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Improved Competitive Guarantees for QoS Buffering

ABSTRACT
We consider a network providing Differentiated Services (Diffserv), which allow Internet Service
Providers (ISP’s) to offer different levels of Quality of Service (QoS) to different traffic streams.
We study two types of buffering policies that are used in network switches supporting QoS. In
the FIFO type, packets must be transmitted in the order they arrive. In the uniform bounded-
delay type, there is a maximum delay time associated with the switch and each packet must be
transmitted within this time, or otherwise it is dropped. In both models, the buffer space is
limited, and packets are lost when the buffer overflows. Each packet has an intrinsic value, and
the goal is to maximize the total value of transmitted packets. Our main contribution is an
algorithm for the FIFO model with arbitrary packet values that for the first time achieves a
competitive ratio better than 2, namely 2 - epsilon for a constant epsilon > 0. We also describe
an algorithm for the uniform bounded delay model which simulates our algorithm for the FIFO
model, and show that it achieves the same competitive ratio.
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Abstract

We consider a network providing Differentiated Services (Diffserv), which allow Internet Service Pro-
viders (ISP’s) to offer different levels of Quality of Service (QoS) to different traffic streams. We study two
types of buffering policies that are used in network switches supporting QoS. In the FIFO type, packets
must be transmitted in the order they arrive. In the uniform bounded-delay type, there is a maximum delay
time associated with the switch and each packet must be transmitted within this time, or otherwise it is
dropped. In both models, the buffer space is limited, and packets are lost when the buffer overflows. Each
packet has an intrinsic value, and the goal is to maximize the total value of transmitted packets. Our main
contribution is an algorithm for the FIFO model with arbitrary packet values that for the first time achieves
a competitive ratio better than 2, namely 2 − ε for a constant ε > 0. We also describe an algorithm for the
uniform bounded delay model which simulates our algorithm for the FIFO model, and show that it achieves
the same competitive ratio.

1 Introduction

Today’s prevalent Internet service model is the best-effort model (also known as the “send and pray” model).
This model does not permit users to obtain better service, no matter how critical their requirements are, and
no matter how much they may be willing to pay for better service. With the increased use of the Internet
for commercial purposes, such a model is not satisfactory any more. However, providing any form of stream
differentiation is infeasible in the core of the Internet.

Differentiated Services were proposed as a compromise solution for the Internet Quality of Service (QoS)
problem. In this approach each packet is assigned a predetermined QoS, thus aggregating traffic to a small num-
ber of classes [3]. Each class is forwarded using the same per-hop behavior at the routers, thereby simplifying
the processing and storage requirements. Over the past few years Differentiated Services has attracted a great
deal of research interest in the networking community [18, 6, 16, 13, 12, 5]. We abstract the DiffServ model as
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follows: packets of different QoS priority have distinct values and the system obtains the value of a packet that
reaches its destination.

To improve the network utilization, most Internet Service Providers (ISP) allow some under-provisioning of
the network bandwidth employing the policy known as statistical multiplexing. While statistical multiplexing
tends to be very cost-effective, it requires satisfactory solutions to the unavoidable events of overload. In this
paper we study such scenarios in the context of buffering. More specifically, we consider an output port of a
network switch with the following activities. At each time step, an arbitrary set of packets arrives, but only
one packet can be transmitted. A buffer management algorithm has to serve each packet online, i. e., without
knowledge of future arrivals. It performs two functions: selectively rejects and preempts packets, subject to
the buffer capacity constraint, and decides which packet to send. The goal is to maximize the total values of
packets transmitted.

We consider two types of buffer models. In the classical First-In-First-Out (FIFO) model packets can not
be sent out of order. Formally, for any two packets p, p′ sent at times t, t′, respectively, we have that if t′ > t,
then packet p has not arrived after packet p′. If packets arrive at the same time, we refer the order in which they
are processed by the buffer management algorithm, which receives them one by one. Most of today’s Internet
routers deploy the FIFO buffering policy. The second model we consider is the uniform bounded delay model.
This model is warranted by networks that guarantee the QoS parameter of end-to-end delay. Specifically, each
switch guarantees a prescribed allowed delay time. A packet must be transmitted within this time, else it is lost.
Note that in this model packets can be reordered. In both models the buffer size is fixed, so when too many
packets arrive, buffer overflow occurs and some packets must be discarded.

Giving a realistic model for Internet traffic is a major problem in itself. Network arrivals have often been
modeled as a Poisson process both for ease of simulation and analytic simplicity. Initial works on DiffServ have
focused on such simple probabilistic traffic models [11, 15]. However, recent examinations of Internet traffic
[14, 19] have challenged the validity of the Poisson model. Moreover, measurements of real traffic suggest the
existence of significant traffic variance (burstiness) over a wide range of time scales.

We analyze the performance of a buffer management algorithm by means of competitive analysis. Compet-
itive analysis, introduced by Sleator and Tarjan [17] (see also [4]), compares an on-line algorithm to an optimal
offline algorithm OPT, which knows the entire sequence of packet arrivals in advance. Denote the value earned
by an algorithm ALG on an input sequence σ by VALG(σ).

