
Softw Syst Model (2016) 15:1117–1140
DOI 10.1007/s10270-014-0446-9

THEME SECTION PAPER

Integrating deductive verification and symbolic execution
for abstract object creation in dynamic logic

Stijn de Gouw · Frank de Boer · Wolfgang Ahrendt ·
Richard Bubel

Received: 15 November 2013 / Revised: 15 August 2014 / Accepted: 3 December 2014 / Published online: 25 December 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract We present a fully abstract weakest precondi-
tion calculus and its integration with symbolic execution.
Our assertion language allows both specifying and verifying
properties of objects at the abstraction level of the program-
ming language, abstracting from a specific implementation
of object creation. Objects which are not (yet) created never
play any role. The corresponding proof theory is discussed
and justified formally by soundness theorems. The usage of
the assertion language and proof rules is illustrated with an
example of a linked list reachability property. All proof rules
presented are fully implemented in a version of the KeY ver-
ification system for Java programs.

Communicated by Prof. Einar Broch Johnsen and Luigia Petre.

This research is partly funded by the EU project FP7-231620 HATS:
Highly Adaptable and Trustworthy Software using Formal Models
and the EU project FP7-610582 Envisage.

S. de Gouw · F. de Boer
CWI, Amsterdam, The Netherlands

S. de Gouw
SDL Fredhopper, Amsterdam, The Netherlands
e-mail: cdegouw@cwi.nl

F. de Boer
Leiden University, Amsterdam, The Netherlands
e-mail: frb@cwi.nl

W. Ahrendt
Chalmers University of Technology, Göteborg, Sweden
e-mail: ahrendt@chalmers.se

R. Bubel (B)
Technische Universität Darmstadt, Darmstadt, Germany
e-mail: bubel@cs.tu-darmstadt.de

Keywords Specification · Verification · Program logic ·
Dynamic logic · Object creation

1 Introduction

Program verification is often based on a weakest precondi-
tion calculus, which computes for a given post-condition the
weakest requirements on the initial state of a program. The
original formulation given by Hoare [32] does not provide an
algorithmic description of the computation. This issue was
resolved by Dijkstra in [25], where he proposes a weakest
precondition calculus amenable to be cast into algorithmic
form. The suggested approach takes a program and its post-
condition as input. The weakest precondition is computed by
going backward through the program and transforming the
desired post-condition step-by-step until the beginning of the
program is reached.

The approach has some drawbacks because of its back-
ward processing order. Used in a semiautomatic or interac-
tive verification environment, it has a negative impact on the
understandability of the proof situation. We claim that a cal-
culus which follows the normal execution order of the pro-
gram is easier to understand whether interaction is required.
To remedy this situation, we integrate aweakest precondition
calculus with symbolic execution. This allows us to compute
the weakest precondition in a forward manner and makes
the calculus behave like a symbolic interpreter. Integrating
symbolic execution and the computation of aweakest precon-
dition calculus allows us to use our framework in a number
of areas that use symbolic execution as basis like automatic
test generation and offers additional benefits like improved
precision.

Symbolic execution is a static analysis technique that goes
back to the seminal work of [18,36]. Symbolic execution

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301650133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-014-0446-9&domain=pdf

1118 S. de Gouw et al.

allows us to explore all possible execution paths of a pro-
gram up to a fixed finite depth (to deal with unbounded loops
or recursions, loop invariants ormethod contracts/summaries
can be used). This is achieved by executing the program on
symbolic instead of concrete input values. In the last decade,
symbolic execution underwent a revival resulting in the cre-
ation of efficient symbolic execution engines for real world
programming languages [11,19,24]. Symbolic execution has
been applied to a wide variety of application scenarios such
as test case generation or debugging [36] and formal veri-
fication of programs against a functional property [18]. For
the latter, program annotations in the form of loop invariants
and method contracts are necessary.

