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Abstract

A collection T of k unrooted phylogenetic trees on different leaf sets
is said to be strictly compatible or in agreement if there exists a tree T
such that each tree in T can be obtained from T by deleting leaves and
suppressing degree-2 vertices. The problem of determining if a set of
unrooted trees is in agreement has been proved NP-hard in 1992. Here,
we show that an f(k) · n algorithm exists, for some computable function
f of k, proving that strict compatibility of unrooted phylogenetic trees is
fixed-parameter tractable with respect to the number k of trees. Designing
a practical FPT algorithm remains an open problem.
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1 Introduction

Phylogenetics is the research area that aims at reconstructing evolutionary his-
tories from available data about present-day taxonomic units, usually called
taxa. If X is a finite set of taxa, then an (unrooted) phylogenetic tree on X is
a tree that has no degree-2 vertices and in which the leaves are bijectively la-
belled by the elements of the set X. The internal vertices of a phylogenetic tree
model the divergence of lineages. A phylogenetic tree is said to be binary if each
internal vertex has degree three, hence modelling the divergence of one lineage
into two (sub)lineages. Non-binary phylogenetic trees, on the other hand, may
have vertices of degree higher than three, which are called polytomies. There
are two different interpretations of polytomies. When a polytomy is used to
model uncertainty in the order of divergence events, we call it a soft polytomy,
while polytomies that model simultaneous divergence of one lineage into three
or more (sub)lineages are called hard polytomies.

When phylogenetic trees on several different, but overlapping, sets of taxa are
available, a natural question to ask is whether there exists a single phylogenetic
tree on the set X of all taxa that “agrees” with each of the input trees. The
notion of “agreement” here depends on whether the polytomies of the input trees
are assumed to be hard or soft. For the case of soft polytomies, one says that
a set T of phylogenetic trees is compatible if there exists a phylogenetic tree T
on X such that each tree in T can be obtained from a subtree of T by contracting
edges. For the case of hard polytomies, one says that a set T of phylogenetic
trees is in agreement or strictly compatible if there exists a phylogenetic tree T
such that each tree in T can be obtained from a subtree of T by suppressing
degree-2 vertices.

For binary input trees, the notions of compatibility and strict compatibility
coincide. Unfortunately, it was shown that deciding whether a given set of bi-
nary phylogenetic trees is compatible (or, equivalently, strictly compatible) is
NP-complete, even if each input tree contains exactly four taxa [12]. On the pos-
itive side, the compatibility problem was shown to be fixed-parameter tractable
(FPT) in the number of input trees (not necessarily binary) [4]. However, prior
to this article, it was not known whether it is fixed-parameter tractable to decide
if a given set of non-binary trees is strictly compatible.

Here, we answer this question affirmatively, showing that there exists an
algorithm with running time f(k) · |X| that decides whether a given set of k
non-binary phylogenetic trees is strictly compatible, with X the union of the
taxon sets of the input trees. We do so by formulating this problem in monadic
second order logic (MSOL) on a graph of which the treewidth is bounded by k,
a (non-trivial) extension of the approach by Bryant and Lagergren for the case
of (non-strict) compatibility [4].

Our approach can also be extended to a more general setting where the input
trees are allowed to have both hard as well as soft polytomies. Such situations
occur for example in practical applications in biology [7, 9–11].

We note that the problem becomes polynomial-time solvable, both for com-
patibility as well as for strict compatibility, when the input trees are rooted [1,8]
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(or all contain some common taxon). However, in practical applications it is
not always possible to identify the root locations, e.g. due to a lack of data [6].
Hence, the unrooted variant is equally important.

2 Preliminaries

In this section, we give some preliminary definitions that are used throughout
this paper. An unrooted phylogenetic tree T consists of vertices connected by
edges, in which any two vertices are connected by exactly one path and with
no degree-2 vertex. A rooted phylogenetic tree is defined similarly, except that
it has exactly one vertex, called the root of the tree, that can have degree two.
Leaves, defined as vertices with degree one, are labeled by the label set L(T ),
while other vertices, called internal vertices, are usually not labelled.