Definition 1.1 An online algorithm A is c-competitive iff for every sequence of packets σ, VOPT(σ) ≤ c·VA(σ).

An advantage of competitive analysis is that a uniform performance guarantee is provided over all input
instances, making it a natural choice for Internet traffic.

In [1] different non-preemptive policies are studied for the two distinct values model. Recently, this work
has been generalized to multiple packet values [2], where they also present a lower bound of

√
2 on the perfor-

mance of any online algorithm in the preemptive model. Analysis of preemptive queuing policies for arbitrary
packet values in the context of smoothing video streams appears in [10]. This paper establishes an impossi-
bility result, showing that no online algorithm can have a competitive ratio better than 5/4, and demonstrates
that the greedy algorithm is at least 4-competitive. In [7] the greedy algorithm has been shown to achieve the
competitive ratio of 2 in both FIFO and the bounded delay models. An analysis of the loss of an algorithm
appears in [8], where they present an algorithm with competitive ratio better than 2 for the case of two and
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exponential packet values. In [9] they study the case of two packet values and present a 1.3-competitive algo-
rithm. Our model is identical to that of [7]. The problem of whether the competitive ratio of 2 of the natural
greedy algorithm can be improved has been open for a long time and in this paper we solve it positively.

Our Results. The main contribution of this paper is an algorithm for the FIFO model for arbitrary packet
values that achieves a competitive ratio of 2− ε for a constant ε > 0. In particular, this algorithm accomplishes
a competitive ratio of 1.983 for a particular setting of parameters. This is the first upper bound below the bound
of 2 that was shown in [7]. We also show a lower bound of 1.419 on the performance of any online algorithm,
improving on [2], and a specific lower bound of φ ≈ 1.618 on the performance of our algorithm. Then we
describe an algorithm for the uniform bounded delay model that simulates our algorithm for the FIFO model,
and demonstrate that it achieves the same competitive ratio. In contrast to previous work (cf. [7]), we assume
that in the uniform bounded delay model the buffer size is fixed.

The rest of the paper is organized as follows. In Section 2 we define our model. The FIFO and the uniform
bounded delay models are studied in Section 3 and Section 4, respectively. Section 5 contains the concluding
remarks.

2 Model Description

We consider a QoS buffering system that is able to hold B packets. Time is slotted. At the beginning of a time
slot a set of packets (possibly empty) arrives and at the end of the time slot a packet is scheduled if any. The
buffer management algorithm has to decide at each step which of the packets to drop and which to transmit,
subject to the buffer capacity constraint. The value of packet p is denoted by v(p). The system obtains the
value of the packets it sends, and the aim of the buffer management algorithm is to maximize the total value of
transmitted packets.

We denote by A(t) the set of packets arriving at time slot t, by Q(t) the set of packets in the buffer after the
arrival phase at time slot t, and by ALG(t) the packet sent (or scheduled) at the end of time slot t if any by an
algorithm ALG. At any time slot t, |Q(t)| ≤ B and |ALG(t)| ≤ 1, whereas |A(t)| can be arbitrarily large. We
also denote by Q(t,≥ w) the subset of Q(t) of packets with value at least w.

As mentioned in the Introduction, we consider both FIFO buffers and uniform bounded delay buffers in this
paper. In the FIFO model, the packet transmitted at time t is always the first (oldest) packet in the buffer among
the packets in Q(t). In the D-uniform bounded delay model, there is a single fixed bound of D on the delay of
all packets.

3 FIFO Buffers

In this section we study the FIFO model. First we present the algorithm PG and analyze its performance. Then
we demonstrate some lower bounds.
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3.1 Algorithm PG

The main idea of the algorithm PG is to make proactive preemptions of low value packets when high value
packets arrive. The algorithm is similar to the one presented in [8], except that each high value packet can
preempt at most one low value packet. Intuitively, we try to decrease the delay that a high value packet suffers
due to low value packets preceding it in the FIFO order. A formal definition is given in Figure 1.

The β-Preemptive Greedy Algorithm.

1. When a packet p of value v(p) arrives, drop the first packet p′ in the FIFO order such that v(p′) ≤
v(p)/β, if any (p′ is preempted).

2. Accept p if there is free space in the buffer.

3. Otherwise, drop (reject) the packet p′ that has minimal value among p and the packets in the buffer.
If p′ 6= p, accept p (p pushes out p′).

Figure 1: Algorithm PG.

The parameter of PG is the preemption factor β. For sufficiently large value of β, PG performs like the
greedy algorithm and only drops packets in case of overflow. On the other hand, too small values of β can
cause excessive preemptions of packets and a large loss of value. Thus, we need to optimize the value of β in
order to achieve a balance between maximizing the current throughput and minimizing the potential future loss.

The following lemma is the key to showing a competitive ratio below 2. It demonstrates that if the buffer
contains a large number of “valuable” packets, then PG sends packets with non-negligible value. This property
does not hold for the greedy algorithm [7].

Lemma 3.1 If at time t, |Q(t,≥ w)| ≥ B/2 and the earliest packet from Q(t,≥ w) arrived before or at time
t − B/2 then the packet scheduled at the next time step has value at least w/β.