A systematic comparison of symbolic execution versus
verification condition generation has been presented in [35].
The authors identified significant performance advantages
for symbolic execution approaches in case of larger pro-
grams. Although the results cannot directly be transferred to
our approach, we expect that several of the observations con-
cerning performance still hold. Our integration of weakest
precondition computation and symbolic execution is seam-
less, i.e., we perform the logical reasoning and symbolic exe-
cution within the same logic framework. Symbolic execution
is performed in terms of symbolic execution rules of the logic
calculus. The symbolic execution rules compute basically the
path conditions, which is highlighted as one advantage of
symbolic execution in the cited paper. In addition, the authors
identified as a drawback that their symbolic execution engine
dealt with implications using case distinctions only, while
the theorem prover could apply more advanced techniques.
Again in our case, the theorem prover itself performs the
symbolic execution. Hence, we can continuously and seam-
lessly interleave first-order reasoning to rule out infeasible
code branches and perform first-order reasoning to simplify
path conditions and to achieve a more compact heap repre-
sentation during symbolic execution. Thus, our approach is
able to combine the advantages of both techniques. On the
other side, as we basically interpret the program in a more
general framework, we might not be as fast as a specialized
source or even byte code symbolic interpreter.

Our integration is unique in thatwe achieve a fully abstract
calculus, which allows us to verify properties at the abstrac-
tion level of the programming language. In object-oriented
programming languages such as Java, objects as first-class
citizens in the domain of values introduce a general mech-
anism of indirection. This high-level mechanism of indirec-
tion abstracts from the underlying representation of objects
and the implementation of object creation. At the abstraction
level of the programming language, objects are described
as instances of their classes, i.e., the classes provide the only
user-defined operations (i.e., methods) that can be performed
on objects. The Java language itself provides only the follow-
ing built-in operations on objects:

Object Operators in Java

“instanceof” To test whether an object is of a specified type

“new” To create a new instance of a specified type

“.” To obtain the value of the specified field of the
specified object

“==” To test equality between object references

“!=” To test inequality between object references

“?:” Conditional expression

“(Type)” Cast operator to covert the type of the specified
object

Moreover, these operations can only be performed on the
created objects; the objects not (yet) created do not exist
and therefore can also not be referred to by any program-
ming construct. This ensures memory safety, relieves the
programmer of (error-prone) manual memory management,
helps portability and allows compiler optimizations to freely
move objects in memory. For practical purposes, it is impor-
tant to be able to specify and verify properties of objects at
the abstraction level of the programming language, following
Wittgenstein [53]:

Whereof one cannot speak, thereof one must be silent.

In [22], a Hoare logic is presented to verify properties of
an object-oriented programming language at the abstraction
level of the programming language itself. This Hoare logic is
based on a weakest precondition calculus for object creation,
which abstracts from the implementation of object creation.
This abstraction requires new techniques for computing the
weakest precondition of object creation statements because
in the state prior to the creation of the object this new object
does not exist so that we cannot refer to it. Note that we thus
cannot obtain simply the weakest precondition as usual by
substitution in the post-condition of the variable to which
the new object is assigned because there does not exist a
term for it in the state prior to the creation of the object!
Moreover, because of the abstraction level in the assertion
language, quantification over objects only involves created
objects. Consequently, the scope of the quantifiers is also
affected by object creation which has therefore to be taken
into account by the weakest precondition calculus.

The main contributions of this paper are (i) the introduc-
tion of a new formalization of a weakest precondition calcu-
lus for abstract object creation in first-order dynamic logic
and (ii) its integration with symbolic execution to achieve a
forward reasoning style in the sense that the calculus behaves
like a symbolic interpreter of the program to be verified.

This logic allows for the specification and verification
of object-oriented programs at an abstraction level which
coincides with that of the object-oriented programming lan-
guage Java. That is, besides the above operations on objects,

123

Integrating deductive verification and symbolic execution 1119

the logic only supports quantification over created objects,
including array objects. Consequently, objects not (yet) cre-
ated cannot be referred to by any construct in the logic. We
show that the standard first-order sequent calculus of this
logic that forms the basis of theKeY theoremprover [11] ade-
quately captures the abstract data type of objects and allows
us to generate the verification conditions in standard first-
order logic.

Furthermore, we extend the dynamic logic with auxiliary
variables. Since arrays in Java are also objects, this indirec-
tion allows for the first-order specification of properties of
object structures which cannot be expressed directly in first-
order logic such as reachability.