Given an unrooted phylogenetic tree T and a subset Y ⊆ L(T ), we denote
with T |Y the tree obtained from the minimal subgraph of T connecting Y when
suppressing vertices of degree two. We say that T |Y is the subtree of T induced
by Y . Induced subtrees are defined in the same way for rooted trees, except
that the root of T |Y becomes the vertex in the minimal connecting subgraph
that is closest to the root of T , and we suppress all degree-2 vertices except the
new root.

Given a rooted tree T and a set of three labels {u, v, w} in L(T ), T |{u,v,w}
can be any of the three possible rooted binary trees on {u, v, w} or the unique
non-binary tree on {u, v, w}. The binary trees on {u, v, w} are called triplets and
are denoted respectively by uv|w, uw|v and wv|u, depending on the unique non-
trivial cluster in T |{u,v,w} (respectively {u, v}, {u,w}, and {v, w}). Representing
rooted trees in Newick notation, we say that T displays the triplet uv|w if
T |{u,v,w} = ((u, v), w), while it displays the fan (u, v, w) if T |{u,v,w} = (u, v, w).

Let T = {T1, T2, . . . , Tk} be a collection of strictly compatible, unrooted
phylogenetic trees, not necessarily on the same taxon set. The display graph G
for T is obtained from the disjoint graph union of all trees in T by identifying
vertices with the same label. We denote by RG the vertex-edge incidence relation
in G.

3 Fixed-parameter tractability of Agreement

We say that a collection of phylogenetic trees T = {T1, T2, . . . , Tk} is strictly
compatible if there exists a phylogenetic tree T such that for each tree Ti ∈ T
we have that T |L(Ti) = Ti.

The problem we consider in this paper is thus the following:

Agreement of unrooted phylogenetic trees
Instance: A set of unrooted phylogenetic trees T = {T1, T2, . . . , Tk}.
Parameter: The number of trees k.
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Question: Does there exist an unrooted phylogenetic tree T such that for each
tree Ti ∈ T we have that T |L(Ti) = Ti?

Recall that the Agreement problem is polynomial for a set of rooted phylo-
genetic trees [8].

Theorem 1 Let T = {T1, T2, . . . , Tk} be a collection of strictly compatible,
unrooted phylogenetic trees, not necessarily on the same taxon set. The display
graph of T has treewidth at most k.

Proof: Theorem 1 in [4] states that, if T is compatible, then the display graph
of T has treewidth at most k. Since strict compatibility implies compatibility,
the theorem follows. �

To root an (unrooted) phylogenetic tree T on an edge e = {u, v} consists in
first creating a new node w and two new edges {w, u} and {w, v}, then deleting
the edge e, and finally defining w as the root of T .

Proposition 1 A collection of unrooted phylogenetic trees T = {T1, T2, . . . , Tk}
is strictly compatible if and only if each tree Ti ∈ T can be rooted at some edge
or vertex in such a way that the resulting rooted trees are strictly compatible.

Proof: Suppose that each Ti ∈ T can be rooted (at a vertex or an edge)
such that the resulting forest of rooted trees T r = {T r

1 , T
r
2 , . . . , T

r
k } is strictly

compatible. This implies that there exists a rooted tree T r such that T r|L(T r
i ) =

T r
i . Let T be the unrooted version of T r. Since, when unrooting trees the degree

two vertices are suppressed, the unrooted version of T r
i coincides with Ti for each

Ti ∈ T , and thus T |L(Ti) = Ti holds.
Now, suppose that T is strictly compatible. Then there exists an unrooted
tree T such that T |L(Ti) = Ti that we can root at some vertex r ∈ V (T ) to
obtain a rooted tree T r. Let T r = {T r

1 , T
r
2 , . . . , T

r
k } be such that, ∀1 ≤ i ≤ k,

T r
i = T r|L(Ti). It is easy to see that each T r

i is a rooted version of Ti. Moreover,
T r is strictly compatible by construction. This concludes the proof.

�

Note that in the case of compatibility, it is sufficient to root the trees in
T on edges [4]. This is not the case for strict compatibility. For example, the
unrooted trees in Figure 1 are strictly compatible but none of the 288 possible
ways of rooting them on edges gives rise to a set of strictly compatible rooted
trees. In Figure 2, we also show an example for which it is not enough to root
on vertices: indeed, the unrooted trees are strictly compatible but none of the 8
possible ways of rooting them on vertices gives rise to a set of strictly compatible
rooted trees.

