number of
states.

In particular, if the inter-arrival time between two consecutive incidents is
larger than 37 minutes plus the response time from any base to the first incident
(of the two), then the state space reduces to a single state (all ambulances are
idle). This can be viewed as a ‘reset’ of the system, i.e., all information on
past decisions are irrelevant for future decisions. When this occurs, it avoids an
explosion of the state space that we would otherwise see for instances with a long
horizon.

Roughly speaking, the computation time should scale linearly with the
simulation horizon (given a fixed λ). However, what makes an instance harder
to solve is the number of incidents that occur quickly after one another. Many
incidents in a short time window imply many dependent decisions - and precisely
this increases the number of states. This effect can be seen in the ‘spikes’ in
Figures 3.4a and 3.4b (one can manually confirm this using the incidents times
given in 2 and 1. Conversely, the time steps with a very small number of states
correspond to large inter-arrival times between incidents.

Rounding the numbers in the input
Another way to speed up the computations is by rounding the driving times and
incident times. For example, instead of rounding to minutes, we could round the
times to multiples of five minutes. The reason why this would result in fewer
states, is that more states will be dominated.

Unfortunately, rounding means some accuracy will be lost: we make use of a
trade-off between running time and accuracy here. At the very least, one should
make sure to also round the times in the input for the heuristic solutions, or else
the computed ratio is meaningless. Then, one might argue that the computed
ratio will be similar to the unrounded case. Note that we did not implement this
method, but instead suggest to use a Binary Linear Programming approach as
described in Section 3.3.2.
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An efficient heuristic for real-time ambulance

redeployment

This chapter addresses the problem of dynamic ambulance repositioning, in which
the goal is to minimize the expected fraction of late arrivals. The decisions on
how to redeploy the vehicles have to be made in real time, and may take into
account the status of all other vehicles and incidents. This is generally considered
a complex problem, especially in urban areas, and exact solution methods quickly
become intractable when the number of vehicles grows. Therefore, there is a need
for a scalable algorithm that performs well in practice.

We propose a polynomial-time heuristic that distinguishes itself by being scal-
able, easy to program and easy to deploy, while giving good performance for busy
regions. The performance of our repositioning method is evaluated in a simu-
lation model of EMS operations, and compared to static solutions. The results
show that the heuristic performs better than the optimal static solution for a
tractable problem instance. Moreover, we perform a realistic urban case study
in which we show that the performance of our heuristic is a 16.8% relative im-
provement on a benchmark static solution. The studied problem instances show
that our algorithm fulfils the need for real-time, simple redeployment policies
that significantly outperform static policies.

This chapter is based on:
C. J. Jagtenberg, S. Bhulai and R. D. van der Mei. An efficient heuristic for real-
time ambulance redeployment. Operations Research for Health Care 4:27–35,
2015.

4.1 Introduction

This chapter considers the problem of dynamic ambulance repositioning, also
known as redeployment or move-up: proactively relocating idle vehicles in order
to reduce response times. The general idea is that the idle vehicles should be re-
located to compensate for other ambulances that are busy and hence temporarily
unavailable to respond to incidents. Decisions on how to redeploy the vehicles
are to be made in real time, and may take into account the status of all other
vehicles and incidents.
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A variety of techniques has been used to tackle this problem, a summary of
which can be found in Section 1.2.2 and in [11]. The randomness in the EMS
system combined with a large state space make this problem difficult: while exact
models can be solved for small problem instances, realistically-sized EMS regions
require an approximation. Such approximations typically include simplifying
assumptions. For example, some of the models in literature assume that an
incident is served late if there are no idle vehicles present at the nearest base
(e.g., [78]). This particular assumption would make a model unsuitable for the
EMS region that we have in mind: it includes demand points that can be reached
within the time threshold from as many as eight different bases. Despite using
simplifying assumptions, some of the existing approximations are in fact not
all that simple: they are still computationally heavy and require an expert to
implement them.

We conclude that there is a need for a clear, scalable algorithm that performs
well in practice. Motivated by this, the current chapter proposes a method that
is easy to implement and allows computations to be done in real time, even for
large problem instances. We believe that this properly balances the trade-off
between simplicity, effectiveness and scalability. Furthermore, our method only
uses limited information about the system, which allows even EMS providers with
few tools available to track real-time information to implement this solution.

Throughout this chapter the key performance indicator (KPI) is the expected
fraction of late arrivals. We validate our method through simulation: our results
show that we can obtain an average of 7.8% late arrivals, compared to 9.5% for a
benchmark static policy under the same circumstances. In fact, our simulations
show that our policy not only performs better for the time threshold, but shifts
the entire distribution of response times to the left. These results demonstrate
that our algorithm has the potential to be used in real systems, which eventually
lead to the implementation in practice in Flevoland, the Netherlands.

The rest of this chapter is structured as follows. In Section 4.2 we formulate
the problem. In Section 4.3 we give our ambulance redeployment algorithm and
analyze its computation time. In Section 4.4 we describe our case studies and
measure the performance of our algorithm on these cases. We do a small case
study, allowing us to compute the optimal static policy as a benchmark. We also
include a realistic case study on one of the largest EMS regions in the Netherlands.
Section 4.5 contains a discussion of our approach. We finish by briefly covering
the implementation of our method in practice in Section 4.6.

4.2 Problem formulation

In this section we introduce the real-time ambulance redeployment problem. To
formulate the problem, define the set V as the set of locations at which demand
for ambulances can occur. Note that the demand locations are modeled as a
set of discrete points. Incidents at locations in V occur according to a Poisson
process with a rate λ. Let di be the fraction of the demand rate λ that occurs at
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A The set of ambulances.
V The set of demand locations.
H The set of hospital locations, H ⊆ V .
W The set of base locations, W ⊆ V .
T The time threshold.
λ Incident rate.
di The fraction of demand in i, i ∈ V .
τij The driving time between i and j with siren turned on, i, j ∈ V .
ni The number of idle ambulances that have destination i, i ∈W .

Table 4.1 Notation.

node i, i ∈ V . Then, on a smaller scale, incidents occur at node i with rate diλ.

Let A be the set of ambulances. When an incident has occurred, we require
the nearest (in time) available ambulance to immediately drive to the scene of
the incident. We assume that the travel times τij between two nodes i, j ∈ V
are deterministic.1 Idle ambulances can only be on the road while driving to a
base location in the set W ⊆ V , or be at a base location itself waiting for an
incident to respond to. Note that idle ambulances on the road may be dispatched
immediately, and need not arrive at the base location they were headed to. When
an incidents occurs and there are no ambulances idle, the call goes into a first-
come first-serve queue. Incidents have the requirement that an ambulance must
be present within T time units. When an ambulance arrives at the incident scene,
it provides service for a certain random time τonscene. Then it is decided whether
the patient needs transport to a hospital. If not, the ambulance immediately
becomes idle. Otherwise, the ambulance drives to the nearest hospital in a set
H ⊆ V . Upon arrival, the patient is transferred to the emergency department,
taking a random time τhospital, after which the ambulance becomes idle. For an
overview of notation, see Table 4.1.

We allow an ambulance only to relocate whenever it becomes idle, which
could be at the incident scene or at a hospital. Although this choice may seem
restrictive, it is a reasonable choice in practice, and is both crew and fuel friendly.
In particular, in complicated busy regions, an ambulance becomes idle quite often.
Our restriction on relocation moments provides the system enough freedom to
keep updating and avoids getting stuck in a local optimum. In our model, any
ambulance is capable of serving any incident. An ambulance is able to respond
to an incident (queued or newly arriving), immediately when it becomes idle.
Note that this implies that the vehicle does not need to return to a base location
before being dispatched again.

1Our model uses two different travel speeds. If the ambulance is traveling without siren, its
travel speed is 0.9 times the travel speed when it is traveling towards an incident scene.
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4.2.1 State space and policy definition
When defining the state space, one should consider all information of the EMS
system that the best relocation might depend on. In a way, the state should
represent a ‘snap shot’ of the system at a decision moment. Most dynamic
models (see Section 4.1) use a rather elaborate description of the system, which
results in a large state space. In contrast, we will define a relatively small state
space, which will help us obtain an intuitive policy that can be understood and
explained to EMS employees in practice.

A state describes the destinations of all idle ambulances. (If an ambulance is
waiting to be dispatched, we say its destination is simply its current location.) It
should be clear that this definition of the state space ignores many details of the
system, such as information about the busy vehicles and the exact location of
ambulances that are driving. Note that ignoring this information (which might
affect the best relocation decision) implies that we cannot possibly hope for our
method to find an optimal solution. Nevertheless, we show that we can obtain a
policy with good performance using only this small state space.

Remember that idle ambulances can only be sent to the predefined base lo-
cations in W . Furthermore, the vehicles are exchangeable or identical. It is then
sufficient to model the state as the number of idle ambulances that are headed
to each base location. Hence, define the state space S to be the set of states
s = {n1, . . . , n|W |} such that ni ∈ N for i = 1, . . . , |W | and∑|W |i=1 ni ≤ |A|, where
ni represents the number of idle ambulances that have destination i. We also
define the action space A = W , where the action represents the new destination
for the newly available ambulance. Now we can define a policy π, as a mapping
S → A. Let Π denote the set of all such policies.

4.2.2 Objective
We look for a relocation policy that minimizes the expected fraction of incidents
that are reached later than T . Recall that incidents are generated according
to the Poisson process described above. Therefore, we can give our incidents
an index i = 1, 2, . . . , I, sorted by their arrival time. Now we can express our
objective as:

arg min
π∈Π

lim
I→∞

∑I
i=1 1[hπ(i)− t(i) > T ]

I
, (4.1)

where t(i) represents the time that incident i occurs, and hπ(i) represents the
time a vehicle arrives at the scene of incident i, under policy π.

4.3 Algorithm

In this section, we develop an algorithm to solve the dynamic ambulance reloca-
tion problem. In some sense, this problem can be considered the counterpart of
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the dispatching problem in Chapter 2: instead of deciding from which location to
remove (dispatch) a vehicle, we now decide which location to add an ambulance
to. Therefore, our solution will also show similarities to the dispatch heuristic
presented in Chapter 2.

Our goal is to minimize the expected fraction of late arrivals. In order to reach
this goal, we will use the notion of coverage. It is intuitive that a well-covered
region will result in a small expected fraction of late arrivals. Coverage is often
used in models for the ambulance location problem, i.e., problems where one
searches for a static solution. We notice that we can benefit from these models
by adapting them in such a way, that they can be used in a dynamic context.

Our tactic is to use as little information as possible, such that it can be
applied in general settings, and such that it is implicitly insensitive to changes or
estimation errors of the parameters. Hence, we search for a redeployment policy
π, using the state space as described in Section 4.2. This means that whenever
an ambulance becomes idle, we can only use the destinations of all other idle
ambulances to base our decision on. This corresponds to taking a decision in
the state in which all idle ambulances have arrived at their destination. Note,
however, that this situation may not even occur, because incidents may occur or
other vehicles may become idle in the mean time. However, it will turn out to
be a useful state description nonetheless.

Recall that we are looking for a policy that minimizes the expected fraction
of late arrivals over a set of random incidents (see Equation (4.1)). At any
decision moment, the idle ambulances at that epoch already provide a certain
coverage of the region. We then decide where to send the vehicle that is about
to become idle, by calculating the coverage improvement when it is sent to base
w, for all w ∈ W . Note that there are several definitions of ‘coverage’, which all
lead to different redeployment strategies. We find it instructive to first address
the most basic notion of coverage. This results in a myopic redeployment policy.
We discuss its behavior and shortcomings, which builds up to our proposed
solution that uses the same definition of coverage as the MEXCLP model.

Myopic solution
At decision moments, we can straightforwardly calculate which regions are not
covered at all. That is, the demand nodes that are further than T away from any
idle ambulance destination. We can then make a greedy choice by sending the
newly idle ambulance to a base that covers most of the yet uncovered demand.
Note that this is a myopic solution, it is in fact a dynamic version of the
Maximum Coverage Location Problem (MCLP) [34]. We have implemented this
policy, and found that its performance hardly improved the static MEXCLP so-
lution (as elaborated in Section 1.2.1). For some choices for the parameters of the
system, the performance was even worse than the static solution. The intuition
behind this poor performance is that this MCLP-based policy steers towards a
configuration that is optimal with respect to covering the next emergency call.
This might be sufficient for problem instances with a very low incident arrival
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rate, but in busy regions such behavior is too shortsighted. In other words: it
lacks the insight of how much coverage is left after responding to the first call.
This is typical for myopic policies, and in order to overcome this, we require
some quantification of where there will be a shortage of ambulances in the future.

Dynamic MEXCLP solution
To obtain a good policy for busy regions, we need to include some measure of
how much coverage we can provide in the future. In other words, we need to
take into account that some of the currently idle vehicles may be dispatched, and
ensure the remaining coverage in the future is still good. Therefore, we propose
a policy that sends the idle ambulance to the base that results in the largest
marginal coverage according to the MEXCLP model (see Section 1.2.1).

Recall that the MEXCLP model defines the expected covered demand of a
node i to be Ek = di(1 − qk), where parameter q is the busy fraction, and k
are the number of vehicles within reach of demand node i. The corresponding
marginal coverage, i.e., the benefit of adding a kth ambulance within reach of
demand node i, is then given by Ek −Ek−1 = di(1− q)qk−1. We next apply this
notion of coverage - that was originally defined to find good static solutions - in
a dynamic context.

We send the ambulance that recently became idle to the base that gives the
largest marginal coverage over all demand, which implies that also the largest
coverage overall is obtained. This can be expressed as follows:

π({n1, . . . , n|W |}) = arg max
w∈W

∑
i∈V

di(1− q)qk(i,w,n1,...,n|W |)−1 · 1(τwi ≤ T ),

where k(i, w, n1, . . . , n|W |) =

|W |∑
j=1

nj · 1(τji ≤ T ) + 1(τwi ≤ T ).

The travel times τji are taken as estimates for movements with siren turned
on. We perform the search for the best relocation brute force, as described in
Algorithm 1.

4.3.1 Limitations

As described in Section 4.2.1, our state space definition prohibits the ambu-
lance relocation problem from being solved to optimality. But even within our
state space, the Dynamic MEXLP model need not lead to optimal decisions.
The definition of (marginal) coverage as given by the MEXCLP model has some
well-known imperfections. For example, vehicles are assumed to operate inde-
pendently, and the busy fraction is assumed to be the same for all vehicles. These
limitations also transfer to the dynamic usage of (MEXCLP) coverage. There-
fore, our proposed solution must be a heuristic one, and we do not claim to have
solved the problem in an exact manner. However, heuristic policies are common
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Data: The demand di per node i ∈ V ,
base locations W ⊆ V ,
busy fraction q ∈ [0, 1],
current destinations dest(a) for all a ∈ IdleAmbulances ⊆ A
travel times τij between any i, j ∈ V ,
time threshold T to reach an emergency call.
Result: A new destination for the ambulance that is about to become

idle
BestImprovement = 0
BestLocation = NULL
foreach j in W do

CoverageImprovement = 0
foreach i in V do

k = 0
if τji ≤ T then

k++
foreach a in IdleAmbulances do

if τdest(a)i ≤ T then
k++

end
end
CoverageImprovement + = di(1− q)qk−1

end
end
if CoverageImprovement > BestImprovement then

BestLocation = j
BestImprovement = CoverageImprovement

end
end
return BestLocation

Algorithm 1: Dynamic MEXCLP
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in dynamic ambulance planning, due to the difficulty of the problem. Further-
more, we consider the MEXCLP definition of coverage an elegant one, and it
allows for fast computations (as we will see in Section 4.3.2).

4.3.2 Computation time

We analyse the computation time of dynamic MEXCLP, in order to determine
the scalability of our method. In Algorithm 1 it is easy to see that we loop over
all bases, demand nodes and idle ambulances. Therefore, the dynamic MEXCLP
algorithm runs in O(|W ||V ||A|) iterations.

In practice the number of base locations is typically small, e.g., 20 or 30. Also
the number of ambulances that an EMS provider uses, is limited (e.g., [2, 77, 89]).
The size of V is mostly dependent on the way the data is aggregated, and it is
the only quantity that is likely to be large. The fact that the computation time
is linear in |V |, ensures that Algorithm 1 will remain tractable even for large
regions or regions with a high level of detail.

4.4 Computational results

In this section we verify our dynamic MEXCLP repositioning policy by simulating
several EMS regions. To this end, we built a discrete event simulation model
that keeps track of all incidents and vehicles. There are events for an incident
occurring, an ambulance arriving at the scene of the incident, an ambulance
leaving for a hospital, an ambulance arriving at a hospital, and an ambulance
becoming idle.

We draw incident arrival times and locations according to a spatial Poisson
process as described in Section 4.2. When an incident occurs, the closest idle
ambulance is dispatched. For every vehicle we keep track of the origin and
destination, including the start time of its movement. This allows us to determine
where moving ambulances are while we look for the closest available vehicle. We
do this by a linear interpolation between the origin and destination, given the
time since the ambulance started moving and the known total driving time from
origin to destination. We then round our result down to the nearest point in V ,
since our estimates for driving times are only given between points in V . Our
experiments show that for the majority of the incidents, approximately 77%, the
corresponding ambulance departs from a base location.

In our simulation, τonscene is exponentially distributed with an expectation of
12 minutes. τhospital is drawn from a Weibull distribution with an expectation of
15 minutes. More specifically, it has shape parameter 1.5 and scale parameter 18
(in minutes). We state these distributions for completeness, however, numerical
experiments (done by the authors in ongoing work) indicate that the performance
does not depend much on the chosen distribution for τonscene or τhospital. In our
simulations, patients need hospital treatment with probability 0.8. This value
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Figure 4.1 A graph representation of the region. The numbers on the edges represent
the driving times in seconds with siren turned on.

was estimated from Dutch data [112]. Similar numbers (78% nation-wide) can
be deduced from [89].

When an ambulance completes an incident, we check if there are any unat-
tended incidents left in the queue. If not, the ambulance becomes idle, and is
sent to a base location.2 In our proposed solution, this base location is deter-
mined by Algorithm 1. As benchmarks, we use static solutions, in which the idle
ambulance returns to its own pre-defined home base. This is a typical benchmark
in ambulance redeployment literature (used, e.g., in [77] and [118]). Recall that
we measure the fraction of ambulances arriving at the scene of an incident with
a response time larger than T .