The KeY verification system has been applied to a num-
ber of industrial case studies: In [45] KeY was used to
reason about security properties of a realistic commercial
demonstration application of an electronic purse (Demoney),
which has been provided by Trusted Logics. The paper [46]
describes howKeY has been successfully used to fully verify
a reference implementation of the JavaCard API. Recently,
the test generation facility of KeY, which generates test cases
from proof attempts, was able to reveal a bug in a commercial
real-time Java library (see [4]).

In [3], co-authored by some of the authors of this paper, a
program logic using abstract object creation instead of acti-
vation has already been introduced. We extend this initial
work to classes, recursive methods, arrays, dynamic bind-
ing and failures. Furthermore, we provide and discuss tool
support—all proof rules presented in this paper have been
fully implemented in a special version of KeY—by means of
an example of a queue. The new tool is evaluated based on
a comparison with a traditional object activation style proof
of the same example. Finally, we show how to symbolically
execute abstract object creation in KeY.

Related work

Specification languages like the Java Modeling Language
(JML) [40] and the Object Constraint Language (OCL) [47]
also abstract from the underlying representation of objects.
In contrast, all known tools (to the best of our knowledge)
for the (deductive) verification of object-oriented programs
are based on some explicit representation of objects, e.g.,
objects are represented by natural numbers and counters are
used tomodel object creation. Such an explicit representation
can be useful in the context of programming languages that
support for example pointer arithmetic, but it does not comply
with the abstract data type of objects as provided by object-
oriented languages such as Java. In fact, it complicates formal
proofs of soundness because of the complex relation between
the heap and its logical representation. Furthermore,we show
in this paper that also the verification engine itself does not
require such an explicit (internal) representation.

Our basic approach to abstract object creation provides
a solid basis for the integration and extension of many
other important proof-theoretical object-oriented concepts
like invariants [10,33],modularity [39], dynamic frames [50]
and behavioral subtyping [5,44]. Furthermore, in [2], our
basic approach to abstract object creation has been integrated
in a proof theory of multi-threaded programs.

Pure first-order logic without auxiliary variables is not
expressive enough to assert for example reachability proper-
ties. To partially remedy this shortcoming, in [6], a formal-
ization of abstract object creation is given using inductively
defined predicates (so-called puremethods). Such predicates
are also typically used in specifying the footprint of a pro-
gram, which is crucial in tools based on separation logic
(VeriFAST [34], jStar [26], Slayer [15] and Smallfoot [14])
to facilitate local reasoning. Separation logic adds several
non-standard logical connectives to reason about heap prop-
erties, such as the separating conjunction and the points-to
predicate. These connectives supportmodularity; however, in
general, they seriously complicate proof theory: Calcagno et
al. prove in [20] that the points-to predicate cannot be axioma-
tized. Another approach is taken byWhy3 [28], PVS [52] and
Isabelle [38], which generate verification conditions in stan-
dard higher-order logic (without introducing non-standard
connectives). However, in general, higher-order logic also
complicates proof theory (in contrast to first-order logic, the
validities are not recursively enumerable), and thus, a high
degree of automation is harder to obtain.

Chalice [42,43] is a programming language for the speci-
fication and verification ofmulti-threaded programs. InChal-
ice, reasoning about linked data structures is done via data
abstraction, i.e., the internal linked data structure is mapped
via model fields/ghost fields to a suitable abstract data type.
The primary focus of Chalice is on concurrency properties
like absence of data races and deadlocks.

Concerning object creation, Chalice uses object activa-
tion underneath, though certain aspects have been abstracted
away like the order of activation. In contrast to our approach,
their domain stays constant and object creation is modeled
as follows: The semantics maintains a partial function Ω

which maps object references to environment lists. An envi-
ronment is a message, and an object is called allocated if it
is in the domain of Ω . On the semantics level, they always
need to quantify over the objects which are in the domain,
i.e., ∀o.(o ∈ dom(Ω) → φ), to assert that a property φ holds
for all allocated objects. These guards are not necessary in
our approach as unallocated objects do not exist at all and
thus cannot be quantified over in the first place.

TACO [29] is a tool for bounded program verification of
JML annotated Java programs based on SAT solving. They
also use object activation to model object creation.