We denote by R(T ) and F(T ) respectively the set of triplets and fans dis-
played by a set of rooted trees T .

Lemma 1 Let T = {T1, T2, . . . , Tk} be rooted phylogenetic trees on subsets of
a leaf set L(T ). Then T is not strictly compatible if and only if there exists
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Figure 1: The unrooted trees in figure (a) are strictly compatible since the tree
in (b) contains them all.
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Figure 2: The unrooted trees in figure (a) are strictly compatible since the tree
in (b) contains them all.

S ⊆ L(T ), |S| ≥ 3, such that for all non-empty, proper subsets U of S there
exists either (i) uv|w ∈ R(T ) with u ∈ U , v ∈ S \ U and w ∈ S or (ii)
(u, v, w) ∈ F (T ) with u, v ∈ U and w ∈ S \ U .

Proof: Let [R(T ), S] be the Aho graph [1] for the triplet set R(T ) on a leaf
set S, i.e. the undirected graph with vertices S such that there is an edge
connecting two vertices u and v if and only if there exists uv|w ∈ R(T ) and
w ∈ S. Let [R(T ),F(T ), S] be the graph obtained from the graph [R(T ), S] by
repeatedly adding an edge between any pair of vertices u and v in two different
connected components Bi, Bj if there exists w ∈ Bj such that (u, v, w) ∈ F (T ).
Similarly to what has been done in [4], we can prove the claim by proving that
there exists S ⊆ L(T ), |S| ≥ 3 such that [R(T ),F(T ), S] is connected if and
only if T is not strictly compatible.

If T is strictly compatible, then ∃T such that R(T ) ⊆ R(T ) and F (T ) ⊆
F (T ). Let S ⊆ L(T ), |S| > 1 and consider the subtree T |S and its root x. Each
direct descendant y of x in T |S determines a subset of S given by those leaves
that are descendants of y. Then, the collection of these subsets partitions S into
two or more blocks B1, . . . , Bs. If u and v are in two different blocks, say Bi and
Bj , then there exists no uv|w in R(T ), and thus in R(T ), with w ∈ S. Moreover,
there exists no (u, v, w) in F (T ), and thus in F (T ), such that w ∈ (Bi ∪ Bj).
Thus there are no edges between the blocks B1, . . . , Bs in [R(T ),F(T ), S], thus
[R(T ),F(T ), S] cannot be connected.

Suppose now that T is not strictly compatible. Then the OneTree algo-
rithm presented in [8] will conclude that a supertree does not exist, and this
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happens only if there exists a leaf set S ⊆ L(T ), |S| ≥ 3 such that the graph
[R(T ),F(T ), S] is connected. �

Similarly to what has been done in [4], in the following we shall translate
the choice of roots, together with Lemma 1, into monadic second order logic
on the display graph G. The main difference between our characterization and
that presented in [4] is the fact that we need to encode the possibility of rooting
trees on edges and vertices (and not only on edges as done in [4]) and condition
(ii) of Lemma 1, needed only for strict compatibility.

For this, we construct the following relational structure [2, 4]:

G = (V (G), E(G), L(T ), V (T1), ..., V (Tk), E(T1), ..., E(Tk), RG)

for which we define a formula Φ(A) such that G |= Φ(A) if and only if A is a set
of edges and vertices (one from each tree Ti ∈ T ) in which we can root each tree
in T to make the forest strictly compatible in its rooted version (Proposition
1). For each 1 ≤ i ≤ k, we define Ψi(u, v,X) to express that there is a path
with vertex set Y ⊆ X ⊆ V (Ti) between the vertices u and v, and similarly
Ψ′

i(u, e,X) to express that there is a path with vertex set Y ⊆ X ⊆ V (Ti)
between the vertex u and the edge e (Note that the edge e does not need to lie
entirely inside X, one endpoint is sufficient). More in detail, we have:

Ψi(u, v,X) = Ci(X) ∧ u ∈ X ∧ v ∈ X,

Ψ′i(u, e,X) = Ci(X) ∧ u ∈ X ∧ (∃v ∈ X(RG(v, e))).