4.4.1 A small region

We first introduce a tractable region, which consists of a small number of demand
nodes and vehicles. This is insightful as it allows for a brute force search among
all static policies, and thereby allows us to use the optimal static policy as a
benchmark. Note that this is not possible for a large region: although there exist
many models for the ambulance location problem in literature, their solution can
only ever be considered optimal with respect to the selected model. None of
these models are able to fully capture the complex dynamics of the EMS process:
from the way ambulance unavailability is modelled to the fact that ambulances
are allowed to be dispatched while on the road.

The region we use is inspired by a small part of the Netherlands. We aggregate
the demand at the level of municipalities, which in this case boils down to cities
and towns. Furthermore, we add three nodes, A, B and C, that are located at
important road intersections. These last nodes have no demand, but it is possible
to strategically station an ambulance there. For the geographical characteristics
of the region, see Figure 4.1. In this region there is only one hospital, which is
located in City 2.

For illustration, we set the time threshold to T = 10 minutes, and use demand
as described in Table 4.2. Furthermore, we allow exactly five ambulances to

2Recall that the ambulance might not arrive at this base location, because it may be dis-
patched before reaching its destination.
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i di
City 1 0.2
City 2 0.4
City 3 0.2
Town 1 0.07
Town 2 0.07
Town 3 0.06

A 0
B 0
C 0

Table 4.2 Distribution of demand in a small region.

serve the incidents in this region.

Static policies
Let us consider static policies first. We have nine nodes and give vehicles avail-
able. If vehicles were distinguishable, this would mean there are 95 = 59, 049
different static policies. Instead, we assume vehicles are indistinguishable, which
makes the set of truly different policies smaller. If we number the nodes 1 up
until 9, we can describe a policy by a five tuple of non-decreasing integers, repre-
senting the home locations of the five vehicles. For example., (2,2,5,8,9) denotes
a policy, but (5,6,3,1,9) does not. Using this definition, we can iterate over all
static policies. This allows us to take a closer look at the static solution space.
Finding the optimal solution for a discrete event dynamic system (DEDS) is
in general difficult due to the large search space and the simulation-based per-
formance evaluation. Inspired by Ordinal Optimization (see, for example, [70]
or [104]), which has become an important tool for optimizing DEDSs, we create
an Ordered Performance Curve (OPC) as follows. For each policy, we simulate
the EMS region for an amount of time, and use the measured fraction of late
arrivals as an estimate for the true performance of the policy.3 Then, we sort
the policies by their estimated performance, giving us the desired OPC. At first,
we look into the case where there are relatively few incidents, i.e., λ = 1/45 (per
minute). In this case, we evaluate each policy with 10 simulated days. For the
corresponding OPC, see Figure 4.2a. According to the theory of Ordinal Opti-
mization, the shape of this OPC indicates that there are many good solutions
(policies) for this problem [70].

However, it would be incorrect to conclude that this is true for all static
ambulance positioning problems. In fact, our experiments show that changing
the incident rate λ, while keeping all other parameters the same, already affects

3We start with an empty system, i.e., no incidents have occurred. Therefore, we need to
allow the system some time to evolve towards a more natural and representative state. We
disregard the first five simulated hours in each run, and only consider the performance of the
remaining time.
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the shape of the OPC. For λ = 1/13, the OPC is shown in Figure 4.2b. For
this case, we evaluate each policy with 2.9 simulated days, which boils down to
the same expected number of incidents per evaluation as in the λ = 1/45 case.
First of all, note that the best static solution for this problem seems to have a
performance of 17% (compared to 1% in Figure 4.2a). An increase was to be
expected, because the same number of vehicles needs to serve a higher number
of incidents. Perhaps more surprising is that also the shape of the OPC has
changed. For Figure 4.2b, the OPC indicates that there exist only a few good
static policies for this problem.

In order to determine the best static policy, we perform longer simulations to
explore the region of the good solutions with more accuracy. Note that when λ
changes, the optimal static policy may change as well. In fact, we find that for
λ = 1/45 the best static policy is (City 1, City 1, City 2, C, C), while for λ =
1/13 the best static policy is (City 1, City 1, City 2, City 2, C).

(a) λ = 1/45 (b) λ = 1/13

Figure 4.2 OPC curves for static policies in the same region, for two different incident
intensities.

DMEXCLP versus the best static policy
We now compare the performance of dynamic MEXCLP (DMEXCLP) with the
best static policy. We will test our method on multiple scenarios, to show that
the method gives good results for more than just one specific problem instance.
We create different problem instances by changing the value of λ. Since we keep
the number of vehicles equal to five, by varying λ we also vary the load of the
system. In Figure 4.3, it shows that the DMEXCLP policy outperforms the best
static policy for every choice of λ. When we let λ take even more extreme values,
we see that DMEXCLP has approximately the same performance as the best
static solution. This occurs when λ = 1/9, in which case the expected fraction
of late arrivals for both the best static and the DMEXCLP solution is around
67%. A fraction this high will never be acceptable in real life, and would indicate
that more vehicles are needed. Therefore, we should not draw conclusions on the
applicability based on this parameter choice. Note that, even if the performance
of DMEXCLP is equal to the performance of the best static policy, DMEXCLP
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Figure 4.3 The absolute performance (expected fraction of late arrivals) of Dynamic
MEXCLP compared to the best static policy. The horizontal axis displays the average
time between incidents in minutes. Each policy was evaluated long enough such that
the tolerance interval (1.96 times the sample standard deviation) is within 2.5% of our
estimated value.

is still useful in the sense that its calculations are faster than the search for the
best static policy.

In Figure 4.4 we see that the relative performance improvement for this region
can be as high as 20%. In the following section we will investigate whether this
number is representative for a more realistic region with demand aggregated on
a smaller scale.

4.4.2 A realistic case study

In this section, we validate our redeployment method on a realistic problem
instance. We chose to model the region of Utrecht, which was described in
Section 2.7. For the parameters used in the implementation, see Table 4.3. This
is a region with multiple hospitals, and for simplicity we assume that the patient
is always transported to the nearest hospital, if necessary.

In the Netherlands, the time target for the highest priority emergency calls
is fifteen minutes. Usually, three minutes are reserved for answering the call,
therefore we choose to run our simulations with T = 12 minutes. The driving
times for EMS vehicles between any two nodes in V were estimated by the RIVM
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Figure 4.4 The relative improvement in performance of Dynamic MEXCLP com-
pared to the best static policy. The horizontal axis displays the average time between
incidents in minutes. Each policy was evaluated long enough such that the tolerance
interval (1.96 times the sample standard deviation) is within 2.5% of our estimated
value.

parameter magnitude choice
λ 1/6.4 minutes Realistic for urgent calls on a weekday in this

region.
A 19 Realistic number to cover demand.
W 19 Base locations as existing in 2013.
V 217 4 digit postal codes.
H 10 The hospitals within the region in 2013, ex-

cluding private clinics.
τij Driving times as estimated by the RIVM.
di Fraction of inhabitants as known in 2009.

Table 4.3 Parameter choices for our implementation of the region of Utrecht.

in 2009 [66, Chapter 3]. These are driving times with the siren turned on. For
ambulance movements without siren (e.g., when repositioning) we use 0.9 times
the speed with siren. The number of vehicles used in our implementation is such
that a good policy gives a performance (expected fraction of late arrivals) of a
magnitude that is realistic for practical purposes.

Results

We compare the performance of the DMEXCLP solution with a benchmark. We
let the benchmark be the static MEXCLP solution, which is generally assumed to
give a good static policy (for a comparison of static methods, see [16]). Note that
the verification of the value of one single policy is not feasible within polynomial
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time. Therefore, it is not tractable to perform a brute force search over all static
policies using nineteen base locations and nineteen vehicles. Since there is no
alternative known to compute the optimal static solution, this means we cannot
use the optimal static solution as a benchmark.

In both the static (benchmark) and the dynamic (proposed solution) case,
we initialize the locations of the ambulances according to the static MEXCLP
solution. We simulate the EMS system ten times per policy and compare the
results in Figure 4.5. We measure the fraction of late arrivals, which decreased
from on average 9.5% to 7.9%. This is a difference of 1.6 percentage point, and a
decrease of 16.8%. This is a significant improvement that can be made without
purchasing extra vehicles or increasing the number of crew shifts. Furthermore,
this improvement is large in comparison to other results in literature (e.g., an
improvement from 26.7% to 25.8% in [78], which boils down to a 3.4% gain).
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Figure 4.5 Comparing the performance of Dynamic MEXCLP with the static
MEXCLP solution. For both policies a value of q = 0.3 is used. Each policy was
evaluated with 10 runs of 500 simulated hours.

We emphasize that the dynamic MEXCLP policy does not only reduce the
expected fraction of late arrivals, but also reduces the average response times
overall. This can be concluded from Figure 4.6.

4.4.3 Sensitivity to the busy fraction
We investigate the sensitivity of Algorithm 1 to the parameter q, the busy frac-
tion. To this end, we keep the number of vehicles equal to nineteen, and we
also keep the average time between incidents equal to 6.4 minutes. We run the
DMEXCLP algorithm for several values of q, and compare the performance in
Figure 4.7. We conclude that, at least for this particular problem instance, the
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Figure 4.6 Response times for dynamic MEXCLP and the static MEXCLP solution.
For both policies a value of q = 0.3 is used. Each policy was evaluated with 2,500
simulated hours.

quality of the solution is highly insensitive to the value of q.
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Figure 4.7 Comparing the performance of DMEXCLP for several values of q. The
boxes consist of ten runs, in which we simulate 1000 hours, each.
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4.5 Discussion

In this chapter we have developed real-time scalable algorithms for dynamic
ambulance redeployment with a focus on minimizing the expected fraction of
late arrivals. We have introduced a DMEXCLP heuristic (see Algorithm 1) that
reduces the expected fraction of late arrivals by relatively 16.8% compared to
a good static policy. Additionally, the DMEXCLP heuristic also reduces the
average response times overall. The heuristic depends on the busy fraction, i.e.,
the fraction of time that an ambulance is unavailable, that needs to be estimated.
Our experiments indicate that good performance is still obtained, even if there
is an error in the estimate of the busy fraction.

We believe that the simplicity of our algorithm is in fact its strength: it makes
it easy for researchers and practitioners to implement, and also makes it a suitable
base for extensions. This belief is confirmed by the fact that several other studies
each implemented an extension to the DMEXCLP algorithm [33, 50, 119].

Note that we use the fraction of inhabitants as our choice for di. In reality,
the fraction of demand could differ from the fraction of inhabitants. However,
the number of inhabitants are known with great accuracy, and this is a straight-
forward way to obtain a realistic setting. Furthermore, the analysis of robust
optimization for uncertain ambulance demand in [61] indicates that we are likely
to find good solutions, even if we make mistakes in our estimates for di.

In terms of applicability, we find it useful to consider whether the DMEXCLP
heuristic is still feasible when we relax some of our assumptions. We address the
following cases.

Changes during the day
In practice, EMS systems may deal with characteristics that change over the
course of a day. This is reflected in time-dependent parameters in our model.
We mention a few examples.

• Incident probabilities may shift, for example, an incident is more likely to
occur in an industrial area during office hours.

• Travel times may be longer in rush hour, or may depend on the weather.

Changing parameters over time, such as the examples above, are often difficult
to incorporate in a solution. However, in our case, there is no need to complicate
the algorithm. At any decision epoch, a new set of parameters could be used.
The question remains how to choose relevant parameters. One should keep
in mind that there is only a limited number of decision epochs. Hence, a
redeployment decision should not necessarily use the parameters of the system
at the exact decision moment, but parameters that are relevant for the upcoming
period. The choice of the period size may depend on the EMS region, but for
example 30 minutes would be a good starting point.
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Stochastic travel times
One straightforward way of dealing with stochastic travel times is to use the
expectations E[τij ] in Algorithm 1. Alternatively, one could use for example
the 0.8 quantile of the driving time distribution, i.e., the number Xij such that
P [τij ≤ Xij ] = 0.8. This showed to give a good performance in some additional
numerical work that we performed. The performance will generally depend
on the exact distribution function chosen, and we suggest some preliminary
experiments to obtain a good strategy.

Acceptance by crew
Staff members that come from a ‘static’ work environment may be used to having
their own, fixed home base. Giving up this concept can be difficult. Although
our proposed method already limits the relocation moments, extra adjustments
can be made to accommodate the staff. For example, a good compromise would
be the following. Each vehicle (and the corresponding crew) still has its own,
fixed home base. Preferably, we send the vehicle to this home base, but we may
choose another base if the expected gain is large enough. One can measure this
by calculating the marginal coverage that would be obtained if we were to send
the vehicle to its own home base, and compare this with the marginal coverage
that could be obtained by a relocation. The vehicle could be relocated if and
only if the difference in coverage is greater than a certain threshold.

Rural regions
Our algorithm was designed with a busy (urban) area in mind. For rural
regions, however, the same technique may still be applicable, albeit with some
adaptations. A key observation is that rural regions have a lower incident
frequency - which is directly related to the frequency at which ambulances
become idle. This implies that there will be fewer relocation moments, and
therefore we expect performance improvements to be smaller. In order to
overcome this, we suggest adding some additional relocations.4 For example, one
could allow a relocation when a new incident arrives. In addition, it is possible
to allow two vehicles to relocate upon completion of an incident. The decision
on where to send the vehicles, can still be made using the DMEXCLP method.

Multiple targets
In some countries there exist multiple time targets, depending on the ur-
gency of the situation. For example, in the Netherlands, the highest priority
incidents have to be reached within 15 minutes, and the less severe (but
still urgent) incidents have to be reached within 30 minutes. We advise to
apply the DMEXCLP algorithm using the most stringent time target. Our
preliminary numerical experiments regarding realistic use cases indicate that
this results in a policy that also has a good performance for a target of 30 minutes.

4This will obviously increase the workload for the crew, but we think this is acceptable since
a rural region is typically not very busy.
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Several of the above-mentioned adaptations were studied in [7]. This paper uses
trace-driven simulations based on real-life datasets of two ambulance providers in
the Netherlands. It showed that (1) adding more relocation decision moments is
indeed highly beneficial, particularly for rural areas, (2) replacing the 0-1 coverage
performance criterion by a smoothed version has a very small impact on response
times, and (3) the inclusion of busy ambulances in the state description of the
system leads to a small reduction in workload, but did not really improve response
times. In addition, [7] considers (4) chain relocations and (5) time bounds on the
execution of an ambulance relocation.

4.6 Implementation in practice

The DMEXCLP repositioning algorithm was implemented in practice [27]. Dur-
ing several periods in 2015, the relocation moves were displayed on a screen in
the EMS callcenter in Flevoland (see Figure 4.8).

Figure 4.8 A screenshot of the pilot in Flevoland.

In collaboration with the EMS managers of GGD Flevoland [43], some practi-
cal adaptations were made to the DMEXCLP algorithm. Due to the low incident
frequency in the region, we created extra decision moments: a relocation was
allowed whenever a vehicle became idle or busy. Furthermore, some moves were
rather long trips, taking half an hour or more. We decided to split those travels in
two, if possible, by repositioning two vehicles that resulted in the same net move.
Note that this is beneficial for the system because the desired configuration is
reached quicker.
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The dispatchers generally followed the relocation advice, unless they had good
arguments not to. In the initial phase, we discussed all situations for which the
dispatchers disagreed. This lead to interesting conversations and new insights
on both ends. In some cases, the situation was simply too complex for a single
person to oversee, and the system made better decisions than the dispatchers.
In other cases, the dispatchers were right, and often this was because they were
able to use more information than our software tool.

For example, EMS region Flevoland works with very long shifts in one par-
ticular part of the region. There are special labor rules that prescribe how many
hours of such a shift the staff is allowed to be away from their home base. If the
crew has already used their allowed hours, they may reject to be dispatched even
for a severe incident. Therefore, if dispatchers realize that such a crew is already
close to their maximum number of hours away from base, they choose not to
relocate this vehicle even though our algorithm may suggest it. The introduction
of our system has inspired a discussion on how to handle such shifts, alongside
the question of whether such shifts are really desirable for the region.

Sometimes ambulances travel quite far outside of the EMS region to drop
a patient off. When such an ambulance is returning, our modelling choice for
moving vehicles - pretending they are at their destination - leads to a large over-
estimation of the coverage provided. These situations occurred more often than
we had previously anticipated. Thereto, we decided to only include ambulances
in the coverage calculations if they are reasonably close to the EMS region.

The pilot period was benchmarked against the same period a year earlier.
The DMEXCLP algorithm seemed to perform better than the benchmark, but
we find it hard to determine the significance of this result due to the limited
number of observations, the large amount of randomness in the EMS process and
the fact that demand increased compared to a year earlier. For a discussion of
the numerical results of the pilot, we refer to [27].

Dispatchers quickly got used to working with the new screen. Generally they
shared the opinion that it was a pleasant way of working, for several reasons.
First of all, the introduction of the system lead to the exchange of views and new
insights on what makes for a good relocation decision. Second, the performance
of the EMS region became more consistent because it was no longer strongly
affected by the individual dispatchers at work. Third, once the dispatchers got
used to the system, it made their job less stressful and allowed them to shift
focus from dispatch decisions to the communication with the patients and the
ambulance crew. See also Figure 4.9.

Currently, the software is developed further in order to add more practical
features. For example, the software will include information about the shift start-
and end times, such that it can steer ambulances towards their finish location
when the end of their shift is approaching. Furthermore, ambulances should not
be sent towards a base where a new shift will start shortly. These developments
are being done under the name of Stokhos B.V. [108]: a spin-off company founded
after the success of the Flevoland pilot.
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Figure 4.9 Feedback during the pilot: EMS dispatcher Annemieke thinks the
DMEXCLP algorithm is very pleasant to work with.



5
Fairness in the ambulance location problem

We discuss how to position ambulances across an EMS region in a ‘fair’ way.
Ambulance literature often focuses on maximizing the number of people served,
regardless of where they live. This is equivalent with optimizing a utilitarian
Social Welfare Function (SWF). It is well known that such an approach benefits
people living in cities, at the cost of people living in remote areas. An often
mentioned alternative is equity: providing the same service to people at every
location. However, this gives so much focus on helping people in remote locations,
that it usually leads to poor overall performance. Instead, we propose to use the
so-called Bernoulli-Nash SWF. This may be viewed as an appealing compromise
between the two solutions above. We formulate and solve models that maximize
the Bernoulli-Nash social welfare. The most straightforward model maximizes
coverage, but we also use more complex measures such as survival functions. We
juxtapose the Bernoulli-Nash optimal solution with the Utilitarian optimum, and
show how the results differ depending on the load of the system. Calculations
are done for a realistic EMS region in the Netherlands.