Proof: Let p be the first packet from Q(t,≥ w) in the FIFO order and let t′ ≤ t − B/2 be the arrival time of
p. Let X be the set of packets with value less than w/β that were in the buffer before p at time t′. We show that
no packet from X is present in the buffer at time t + 1. We have that |X| < B. At least B/2 packets are served
between t′ and t. All these packets preceded p since p is still in the buffer at time t. So at most B/2 packets
in X are not (yet) served at time t. However, at least B/2 packets with value greater than or equal to w have
arrived by time t and each of them preempts from the buffer the first packet in the FIFO order with value of at
most w/β, if any. This shows that all packets in X have been either served or dropped by time t.

In general, we want to assign the value of packets that OPT serves and PG drops to packets served by PG.
Note that the schedule of PG contains a sequence of packet rejections and preemptions. We will add structure
to this sequence and give a general assignment method based on overload intervals.

3.2 Overload Intervals

Before introducing a formal definition, we will give some intuition. Consider a time t at which a packet of value
α is rejected and α is the largest value among the packets that are rejected at this time. Note that all packets
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in the buffer at the end of time slot t have value at least α. Such an event defines an α-overloaded interval
I = [ts, tf ), which starts at time ts = t.

In principle, I ends at the last time at which a packet in Q(t) is scheduled (i.e. at time t+B − 1 or earlier).
However, in case at some time t′ > t a packet of value γ is rejected, γ is the largest value among the packets
that are rejected at this time, and a packet from Q(t) is still present in the buffer, we proceed as follows.

If γ = α, we extend I to include t′. In case γ > α, we start a new interval with a higher overload value.
Otherwise, if γ < α, a new interval begins when the first packet from Q(t′) \ Q(t) is eventually scheduled if
any. Otherwise, if all packets from Q(t′) \ Q(t) are preempted, we create a zero length interval I ′ = [tf , tf )

whose overload value is γ. Next we define the notion of overload intervals more formally.

OPT

PG

arrivals

I21Ioverload intervals

Figure 2: An example of overload intervals. Light packets have value 1, dark packets value β − ε, medium
packets value 2. The arrival graph should be interpreted as follows: B packets of value 1 arrive at time 1, 1
packet of value β − ε arrives at times 2, . . . , B − 1, etc. Note that I2 does not start until I1 is finished.

Definition 3.1 An α-overflow takes place when a packet of value α is rejected, where α is said to be the
overload value.

Definition 3.2 A packet p is said to be associated with interval [t, t′) if p arrived later than the packet scheduled
at time t − 1 if any and earlier than the packet scheduled at time t′ if any.

Intuitively, p is associated with the interval in which it is scheduled, or in which it would have been sched-
uled if it had not been dropped w.r.t. the FIFO order.

Definition 3.3 An interval I = [ts, tf ), with tf ≥ ts, is an α-overloaded interval if the maximum value of
a rejected packet associated with it is α, all packets served during I were present in the buffer in time of an
α-overflow, and I is a maximal such interval that does not overlap overload intervals with higher overload
values.

Thus, we construct overload intervals starting from the highest overload value and ending with the lowest
overload value. We note that only packets with value at least α are served during an α-overloaded interval.

Definition 3.4 A packet p belongs to an α-overloaded interval I = [ts, tf ) if p is associated with I and (i) p

is served during I, or (ii) p is rejected no earlier than the first and no later than the last α-overflow, or (iii) p
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is preempted and it arrived no earlier than the first and no later than the last packet that belongs to I that is
served or rejected.

Whenever an α-overloaded interval I is immediately followed by a γ-overloaded interval I ′ with γ > α,
we have that in the first time step of I′ a packet of value γ is rejected. This does not hold if γ < α. We give an
example in Figure 2.

The following observation states that overload intervals are well-defined.

Observation 1 Each rejected packet belongs to exactly one overload interval and overload intervals are dis-
joint.

Next we introduce some useful definitions related to an overload interval. A packet p transitively preempts
a packet p′ if p either preempts p′ or p preempts or pushes out another packet p′′, which transitively preempts
p′. A packet p replaces a packet p′ if (1) p transitively preempts p′ and (2) p is eventually scheduled. A packet
p directly replaces p′ if in the set of packets transitively preempted by p no other packet except p′ is preempted
(e.g. p may push out p′′ that preempts p′).

Definition 3.5 For an overload interval I let BELONG(I) denote the set of packets that belong to I. This set
consists of three distinct subsets:

• scheduled packets (PG(I)),

• preempted packets (PREEMPT(I)) and

• rejected packets (REJECT(I)).

Finally, denote by REPLACE(I) the set of packets that replace packets from PREEMPT(I). These packets are
either in PG(I) or are served later.

We divide the schedule of PG into maximal sequences of consecutive overload intervals of increasing and
then decreasing overload value.

Definition 3.6 An overload sequence S is a maximal sequence containing intervals I1 = [t1s, t
1
f ), I2 = [t2s, t

2
f ),

. . . , Ik = [tks , t
k
f ) with overload values w1, . . . , wk such that tif = ti+1

s for 1 ≤ i ≤ k − 1, wi < wi+1 for
1 ≤ i ≤ m − 1 and wi > wi+1 for m ≤ i ≤ k − 1, where k is the number of intervals in S and wm is the
maximal overload value among the intervals within S.