We use Ci(X) to express that X ⊆ V (Ti) and that X induces a connected
subgraph of G:

Ci(X) = X ⊆ V (Ti) ∧ (∀Y, Z ⊆ X((Y ∪ Z = X)→

(∃y ∈ Y, z ∈ Z, e ∈ E(RG(y, e) ∧RG(z, e))))).

To simplify notations, we define Ψ̄i(u, j,X) as follows:

Ψ̄i(u, j,X) = (j ∈ V (Ti)→ Ψi(u, j,X)) ∧ (j ∈ E(Ti)→ Ψ′i(u, j,X)).

Then we define Φ(A) as the conjunction of∧
1≤i≤k

|A ∩ (V (Ti) ∪ E(Ti))| = 1

and

∀S ⊆ L(T )(|S| ≥ 3→ ∃U ⊆ S(U 6= ∅ ∧ U 6= S∧(∀u ∈ U, v ∈ (S \ U), w ∈ S(¬R(u, v, w,A)))

∧(∀u, v ∈ U,w ∈ (S \ U)(¬F(u, v, w,A)))).

We use R(u, v, w,A) to express that there is a tree Ti ∈ T with {u, v, w} ⊆
V (Ti) such that, with the rooting implied by A, the path from u to v is vertex
disjoint from the path from w to the root, and this is true if and only if uv|w
is a rooted triple in one of the trees rooted according to A. In monadic second
order logic, R(u, v, w,A) can be expressed as follows:∨

1≤i≤k

∃Y, Z ⊂ V (Ti), x ∈ A ∩ (V (Ti) ∪ E(Ti))(Ψi(u, v, Y ) ∧ Ψ̄i(w, x, Z) ∧ (Y ∩ Z = ∅)).
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Finally, F(u, v, w,A) is used to express that there is a tree Ti ∈ T with
{u, v, w} ⊆ V (Ti) such that, with the rooting implied by A, uv|w, uw|v and
vw|u are not rooted triples in Ti, and this is true if and only if (u, v, w) is a fan
in one of the trees rooted according to A. Thus F(u, v, w,A) can be expressed
as follows:∨
1≤i≤k

∀Y, Z ⊂ V (Ti), x ∈ A ∩ (V (Ti) ∪ E(Ti))(¬(Ψi(u, v, Y ) ∧ Ψ̄i(w, x, Z) ∧ (Y ∩ Z = ∅))∧
¬(Ψi(u,w, Y ) ∧ Ψ̄i(v, x, Z) ∧ (Y ∩ Z = ∅))∧
¬(Ψi(v, w, Y ) ∧ Ψ̄i(u, x, Z) ∧ (Y ∩ Z = ∅))).

Then, since the problem of determining how to root the unrooted trees to
give strictly compatible rooted trees can be translated into second order monadic
logic on the display graph G, and G has treewidth at most k, the following result
holds:

Theorem 2 Let T = {T1, T2, . . . , Tk} be unrooted phylogenetic trees on subsets
of a leaf set L(T ). Then it takes f(k) · n time to solve the Agreement problem
for T , where f is some computable function of k.

Proof: First, note that the display graph G for T can be computed in O(n · k)
time, where n = |L(T )|. Moreover, determining whether or not G has treewidth
at most k requires O(n · f(k)) for some computable f function of k [3]. Then,
by Theorem 1, we have that if the treewidth of G is greater than k, then T
cannot be strictly compatible. Then, by the result of Courcelle [5] and Arnborg
et al. [2], we have that all problems in second order monadic logic can be solved
in linear time (with respect to the number of vertices) on graphs with bounded
treewidth. Since the number of vertices in G is O(n ·k), the theorem follows. �

Note that our approach can also be extended to a more general setting
where the input trees are allowed to have both hard as well as soft polytomies:
it suffices to use F(u, v, w,A) for hard polytomies and R(u, v, w,A) for soft
polytomies.

4 Conclusion

In this paper we prove that deciding whether a given set of k (not necessarily
binary) phylogenetic trees is strictly compatible, is fixed-parameter tractable
(FPT) in k. Note, however, that our algorithm does not directly lead to an effi-
cient implementation. Therefore, it remains an important challenge to develop
a practical FPT algorithm with a running time ck · p(n) with c a small constant
and p a low-degree polynomial.
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