This chapter is based on:
C.J. Jagtenberg, A.J. Mason and O.M. Dowson. Fairness in the ambulance lo-
cation problem. In preparation.

5.1 Introduction

A key issue in EMS planning is the ambulance location problem: how and where
to locate vehicles in order to effectively cover future demand. Much research has
been focused on solving variants of this problem, and the majority has approached
the problem from the same angle: their objective is to help as many patients as
possible. For example, in overview papers from 2003 [22] and 2011 [71] practically
all models aim to maximize the (expected) coverage.

Maximizing the number of people served seems natural in the context of
ambulance planning. In fact, at first sight it seems hard to reason that we should
help fewer people rather than more. However, as we will argue in this chapter,
there may be reasons to consider ambulance configurations other than the one
that maximizes the number of people served. For example, in order to serve as
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many people as possible given a fixed number of resources, a planner inadvertently
moves resources to densely populated areas - at the cost of people living in rural
areas. This certainly is an efficient use of resources, but the question arises how
to distribute ambulances in a fair way.

There are examples in literature of models that aim for equity. McLay et
al. [48] review how equity can be modeled in the context of allocating public
resources, and conclude that in general there is no single, best way to do so.
However, when it comes to EMS problems they note that equity is almost always
interpreted as ‘having equal outcomes for all patients, regardless of where they
are living’.1 Therefore, the aim for equity often results in egalitarian (also known
as maximin) models: models that maximize the level of service to the people that
are the hardest to reach. It is not surprising that this generally leads to poor
performance of the overall system. This is a major drawback of those models,
and it would be hard to convince anyone to actually apply such solutions in
practice. Furthermore, we disagree with the statement that ‘equal outcomes for
everyone’ is the correct definition of fairness in an ambulance context. In fact, we
argue that ‘equal outcomes for everyone’ is far from ‘fair’, because it is obvious
that it requires much more resources to serve those people who live far away.
Given these two extreme solutions (maximizing the number of people served,
and equal service for everyone), we believe that a truly fair solution is some sort
of compromise between them.

There exist a few papers on ambulance location problems that explicitly in-
clude a form of fairness in the objective. For example, in [31] the sum of ‘envy’
among all demand zones is minimized. In [32] the authors propose three bi-
objective covering models, for which fairness is a secondary objective. They con-
sider the following three options (1) minimize the maximum distance between
each uncovered demand zone and its closest opened station, (2) minimize the
number of uncovered rural demand zones, and (3) minimize the number of un-
covered demand zones. Although these papers are all based on ideas similar to
ours - that some form of fairness should be incorporated in the objective - none
of these take our approach, which we will describe next.

In this chapter we will view ambulance location problems from the perspective
of social welfare. Social welfare is measured as a function of the ‘utilities’ of
individuals or subgroups of a society. That way, different social welfare functions
(SWFs) represent different objectives on how to balance fairness and efficiency.
For example, maximizing the total number of people served is equivalent with a
so-called utilitarian SWF: that is, maximize the sum of the individual utilities.
Alternatively, aiming for equal outcomes for everyone would correspond to an
egalitarian SWF. In this chapter, we propose and investigate a third option, the
so-called Bernoulli-Nash SWF. The Bernoulli-Nash SWF is defined as the product
of individual utilities. These three different SWFs can be visualized by so-called
social indifference curves: these are solutions which are equivalent in terms of

1For more background regarding equity in ambulance planning, see also [81]. They discuss
several ideas regarding equity, e.g., server equity (as opposed to patient equity). We consider
this an interesting alternative point of view, but not the focus of our work.
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social welfare. For a small problem instance with just two individuals, these
curves are shown in Figure 5.1. To the best of our knowledge, the Bernoulli-
Nash SWF has not previously been applied to ambulance location problems.
We juxtapose the Bernoulli-Nash optimal solution with the often-used utilitarian
optimum, and show how the results differ depending on the load of the system.
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Figure 5.1 Social indifference curves for three different social welfare functions.

The Bernoulli-Nash SWF is related to the Nash bargaining problem [88],
which was defined for two players. As Nash defines the problem, both players have
to agree on the outcome, or otherwise a so-called disagreement point (denoted ξ)
is reached. Let f and g be the utility functions for the two players. The optimal
solution (obtained at the point θ) is defined relative to this ξ: it is the maximum
of the SWF:

arg max
θ

(f(θ)− f(ξ))(g(θ)− g(ξ)).

As [19] describes it: “When the Nash bargaining solution is used, it is to predict
what the result would be, under certain ideal circumstances, if specimens of homo
economicus were to bargain optimally.”

To interpret this in the context of ambulance planning, imagine these two
players to be patients living in different locations - or two communities, together
deciding on how to distribute their ambulances. It is not unreasonable to imagine
this decision to be a bargaining process. Let us say that the disagreement point
is that no ambulances will be acquired for the region, so we have ξ = 0. An
optimal Bernoulli-Nash social welfare then comes down to the same as Nash’s
bargaining solution.

The definitions of SWFs are based on utilities; however, it is not immediately
clear how the utility of a patient should be defined. This utility should somehow
represent the happiness of that patient, depending on his location with respect
to the locations of ambulances. Typically, their happiness will be a function of
the (expected) ambulance response time, e.g., the probability that an ambulance
will reach the patient within a certain time threshold. Other - more advanced -
measures are also possible; our work includes three different definitions of utility.

The rest of this chapter is structured as follows. In Section 5.2 we define the
problem. In Section 5.3 we define three different measures that can be used as
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utilities. Section 5.4 provides a small example that helps to build intuition for
the problem. In Section 5.5 gives our optimization models, followed by a case
study in Section 5.6. We finish with a discussion in Section 5.7.

5.2 Problem formulation

In this chapter we focus on the allocation of ambulances to a set of base stations
with known locations. These ambulances respond to incidents that occur at
demand nodes. Denote the set of demand nodes V . After completing service,
the ambulance should return to its own home base. We address the question of
which ambulance base locations to open as well as how to divide the vehicles
over the bases. These questions may be addressed separately, but then obviously
optimality is not guaranteed. Instead, we aim to find a base location for each
vehicle, choosing from a large set of potential locations - many of which may be
unused in the final solution. Note that multiple vehicles are allowed to have the
same home base.

Our goal is to find a distribution of vehicles over bases that maximizes the
Bernoulli-Nash SWF. The Bernoulli-Nash SWF is defined as the product of in-
dividual utilities. In the context of ambulance planning, we write the product as
follows. Let ui be the utility of a person at node i, and let di be the demand
fraction at node i, i ∈ V . The Bernoulli-Nash SWF is then given by∏

i∈V
udii .

In this chapter, we compare the Bernoulli-Nash SWF to the often-used utilitarian
SWF, which is denoted as∑

i∈V
diui.

For completeness, we also state the egalitarian SWF:

min
i∈V

ui.

Before we elaborate on definitions and interpretations of the utilities ui, we
find it useful to illustrate the differences between the three SWFs above. To that
end, we introduce a small example of an ambulance location problem. Unlike the
rest of this chapter, this particular example is not meant to be realistic. We use
a simple utility measure that is good for demonstrative purposes because it helps
to build intuition on (1) how the Bernoulli-Nash SWF relates to the two other
SWFs, and (2) why we think the Bernoulli-Nash SWF is a somehow reasonable
measure for positioning ambulances.
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1 2
×r 1− r

Figure 5.2 A toy example for the ambulance location problem

Example. Imagine two areas or villages, together acquiring one ambulance.
We model these areas as nodes, labeled 1 and 2, and the ambulance may be
positioned anywhere along the line between them. Without loss of generality,
assume the distance between the two nodes is normalized to 1. The two nodes
both contain a proportion of the demand, d1 and d2, such that 0 < d1 < 1 and
d1 + d2 = 1. The position of the ambulance can be defined by its distance from
node 1, let us call this distance r. This is depicted in Figure 5.2.

We define the utility ui of an inhabitant of node i, i ∈ {1, 2}, to be equal to 1
minus the distance between i and the ambulance. This means, for example, that
if the ambulance is placed at node 1, then u1 = 1 and u2 = 0. More generally, if
the ambulance is located distance r from node 1, then u1 = 1− r and u2 = r.

Now let us compare the optimal solutions for the three SWFs. The utilitarian
SWF is maximized when the ambulance is placed at the node with the most in-
habitants. If d1 = d2, then all solutions are optimal from a utilitarian perspective.
For the egalitarian SWF on the other hand, it is straightforward to see that this
is maximized when r = 0.5. We finish with Bernoulli-Nash optimum, which can
be found as follows. Recall that the Bernoulli-Nash SWF is given by ud11 × ud22 .
This means that if we place the ambulance at either of the two nodes (i.e., r = 0
or r = 1) the Bernoulli-Nash SWF is equal to zero. Therefore, for an optimal
solution 0 < r < 1 will hold. Furthermore, observe that maximizing ud11 × ud22 is
equivalent with maximizing d1log(u1) + d2log(u2). Denote this function f(r), as
the utilities can be expressed in terms of r:

f(r) = d1log(1− r) + d2log(r).

The maximum of f(r) is attained when the derivative is equal to zero:

f ′(r) =
−d1

1− r +
d2

r
= 0,

which is equivalent with

d1r = d2(1− r).

If we now use that d2 = 1− d1 we can solve the equation:

r = d2.

That is, the ambulance should be positioned between the two nodes, such that
the ratio of the distances is inversely proportional to the ratio of the demands. In
our opinion, this corresponds to a fair distribution of ambulances, that balances
the distances depending on the ratio of the inhabitants, and thereby provides an
attractive compromise between the utilitarian and egalitarian solution.
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The simple utility function defined in the example above is not a common
performance measure for ambulances. Therefore, we continue by introducing
other, more realistic, utilities.

5.3 Utilities

In this section we discuss three different definitions for utility that are related
to key performance indicators used by most ambulance practitioners and re-
searchers. These three utilities will be used and compared throughout the rest
of this chapter.

The utility of demand node i ∈ V can be interpreted as a measure of how
happy an inhabitant of i is with the ambulance configuration. Although ambu-
lance literature typically does not use the term utility, several models exist that
optimize for different quantities. Such a quantity is almost always a function of
the ambulance response time.

A straightforward example of a utility is single coverage (also known as re-
gional coverage). This quantity is defined in terms of a response time threshold
(RTT). Let T denote the value of this threshold. Simply put, a demand node
has (regional) coverage 1 if there is a vehicle positioned at most T minutes away.
Otherwise, the node is said to have coverage 0. The early models in ambulance
location literature typically used single coverage as their utility (e.g., [34, 110]).
Note that this definition of coverage is somewhat shortsighted: (1) a single vehi-
cle may not be enough to fully satisfy inhabitants of node i (because sometimes
this vehicle will be busy serving other patients), and (2) one may argue that such
a strict threshold is somewhat unrealistic: a vehicle that is slightly further than
T away should be worth almost as much as a vehicle at distance T . It may be
clear that single coverage is an overly simplified measure to use for our utility; we
aim for a more sophisticated measure instead. We next describe how to overcome
the issues described above.

First of all, we should account for ambulance unavailability: literature de-
scribes various ways to do this. The Maximum Expected Coverage Location
Problem (MEXCLP) [36] uses a so-called busy fraction: a fixed parameter that
represents the probability that any given ambulance is busy at any given time.
In this model, ambulances are assumed to operate independently. It should be
noted that modeling unavailability this way is somewhat of a simplification: in
reality vehicles are not independent, and moreover, the busy probabilities might
differ between vehicles. Other ways of modeling ambulance unavailability include
Erlang loss models [96], scenarios [40] and simulation, although the latter is more
common when planning in a dynamic context (e.g. [118]). We decided to model
ambulance availability using a busy fraction. Although there exist alternatives
that may be more accurate, incorporating this in the utility makes the model
far more complex. We chose not to do this, since our objective - a product of
utilities - is already a hard function to optimize. This is further addressed in the
discussion (Section 5.7).
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Second, the model becomes more realistic if we can relax the assumption
that the utility is a 0-1 function of the response time. If instead we want to
use some continuous function of the response time, the model becomes harder.
However, it remains possible to solve it with modern solvers and hardware. We
implemented our models using three different definitions of utility, two of which
relax this 0-1 assumption. The rest of this section describes those three utilities.

5.3.1 Definitions

Deterministic coverage
The most straightforward utility function that we will consider is a coverage
model. Throughout the chapter we refer to this utility function as deterministic
coverage, where ‘deterministic’ refers to the underlying assumptions in the driving
time model.

The coverage of demand node i can be defined in terms of how many ambu-
lances are located within the RTT of i: let k(i) denote this number of vehicles.
The utility (coverage) of i, i ∈ V is then given by the probability that at least
one of these vehicles is idle, i.e., ci = 1− qk(i).

It is appealing to assume travel times are deterministic, for several reasons.
First of all, it is quite difficult to accurately estimate a response time - let
alone a whole distribution of response times. Second, stochastic travel times are
harder to incorporate in optimization models. Doing this leads to less efficient
solutions and scalability issues.

Stochastic coverage
As opposed to deterministic coverage (as discussed above), this section deals with
coverage when travel times are stochastic. Although it is appealing to assume
that travel times are deterministic, it may be argued that stochastic travel times
are more realistic, see e.g. [54]. In this context, our values for τ will be interpreted
as expected travel times.

The utility is then defined as the probability that an ambulance will reach
the scene of the incident within the RTT. We can compute this probability if we
assume that (1) ambulance unavailability may be modeled using a busy fraction,
(2) the closest idle ambulance always responds, and (3) the distribution of the
travel times is known.

As described in [17], stochastic travel times for Dutch ambulances may be
approximated by a normal distribution with a coefficient of variation of 0.25.
Therefore, we compute the probability that an ambulance with expected travel
time τ arrives within 12 minutes (the RTT). The result is depicted in Figure 5.3.

Survival
While the majority of ambulance literature deals with response time threshold,
it is sometimes argued that these do not adequately differentiate between con-
sequences of different response times. That is, even if one uses a well-chosen
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Figure 5.3 The probability that an ambulance will arrive within the time threshold,
when driving times are normally distributed with a coefficient of variation of 0.25.

distribution of stochastic travel times, such a model still fails to accurately rep-
resent the happiness of a patient given his or her response time. Such discussions
usually result in an argument for using a survival function: a monotonically de-
creasing function of the response time that returns the probability of survival for
the patient.

We analyzed several survival functions mentioned in literature. As noted
in [38], almost all of the published research relating survival rates to EMS re-
sponse times focuses on cardiac arrest. Survival is typically interpreted as ‘sur-
vival until discharge from the hospital’. For the purpose of this chapter, such
practical considerations are of limited importance. Our main goal is to show
that our model can find a solution resulting in maximum survival, the specific
survival function used is mainly illustrative of the idea.

We implemented two different survival functions. The first was introduced by
De Maio et al. in [73] and is given by:

f(τ) = (1 + e0.679+0.262τ )−1. (5.1)

The second (by Valenzuela et al. [113]) uses variables that measure the time from
collapse to CPR (τCPR), and from collapse to defibrillation (τdefib). The survival
probability is then given by:

f(τCPR, τdefib) = (1 + e−0.260+0.106τCPR+0.139τdefib)−1. (5.2)

As in [38], we assume that CPR is performed by the responding EMS unit im-
mediately upon arrival, and defibrillation is performed one minute after arrival.
Equation 5.2 then becomes:

f(τ) = (1 + e−0.260+0.106τ+0.139(1+τ))−1. (5.3)

The two survival functions (5.1) and (5.3) are depicted in Figure 5.4.
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Figure 5.4 The two different survival functions. The horizontal axis represents the
response time in minutes. The vertical axis is the probability of survival.

The results for the two different survival functions turn out to be quite similar.
Therefore, we decided to only include results for one of them in this chapter. Our
choice between the ‘de Maio et al.’ and the ‘Valenzuela et al.’ survival functions
was mainly based on the following observation. The probability of survival is
remarkably low: even if an ambulance is present right away, the probability
of survival for the most optimistic function is still less than 55%. This may
be accurate for cardiac arrest, but generally speaking one might hope that the
survival probability of an ambulance request would be higher. Therefore, we
decided to use the highest survival function among the two (Equation (5.3)).

5.3.2 Notation
This chapter compares two different SWFs as objectives. Furthermore, numerical
work is done for three different utilities (as described in Section 5.3). When
combined, this leads to six different objectives.

Our goal is to show the differences between these SWFs and the solutions
that correspond to their optimum. We want to emphasize the difference between
objectives and models. While a model has a certain objective, we can evaluate
its solution with a different objective (that is precisely what we will do in Sec-
tion 5.6). We next introduce notation in order to make the distinction between
the six objectives and corresponding six models.

We will denote an objective as

SWFutility,

where SWF ∈ {U, BN} means either the utilitarian resp. the Bernoulli-Nash
social welfare. We denote utility ∈ {cov, stoch, survival} to represent either
deterministic coverage, stochastic coverage or survival according to the survival
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function by Valenzuela et al [113].

For the optimization models, we write

modelutility.

The utilitarian models are MEXCLP,2 MEXSLPstoch and MEXSLPsurvival.
The models that optimize the Bernoulli-Nash social welfare are denoted as
MaxFairnessutility (because the Bernoulli-Nash SWF contains a form of fairness
that the utilitarian SWF is lacking). As before, utility ∈ {cov, stoch, survival}.

Next, we introduce a small problem instance for which we can optimize the
social welfare by brute force. This allows us to provide some insights, before we
continue with our optimization models.

5.4 A small example

For illustrative purposes, we analyze a fictional region with two demand nodes
(demand d1 = 0.1 and d2 = 0.9). We take stochastic coverage as our utility func-
tion, and define the expected travel time between the two nodes to be 30 minutes.
Both nodes are possible bases and our task is to place 2 ambulances in the region.
Let the RTT to be twelve minutes, which - to the driving time distribution de-
scribed in Section 5.3.1 - implies that the probability that an ambulance arrives
on time while departing from the other node is ≈ 0.0082. Conversely, when the
ambulance departs from the same node as where the incident is, the probability
of being on time is ≈ 1. In this theoretical example we let the average busy
fraction be q = 0.3.