Ties are broken by associating an overload interval with the latest overload sequence. We will abbreviate
BELONG(Ii), PG(Ii), . . . by BELONGi, PGi, . . . We make the following observation, which follows from the
definition of an overload interval.

Observation 2 For 1 ≤ i ≤ k, all packets in REJECTi have value at most wi while all packets in PGi have
value at least wi.

3.3 Analysis of the PG Algorithm

In this section we will analyze the performance of the PG algorithm. We show that PG achieves a competitive
ratio of 2 − ε, where ε(β) > 0 is a constant depending only on β. Optimizing the value of β, we get that for
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β = 15 the competitive ratio of PG is close to 1.983, that is ε ≈ 0.017. The crux of the proof is to show that
when PG drops a packet of value say α that is scheduled by OPT, it schedules another packet of value α and an
additional packet with a non-negligible value, roughly α/β, which allows us to break the ratio of 2, achieved
by the greedy algorithm.

In the sequel we fix an input sequence σ. Let us denote by OPT and PG the set of packets scheduled by OPT

and PG, respectively. We also denote by DROP the set of packets scheduled by OPT and dropped by PG, that
is OPT \ PG. In a nutshell, we will construct a fractional assignment in which we will assign to packets in PG

the value VOPT(σ) so that each packet is assigned at most a 2 − ε fraction of its value. The general assignment
scheme is presented on Figure 3.

Main Assignment Routine(σ):

1. Assign the value of each packet from PG ∩ OPT to itself.

2. Assign the value of each preempted packet from DROP to the packet replacing it.

3. Consider all overload sequences starting from the earliest one and up to the latest one. Assign the
value of each rejected packet from DROP that belongs to the sequence under consideration using the
assignment routine for the overload sequence.

Figure 3: The main routine.

Before we describe the assignment routine for the overload sequence we need some definitions. Consider
an overload sequence S. We introduce the following notation:

OPTi = OPT ∩ BELONGi,

REJOPTi = OPT ∩ REJECTi,

PRMOPTi = OPT ∩ PREEMPTi

We write PG(S) = ∪k
i=1PGi and define OPT(S), REJOPT(S), and PRMOPT(S) analogously.

Definition 3.7 For 1 ≤ i ≤ k, let OUTi be the set of packets that have been replaced by packets outside S.

Clearly, OUTi ⊆ PREEMPTi. Two intervals Ii and Ij are called adjacent if either tif = tjs or tis = tjf . The next
observation will become important later.

Observation 3 For an interval Ii, if |PGi| + |OUTi| < B then Ii is adjacent to another interval Ij such that
wj > wi.

Suppose that the arrival time of the earliest packet in BELONG(S) is ta and let EARLY(S) = ∪t1
s
−1

t=ta PG(t) be
the set of packets sent between ta and time t1s. Intuitively, packets from EARLY(S) are packets outside S that
interact with packets from S and may be later assigned some value of packets from DROP(S).

Let PREVP(S) be the subset of Q(ta)\BELONG(S) containing packets preempted or pushed out by packets
from BELONG(S). The next lemma bounds the difference between the number of packets in OPT(S) and PG(S).

Lemma 3.2 For an overload sequence S the following holds: |OPT(S)| − |PG(S)| ≤ B + |OUT(S)| −
|PREVP(S)|.
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Proof: Let t′ be the last time during S at which a packet from BELONG(S) has been rejected. It must be the
case that tkf −t′ ≥ B−|OUT(S)| since at time t′ the buffer was full of packets from BELONG(S) and any packet
outside BELONG(S) can preempt at most one packet from BELONG(S). We argue that OPT has scheduled at
most t′ + 2B − t1s − |PREVP(S)| packets from BELONG(S). That is due to the fact that the earliest packet
from BELONG(S) arrived at or after time t1s − B + |PREVP(S)|. On the other hand, PG has scheduled at least
t′ + B − t1s − |OUT(S)| packets from BELONG(S), which yields the lemma.

Definition 3.8 A packet is available after executing the first two steps of the main assignment routine if it did
not directly replace a packet that OPT serves.

Note that an available packet might still have indirectly replaced a packet served by OPT. However, the fact
that it did not directly replace such a packet allows us to upper bound the value assigned to it in the first two
steps of the assignment routine. We will use this fact later.

The sequence assignment routine presented in Figure 4 assigns the value of all packets from REJOPT(S).

Sequence Assignment Routine(S):

1. For interval Ii s.t. 1 ≤ i ≤ k, assign the value of each of the |PGi \ OPTi| + |OUTi| most valuable
packets from REJOPTi to a packet in (PGi \ OPTi) ∪ REPLACEi.

2. Let UNASGi be the subset of REJOPTi containing packets that remained unassigned, UNASG(S) =

∪k
i=1UNASGi, and SMALL(S) be the subset of UNASG(S) containing the max(|UNASG(S)|−B/2, 0)

packets with the lowest value. Find a set EXTRA(S) of packets from (PG(S) \ PGm) ∪ EARLY(S) s.t.
|EXTRA(S)| = |SMALL(S)| and the value of the l-th largest packet in EXTRA(S) is at least as large as
that of the l-th largest packet in SMALL(S) divided by β. For each unavailable packet in EXTRA(S),
remove from it a 2

β fraction of its value (this value will be reassigned at the next step).