For this problem instance, there are only three different solutions. We com-
pute the utilitarian and the Bernoulli-Nash social welfare for each of those solu-
tions to find the following optima: the Bernoulli-Nash optimal solution has one
vehicle in each zone, while the utilitarian optimum3 has two vehicles in the zone
with the largest demand.4 Table 5.1 shows the obtained social welfare of these
two solutions, for both the Bernoulli-Nash and utilitarian SWF.

model BNstoch Ustoch
MaxFairnessstoch 0.70172 70.17%
MEXSLPstoch 0.56629 81.97%

Table 5.1 Max fairness vs MEXSLP, where the utility is stochastic coverage.

2Note that the utility of MEXCLP is always (deterministic) coverage, hence we do not have
to write MEXCLPcov explicitly.

3This is equivalent to the optimal solution for the Maximum Expected Survival Location
Problem (MEXSLP).

4The egalitarian optimum in this case also places one vehicle in each zone, but we will not
focus on that.
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The brute force approach that we used above obviously does not scale well.
The next section introduces optimization models that allow us to compute opti-
mal solutions for larger, realistic problem instances.

5.5 Methods

In this section we introduce the models used to optimize the Bernoulli-Nash
SWF, which is the main contribution of this chapter. Our goal is to juxtapose
this solution with the utilitarian optimum, hence, we also recap the corresponding
utilitarian optimization models (MEXCLP [36] and MEXSLP [17]).

To define our models, we first introduce the notation in Table 5.2.

A The set of ambulances.
V The set of demand locations.
W The set of possible base locations, W ⊆ V .
T The response time threshold.
q The busy fraction.
di The fraction of demand in i, i ∈ V .
τij The driving time from i to j with siren turned on, i, j ∈ V .
nj The number of ambulances positioned at j, j ∈W .

Table 5.2 Notation.

In the optimization models that we use, it is somewhat implicitly assumed
that one always sends the closest idle ambulance.

As described in Section 5.3, we do numerical work for three different utilities.
Optimizing for stochastic coverage or optimizing survival is done using the same
model: they only differ in numerical input. It is also possible to use this same
model for deterministic coverage; however, in this case a simpler and faster model
is available. This results in four different models (two for each SWF), which we
describe in the following subsections. We implemented them in Julia/JuMP [72],
using Gurobi [49] as our solver.

5.5.1 Coverage optimization models
We next describe the optimization models that use coverage as utility.

Utilitarian SWF (MEXCLP)
Maximizing the utilitarian SWF with (deterministic) coverage as a utility is
equivalent to the MEXCLP [36] (see also Section 1.2.1). MEXCLP maximizes
the total coverage throughout the region.

Recall that di are parameters that represent the demand in zone i. We intro-
duce variables as described in Table 5.3. The MEXCLP model uses parameters
Wi, defined as the set of potential base locations that cover demand node i(i ∈ V ).
That is, Wi = {j ∈W : τji ≤ T}. The MILP model can then be formulated as:
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variable for range meaning
ci i ∈ V [0,1] coverage of zone i
xj j ∈W 1, . . . , |A| number of vehicles positioned at base j
yik i ∈ V, {0,1} there are at least k ambulances

k = 1, . . . , |A| near zone i

Table 5.3 Interpretation of variables for the MILP formulation that maximizes cov-
erage.

Maximize
∑
i∈V

dici

subject to

ci ≤
|A|∑
k=1

(1− q)qk−1yik, (5.4)

∑
j∈Wi

xj ≥
|A|∑
k=1

yik, i ∈ V,

∑
j∈W

xj ≤ |A|,

xj ∈ N, j ∈W,

yik ∈ {0, 1}, i ∈ V, k = 1, . . . , |A|,

ci ∈ [0, 1], i ∈ V.
Note that variables ci are not strictly necessary to define this model.

However, we included them for ease of reading (and this allows us to make a
clear comparison with the model that maximizes the Bernoulli-Nash SWF).
Note that for Equation (5.4) equality actually holds.

Bernoulli-Nash SWF
The optimization model that maximizes the Bernoulli-Nash SWF is given by:

Maximize
∑
i∈V

dilog(ci) (5.5)

subject to

ci ≤
|A|∑
k=1

(1− q)qk−1yik,
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∑
j∈Wi

xj ≥
|A|∑
k=1

yik, i ∈ V,

∑
j∈W

xj ≤ |A|,

xj ∈ N, j ∈W,
yik ∈ {0, 1}, i ∈ V, k = 1, . . . , |A|,
ci ∈ [0, 1], i ∈ V.

Since this is not a linear model, we approximate the logarithm in Equa-
tion (5.5) with piecewise linear functions. Thereto, we add a variable li for all
demand nodes i ∈ V . The objective (5.5) is then replaced by

Maximize
∑
i∈V

dili. (5.6)

We start by introducing a few upper bounds on the value of li (for each i ∈ V ),
by adding lines that are tangent to the logarithm at different points, as depicted
in Figure 5.5. These lines hold as upper bounds on the value of li. Then, we solve
the MILP and analyze the result. If it turns out that li > log(ci) + ε (here, ε is
our tolerance), we add another constraint that bounds the value of li to the line
tangent to log(ci) at point (ci, log(ci)). We continue until our piecewise linear
approximation of the logarithm is accurate enough, i.e., all values of li are within
tolerance of log(ci).5

5.5.2 Survival optimization models
In this section we generalize the models from Section 5.5.1, using a so-called
survival function. A survival function maps a response time to a survival proba-
bility. Every survival function f(t) is monotonically decreasing, i.e., f(t′) ≤ f(t)
for all t′ > t (however, note that this is not a necessary condition for our model).
Note that we can pre-compute all survival probabilities. Given the driving time
tji from base j to demand zone i, we compute probabilities pji = f(tji) for all
j ∈ W, i ∈ V . Hence, these probabilities are parameters of our model, not deci-
sion variables. As before, di are parameters that represent the demand in zone
i, i ∈ V . We introduce variables as described in Table 5.4.

Utilitarian SWF (MEXSLP)
In the context of survival functions, a utilitarian’s goal is to optimize the total
survival probability. This is called the Maximal Expected Survival Location
Problem (MEXSLP), and was first formulated in [38]. However, this formulation
is not linear, and therefore does not scale well. Later, the same problem

5In our implementation, we used ε = 10−5. For our case study with 217 nodes, this ensures
that the objective value is approximated within 217 ·10−5 ≈ 10−3 of the true value.
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Figure 5.5 The value of li is bounded by linear functions (dashed lines), such that it
is approximately equal to log(ci).

variable for range meaning
ui i ∈ V [0,1] utility for a patient in zone i
xj j ∈W 1, . . . , |A| number of vehicles positioned at base j
zijk i ∈ V, j ∈W, {0, 1} the kth preferred ambulance for

k ∈ 1, . . . , |A| demand zone i is located at base j

Table 5.4 Interpretation of variables for the MILP formulation that maximizes sur-
vival probabilities.

was modeled as a MILP [17], and this is much faster to solve. Therefore, we
implement a model that is similar to [17], albeit with some small changes for
ease of reading and extending.

A difference with coverage models is that it is no longer sensible to pre-
compute the set of bases that can reach zone i within the RTT. (In the coverage
models this set was denoted Wi.) Instead, we need to keep track of the exact
preference order of vehicles for each demand zone. Thereto, we introduce decision
variables z (see Table 5.4). We next formulate the MEXSLP as a MILP.

Maximize
∑
i∈V

diui (5.7)

subject to

ui ≤
|A|∑
k=1

(1− q)qk−1 · pji · zijk, (5.8)
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∑
j∈W

zijk = 1, i ∈ V, k = 1, . . . , |A|, (5.9)

|A|∑
k=1

zijk = xj i ∈ V, j ∈W, (5.10)

∑
j∈W

xj ≤ |A|,

xj ∈ N, j ∈W,
zijk ∈ {0, 1}, i ∈ V, j ∈W,k = 1, . . . , |A|,
ui ∈ [0, 1], i ∈ V.

Constraint (5.9) ensures that only one vehicle can be the kth favourite for a
certain demand zone. Constraint (5.10) ensures that the number of vehicles at
base j that are kth favorite (for any k) is equal to the number of vehicles at base
j in total. Equivalently, constraint (5.8) may be formulated with an equality
sign. Note that, as before, variables ui are not strictly necessary to implement
this model, but we add them for ease of reading.

Note that if one chooses survival function f to be

f(t) = 1[t ≤ T ],

then the result is the same as the result for the models in Section 5.5.1. Therefore,
the coverage optimization models may be viewed as special cases of the survival
optimization models. A special case for which a more efficient formulation exists.

Bernoulli-Nash SWF

The model is identical to the MEXSLP, except we replace objective (5.7) with

Maximize
∑
i∈V

dilog(ui) (5.11)

As in Section 5.5.1, we deal with this nonlinear problem by creating a piece-
wise linear upper bound on the logarithm of ui, for all i ∈ V . The model can
then be solved with a MILP solver (Gurobi).

5.6 Computational results

We continue with a case study for which we computed numerical results. This
section reports results based on an EMS region in the Netherlands. We first
introduce the region, after which we discuss and compare the solutions of the
different optimization methods.
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5.6.1 Region
We apply our models to the province of Utrecht, which was described in Sec-
tion 2.7.

Figure 5.6 The 217 postal codes (demand nodes) of province Utrecht. The area of
each node is scaled with the number of inhabitants. The driving time between two
nodes that are furthest apart is approximately 58 minutes.

Utrecht is divided in 217 postal codes: these will be our demand nodes V .
We will take the fraction of demand in a single node to be proportional to the
number of inhabitants in that postal code. The driving times τij for EMS vehicles
between any two nodes i, j ∈ V were estimated by the RIVM [66, Chapter 3].
The demand nodes are depicted in Figure 5.6.

For the purpose of this chapter, we want to place sixteen vehicles in the region.
Recall that we want to optimize both which base locations to open, as well as
how many vehicles to put at each base. Therefore, we want to consider more
than just the nineteen existing base locations. However, using all 217 demand
nodes as possible base locations might be quite a lot to handle, at least for our
most complex models. To limit the computation time we choose a subset of 50
of these demand nodes to be our potential base locations. We want to make sure
the set of potential base locations is well spread out over the region. Thereto,
we formulate and solve a MIP: when two bases are opened within distance t (in
minutes) from each other, we incur a penalty e−0.5t. This implies that when two
bases are opened close to one another, the corresponding penalty is very high.
The objective of the MIP is to minimize the sum of these penalties. We add
constraints that ensure the 19 currently existing base locations are included in
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model run time
MEXCLP 1 second
MaxFaircov 10 seconds
MEXSLPsurvival 9 minutes
MaxFairsurvival 2-5 hours

Table 5.5 Run times for different optimization models. These run times are measured
for the region Utrecht with 50 bases and sixteen ambulances.

the solution. This gives the 50 locations as depicted in Figure 5.7.

Figure 5.7 The demand locations (all nodes) and the 50 locations that we will use
as possible bases (black nodes), as determined by our MIP.

5.6.2 Run times
We implemented and solved the six different optimization models for the region
Utrecht as described above. The solve times are reported in Table 5.5. One
immediately sees that the computational effort varies highly depending on the
model. As expected, the coverage optimization models are more efficient than
the survival models. Furthermore, the MaxFairness models are much harder than
the MEXCLP/MEXSLP models. Note that the computation time of the Max-
Fairness models depend on ε. The tolerance of the difference between the linear
approximation and the true value of the logarithm, as described in Section 5.5.1.
The values reported in Table 5.5 are for ε = 10−5.

5.6.3 Results
This section reports the results of the six different optimization models described
in Section 5.5, applied to the region Utrecht defined in Section 5.6.1. We ran our
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models for several busy fractions (q), ranging from 0 to 0.9. We next show how
the optimal solution for each model performs against all objectives, and highlight
some of the differences between the solutions.

The Bernoulli-Nash social welfare may be computed as follows. If v represents
the objective value of a MaxFairness model (e.g., the value of Equation (5.6)),
then the Bernoulli-Nash social welfare is given by ev. However, note that this
is not an exact answer because of errors in the approximation of the logarithm.
Instead, we explicitly calculated the product of the utilities whenever we report
values of Bernoulli-Nash social welfare.

model Ucov BNcov Ustoch BNstoch Usurv BNsurv
MEXCLP 0.614 0 0.610 0.538 0.119 0.090
MaxFairnesscov 0.518 0.486 0.534 0.515 0.104 0.093
MEXSLPstoch 0.609 0 0.616 0.519 0.126 0.092
MaxFairnessstoch 0.589 0 0.601 0.565 0.124 0.106
MEXSLPsurv 0.5923 0 0.6028 0.4842 0.1305 0.0899
MaxFairnesssurv 0.5766 0 0.5925 0.5551 0.1224 0.1071

Table 5.6 Performance of the optimal solution for each model against all objectives.
These values correspond to q = 0.75. Note that the numbers on the diagonal correspond
to the objective for that model, hence they are the maximum in each column.

The first thing to notice is that BNcov is often zero. This means that in those
solutions there is at least one postal code, however small, that cannot be reached
within twelve minutes by any ambulance. Therefore the product of utilities is
also zero.
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Figure 5.8 The optimal solutions for the utilitarian solution and the MaxFairness
solution, for q = 0.75. The grey nodes are demand points, the black nodes are possible
base locations. The numbers represent the number of ambulances placed at each base.
The utility in both cases is deterministic coverage.

Let us compare the two solutions that use deterministic coverage as their util-
ity (i.e., MEXCLP and MaxFairnesscov). We selected the solutions for q = 0.75,
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because differences become more clear for higher values of q. As Figure 5.8 shows,
the two solutions are quite different. What stands out is the fact that MEXCLP
places multiple vehicles at the same base (up to five), which is due to the high
busy fraction: a single vehicle does not provide a lot of coverage. Hence, giving
densely populated areas additional vehicles is preferred over giving areas of less
demand a first vehicle. In contrast, MaxFairnesscov shows more of a tendency to
spread out over the region. Note that this same effect could already be seen on
a smaller scale in the illustrative example from Section 5.4.
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Figure 5.9 The coverage versus demand of each node, using deterministic driving
times.

Let us further analyze the two different solutions depicted in Figure 5.8.
Thereto, we compare the utilities (coverage) of individual demand nodes: in
Figure 5.9 we plot the coverage versus the demand of each node. This shows
that the MEXCLP solution gives some of the highest coverages, but also some of
the lowest (even zero). The values for the MaxFairnesscov solution are closer to
one another. This is consistent with what might intuitively be considered ‘fair’.
Furthermore, note that the coverage only takes a few different values: this is due
to the relatively simple definition of deterministic coverage.

Next, let us look at the stochastic counterpart of the previously described case.
That is, instead of deterministic coverage, we take stochastic coverage as utility.
The busy fraction remains 0.75. We again see that the Bernoulli-Nash optimum
spreads the ambulances more than the utilitarian optimum (Figure 5.10). If we
plot the stochastic coverage against the demand (Figure 5.11) we no longer see
the clear discretization of values that we observed in the deterministic case.

For our next argument, imagine a utilitarian EMS manager positioning am-
bulances: that is, he would place them according to the MEXSLP solution. We
investigate how much the fairness6 of his solution can be improved by positioning
the ambulances in a different way. This improvement is depicted in Figure 5.12
for different busy fractions. We show both the results for stochastic coverage and
survival as utilities. Deterministic coverage is omitted, because the Bernoulli-
Nash SWF of the utilitarian solution is often 0, and hence the ratio would become
infinitely large. Figure 5.12 shows that for small busy fractions, the ratio is very
close to 1, hence a utilitarian manager’s choices are actually quite fair. However,

6the value of the Bernoulli-Nash SWF
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Figure 5.10 The optimal solutions for the utilitarian solution and the MaxFairness
solution, for q = 0.75. The grey nodes are demand points, the black nodes are possible
base locations. The numbers represent the number of ambulances placed at each base.
The utility is stochastic coverage.
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Figure 5.11 The coverage versus demand of each node, using stochastic driving times.

for higher values of q, the improvement factor increases up to 1.4.
As Figure 5.12 shows, the improvement factor is larger for the survival func-

tion than for the stochastic coverage. This can be explained by the fact that
the survival is more rapidly declining with distance (compare Figure 5.4 to Fig-
ure 5.3). This increases the gap between a solution that places many vehicles
on one base (as we have seen in Figure 5.8), and a solution that tends to spread
vehicles.

We further compare the differences between the utilitarian and Bernoulli-
Nash solutions. For now, let us focus on the stochastic coverage, i.e., we compare
the MaxFairnessstoch solution to the MEXSLPstoch solution. We investigate how
each model performs under its own objective, as well as under the objective of
the other model. Figure 5.13a shows these values for several values of q. First of
all, note how surprisingly similar the values for BNstoch and Ustoch are for low
values of q. For higher values of q, we see that gap in the BNstoch is slightly
bigger than the gap in Ustoch. This means that if one optimizes for fairness
(maximize BNstoch), the loss in coverage (Ustoch) is less than it would be vice
versa. Furthermore, as before, we see that the gap between solutions widens as
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Figure 5.12 The relative improvement in the Bernoulli-Nash SWF, comparing the
optimum to the utilitarian solution.
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(b) Varying the number of ambulances, while keeping q = 0.75.

Figure 5.13 Comparing the objectives BNstoch and Ustoch, for both optimiza-
tion models that use stochastic coverage as utility. Dashed lines represent the
MaxFairnessstoch solution. Solid lines represent the MEXSLPstoch solution.
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the load of the system increases.
A quick conclusion might be that a high system load (large q) directly causes

the gap between solutions that maximize utilitarian and Bernoulli-Nash SWFs.
However, recall that throughout these computations we varied q and kept the
number of ambulances equal to sixteen. This implies that when we increase
q, fewer people can be served. This is not necessarily the case for all problem
instances with a large q: one can imagine a very busy EMS region, where vehi-
cles are almost always busy, yet there are so many ambulances that the overall
performance is still very high.

To analyze what truly causes the differences between the MaxFairnessstoch
and the MEXSLPstoch solution - the value of q, or the total number of people
that can be served - we performed additional computations. We fixed q at a
value for which Figure 5.13a showed differences between the MaxFairnessstoch
and the MEXSLPstoch solution (we choose q = 0.75) and increased the number of
ambulances. In Figure 5.13a we observe the range for which the MaxFairnessstoch
and the MEXSLPstoch solution appear very similar: roughly where Ustoch ≥ 0.8.
Therefore, we start with 16 ambulances and increase this number until Ustoch ≥
0.8. The results are depicted in Figure 5.13b. As before, this shows that the
social welfare for both solutions are remarkably similar when Ustoch ≈ 0.8. This
indicates that not the load of the system (q), but the utilitarian social welfare
(Ustoch) determines in which cases the MaxFairness and the MEXSLP differ.

5.7 Discussion

This chapter approaches ambulance location problems from the perspective of
social welfare. Our main contribution is that we introduced and implemented
two models that maximize the Bernoulli-Nash social welfare. These solutions
are juxtaposed against well-known utilitarian solutions. We showed numerical
results for a realistic EMS region in the Netherlands. The differences between
the utilitarian and Bernoulli-Nash optima turned out to depend on the total
number of people that can be served. When at least 80% of the population
can be served within the RTT, we found that both solutions are remarkably
similar. This is a somewhat surprising, but reassuring result. For a coverage
smaller than 80%, the utilitarian and Bernoulli-Nash optima start to show their
differences. Generally speaking the Bernoulli-Nash optimum tends to spread
vehicles throughout the region, whereas the utilitarian optimum clusters vehicles
in areas with high demand. We conclude that as the total coverage of the system
decreases, it becomes more important to explicitly think about fairness.

When we translate our result to implications for ambulance providers in prac-
tice, the outcome depends on the EMS region. For example, an ambulance
provider in the Netherlands typically serves 95% of the most urgent requests
within 15 minutes [89]. Our results indicate that, even if they aimed for a util-
itarian optimum without thinking about fairness, their solution will be rather
fair. For other EMS providers - e.g. in the UK where ambulances typically reach
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75% of their most urgent requests within eight minutes [90] - there will be more
differences between the most efficient and the most fair solution. In such cases,
the political debate about fairness in ambulance care deserves more attention.

The trade-off between efficiency and fairness remains unavoidable. While
classical ambulance equity models - that use a egalitarian approach - are not
suitable to use in practice because of their poor overall performance, we believe
the Bernoulli-Nash optimum provides a reasonable alternative to the utilitarian
optimum. This means that, besides the theoretical importance of our work, our
solutions could truly be worth considering for ambulance providers who believe
fairness should play a role in their decisions. Additionally, the Bernoulli-Nash
social welfare of current practice could be evaluated, and used as a measure to
detect how far current solutions are from a maximally fair solution.

The models in Section 5.5.2 implicitly define the situation in which there
are no ambulances available to have survival probability zero. Alternatively,
one might extend these models with a nonzero survival probability in case no
ambulance is available. This probability may depend on the demand node i,
therefore denote it δi. This affects the constraints as follows: one should add
+ q|A| · δi to the right-hand side of (5.8).

In [17] the authors add a decision variable and constraint to limit the total
number of base locations used. We chose to leave such a constraint out of this
chapter, because it might distract the reader from the main topic. However, it
could be added without further complicating the models.

As already described in Section 5.3, using a busy fraction to model ambu-
lance availability is an approximation of the true system dynamics. One might
suggest to relax the assumptions of independent vehicles all having and the same
busy probability, by using a more advanced model. This is done in Hypercube
Queuing Models (HQM) [69] (which are compared to MEXCLP in [9]). However,
considering that our most complex model already takes five hours to solve, we
chose not to make the problem harder. Other researchers that optimized a form
of fairness while using hypercube correction factors faced computational difficul-
ties - even for small cases - and needed to resort to tabu search [31], hence losing
a guarantee of finding a globally optimal solution.
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Improving fairness by time-sharing ambulances

Most papers on the ambulance location problem aim to maximize the total num-
ber of inhabitants covered. Such a problem often has one optimum, but there may
exist several near-optimal solutions. These have a similar overall performance but
differ on a smaller scale, such as individual villages. This raises the question: are
we making ‘arbitrary’ choices in terms of who gets coverage and who does not?
In this chapter we propose to share time between several good ambulance config-
urations in the interest of fairness. We first argue that the Bernoulli-Nash social
welfare corresponds to a form of fairness. We formulate a nonlinear optimization
model that computes the time shares such that the Bernoulli-Nash social welfare
is maximized. Our approach consists of a novel combination of simulation and
optimization. We include a case study for a realistically sized ambulance provider
in the Netherlands.

This chapter is based on:
C.J. Jagtenberg and A.J. Mason. Improving fairness in ambulance planning by
time-sharing. In preparation.

6.1 Introduction

An important aspect of EMS is positioning vehicles to provide a high level of
service. This is the objective of the ambulance location problem: how and where
to locate vehicles in order to effectively cover demand.

An overview of ambulance location models in literature can be found in [22]
and [71]. The majority of these models use mixed integer linear programming
to maximize the (expected) coverage, where coverage of a region refers to an
ambulance being able to arrive at that region within a specified response time
threshold.

Researchers tend to compute the ‘one and only’ optimum to such ambulance
location problems, but several near-optimal solutions may exist. These alterna-
tive solutions have a similar overall performance, but differ in terms of individual
villages or areas. This leads to ‘arbitrary’ choices in terms of who gets coverage
and who does not. If we allow different configurations at different times, we
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might be able to reach a long-term average performance that is almost equal to
the optimum, but more fair.

The ambulance location problem is usually solved to find one permanent
solution (a configuration that is to be followed at all times), but there are a
few exceptions. These exceptions define some aspect of the problem to vary
over time, and compute different solutions for different time periods. Examples
include [15, 95]: both are extensions of MEXCLP that incorporate temporal
varying demands. Another time-dependent model is introduced in [103], which
is an extension of the Double Standard Model. In [103] it is not the demand,
but the travel time that varies over time. Note that this is different from our
approach: we suggest to switch between different configurations, not because the
circumstances change, but in the interest of fairness.

To the best of our knowledge, this is the first work that suggests to share time
between several good ambulance configurations in the interest of fairness. Similar
to the work in Chapter 5, we define fairness in terms of the Bernoulli-Nash social
welfare function (SWF). However, in this chapter we investigate how this can be
used in the context of time sharing. This leads to a nonlinear optimization model,
which is the main contribution of this chapter. Furthermore, we implemented this
model for a realistic EMS region in the Netherlands, and show how the problem
can be approached using a novel combination of simulation and optimization.

The rest of this chapter is structured as follows. Section 6.2 describes related
work that illustrates the use of Bernoullli-Nash social welfare in time sharing.
Section 6.3 shows the Bernoulli-Nash optima for small ambulance location in-
stances - small enough to compute the optima by hand or brute force. Section 6.4
describes the optimization model that allows us to maximize the Bernoulli-Nash
social welfare for realistically-sized problem instances. We include a case study
in Section 6.5 and finish with our discussion in Section 6.7.

6.2 Preliminaries and related Work

This section defines fairness in terms of social welfare. For completeness, we recap
the three different SWFs that were introduced in Chapter 5. Furthermore, this
section shows how these functions can be applied in a context of time sharing.

6.2.1 Social welfare

Social welfare is measured as a function of the ‘utilities’ of individuals or sub-
groups of a society. For example, a commonly used function is the utilitarian
SWF. Let ui be the utility of a person in subgroup i, and let di be the number
of people in subgroup i. If we let V denote the set of subgroups, the utilitarian
social welfare, fU is then given by

fU =
∑
i∈V

diui.
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Solutions that maximize utility do so by maximizing the sum of the individual
utilities. This is a common choice for social welfare in ambulance planning:
practically all models mentioned in the literature overview in [22, 71] aim to
maximize the total (expected) coverage, i.e., they seek a utilitarian solution where
utility is defined as coverage.

An alternative SWF is egalitarian, or ‘Rawlsian’, social welfare. This is de-
fined as the minimum utility over all sub-groups, regardless of the size of the
subgroup.

The model we will use is the Bernoulli-Nash SWF. This is defined as the prod-
uct of individual utilities, and consequently is more egalitarian than a utilitarian
measure in that it is more sensitive to the utility of the worse off individuals.
Using the notation that we introduced above, this can be written as

fBN =
∏
i∈V

udii .

The Bernoulli-Nash social welfare fBN corresponds to a form of fairness, as we
will demonstrate next.

6.2.2 A radio time sharing example
In this section we illustrate why it makes sense to use the Bernoulli-Nash social
welfare for time sharing. We do this by recapping an example found in [85,
Example 3.6]. Consider a group of n agents working together in a common
space, where the radio must be turned on to one of five available stations. The
agents have different tastes in music, and it is up to the manager to decide how
the time is shared fairly between the five stations. That is, the manager has to
decide timeshares λi, i = 1, . . . , 5, such that λi ≥ 0 and λ1 + λ2 + . . . + λ5 = 1.
In this example, an agent can either like or dislike a station, i.e., we set her
utility for a certain station at 1 or 0.

A Basic Example
In its simplest form, each agent likes exactly one station and dislikes the other
four. Let di denote the number of fans of station i, with d1 + · · ·+ d5 = n. Note
that in this example, the utility of a person that likes station i is equal to λi.
A utilitarian manager would choose to play the station with the largest support
all the time. Note that if there are several such stations, mixing between them
is optimal as well. An egalitarian manager, however, would do the opposite:
play each station 1

5 th of the time.1 Note that this ensures everyone is happy 20
percent of the time.

The Bernoulli-Nash social welfare can be viewed as a compromise between
the two solutions above. We seek to maximize fBN =

∏
i

λdii , which is the

same as maximizing
∑
i

dilog(λi). If we maximize this under the constraint

1assuming each station has at least one fan
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∑
i

λi = 1, it leads to a solution of λ∗i = di/n, i.e., the time share of each station

is proportional to the number of its fans.

An elaboration
In a slightly elaborated version of the example above, some agents are flexible, in
the sense that they like more than one radio station. The utility matrix is given
by:

Station
A B C D E

1 1 0 0 0 0
2 0 1 0 0 0

Agent 3 0 0 1 1 0
4 0 0 0 1 1
5 0 0 1 0 1

A utilitarian manager would choose to share the time between stations c, d and e,
such that there are always as many people as possible listening to a station they
like. Unfortunately for Agents 1 and 2, they never get to listen to a station of their
choice. An egalitarian manager would select λa = λb = 2

7 , λc = λd = λe = 1
7 ,

such that every agent likes the music 2
7 th of the time.

The Bernoulli-Nash collective utility function again offers a compromise be-
tween the two solutions above, as it recommends to play each station 1

5 th of the
time. To see this, observe that outcomes a and b are symmetrical, hence will
receive the same time share x. Similarly, c, d and e are allocated the same time
share y. The Bernoulli-Nash maximization problem can then be written as

maximize fBN = x2(2y)3 s.t. x, y ≥ 0, 2x+ 3y = 1,

which indeed leads to x∗ = y∗ = 1
5 .

Next, we show how the concept of Bernoulli-Nash social welfare translates to
the ambulance location problem.

6.3 Motivating examples

In this section we consider two small instances of the ambulance location prob-
lem. In both instances, the demand is distributed over three locations or nodes,
labelled A,B and C. Each node i contains a fraction di of the total demand.
There is one ambulance, which we can position in one of three bases (labelled 1,
2 and 3). The decision variables are λb, the fraction of time that the ambulance
should spend at each base b.

We define the utilities in terms of a response time threshold, where the utility
of a person living in a certain demand node is 0 or 1, depending on whether or
not there is an ambulance stationed at a base that is closer than the response
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A

B C

1

2 3

(a) Bases and nodes for example 1.

A B C
Base 1 1 0 0
Base 2 0 1 0
Base 3 0 0 1

(b) Coverage of nodes by bases.

Figure 6.1 A set of 3 bases, 1, 2, 3, and demand nodes A, B, C, (left) and their
associated coverages (right), for example 1. The circles represent demand nodes; the
numbers are the base locations. From each base, exactly one demand location can be
reached within the response time threshold.

time threshold. This utility is also known as single coverage.

Example 1

Consider the case where each node can be reached by one base, and each base
can reach exactly one demand node. An example of this is shown in Figure 6.1.
The corresponding utility (i.e., coverage) matrix is given in Figure 6.1b. A utili-
tarian optimum would be to permanently place the ambulance at the base where
it serves the biggest demand. Although this is efficient, it is clearly far from fair.

Instead, consider the case where the ambulance can spend some fraction of
time λi at each base i, i = 1, 2, 3. We assume that we can ignore time spent driv-
ing between bases, perhaps because the ambulance moves between bases during
periods of zero call demand, or perhaps because such moves happen infrequently.
Thus, we assume that λi gives the probability of the ambulance being at base i
when any emergency call arrives. The utility of an individual at some node is
now given by the fraction of time that they are covered by an ambulance. The
problem of maximizing the Bernoulli-Nash social welfare for this system is given
by:

max fBN = λdA1 λdB2 λdC3

subject to λ1 + λ2 + λ3 = 1,

0 ≤ λ1, λ2, λ3 ≤ 1.

Solving this gives a solution λ1 = dA, λ2 = dB and λ3 = dC that maximizes
the Bernoulli-Nash social welfare. Just as in the basic case of Section 6.2,
the proportion of time spent in each node is proportional to the number of
inhabitants served. This is consistent with what we might consider to be a fair
distribution. Next, we show what happens if the situation becomes slightly more
complex.

Example 2
Consider the case where each node can be reached by two bases, and each base
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1

3

2

A

B C

(a) Bases and nodes for example 2.

A B C
Base 1 1 1 0
Base 2 1 0 1
Base 3 0 1 1

(b) Coverage of nodes by bases.

Figure 6.2 A set of three bases, 1, 2, 3, and demand nodes A, B, C, (left) and their
associated coverages (right), for example 2. Each base can reach the two closest demand
locations within the response time threshold.

can reach the two closest nodes. An example of this is shown in Figure 6.2.
In this case, our Bernouli-Nash measure is now maximized by solving

max fBN = (λ1 + λ2)dA(λ1 + λ3)dB (λ2 + λ3)dC

subject to λ1 + λ2 + λ3 = 1

0 ≤ λ1, λ2, λ3 ≤ 1

The solution depends on how the demand is distributed over A,B and C. For
the simple case dA = dB = dC = 1

3 the optimal solution is λ1 = λ2 = λ3 =
1
3 . This corresponds to a social welfare of fBN = 2

3

1/3 · 2
3

1/3 · 2
3

1/3
= 2

3 . For
comparison, consider a case where one of the nodes has fewer inhabitants than
the rest: dA = 1

5 , dB = dC = 2
5 . The optimal solution in this case is λ1 = λ2 =

0.2, λ3 = 0.6, and the corresponding social welfare is fBN = 0.41/5 ·0.82/5 ·0.82/5 ≈
0.696. (Note that this is slightly higher than in the case where the demand is
distributed equally over the nodes.) This example shows that the Bernoulli-Nash
SWF favours areas with high demand, but does not leave areas with low demand
completely uncovered.

6.4 Optimization model

This section formally describes the ambulance system we wish to consider and
details the model that optimizes the Bernoulli-Nash social welfare for this system.
We assume that demand for ambulances in a region can be modelled using a set
of demand zones (or nodes) V . Each node i ∈ V has a nonnegative demand
fraction di, such that

∑
i∈V di = 1. There is a fixed number of ambulances

available, which may be stationed at a given set of base locations.
We define a configuration to be an allocation of ambulances to bases, where

we allow a base to hold multiple ambulances. In this problem, we only wish
to consider a predefined set C of possible ambulance configurations which we
assume the user has constructed.

Our optimisation model requires, as input, the utility uic of each demand zone
i ∈ V for each configuration c ∈ C. This utility should be a nonnegative number
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that represents the happiness of an inhabitant of node i under configuration c.
Without loss of generality, we assume that the values uic are normalized, so they
lie between 0 and 1.

The utility measure can be defined in whatever manner is suitable for the
practical situation at hand and that incorporates the local rules or laws govern-
ing response times. The utility is typically some function of the response time.
The most common measure might be the expected fraction of incidents in each
demand zone that would be served within the response threshold time under
some ambulance configuration. Alternative utilities may include, for example,
an average response time or a survival probability [17, 54]. In order to determine
these utility values, one needs (at a minimum) an estimated driving time for
an EMS vehicle with lights and sirens between any base and demand location.
Note that travel times for a more comprehensive set of starting locations may be
required if we allow a vehicle to be dispatched to a call while still on the road as
a result of serving a previous call. Throughout this chapter, we will assume that
such estimates are available.

Once an appropriate utility measure has been chosen, the corresponding uic
values for all i ∈ V , c ∈ C, can be computed in a preparatory phase for the set
of candidate ambulance configurations generated by the user. This can be done
in several ways. For example, one can use one of the many available ambulance
location models [22, 71] to estimate utilities at each node for each configuration.
Depending on the complexity of the chosen model, this can give a reasonable
estimate for uic. However, we note that these models always include some sim-
plification and cannot completely capture the complex processes in EMS. Alter-
natively, the values uic may be estimated by simulation. We consider this a more
reliable estimate because it allows explicit modelling of complex issues such as
ambulance availability and the fact that ambulances may be dispatched to calls
while on the road. Practical limitations such as labor legislation may also be in-
cluded. Additionally, a trace-driven simulation (using historic call records) would
further benefit accuracy because using a trace avoids modelling of the incident
arrival process - and the potential corresponding errors.

Once the values uic have been determined, they can be used as input for the
optimization model. The goal is to determine the fraction of time λc to spend in
each configuration c ∈ C. We allow λc = 1, which indicates that we have chosen
just a single configuration for the system. As before, we interpret configuration
c’s time share, λc, as giving the probability of the system being in configuration
c when an ambulance is dispatched to a call. Given a solution (λ1, λ2, ..., λ|C|),
the long-term average utility that a person living in node i receives is given by∑
c∈C

λcuic. Therefore, the Bernoulli-Nash social welfare is given by

fBN(λ1, λ2, ..., λ|C|) =
∏
i∈V

(∑
c∈C

λcuic

)di
. (6.1)

We can now form the following non-linear Bernoulli-Nash Time Sharing
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(BNTS) optimization model:

BNTS: max fBN =
∏
i∈V

(∑
c∈C

λcuic

)di
(6.2)

s.t.
∑
c∈C

λc = 1, (6.3)

0 ≤ λc ≤ 1 ∀c ∈ C (6.4)

Before concluding this section, it is useful to consider how fBN should be
interpreted. Clearly this interpretation depends on the user’s choice of uic values.
One possible natural choice is to let uic be the probability of a call at node i being
served on time (i.e. within the response time target) under configuration c. If
we further assume that each individual will make one request for an ambulance,
then fBN is the probability that all the resulting response times will be within
the response time target. By maximizing this probability fBN, we are seeking a
system that best delivers for everyone. This is very different to the traditional
utilitarian objective which will leave some areas uncovered if this helps more
people than it disadvantages.