3. Assign the value of each pair of packets from SMALL(S) and UNASG(S) \ SMALL(S) to a pair of
available packets from PGm ∪ REPLACEm and the packet from EXTRA(S). Assign to these packets
also the value removed from the packet in EXTRA(S), if any. Do this in such a way that each packet
is assigned at most 1 − ε times its value.

4. Assign a 1 − 1/β fraction of the value of each packet from UNASG(S) that is not yet assigned to an
available packet in PGm ∪ REPLACEm that has not been assigned any value at Step 3 or the current
step of the assignment routine and a 1/β fraction of its value to some packet from PGm ∪ REPLACEm

that has not been assigned any value at Step 3 or the current step of this assignment routine (note that
this packet may have been assigned some value by the main routine).

Figure 4: The sequence assignment routine.

For the sake of analysis, we make some simplifying assumptions.

1. For any 1 ≤ i ≤ k, |REJOPTi| ≥ |PGi \ OPTi| + |OUTi|.

2. No packet from EXTRA(S) belongs to another overload sequence (the set EXTRA(S) will be defined
later).
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We show that the assignment routine is feasible under the assumptions (1) and (2). Then we derive an upper
bound on the value assigned to any packet in PG. Finally, we demonstrate how to relax these assumptions.

First we will use Lemma 3.1 to show that for each but the B/2 largest packets from UNASG(S), PG has
scheduled some extra packet with value that constitutes at least a 1/β fraction of its value. The following
crucial lemma explicitly constructs the set EXTRA(S) for the sequence assignment routine. Basically, this set
will consist of packets that PG served at times at which OPT served other (presumably more valuable) packets.

Lemma 3.3 For an overload sequence S, we can find a set EXTRA(S) of packets from (PG(S) \ PGm) ∪
EARLY(S) such that |EXTRA(S)| = |SMALL(S)| and the value of the l-th largest packet in EXTRA(S) is at
least as large as that of the l-th largest packet in SMALL(S) divided by β.

Proof: Recall that |SMALL(S)| = max(|UNASG(S)|−B/2, 0). To avoid trivialities, assume that |UNASG(S)| >

B/2 and let xi = |UNASGi|.
By assumption (1),

xi = |REJOPTi| − |PGi \ OPTi| − |OUTi| ≥ 0.

Thus,

|OPTi \ PRMOPTi| = |REJOPTi| + |OPTi ∩ PGi|
= xi + |PGi \ OPTi| + |OPTi ∩ PGi| + |OUTi|
= xi + |PGi| + |OUTi|.

Let PREDOPTi be the set of packets from OPTi \ PRMOPTi that have been scheduled by OPT before time tis.
We must have |PREDOPTi| ≥ xi since the buffer of PG is full of packets from ∪k

j=min(i,m)BELONGj at time tis.
If it is not the case, then we obtain that the schedule of OPT is infeasible using an argument similar to that of
Lemma 3.2.

We also claim that |PREDOPTm| ≥ ∑k
i=m xi and PREDOPTm contains at least

∑k
i=m+1 xi packets with

value greater than or equal to wm. Otherwise, the schedule of OPT is either infeasible or can be improved
by switching a packet p ∈ ∪k

i=m+1(OPTi \ PGi) and a packet p′ ∈ BELONGm \ OPTm s.t. v(p) < wm and
v(p′) ≥ wm.

Let MAXUPj be the set of the xj most valuable packets from PREDOPTj for 1 ≤ j < m. It must be the
case that the value of the l-th largest packet in MAXUPj is at least as large as that of the l-th largest packet in
UNASGj for 1 ≤ l ≤ |UNASGj |. That is due to the fact that by Observation 2 the xj least valuable packets from
REJOPTj are also the xj least valuable packets from OPTj \ PRMOPTj .

Now for j starting from k and down to m − 1, let MAXDOWNj be the set containing arbitrary xj packets
from PREDOPTm \ (∪j−1

i=m+1MAXDOWNi) with value at least wm. (Recall that PREDOPTm contains at least
∑k

i=m+1 xi packets with value greater than or equal to wm.) Finally, let MAXUPm be the set of the xm most
valuable packets from PREDOPTm \ (∪k

i=m+1MAXDOWNi). Clearly, any packet in MAXDOWNj is greater than
any packet in REJECTj for m + 1 ≤ j < k. Similarly to the case of j < m, we obtain that the value
of the l-th largest packet in MAXUPm is at least as large as that of the l-th largest packet in UNASGm for
1 ≤ l ≤ |UNASGm|.

Let MAXP(S) = (∪m
i=1MAXUPi)∪ (∪k

i=m+1MAXDOWNi) and let ti be the time at which OPT schedules the
i-th packet from MAXP(S). We also denote by MAXP(S, ti) the set of packets from MAXP(S) that arrived by
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time ti. For B/2 + 1 ≤ n ≤ |UNASG(S)|, let LARGE(tn) be the set of B/2 largest packets in MAXP(S, ti). We
define

EXTRA(S) = ∪|UNASG(S)|
i=B/2+1

PG(ti).