6.5 Computational results

This section reports the details of a case study in which we compute the Bernoulli-
Nash optimal time shares, applying the BNTS optimization model from Sec-
tion 6.4 to a realistic EMS region. Our numerical work concerns the province of
Utrecht, which was described in Section 2.7. The ambulance provider for Utrecht
uses nineteen base locations (see Figure 3.2). Utrecht consists of 217 postal codes,
see Figure 6.3. The centroids of these regions form our set of demand nodes V .
We define the fraction of demand di in a single node to be proportional to the
number of inhabitants in that postal code.

We consider a fleet of nineteen vehicles that we wish to distribute over the
nineteen base locations that exist in this region. In this case study, we only
want to consider configurations that have a good overall performance, that is, we
want to consider a set of configurations that are near-optimal to the utilitarian
ambulance location problem. One way to do this would be to use solutions to
one or several integer programming models for the ambulance location problem.
However, these solutions can only be considered optimal with respect to the
model itself, which is always a simplification of the problem. Instead, we use a
combination of simulation and local search to find locally optimal configurations
for the utilitarian problem.

We next describe both the simulation model and our local search procedure
in more detail.
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Figure 6.3 Utrecht consists of 217 postal codes; the centroids of these polygons are
used to represent demand nodes. The shaded regions cannot be reached from any base
within the response time threshold. (As discussed in Section 6.5.1, these are removed
from the problem.)

6.5.1 Simulation

We used a discrete event simulation model that was previously described in [55].
The system keeps track of all incidents and vehicles. Vehicle travel occurs on
a network that contains nodes for demand nodes (being postal code centroids),
hospitals and ambulance bases. The simulation uses deterministic lights-and-
siren driving times between nodes as estimated by the RIVM [66, Chapter 3].
Travel speeds without lights and sirens are assumed to be 10% slower.

The simulation generates events for an incident occurring, an ambulance ar-
riving at the scene of the incident, an ambulance leaving for a hospital, an ambu-
lance arriving at a hospital, and an ambulance becoming idle. We drew incident
arrival times from a Poisson distribution with an average inter-arrival time of
6.4 minutes, and drew the incident location based on the demand distribution,
i.e., an incident occurs at node i with probability di, for i ∈ V . Each incident
is served by the closest idle ambulance available at that time - including ambu-
lances that are currently on the road returning to base. We approximate the
location of those ambulances on the road by using the longitude and latitude of
each node, and assume that ambulances travel with constant speed in a straight
line between them. Given the estimated travel time between the ambulance’s ori-
gin and destination, as well as the time that has passed since the vehicle left its
origin, we then compute its longitude and latitude and round this to the nearest
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node in V .
After an ambulance arrives at the scene of an incident, it spends a random

amount of time there. This time is drawn from an exponential distribution with
an expectation of twelve minutes. After this time, it is decided whether or not
the patient needs treatment at a hospital (according to a Bernoulli distribution
with probability 0.8). If not, the ambulance becomes available at the scene of the
incident. Otherwise, the ambulance drives to the nearest hospital,2 and spends
an additional drop-off time there (drawn from a Weibull distribution with an
expectation of 15 minutes). Eventually the ambulance becomes available at the
hospital location.

When an ambulance becomes available, we check if there are any unattended
incidents left in the queue. If so, the ambulance is immediately dispatched to
the first call in the queue. Otherwise, the ambulance stays idle, and is sent to its
base location3.

Using this model, we evaluate any given ambulance configuration by simu-
lating 5,000 hours of EMS events. Recall that in the Netherlands, ambulances
should arrive within fifteen minutes. Typically, three minutes are reserved for
handling the call, therefore we use a response time threshold of twelve minutes.
We keep track of the observed utility uic of each demand zone i ∈ V by measuring
the fraction of calls there that are reached within 12 minutes.

Using the Bernoulli-Nash SWF raises the theoretical issue that this measure
will always have value 0 if there are demand nodes that cannot be reached on
time. To avoid this, we slightly adapted our problem instance by removing those
demand nodes that are more than 12 minutes away from any base (see Figure 6.3).
Another more nuanced approach might be to use a measure, such as survival
probability, that recognises there is a non-zero value in an ambulance arriving
even if it is outside the response time threshold. We also note that undefined
utility values can arise in practice, because our simulation runs may not generate
any calls in regions with low population counts. A uic value of 1 was used to
handle such cases.

The purpose of this simulation model is twofold. First of all, it is used to
evaluate intermediate solutions in the local search. Second, we use it to determine
the utility per demand node for those solutions that we consider good enough to
be in C.

6.5.2 Local optima
We want to position nineteen vehicles on the nineteen bases of region Utrecht.
As it is possible to position more than one vehicle on a base, there are many
different configurations to choose between. We search for solutions with high
coverage, i.e., where the total fraction of calls reached within the response time
threshold is high. To find these, we implemented a hill climbing algorithm which

2We use a set of ten hospitals, excluding private clinics, that existed in the region in 2013.
3Note that the ambulance might not arrive at this base location, because it may be dis-

patched to be new call before reaching its destination.
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starts with a random distribution of nineteen vehicles over the nineteen base
locations. In each iteration, we change the home base of one of the vehicles.
This possible solution is evaluated by simulation, and the solution is accepted if
it increases the number of on-time responses. Note that vehicles are assumed to
be identical, hence many solutions are equivalent. Therefore, before we evaluate
a solution, we check whether an equivalent solution has been simulated before.
This reduces the total computation time, and allows a local optimum to be found
in approximately eight hours.

We repeat this procedure multiple times, using different starting solutions.
This lead to eleven different configurations (each of which has a high utilitarian
coverage), which together constitute our set of configurations C. A selection of
these local optima is depicted in Appendix 6.A.

6.5.3 Results
This section describes the results of the optimization model (6.2), using the
configurations generated using our local search and their corresponding utilities
as input. The optimization model was solved using the Ipopt solver [115] (an
interior point method solver from COIN-OR) and the model was implemented in
Julia/JuMP [72].

Maximizing the Bernoulli-Nash social welfare leads to the following time
shares: λ3 = 0.1984, λ8 = 0.1864, λ9 = 0.2351 and λ11 = 0.3800. The other
configurations are not used. This Bernoulli-Nash solution has a social welfare
fmax

BN = 0.8525. To better understand this solution, it is helpful to contrast it
with more traditional utilitarian solutions. We do this next.

6.6 Multi-objective optimization model

In this section we investigate how the Bernoulli-Nash social welfare is related
to the often-used utilitarian social welfare4. This is done using the same set of
eleven near-optimal configurations as before. However, we now consider both
the Bernoulli-Nash social welfare and the utilitarian social welfare to be of inter-
est, and so we have a multi-objective optimization problem. We term this the
Bernoulli-Nash Utilitarian Time Sharing (BNUTS) problem:

BNUTS: maximize
(
fU

fBN

)
=


∑
i∈V

di
∑
c∈C

λcuic∑
i∈V

(
∑
c∈C

λcuic)
di

 (6.5)

subject to
∑
c∈C

λc = 1, (6.6)

0 ≤ λc ≤ 1 ∀c ∈ C. (6.7)
4Note that since we defined utilities in terms of a response time threshold, the utilitarian

social welfare is equal to the total coverage of the region.
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We can use the ε method [37] to compute Pareto-optimal solutions for this
BNUTS problem. Formally, we say that a solution λ′ = (λ′1, λ

′
2, ..., λ

′
11) dominates

another solution λ = (λ1, λ2, ..., λ11) if either fU(λ′) > fU(λ), fBN(λ′) ≥ fBN(λ)
or fU(λ′) ≥ fU(λ), fBN(λ′) > fBN(λ). We say that a solution λ is efficient if there
is no other solution that dominates it. We can obtain a discretized set of efficient
solutions by solving a sub-problem BNUTS(εBN) which maximizes fU subject to
a lower bound fBN ≥ εBN, as follows:5

BNUTS(εBN): maximize
∑
i∈V

di
∑
c∈C

λcuic (6.8)

subject to
∑
i∈V

(
∑
c∈C

λcuic)
di ≥ εBN, (6.9)∑

c∈C
λc = 1, (6.10)

0 ≤ λc ≤ 1 ∀c ∈ C. (6.11)

We solved BNUTS(εBN) for εBN ∈ {0.8525, 0.8512, 0.8498, 0.8484, 0.8390},
where the first εBN = 0.8525 value is the single-objective maximum fmax

BN for
the Bernoulli-Nash solution found in Section 6.5.3, and the other values were
chosen experimentally to give a good characterisation of the Pareto front. We
observe that solving for εBN = fmax

BN gives a lexicographically optimal efficient
solution in which fBN achieves its best possible value. We found the other lex-
icographic solution, being the efficient solution where fU achieves its maximum
fmax

U = 0.9100, by simply choosing the configuration c ∈ C giving the largest fU

and then observing that only one such configuration existed and thus the solution
was efficient.

The efficient solutions we found are summarized in Table 6.1, which shows
for example that configuration 8 has the highest total coverage. Furthermore,
maximizing the Bernoulli-Nash social welfare fBN requires four different config-
urations to be combined, but relaxing the bound on the Bernoulli-Nash social
welfare fBN reduces this to three or two configurations. These solutions result in
the Pareto frontier depicted in Figure 6.4.

We observe that our efficient solutions make use of only a small number of
ambulance configurations. Such solutions may appeal to an ambulance organisa-
tion as it may be easier to operate a system with fewer configurations. To explore
this, we examine the system performance when the two policies that receive the
largest time shares in the Bernoulli-Nash optimum are combined. (These are
configurations 9 and 11.) To that end, we construct different solutions by taking
time share λ9 ∈ {0, 0.1, 0.2, . . . , 1} and λ11 = 1− λ9. We compute the utilitarian
and Bernoulli-Nash social welfare of each solution. These are depicted in Fig-
ure 6.5. The solution with λ9 = 0 was omitted from the graph because it has
a Bernoulli-Nash social welfare of 0. We note that solutions with λ9 > 0.4 are

5We actually solved an equivalent problem in which (6.9) was modified by taking the loga-
rithms of both sides, and converting the sense to ≤.
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fU 0.9074 0.9094 0.9098 0.9099 0.9100 0.9100∗

fBN 0.8525∗ 0.8511 0.8498 0.8484 0.8390 0.8337
λ3 0.1984 0.3459 0.3354 0.1286 0.0008
λ8 0.1865 0.4459 0.6646 0.8714 0.9992 1.000
λ9 0.2351
λ11 0.3800 0.2082

Table 6.1 Six solutions that are Pareto efficient. Only non-zero λi values are shown.
Where an objective function value fU or fBN is marked ∗, it indicates that this is the
maximum possible value for this objective, and thus this column denotes a lexicographic
solution. Note that some values differ in decimal point values that are not shown.
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Figure 6.4 Pareto efficient solutions for the region Utrecht, with respect to the util-
itarian social welfare fU and Bernoulli-Nash social welfare fBN.

dominated (in a multi-objective sense) by solutions with λ9 ≤ 0.4, and so there
would be no value in operating such solutions.

Figure 6.6 shows the results for a similar analysis in which we consider the
three configurations (configurations 3, 9 and 11) used most frequently in the
Bernoulli-Nash solution. We consider all combinations for which λ3, λ9, λ11 ∈
{0, 0.1, 0.2, . . . , 1} and λ3 + λ9 + λ11 = 1. For each combination, we compute
the utilitarian and the Bernoulli-Nash social welfare. These are depicted in Fig-
ure 6.6. Note that the utilitarian social welfare fU changes linearly with λ3, λ9

and λ11, as it is a convex combination of the associated fU values. The Bernoulli-
Nash social welfare has a more complex dependence on λ3, λ9 and λ11 leading
to an apparently convex surface which results in some of the solutions being
dominated by other solutions.
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Figure 6.5 Sharing time between policy 9 and policy 11. λ9 varies between 0.1
(highest point) and 1 (lowest point).
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Figure 6.6 The utilitarian and Bernoulli-Nash social welfare for time sharing policy
3, 9 and 11 in different ratios. Solutions with a welfare of 0 were omitted.

6.7 Discussion

In this chapter we viewed the ambulance location problem from a time sharing
perspective. We proposed to mix between different ambulance configurations to
increase the fairness of the system. The optimal mix is found by computing the
maximum of the Bernoulli-Nash social welfare, a nonlinear optimization prob-
lem. In our case study, we show a novel approach that combines simulation and
optimization. This section discusses alternatives for the choices made in our ap-
proach, as well as possibilities for extending this work. There is no single best
way to define utilities. In the small examples in Section 6.2, we simply used a
0-1 function indicating if there is an ambulance positioned within reach of the
demand node, also known as single coverage. Conversely, in our case study in
Section 6.5, we defined the performance in terms of a probability of being reached
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within a response time threshold. Which utility one wants to use may depend
on the region and the local rules applicable.

A positive aspect of our problem formulation is that computing the utilities
for each demand node and configuration can be done in a preparatory phase,
before starting the optimization. This allows for performance indicators that are
too hard to compute, to be estimated by simulation instead (as we showed in
Section 6.5).

Our problem formulation makes it possible to incorporate results from prac-
tice: if an ambulance provider has applied a certain configuration in practice in
the past, the performance indicators may be derived from the historical data.

This paper only considers static ambulance configurations. That is, in a cer-
tain configuration each ambulance has its own home base, from which it always
responds. Alternatively, one may consider using dynamic ambulance redeploy-
ment policies (e.g., [2, 45, 77, 78, 102]). It is also possible to do time sharing
in this setting: one can compute the Bernoulli-Nash optimum combining several
dynamic policies, or a mix between dynamic and static configurations.

One way to extend our model is to apply robust optimization. This would be
a way to handle estimation errors for the values of uic. (For an introduction to
robust optimization, see [14].)
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Appendices

6.A Locally optimal configurations

This appendix shows two of the near-optimal ambulance configurations for the re-
gion Utrecht found by local search. The configurations are depicted in Figure 6.7
and the corresponding coverage of the demand nodes is shown in Figure 6.8.
Note that we plotted the squared coverage because it shows the differences be-
tween configurations better. Figure 6.8 shows that the Northwest and Southwest
corners of the region receive relatively poor coverage in configuration 5, while
configuration 9 performs worse in the Northeast.

120000 140000 16000044
00
00

46
00
00

configuration 5

120000 140000 16000044
00
00

46
00
00

configuration 9

Figure 6.7 A graphical representation of two near-optimal configurations. Each node
represents a postal code. Grey: 0 ambulances, Red: 1 ambulance, Blue: 2 ambulances,
Black: 3 ambulances



6.A. Locally optimal configurations 123

440000

450000

460000

470000

120000 130000 140000 150000 160000 170000
x

y

inhabitants

0.005

0.010

0.00

0.25

0.50

0.75

1.00
cov2

configuration 5

440000

450000

460000

470000

120000 130000 140000 150000 160000 170000
x

y

inhabitants

0.005

0.010

0.00

0.25

0.50

0.75

1.00
cov2

configuration 9

Figure 6.8 Showing the squared fraction of on time arrivals per postal code in
Utrecht, as observed for each configuration in a simulation of 5,000 hours. The area
of the node scales with the fraction of inhabitants in that node. Nodes that cannot be
reached from any base were not depicted.





7
Analysis of Smith’s rule in stochastic machine

scheduling

In a landmark paper from 1986, Kawaguchi and Kyan show that scheduling jobs
according to ratios weight over processing time - also known as Smith’s rule - has
a tight performance guarantee of (1+

√
2)/2 ≈ 1.207 for minimizing the weighted

sum of completion times in parallel machine scheduling. This chapter proves the
counter-intuitive result that the performance guarantee of Smith’s rule is not
better than 1.243 when processing times are exponentially distributed.

This chapter is based on:
C.J. Jagtenberg, U. Schwiegelshohn and M. Uetz. Analysis of Smith’s rule in
stochastic machine scheduling. Operations Research Letters 41:570–575, 2013.

7.1 Introduction

Minimizing the weighted sum of completion times on m parallel, identical ma-
chines is an archetypical problem in the theory of scheduling. In this problem,
we are given n jobs which have to be processed non-preemptively on m machines.
Each job j comes with a processing time pj and a weight wj , and when Cj denotes
job j’s completion time in a given schedule, the goal is to compute a schedule that
minimizes the total weighted completion time

∑
j wjCj . In the classical 3-field

notation for scheduling problems [47], the problem is denoted P | | ∑wjCj . For
a single machine, a simple exchange argument shows that scheduling the jobs in
order of nonincreasing ratios wj/pj gives the optimal schedule [107]. Greedily
scheduling the jobs in this order on parallel machines is known as WSPT rule,
weighted shortest processing times first, or Smith’s rule. On parallel identical
machines, WSPT is known to be a 1

2 (1 +
√

2)-approximation, and this bound
is tight [60]. The computational tractability of the problem was finally settled
by showing the existence of a PTAS [106], given that the problem is strongly
NP-complete if m is part of the input [42].

In this chapter, we consider the stochastic variant of the problem. It is as-
sumed that the processing time pj of a job j is not known in advance. It becomes
known upon completion of the job. Only the distribution of the corresponding
random variable Pj , or at least its expectation E [Pj ], is given beforehand. More
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specifically, we assume that the processing times of jobs are governed by indepen-
dent, exponentially distributed random variables. That is to say, each job comes
with a parameter λj > 0, and the probability that its processing time exceeds t
equals

P [Pj > t] = e−λjt .

We denote this by writing Pj ∼ exp(λj). Exponentially distributed processing
times somehow represent the cream of stochastic scheduling, in particular when
juxtaposing stochastic and deterministic scheduling: The exponential distribu-
tion is characterized by the memoryless property, that is,

P [Pj > s+ t |Pj > s] = P [Pj > t] .