That is, the set EXTRA(S) consists of the packets served by PG while OPT served packets from the PREDOPT

sets.

We show that at time ti, PG schedules a packet with value of at least w′/β, where w′ is the minimal value
among packets in LARGE(ti). If all packets from LARGE(ti) are present in the buffer at time ti then we are
done by Lemma 3.1. Note that the earliest packet from LARGE(ti) arrived before or at time ti −B/2 since OPT

schedules all of them by time ti. In case a packet p from LARGE(ti) has been dropped, then by the definition of
PG and the construction of the intervals, PG schedules at this time a packet that has value at least v(p) > w ′/β.

Observe that the last packet from EXTRA(S) is sent earlier than tm
s and therefore EXTRA(S) ∩ PGm = ∅.

Therefore, the set defined above satisfies the condition of the lemma.

Now we are ready to state the main theorems.

Theorem 3.4 The mapping routine is feasible.

Proof: If all assignments are done at Step 1 or Step 2 of the main assignment routine then we are done.

Else, consider an overload sequence S that is processed by the sequence assignment routine. By Lemma
3.2, we obtain that the number of unassigned packets is bounded from above by:

|UNASG(S)| = |REJOPT(S)| + |PG(S) ∩ OPT(S)| − |PG(S)| − |OUT(S)|
= |OPT(S)| − |PRMOPT(S)| − |PG(S)| − |OUT(S)|
≤ B − |PRMOPT(S)| − |PREVP(S)|. (1)

Observe that each packet p that replaces a packet p′ with value w can be assigned a value of w if p′ ∈ OPT.
In addition, if p′ belongs to another overload sequence S ′ then p can be assigned an extra value of w at Step 3

or Step 4 of the sequence assignment routine.

Remember that PGREPm = PGm ∪ REPLACEm. Let ASG1 be the subset of PGm ∪ REPLACEm containing
the unavailable packets after the first two steps of the main assignment routine. By definition, every such packet
directly replaced a packet from OPT. We show that all packets directly replaced by packets from ASG1 belong
to PRMOPT(S) ∪ PREVP(S). Consider such a packet p. If p is directly preempted by a packet from ASG1 then
we are done. Else, we have that p is preempted by a packet p′, which is pushed out (directly or indirectly) by
a packet from ASG1. In this case, by the overload sequence construction, p′ must belong to S, and therefore p

belongs to PRMOPT(S) ∪ PREVP(S). Thus,

|ASG1| ≤ |PRMOPT(S)| + |PREVP(S)|.

We denote by ASG2 the subset of PGm∪ REPLACEm containing packets that have been assigned some value
at Step 3 of the sequence assignment routine. We have

|ASG2| = 2max(|UNASG(S)| − B/2, 0).
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Finally, let ASG3 and ASG4 be the subsets of PGm ∪ REPLACEm containing packets that have been assigned
at Step 4 of the sequence assignment routine a 1 − 1/β and a 1/β fraction of the value of a packet from
UNASG(S), respectively. Then

|ASG3| = |ASG4| = |UNASG(S)| − 2max(|UNASG(S)| − B/2, 0).

Now we will show that the assignment is feasible. By (1), we have that

|ASG1| + |ASG2| + |ASG3| ≤ B

while Observation 3 implies that |PGm ∪ REPLACEm| ≥ B. Finally,

|ASG4| ≤ B − |ASG2| − |ASG3|,

which follows by case analysis. This implies that during the sequence assignment routine we can always find
the packets that we need.

Theorem 3.5 Any packet from PG is assigned at most a 2− ε fraction of its value, where ε(β) > 0 is a constant
depending on β.

Proof: If all assignments are done at Step 1 or Step 2 of the main assignment routine then obviously no packet
is assigned more than a 1 + 1/(β − 1) fraction of its value. That is due to the fact that each packet of value w

may either preempt a packet of value at most w/β or push out another packet p′, of value less than w, replacing
the packet(s) transitively preempted by p′.

Next we will derive the ratio f that is used at Step 3 of the sequence assignment routine. Consider a
pair of packets p1 ∈ SMALL(S), p2 ∈ (UNASG(S) \ SMALL(S)) and a pair of packets p3, p4 from PGm ∪
OUTm. Let p5 ∈ EXTRA(S) be the extra packet used in the assignment. Note that v(p1) ≤ v(p2) ≤ wm,
min(v(p3), v(p4)) ≥ wm and v(p5) ≥ v(p1)/β. Let also v(p1) = w = wm − δ. The ratio f that accounts for
the value of the relevant packets is as follows:

f =
v(p1) + v(p2) + v(p5) · 2

β

v(p3) + v(p4) + v(p5)
≤

2wm − δ + 2w
β2

2wm + w
β

.

In case δ ≥ wm

β , we have that

f <
2wm − wm

β + (1 − 1
β )2wm

β2

2wm
=

2 − 1
β + 2(β−1)

β3

2
.