So for any non-finished job it is irrelevant how much processing it has already re-
ceived. This is obviously a decisive difference to deterministic scheduling models,
and puts stochastic scheduling apart. Next to that, the model with exponentially
distributed processing times is attractive because it makes the stochastic model
analytically tractable.

In the stochastic setting with the objective to minimize E[
∑
wjCj ], the ana-

logue of Smith’s rule is greedily scheduling the jobs in order of non-increasing
ratios wj/E [Pj ], also called WSEPT (weighted shortest expected processing time
first) [92]. For a single machine, this is again optimal [101]. For parallel ma-
chines, it has been shown that the WSEPT rule achieves a performance bound of
(2 − 1/m) within the class of all non-anticipatory stochastic scheduling policies
[84]. Here, the considered metric is the expected performance of WSEPT relative
to that of an (unknown) optimal non-anticipatory scheduling policy. We refer to
[83] for the precise definition on non-anticipatory stochastic scheduling policies.
For the purpose of this chapter, it suffices to know that non-anticipatory stochas-
tic scheduling policies are, at any given time t, only allowed to use information
that is available at that time t. Obviously, this is also the case for WSEPT, as
the distributions Pj , thus particularly expected processing times E [Pj ] are even
available beforehand.

The major purpose of this chapter is to establish the first lower bound for the
(2− 1/m) performance guarantee of [84] for exponentially distributed processing
times. In fact, we are not aware of any result in this direction. The only result
known to us is an instance showing that WSEPT can miss the optimum by a
factor 3/2, but then for arbitrary processing time distributions [111, Ex. 3.5.12].
Our main result is the following.

Theorem 1. When scheduling jobs with exponentially distributed processing
times on parallel, identical machines in order to minimize E[

∑
wjCj ], the per-

formance guarantee of Smith’s rule is no better than α with α > 1.243.

To obtain our result, we carefully adapt and analyze the worst-case instance
of [60]. Note that the originality of this result lies in the fact that 1.243 >
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1
2 (1 +

√
2) ≈ 1.207. Hence, stochastic scheduling with exponentially distributed

processing times has worse worst-case instances than deterministic scheduling.
This result may seem counterintuitive, as Pinedo correctly claims the following.

“It is intuitively acceptable that a deterministic problem may be
NP-hard while its counterpart with exponentially distributed process-
ing times allows for a very simple policy to be optimal.” [92]

An example for this intuition is given by the problem to minimize the makespan
on parallel identical machines: While the problem is NP-hard in deterministic
scheduling, the version with exponentially distributed processing times is solved
optimally by the LEPT policy (longest expected processing times first) [116].
For the minsum objective considered here, the picture is as follows: For unit
weights where wj = 1, the SPT rule is optimal for minimizing

∑
j Cj in the

deterministic setting [92], and also SEPT (shortest expected processing time
first) is optimal for minimizing E[

∑
j Cj ] when processing times are exponentially

distributed [23]. For exponentially distributed processing times and weights that
are agreeable in the sense that there exists an ordering such that w1 ≥ · · · ≥ wn
and w1λ1 ≥ · · · ≥ wnλn, scheduling the jobs in order 1, 2, . . . , n is optimal [57],
while the corresponding deterministic problem is NP-hard, and in particular,
WSPT is not optimal.

That is to say, there are examples where the stochastic version with expo-
nentially distributed processing times is computationally easier than the deter-
ministic version of the same problem, under the realm of minimizing expected
performance. Our result shows that with arbitrary weights, the situation is dif-
ferent. Next to this qualitatively new insight, our analysis also sheds light on
phenomena in stochastic scheduling which are interesting on their own.

The chapter is organized as follows. In Section 7.2, we briefly review and
visualize the worst-case instance presented in [60]. We explain the intuition
behind the stochastified instance of [60] in Section 7.3. Then we derive four
technical lemmas about scheduling jobs with exponentially distributed processing
times, and finally prove the claimed lower bound for the performance of Smith’s
rule. We end with a discussion in Section 7.4.

7.2 Recap of the Kawaguchi & Kyan instance

We briefly summarize the instance from [60] that achieves the bound (1 +
√

2)/2
for deterministic scheduling, as the instance we propose is a stochastic variant
thereof. Let n be the number of jobs and m the number of machines. Denote the
processing time of job j by pj and its weight by wj . The (deterministic) instance
is then given by:

m = h+ b(1 +
√

2)hc,
n = mk + h,
pj = wj = 1/k for 1 ≤ j ≤ mk,
pj = wj = 1 +

√
2 for mk + 1 ≤ j ≤ mk + h .
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Here, h denotes an integer, and k is an integer that can be divided by b(1 +√
2)hc. Notice that wj/pj = 1 for all jobs j. This means that any list schedule

is in fact a WSPT schedule. Let us refer to the first mk jobs as short jobs, and
the remaining h jobs as long jobs.

h

b(1 +
√
2)hc

t = 1t ≈ 1.4

Figure 7.1 Two different WSPT schedules, one with optimal objective value v∗ on
the left, and one with suboptimal value v on the right, respectively.

Let v∗ be the total weighted completion time of a schedule where the long
jobs are processed first, and v be the total weighted completion time of a schedule
in which all short jobs are processed first. Figure 7.1 depicts these two schedules.
The schedule on the left of Figure 7.1 has objective value v∗. Here the last jobs
of length 1/k finish at time 1 + h/b(1 +

√
2)hc ≈ 1.4 (for large values of h and

k). The schedule on the right of Figure 7.1 has value v, and it finishes the last
jobs of length 1/k exactly at time 1. In Figure 7.1 we used h = 5 and k = 32.
It can be verified (see [60]) that v = (1 +

√
2)(2 +

√
2)h + (m/2)(1 + 1/k) and

v∗ = (1 +
√

2)2h + (m/2)(m/b(1 +
√

2)hc + 1/k). The ratio v/v∗ then tends to
(1 +

√
2)/2 as h→∞ and k →∞.

7.3 The stochastic Kawaguchi & Kyan instance

We find it particularly instructive to consider the stochastic analogue of the
instance presented by Kawaguchi and Kyan [60], even though other instances
might lead to comparable results. That said, we keep all parameters the same
as in Section 7.2, except that the processing times of long jobs will be Pj ∼
exp(1/(1 +

√
2)), and the processing times of short jobs will be Pj ∼ exp(k).

So the expected processing times of long and short jobs are identical to the
deterministic processing times in the worst case example in [60].

The crucial insight when stochastifying the instance by Kawaguchi and Kyan
is the following. The non-optimal schedule with value v is essentially identical to
the expected situation in stochastic scheduling. However, we will argue that the
optimal schedule with value v∗ will have a significantly different expected realiza-
tion with exponentially distributed processing times. We start by sketching the
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main differences between the deterministic schedules and the expected stochastic
schedules in Section 7.3.1. Then in Section 7.3.2 we derive some technical lemmas
about the behaviour of jobs with exponentially distributed processing times, and
finish the analysis in Section 7.3.3.

7.3.1 Intuition of the analysis

Suppose we start all h long jobs first and greedily fill up the remaining machines
with short jobs. As we will formally prove in Lemma 1, we expect the ith long
job to finish at time

ti =
∑i

j=1

1 +
√

2

h− j + 1
.

For a given finite number of machines, the schedule will look like depicted in
Figure 7.2. The crucial point is that the average expected time that machines

t < 1.4

Figure 7.2 Schedule with value v∗: all long jobs start at time 0, yet some of these
machines are expected to become available for processing short jobs.

finish processing short jobs will be smaller than in the deterministic case. This
happens because many long jobs finish much earlier, and the late finishing of few
long jobs does not matter for the short jobs. Hence, the overall contribution of
the short jobs will decrease when compared to the deterministic case, while the
contribution of long jobs remains exactly the same.

Suppose on the other hand that we first start all short jobs. The set of short
jobs is not likely to produce the ideal rectangle as it did in the deterministic case.
However, the gap between the time the first machine runs out of short jobs and
the time the last machine runs out of short jobs can be made arbitrarily small,
by letting k, the inverse of the expected processing time of short jobs, be large.
In this situation, the expected cost of the schedule is almost the same as the cost
in the deterministic case. This is illustrated in Figure 7.3.
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t = 1.0

Figure 7.3 Schedule with value v: long jobs scheduled only after short jobs, yet
expected to start at almost equal times.

In other words, in the stochastic setting the performance guarantee of WSEPT
deteriorates because the expected value for the optimal policy (long jobs first)
decreases in comparison to the deterministic case, while the expected value for
the suboptimal policy (short jobs first) remains almost the same.

7.3.2 Preliminaries for memoryless jobs

In order to formalize the idea from Section 7.3.1, we first state some technical
observations which are needed later in the analysis. Here, λ is an arbitrary
positive parameter. We denote by

Hn :=

n∑
i=1

1

i

the nth harmonic number, where we define H0 := 0. The first lemma gives an
estimate on expected job completion times for parallel jobs with Pj ∼ exp(λ).

Lemma 1. When scheduling in parallel h ≤ m jobs on m machines with i.i.d.
exponential processing times Pj ∼ exp(λ), the expected number of machines that
are idle at a given time t, denoted m(t), is bounded as follows,

m(t) ≥ (m− h) + b(1− e−λt)h c .

Proof. The first completion time is distributed as the minimum of h independent
exp(λ) distributions. This is an exp(hλ) distribution, hence it is expected at time
t1 = 1

hλ . After the first job completion, we have h− 1 jobs remaining. Since the
exponential distribution is memoryless, the next completion is expected a time

1
(h−1)λ later, so t2 = 1

hλ + 1
(h−1)λ . By continuing this argument we find that the
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ith job completion is expected at time

ti =

i∑
j=1

1

(h− j + 1)λ
=

1

λ

h∑
j=h−i+1

1

j
=

1

λ
(Hh − Hh−i) . (7.1)

We now use that Hi − ln(i) is positive and monotonically decreasing in i [63].
Hence we may conclude that

ti ≤
1

λ
(ln(h) − ln(h− i)) =

1

λ
ln

(
h

h− i

)
,

which yields

i ≥ (1− e−λti)h . (7.2)

Note that m(ti) = (m− h) + i, for i = 1, . . . , h, by definition. Hence, (7.2) yields

m(ti) ≥ (m− h) + (1− e−λti)h, (7.3)

for i = 1, 2 . . . , h. Together with the fact that m(t) is integer valued, (7.3) yields

m(t) ≥ (m− h) + b(1− e−tλ)h c

for all t ≥ 0.

Note that the last job is expected to finish at time Θ(log h)/λ. Nevertheless,
the average expected completion time of the jobs is 1/λ; see also Figure 7.2 for
an illustration.

Lemma 2. Let s ≤ t and consider k(t − s) jobs with i.i.d. processing times
Pj ∼ exp(k) and weights wj = 1/k, scheduled on a single machine from time s
on. Then for all ε > 0 there exists k large enough so that

E
[∑

j wjCj

]
≤
∫ t

s

x dx+ ε .

Proof. Assuming w.l.o.g. that 1
k |(t− s), we have expected job completion times

at times s+ 1/k, s+ 2/k, . . . , s+ k(t− s)/k = t. We therefore calculate rather
straightforwardly that E

[∑
j wjCj

]
= 1

2 (t2 − s2) + 1
2k (t− s), so for k ≥ t−s

2ε the
claim is true.

The next lemma is concerned with the expected total weighted completion
time of short jobs that succeed a set of long jobs.
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Lemma 3. Suppose we first schedule h i.i.d. long jobs with processing times
Pj ∼ exp(λ) on m machines, where h ≤ m. We then greedily schedule mk i.i.d.
short jobs, with processing times Pj ∼ exp(k) and weights wj = 1/k, where k is
large. Let vshort be the expected weighted sum of completion times of the short
jobs. Then for k large enough,

vshort ≤
∫ T ′

0

f(t) t dt,

where f(t) := (m−h)+(1−e−λt)h−1 and T ′ is defined so that
∫ T ′

0
f(t) dt = m.

Proof. First, define T as the average expected machine completion time for ma-
chines that process short jobs. We know that when scheduling the short jobs
greedily, the schedule is expected to look like illustrated in Figure 7.2.

We analyze a scheduling policy π that is inferior to greedy scheduling, that is,
it yields an expected value for the total weighted completion times of short jobs
vπshort ≥ vshort. The proof then follows by verifying the claimed upper bound
for vπshort.

We define π as follows: Let [i] be the ith machine that becomes available to
execute short jobs, t[i] be the expected time for that to happen, and for simplicity
of notation assume that i = [i]. We know that ti = 0 for i = 1, . . . ,m − h, and
tm−h+i =

∑i−1
`=0 1/((h− `)λ) for i = 1, . . . , h. Policy π schedules fixed sets of

jobs per machine, in the order in which they become available. More precisely,
on machine i, we schedule a fixed set Ji of k(T − ti) short jobs. By definition
of T as the average expected machine completion time for machines that process
short jobs, we will have run out of short jobs for all machines i with ti > T .
For these machines, we therefore redefine ti = T . Policy π is indeed inferior in
contrast to greedy scheduling, as it lacks the load balancing towards the end of
the schedule. That is, there is positive probability that a machine is left idle
although other machines have yet unscheduled jobs, which cannot happen when
scheduling the short jobs greedily. Yet note that, by definition, the expected
machine completion times equal T for all machines that process short jobs.

By Lemma 2, we know that under π it holds for the short jobs on machine i
that ∑

j∈Ji

wjCj ≤
∫ T

ti

t dt+ εi ,

for any εi > 0. Now we sum over all machines, where we let εi = 0 for all
machines i that become available while there are no more short jobs. We get

vπshort ≤
m∑
i=1

∫ T

ti

t dt+ εi =

∫ T

0

m(t)t dt+ ε , (7.4)

where m(t) is defined as the expected number of machines at time t that are
available for processing short jobs, and ε :=

∑
i εi.
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m(t)

f(t)

t1 t2 t3 T T ′

m− h

m− h+ 1

m− h+ 2

m− h− 1

m− h+ 3

Figure 7.4 Illustration of functions m(t), f(t), and values T and T ′.

Now f(t) = (m−h)+(1−e−λt)h−1, and Lemma 1 yields m(t) > f(t) for all
t ≥ 0. The functions f(t) and m(t) are illustrated in Figure 7.4. By definition of
T ′ we have m =

∫ T
0
m(t) dt =

∫ T ′
0
f(t) dt, which implies that the two grey areas

in Figure 7.4 are equal in size. Also note that m(t)− f(t) is nonnegative for all
t ≥ 0. Therefore,∫ T

0

(m(t)− f(t))t dt < T

∫ T

0

(m(t)− f(t)) dt

= T

∫ T ′

T

f(t) dt

<

∫ T ′

T

f(t)t dt .

Here, the first inequality follows from m(t) − f(t) ≥ 0, the equality from∫ T
0
m(t) dt =

∫ T ′
0
f(t) dt, and the last inequality from f(T ) ≥ 0 and f being

monotone non-decreasing. We conclude from the previous inequalities that there
exists some constant η > 0 so that∫ T

0

m(t)t dt + η ≤
∫ T ′

0

f(t)t dt . (7.5)

Therefore, by choosing ε ≤ η, we may conclude from (7.4) and (7.5), that

vπshort ≤
∫ T

0

m(t) t dt+ ε ≤
∫ T ′

0

f(t) t dt .

Intuitively, the expression
∫ T ′

0
f(t) t dt equals the total weighted completion

time for infinitesimally short jobs with total expected processing m, scheduled
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on “machines” with availability f(t). As m(t) ≥ f(t), the actual availability of
machines for short jobs is higher. We bound the contribution of the jobs that
are processed in the light grey area of Figure 7.4 by the contribution they would
have if they were processed in the dark grey area.

Finally, the next lemma makes a statement about the machine completion
times when scheduling a block of (short) jobs, as illustrated in Figure 7.3.

Lemma 4. Suppose we schedule mk i.i.d. short jobs with processing times Pj ∼
exp(k) greedily on m machines. Then the average expected machine completion
time equals 1, and for any δ > 0 there exists k large enough such that the earliest
expected machine completion time is at time t ≥ 1− δ.
Proof. The claim about the average expected machine completion time is clear,
because the total expected processing is m. For the second claim, consider the
first time, say t, that a machine runs out of jobs. We know from Lemma 1 that
the last machine that runs out of jobs is expected to be at time t +

∑m−1
i=1

1
i k .

For m large enough, we have
∑m−1
i=1

1
i k ≤ 1

k [ln(m) + γ]. Here,

γ := lim
i→∞

(Hi − ln i) ≈ 0.57721

denotes the Euler-Mascheroni constant [41]. Of course, the average expected
machine completion time must be less than the last expected machine completion
time. Therefore, we have 1 ≤ t +

∑m−1
i=1

1
ik ≤ t + 1

k [ln(m) + γ]. If we now let
k ≥ (ln(m) + γ)/δ, we get 1 ≤ t+ δ.

7.3.3 Lower bound on performance of Smith’s rule

Let v∗ denote the expected objective value E
[∑

j wj Cj

]
for the policy that

first schedules all long jobs. Similarly, let v denote the expected objective
value for the policy that starts long jobs only when there is no short job
left to be scheduled. Both policies are WSEPT, hence the ratio v/v∗ is a
lower bound for the approximation ratio of Smith’s rule in stochastic machine
scheduling with exponentially distributed processing times. We choose h
sufficiently large, and k, a multiple of b(1 +

√
2)hc, we may choose arbitrarily

large in comparison to h (i.e., k >> h). In fact, we can choose these two pa-
rameters in such a way that all our technical lemmas from Section 7.3.2 do apply.

The optimal policy, v∗. We split v∗ up into the contribution of long jobs
v∗long and the contribution of short jobs v∗short. So

v∗ = v∗long + v∗short .

The value v∗long: We start all h long jobs at time 0. Their expected completion
time is 1 +

√
2 each. Hence the contribution of the long jobs is simply given by

v∗long = h(1 +
√

2)2 , (7.6)
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which is the same as in the deterministic case.
The value v∗short: Just like in the proof of Lemma 3 denote by m(t) the

expected number of machines at time t that is available for processing short
jobs, and T be the average expected machine completion time for machines that
process short jobs. We now use Lemma 3 where

f(t) = (m− h) + (1− e−t/(1+
√

2))h− 1 .

Following the proof of Lemma 3, we need to compute a value T ′ ≥ T large enough
so that

∫ T ′
0
f(t) dt ≥ m. We have not attempted to solve this analytically, but

one can check numerically that for m = h+ b(1 +
√

2)hc and h→∞,

T ′ = 1.2933 (7.7)

suffices to process the short jobs when machine availabilities are governed by
function f(t) rather than the true valuem(t). Then v∗short, the expected weighted
sum of completion times for all mk short jobs, can be bounded using Lemma 3.
We thus find, for h and k sufficiently large,

v∗short ≤
∫ T ′

0

f(t)t dt . (7.8)

With (7.7) and (7.8) we can calculate

v∗short ≤ 2.266h− 0.836 . (7.9)

Combining (7.6) and (7.9) gives

v∗ = v∗long + v∗short ≤ (1 +
√

2)2h+ 2.266h− 0.836 . (7.10)

The worst case policy, v. Now we switch to the case where we first schedule
all the short jobs. Again split the objective value into the two parts contributed
by the short and long jobs, respectively,

v = vshort + vlong .

The value vshort: We have m machines working on mk jobs with processing
times Pj ∼ exp(k). According to Lemma 4, on average a machine is expected to
finish with these jobs at time 1, and for any δ > 0, we can find k large enough
so that no machine is expected to finish before time 1 − δ. Hence, the average
expected completion time of the set of short jobs on each machine is at least
(1− δ)/2. Therefore, for any ε > 0, there is k large enough so that, by choosing
ε = mδ,

vshort ≥ m/2 − ε/2 . (7.11)

The value vlong: Remember that the schedule is expected to look like depicted
in Figure 7.3. Using Lemma 4 again, we know that long jobs are expected to
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start no earlier than 1 − δ, for any δ > 0. So by assuming they all start at this
time, we get a lower bound for their completion times. If all long jobs start at
1−δ, the average expected completion time is 2−δ+

√
2. Multiplying this by the

weight and summing over all h long jobs, for any ε > 0 there is k large enough
so that

vlong ≥ (2 +
√

2) (1 +
√

2)h − ε/2 , (7.12)

by choosing δ = ε/(2h(1 +
√

2)). With (7.11) and (7.12) we now have

v = vshort + vlong ≥ m/2 + (2 +
√

2) (1 +
√

2)h − ε . (7.13)

The Performance Bound.
Finally, let α be the approximation ratio of Smith’s rule for exponentially dis-
tributed processing times. Then

α ≥ v

v∗
.

Remember that m = h + b(1 +
√

2)hc. Now for carefully chosen k >> h, and
taking h→∞, equations (7.10) and (7.13) give

v

v∗
≥ m/2 + (2 +

√
2) (1 +

√
2)h− ε

(1 +
√

2)2h+ 2.266h− 0.836
> 1.229 .

So we conclude that α > 1.229. Note that this is strictly larger than the
approximation ratio for WSPT in the the deterministic case, which is ≈ 1.207.

Optimizing the parameters.
What remains to be done is to optimize over the parameters of the instance
to improve the obtained lower bound. To that end, recall that the considered
instance has h long jobs and m = h + b(1 +

√
2)hc ≈ 3.4h machines, and

long jobs have processing times Pj ∼ exp( 1
1+
√

2
) ≈ exp(0.41). However, these

parameters are optimized for the deterministic instance. Taking slightly more
long jobs, namely by letting m = 2.3h, with somewhat shorter processing times,
namely Pj ∼ exp(0.56), we obtain a ratio of at least 1.2436, which finally proves
Theorem 1.

7.4 Discussion

For minimizing the weighted sum of completion times in parallel machine schedul-
ing, Smith’s rule is known to have a tight performance guarantee of (1+

√
2)/2 ≈

1.207. This chapter proved the first lower bound for the stochastic version of this
problem, when processing times are exponentially distributed. We showed that in
this case the performance guarantee of Smith’s rule is no better than 1.243. Note
that 1.243 > 1.207, hence, stochastic scheduling with exponentially distributed
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processing times has worse worst-case instances than deterministic scheduling.
This may be considered surprising since there are known examples for which a
stochastic scheduling problem with exponentially distributed processing times is
computationally easier than the deterministic version of the same problem. We
also found instances (not discussed in this chapter) - with comparable building
blocks and features - where WSPT is always optimal for the deterministic case,
while WSEPT is not necessarily optimal for the stochastic counterpart with expo-
nentially distributed processing times. The numerical calculations in this chapter
have been performed using Wolfram Mathematica.

Improvements in the ratio 1.243 might be possible. Yet, the upper bound
(2−1/m) seems out of reach. This leaves the question to improve the upper bound
on the performance guarantee for WSEPT; in that respect, it is interesting to note
that the analysis of [84] does not explicitly exploit the exponential distribution;
it is valid in more generality.
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Summary

In emergency situations where every second counts, the timely presence of an
ambulance can be a matter of life or death. This importance justifies research
to improve the logistics of Emergency Medical Services (EMS). This thesis in-
troduces several models of EMS processes, and displays a variety of applications
of Operations Research techniques to ambulance planning problems. Naturally,
our research is focused on reducing response times. We deal with various plan-
ning stages in the EMS process, aiming to use a given number of resources (e.g.,
vehicles or personnel) in either a fair or efficient way. Some classical problems
are viewed from a new angle, which leads to new theoretical insights as well as
practically applicable solutions. The main contribution of this dissertation lies in
the models and methods presented, verified by realistic case studies for a Dutch
ambulance provider.

The first part of this thesis deals with EMS dispatching: deciding which
ambulance to send to which incident. Many researchers and practitioners use the
‘closest idle’ policy without questioning it, but this is not necessarily optimal:
instead, we could choose an ambulance such that remaining idle vehicles are
in a good position with respect to expected incidents in the near future. In
Chapter 2 we find such alternative dispatch policies using two methods: a MDP-
based solution and a heuristic. The heuristic behaves similarly to the policy
obtained from our MDP, but is more scalable. We validate both policies by
simulating an urban EMS region and show a significant performance improvement
when compared to the closest idle method. This sheds new light on the popular
belief that the closest idle policy is near-optimal. Although we do not advise all
EMS managers to immediately discard the closest idle dispatch method, we do
show that the typical argument – that it would not lead to large improvements
in the fraction of late arrivals – should be changed.

While the displayed dispatch policies in Chapter 2 clearly outperform the
closest idle policy, the optimal policy remains unknown. Therefore, we continue in
Chapter 3 by providing a bound on the performance of an optimal dispatch policy.
This is done by introducing a benchmark model (referred to as the offline dispatch
model): deciding which ambulance to dispatch when all incidents are known in
advance. We show how to calculate the optimal offline dispatch decisions, and
the corresponding performance serves as a bound for any - including the optimal
- online policy. We perform a worst case analysis which shows that the so-called
competitive ratio of the dispatch problem is unbounded; that is, even an optimal
online dispatch algorithm can perform arbitrarily bad compared to the offline
solution. However, when we consider the average case, the gap between existing
solutions and the offline optimum turns out to be much smaller: a case study
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for a large ambulance provider in the Netherlands shows that the closest idle
policy obtains a fraction of late arrivals that is approximately 2.7 times that of
the optimal offline policy. What is perhaps most surprising is that our dispatch
heuristic from Chapter 2 manages to reduce this gap to approximately 1.9, i.e.,
it closes roughly half of the gap between ‘closest idle’ and the offline optimum.
This work constitutes the first quantification of the gap between online and offline
dispatch policies.

Chapter 4 considers dynamic ambulance repositioning: proactively relocating
idle vehicles in order to reduce response times. When an ambulance completes
service for a patient, we allow it to be sent to one of the existing base locations.
In order to compute where to send these idle vehicles, we propose a heuristic
that scales to large EMS regions with many vehicles. Simulations show that
this method significantly improves the fraction of late arrivals compared to the
scenario in which each vehicle always returns to its home base. Furthermore, not
only the performance at the response time threshold is improved, but the whole
distribution of response times is shifted to the left. As our method is intuitive and
easy to implement, it also serves as a suitable base for extensions. The practical
relevance of this heuristic was demonstrated by the implementation in a decision
support tool used by the EMS region Flevoland, the Netherlands.

Chapters 5 and 6 introduce several models to improve the fairness in am-
bulance logistics. Rather than simply maximizing the number of people served,
we consider the distribution over the different areas where people live. To that
end, we view ambulance optimization models from a social welfare perspective.
We analyze existing ambulance planning models and show that they tend to
maximize either the number of people served (called utilitarian social welfare)
or maximize the service to the person who is worst off (called egalitarian social
welfare). We propose a third option: the so-called Bernoulli-Nash social wel-
fare. In Chapter 5, a new facility location model is introduced. This allows
us to compute where to open ambulance bases and how to distribute vehicles
over those bases, such that the Bernoulli-Nash social welfare is maximized. In
several case studies we compare our Bernoulli-Nash optimal solution with the
often-used utilitarian optimum. In Chapter 6 we take a different approach: we
argue that classical ambulance planning models may have several near-optimal
solutions. These have a similar overall performance but differ on a smaller scale,
such as individual villages. We propose to avoid the ‘arbitrary’ choice in terms
of who gets coverage and who does not, by sharing time between several good
ambulance configurations. We formulate an optimization model that computes
the time shares such that, again, the Bernoulli-Nash social welfare is maximized.
In this chapter we use a combination of simulation and optimization.

Chapter 7 considers a stochastic machine scheduling problem: the scheduling
of jobs for which the processing times are not known in advance. Instead, the
processing times are governed by independent exponentially distributed random
variables. In particular, we analyze the performance of the Weighted Shortest
Expected Processing Times first (WSEPT) rule - also known as Smith’s rule -
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for minimizing the expected weighted sum of completion times. In this setting,
WSEPT has a known upper bound of (2 − 1/m), and in this chapter we prove
the first lower bound to be 1.243. This result is particularly surprising when
juxtaposed with the deterministic counterpart of this problem: there, Smith’s
rule is known to be a 1

2 (1+
√

2) – approximation. Note that 1.243 > 1
2 (1+

√
2) ≈

1.207, hence our result indicates that stochastic scheduling with exponentially
distributed processing times has worse worst-case instances than deterministic
scheduling.





Samenvatting

In noodsituaties waarbij elke seconde telt, kan het tijdig ter plaatse zijn van
een ambulance het verschil maken tussen leven en dood. Om die reden is het
belangrijk om te onderzoeken hoe de logistiek van medische eerste hulpdiensten
verbeterd kan worden. Dit proefschrift introduceert modellen voor verschillende
planningsfasen en processen in de ambulancezorg, met als doel de beschikbare
middelen zo efficiënt of eerlijk mogelijk te benutten. Verder laten we voorbeelden
zien van hoe Operations Research technieken kunnen worden toegepast op am-
bulancelogistiek, waarbij de focus ligt op het verbeteren van de responstijd. We
bekijken klassieke problemen vanuit een nieuwe hoek, wat leidt tot nieuwe theo-
retische inzichten en praktisch toepasbare oplossingen. De voornaamste bijdrage
van dit proefschrift ligt in de modellen en methoden die gepresenteerd worden,
geverifieerd door realistische case studies voor een Nederlandse ambulancedienst.

Het eerste deel van dit proefschrift gaat over de uitgifte van ambulances:
bepalen welke ambulance naar welk incident gestuurd wordt. Uitgifte is een re-
latief onderbelicht onderwerp in de literatuur, en veel onderzoekers gebruiken de
‘dichtstbijzijnde vrije wagen’ zonder hier bij stil te staan. Echter, als we onze
doelfunctie definiëren aan de hand van een normtijd waarbinnen een ambulance
ter plaatse moet zijn, kan er een betere prestatie worden geboekt wanneer we een
andere wagen dan de dichtstbijzijnde sturen: we kunnen er dan een kiezen zoda-
nig dat de overblijvende vrije wagens in een goede positie staan ten opzichte van
verwachte incidenten in de toekomst. In Hoofdstuk 2 geven we twee manieren
om zo een alternatief uitgiftebeleid te vinden: een Markov beslissingsprobleem
en een heuristiek. De heuristiek gedraagt zich vergelijkbaar met de oplossing van
het Markov beslissingsprobleem, maar schaalt beter. We valideren deze twee op-
lossingen door een dichtbevolkte ambulanceregio te simuleren en laten zien dat er
een behoorlijke prestatiewinst kan worden gerealiseerd vergeleken met het sturen
van de dichtstbijzijnde vrije wagen. Dit schijnt nieuw licht op de algemeen aange-
nomen stelling dat de dichtstbijzijnde vrije wagen een (bijna) optimale keuze is.
Hoewel we ambulancediensten niet adviseren om onmiddellijk ons uitgiftebeleid
in de praktijk over te nemen, laten we wel zien dat het veelgebruikte argument -
dat het niet zou leiden tot een grote verbetering in de fractie incidenten waarbij
men te laat komt - veranderd moet worden.

Hoewel de uitgifte regels die we in Hoofdstuk 2 afleiden duidelijk beter pres-
teren dan de ‘dichtstbijzijnde vrije wagen’ regel, blijft het optimum onbekend.
Daarom geven we in Hoofdstuk 3 een grens voor de prestatie van een optimaal
uitgiftebeleid. Dit doen we door een alternatief model te introduceren (het off-
line model): bepalen welke ambulance gestuurd moet worden als alle incidenten
van tevoren bekend zijn. We laten zien hoe we onder deze omstandigheden de
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optimale uitgifte keuzes kunnen maken, en de bijbehorende prestatie geldt als
een grens voor elk - inclusief het optimale - online uitgiftebeleid. We analyseren
het slechtst mogelijke geval, en laten zo zien dat de competitieve verhouding van
het uitgifteprobleem onbegrensd is; dat wil zeggen, zelfs een optimaal online uit-
giftebeleid kan het willekeurig slecht doen in vergelijking met de offline oplossing.
Echter, als we een gemiddeld geval beschouwen, blijkt het gat tussen bestaande
uitgifteregels en het offline optimum veel kleiner te zijn: een studie voor een
grote Nederlandse ambulancedienst laat zien dat het sturen van de dichtstbij-
zijnde vrije wagen ertoe leidt dat men 2.7 keer vaker te laat komt dan in het
optimale offline geval. Wat misschien nog het meest verrassend is, is dat onze
heuristiek uit Hoofdstuk 2 het gat tussen de ‘dichtstbijzijnde vrije’ en het offline
optimum grofweg halveert tot een factor 1.9. Dit is de eerste kwantificering van
het gat tussen online en offline uitgifteregels.

Hoofdstuk 4 beschouwt dynamisch ambulance management: het proactief
verplaatsen van vrije wagens met als doel een betere dekking van de regio te
realiseren. Wanneer een ambulance vrijkomt, staan we toe dat deze naar een
van de beschikbare standplaatsen wordt verplaatst. Om uit te rekenen waar deze
vrije wagens het beste heen kunnen, stellen we een heuristiek voor die schaalt tot
grote ambulancedienst met veel wagens. Simulatie laat zien dat onze methode
de fractie te laat gearriveerde ambulances significant vermindert ten opzichte van
een scenario waarin elke wagen altijd terugrijdt naar zijn eigen standplaats. Ver-
der blijkt dat niet alleen de prestatie op de normtijd verbetert, maar dat de hele
verdeling van responstijden naar links opschuift. Doordat onze methode intuïtief
en gemakkelijk te implementeren is, is deze ook geschikt als basis voor uitbrei-
dingen. De praktische relevantie van deze heuristiek blijkt uit de implementatie
in software gebruikt door GGD Flevoland.

Hoofdstukken 5 and 6 introduceren verschillende modellen die tot doel heb-
ben de eerlijkheid in ambulancelogistiek te verbeteren. In plaats van simpelweg
het aantal mensen dat op tijd geholpen kan worden te maximaliseren, bekijken
we ook de verdeling over de verschillende gebieden waar mensen wonen. Daar-
toe beschouwen we ambulance optimalisatiemodellen vanuit het perspectief van
sociale welvaart. We analyseren bestaande ambulance planningsmodellen en la-
ten zien dat deze typisch ofwel de utilistische, ofwel de maximin sociale welvaart
optimaliseren. Wij stellen een derde optie voor: de zogenaamde Bernoulli-Nash
sociale welvaart. In Hoofdstuk 5 wordt een nieuw locatiemodel geïntroduceerd.
Dit maakt het mogelijk om te berekenen waar standplaatsen geopend moeten
worden zodanig dat de Bernoulli-Nash sociale welvaart maximaal is. In ver-
schillende casussen vergelijken we de Bernoulli-Nash optimale oplossing met het
veelgebruikte utilistische optimum. In Hoofdstuk 6 gebruiken we een andere aan-
pak: we redeneren dat klassieke ambulance planningsmodellen vaak veel bijna-
optimale oplossingen hebben. Deze presteren gemiddeld genomen vergelijkbaar,
maar verschillen worden op kleinere schaal zichtbaar, zoals individuele dorpen of
wijken. We stellen voor om de schijnbaar willekeurige keuze ‘wie wordt er gedekt
en wie niet’ te vermijden door op verschillende tijden ambulances in een andere
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(goede) configuratie op te stellen. We formuleren een optimalisatiemodel dat de
tijdsverhouding tussen de verschillende configuraties bepaalt, zodat (wederom)
de Bernoulli-Nash sociale welvaart maximaal is. In dit hoofdstuk gebruiken we
een combinatie van simulatie en optimalisatie.

Hoofdstuk 7 gaat over een stochastisch machine roosterprobleem: het rooste-
ren van taken waarvoor de duur niet van tevoren bekend is. In plaats daarvan
wordt de duur van taken bepaald door onafhankelijke, exponentieel verdeelde
toevalsvariabelen. In het bijzonder analyseren we de prestatie van de Gewogen
Kortste Verwachte Duur Eerst (GKVDE) regel - ook bekend als Smith’s regel -
voor het minimaliseren van de gewogen som van tijden waarop taken voltooien.
In deze setting is bekend dat GKVDE een bovengrens heeft van (2-1/m), en in
dit hoofdstuk bewijzen we de eerste ondergrens: 1.243. Dit resultaat is verras-
send wanneer we het afzetten tegen de deterministische variant van het probleem:
daarvan is bekend dat Smith’s regel een 1

2 (1 +
√

2) – approximatie is. Merk op
dat 1.243 > 1

2 (1 +
√

2) ≈ 1.207, ons resultaat duidt er dus op dat stochastisch
roosteren met exponentieel verdeelde taakduren slechtere worst-case instanties
heeft dan deterministisch roosteren.
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