If δ < wm

β then

f <
2wm + (1 − 1

β )2wm

β2

2wm + (1 − 1
β )wm

β

=
2 + 2(β−1)

β3

2 + β(β−1)
β3

for β > 2. Thus, we obtain that

f = max





2 − 1
β + 2(β−1)

β3

2
,
2 + 2(β−1)

β3

2 + β(β−1)
β3



 .
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At this point we can compute the overall ratio. Observe that any packet in ASG1 and BELONG(S)\ PGREPm

can be assigned at most a 1+ 2
β−1 + 1

β fraction of its value, where a fraction of 1
β is due to Step 4 of the sequence

assignment routine. By the construction, all packets in ASG2 and ASG3 are available. Thus any packet in ASG2

and ASG3 can be assigned at most a 1 + f + 2
β(β−1) and a 2 − 1

β + 2
β(β−1) fraction of its value, respectively.

Hence, we obtain that no packet is assigned more than a 2 − ε fraction of its value, where

ε(β) = 2 − min
β

max

(

1 +
2

β − 1
+

1

β
, 1 + f +

2

β(β − 1)
, 2 − 1

β
+

2

β(β − 1)

)

.

Optimizing the value of β, we get that for β = 15 the competitive ratio of PG is close to 1.983.

Now let us go back to the assumption (1), that is xi = |REJOPTi| − (|PGi \ OPTi| + |OUTi|) ≥ 0. We argue
that there exist two indices l ≤ m and r ≥ m s.t. xi ≥ 0 for l ≤ i ≤ r and xi ≤ 0 for 1 ≤ i < l or l < i ≤ k.
In this case we can restrict our analysis to the subsequence of S containing the intervals Il, . . . , Ir.

Assume towards a contradiction that there exist two indices i, j s.t. i < j ≤ m or i > j ≥ m, xi > 0 and
xj < 0. Then there exist a packet p ∈ OPTi and a packet p′ ∈ PGj \ OPTj s.t. v(p′) > v(p). We obtain that the
schedule of OPT can be improved by switching p and p′.

It remains to consider the assumption (2), that is no packet from EXTRA(S) belongs to another overload
sequence S′. In this case we sharp the bound of Lemma 3.2 applied to both sequences.

Lemma 3.6 For any two consecutive overload sequences S ′ and S the following holds: |OPT(S)|+|OPT(S ′)|−
|PG(S)| − |PG(S′)| ≤ 2B + |OUT(S)| − |PREVP(S)| − |PREVP(S ′)| − |EXTRA(S) ∩ BELONG(S ′)|.

Proof: According to the proof of Lemma 3.2, tmf − tl ≥ B − |OUT(S)| where tl is the last time during S at
which a packet from BELONG(S) has been rejected. Let z = |EXTRA(S) ∩ BELONG(S ′)|. We argue that OPT

has scheduled at most tl + 2B − t′1s − |PREVP(S′)| packets from BELONG(S) ∪ BELONG(S ′). That is due to
the fact that the earliest packet from BELONG(S ′) arrived at or after time t′1s − B + |PREVP(S′)|. Observe that
between time t′1s and time tkf at most B − z − |PREVP(S)| packets outside of BELONG(S)∪ BELONG(S ′) have

been scheduled by PG. Hence, PG has scheduled at least tl + z + |PREVP(S)| − t′1s − |OUT(S)| packets from
BELONG(S) ∪ BELONG(S ′), which yields the lemma.

Using Lemma 3.6, we can extend our analysis to any number consecutive overload sequences without
affecting the resulting ratio since we “gain” |EXTRA(S) ∩ BELONG(S ′)| additional packets that are available
for mapping.

3.4 Lower Bounds

In this section we will show a specific lower bound of φ ≈ 1.618 on the performance of the PG algorithm for
any choice of the parameter β and a general lower bound of 1.419 on the performance of any online algorithm.
The latter bound slightly improves the bound of

√
2 ≈ 1.414 obtained in [2].

Theorem 3.7 The PG algorithm has a competitive ratio of at least φ.

Proof: Suppose that the buffer is empty at time t = 0 and consider the following scenarios. In the first scenario
at time t = 0, B packets with values 1, β, . . . , βB arrive one by one. The PG algorithm preempts all of them
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but the last packet while OPT schedules all the packets. In this case the ratio between the value of OPT and that
of PG is close to β/(β − 1), for sufficiently large B.

In the second scenario, at time t = 0, a burst of B packets of value 1 + ε arrives. Then we have k phases,
each of length B. The i-th phase takes place during [B · (i− 1), . . . , (B · i)− 1]. In every time slot throughout
i-th phase, one packet of value βi + ε arrives. Finally, at time t = Bk, a burst of B packets of value βk + ε

arrives. The PG algorithm schedules all but the last B packets of value βk + ε. On the other hand, OPT sends
all but the first B packets of value 1 + ε. Hence, the ratio between the value of OPT and PG is nearly 2 − 1/β

for sufficiently large k.

To optimize the lower bound, i.e., maximize min(β/(β − 1), 2 − 1/β), we equate both of these ratios:
β/(β − 1) = 2 − 1/β. We get that β = 3+

√
5

2 = φ + 1 and thus PG is at least φ-competitive.

Now let us turn to a general lower bound. Define v∗ =
3
√

19 + 3
√

33 and R = (19 − 3
√

33)(v∗)2/96 +

v∗/6 + 2/3 ≈ 1.419.

Theorem 3.8 Any online algorithm ALG has a competitive ratio of at least R.

Proof: Suppose that ALG maintains a competitive ratio less than R and let v = v∗/3+4/(3v∗)+4/3 ≈ 2.839.
We define a sequence of packets as follows. At time t = 1, B packets with value 1 arrive. At each time 2, . . . , l1,
a packet of value v arrives, where t + l1 is the time at which ALG serves the first packet of value v (i.e. the
time at which there remain no packets of value 1). Depending on l1, the sequence either stops at this point or
continues with a new phase.

Basically, at the start of phase i, B packets of value vi−1 arrive. During the phase, one packet of value vi

arrives at each time step until ALG serves one of them. This is the end of the phase. If the sequence continues
until phase n, then in phase n only B packets of value vn−1 arrive. Let us denote the length of phase i by li for
i = 1, . . . , n − 1 and define si =

∑i
j=1(ljv

j−1) for i = 1, . . . , n.

If the sequence stops during phase i < n, then ALG earns l1 + l2v + l3v
2 + . . . + liv

i−1 + liv
i = si + liv

i

while OPT can earn at least l1v + l2v
2 + . . .+(li−1 +B)vi−1 + liv

i = v · si +Bvi−1. The implied competitive
ratio is (v · si + Bvi−1)/(si + liv

i). We only stop the sequence in this phase if this ratio is at least R, which
depends on li. We now determine the value of li for which the ratio is exactly R. Note that liv

i = (si−si−1) ·v.
We have that (v · si + Bvi−1)/(si + liv

i) = R implies

si =
vRsi−1 + Bvi−1

R(v + 1) − v
, s0 = 0 ⇒ si =

vi − ( Rv
R(v+1)−v )i

(R− 1)v2
B.

It can be seen that si/vi → B/(v2(R− 1)) for i → ∞, since R/(R(v + 1) − v) < 1 for R > 1.

Thus, if under ALG the length of phase i is less than li, the sequence stops and the ratio is proved. Otherwise,
if ALG continues until phase n, it earns l1 + l2v + l3v

2 + . . . + lnvn−1 + B · vn = sn + Bvn whereas OPT can
earn at least l1v + l2v

2 + . . . + lnvn + B · vn = v · sn + Bvn. The implied ratio is

vsn + Bvn

sn + Bvn
=

v sn

vn
+ B

sn

vn
+ B

→
v

v2(R−1)
+ 1

1
v2(R−1)

+ 1
=

v + v2(R− 1)

1 + v2(R− 1)
= R.
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4 Uniform Bounded Delay Buffers

In this section we consider the uniform bounded delay model. We show that the value gained by OPT in the
B-uniform bounded delay model equals to that of OPT in the FIFO model. Moreover, we demonstrate that OPT

does not need a buffer with capacity greater than B. Let us denote by V M
A (σ) the value gained by the algorithm

A in the model M (either FIFO or uniform bounded delay (UBD)). A similar claim has been made in [7].

Lemma 4.1 For any input sequence σ, the value of OPT in the B-uniform bounded delay model with buffer
of infinite capacity equals the value of OPT in the FIFO model with buffer of capacity B, that is V UBD

OPT (σ) =

V FIFO
OPT (σ).

Proof: We argue that any feasible schedule in the uniform bounded delay model can be transformed to an
equivalent feasible schedule in the FIFO model in which the same set of packets is sent. Assume wlog that OPT

in the bounded model schedules all packets that are accepted into the buffer. If it is not the case, one can admit
only packets that are eventually sent without affecting the value of the solution. We claim that at any time the
buffer of OPT contains at most B packets. Otherwise, the delay of some packet must be greater than B and it
has to be dropped. That contradicts to our assumption. The further transformation is done by swapping packets
so that the FIFO order is maintained. Note that the FIFO order coincides with the Earliest Deadline First (EDF)
order and such a swapping is always possible.

Now consider the algorithm SPG in the B-uniform bounded delay model that simulates the PG algorithm in
the FIFO model, that is accepts, drops and sends the same packets.

Theorem 4.2 The competitive ratio of SPG in the B-uniform bounded delay model equals to that of PG in the
FIFO model.

Proof: Suppose that PG is c-competitive in the FIFO model and fix an input sequence σ. By our assumption, c·
V FIFO

PG (σ) ≥ V FIFO
OPT (σ). Lemma 4.1 implies that V UBD

OPT (σ) = V FIFO
OPT (σ). Clearly, V UBD

SPG (σ) = V FIFO
PG (σ).

Therefore, we obtain that c · V UBD
SPG (σ) ≥ V UBD

OPT (σ), which establishes the theorem.

5 Conclusion

In this paper we study QoS buffering in the FIFO and uniform bounded delay models. Our main results are
algorithms in both models for arbitrary packet values that for the first time achieve a competitive ratio strictly
better than 2. One of the interesting future research directions is to close a significant gap between the lower
and upper bounds. Another open problem is whether we can break the competitive ratio of 2 in the variable
bounded delay model, where the delay is specified individually per each packet.
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