To the best of our knowledge, our extension of KeY is the
first tool which supports abstract object creation as described

123

1120 S. de Gouw et al.

above. A detailed description of other tools is beyond the
scope of this paper; however, the following summary of the
results of recent competitions is of interest.

The general structure of the competitions was to provide
a number of assignments with each assignment consisting of

– a description of the algorithm in pseudocode or a general
problem description, which had to be implemented in a
programming language of the teams choice, and

– a natural language description of the desired properties to
be specified and verified.

The focus of the competitions was slightly different. While
the emphasis for the competitions VSTTE’11 [37] and
FoVeOOS’11 [16] was on verifying program correctness,
VSTTE’12 moved the focus more toward algorithm verifi-
cation. The competitions showed that verifiers using abstract
programming languages did best as they could use abstract
data types directly in the programming language or at least
could map linked data structures easier to abstract data
types than systems for languages like Java. KIV, which won
VSTTE’12 (together with ACL2), is also based on dynamic
logic like KeY, but is based on abstract data types. They
provide support for several languages including Java and an
ASM style programming language. The Java back-end was,
e.g., only used for the first problem inVSTTE’12 (which was
also solved byKeY).While for the remaining problems (com-
plex heap structures), the more abstract ASM style language
was used. Another tool that did very well was Dafny [41],
which uses its own (more abstract) object-oriented language
and whose specification and reasoning system implement
dynamic frames. KeY was competitive in VSTTE’11 and
FoVeOOS’11, but it did not so well in VSTTE’12 due to
its heavier focus on algorithm verification. KeY was able to
prove all problems of the first two competitions after the com-
petition using a pre-release version of KeY 2.0 with explicit
support for dynamic frames. Using that version, most (except
one) problems of VSTTE’12 could be solved. The only time
a system based on separation logic participated was Veri-
FAST [34] at VSTTE’11. Their specification of some of the
problemswas elegant, but automationwas problematic. They
managed to solve the problems in the aftermath but indicated
that labor-intensive work was necessary.

Outline

In Sect. 2, we introduce a dynamic logic for an object-
oriented language with recursive methods and object cre-
ation. Other features are not part of this core language, but
in Sect. 3, we demonstrate how to handle them using a trans-
formational approach. We present the axiomatization of the
language in terms of the sequent calculus given in Sect. 4. To
reason about formulas containing updates (which arise from

assignments and object creations in the sequent calculus), we
define in Sect. 5 an inductive rewrite relationwhich simplifies
such formulas to standard first-order logic formulas (without
updates). With the calculus at hand, symbolic execution of
programs is described in Sect. 6. Finally, we illustrate our
approach on a typical case: inserting an element in a queue
in Sect. 7. After a discussion of our approach in Sect. 8, we
conclude with Sect. 9.

2 Dynamic logic

In this section, we give the syntax and semantics of our
programming language and specification language (dynamic
logic or DL). We start here with an informal introduction to
DL. The formal definitions, including those for the program
semantics and concepts such as model and domain, follow
in the subsequent subsections.

DL is a variant of modal logic which extends and gen-
eralizes Hoare logic, e.g., it allows the direct expression of
program equivalence and weakest preconditions. Different
parts of a formula are evaluated in different worlds (models),
which vary in the interpretation of, in our case, program vari-
ables, fields and the underlying domain of created objects
(which changes due to execution of object creations). DL
extends full first-order logic with two additional (mix-fix)
operators: 〈 . 〉 . (diamond) and [.] . (box). In both cases, the
first argument is a statement, whereas the second argument
is another DL formula. A formula 〈p〉φ is true in a model M
if execution of p (starting from the model M) can terminate
in some model where φ is true. The formula [p]φ is true
in a model M if execution of p, when started in M , either
does not terminate or always results in a model in which
φ is true. For deterministic programs, the only difference
between the two operators is whether termination is claimed
(i.e., the difference between partial and total correctness). DL
is closed under all logical connectives. For instance, the for-
mula∀ l. (〈p〉 (l = u) ↔ 〈q〉 (l = u)) states equivalence of
p and q w.r.t. the program variable u.

An example formula involving object creation is ∀l.
〈u := new 〉¬(u = l). It states that every newobject indeed is
new because the logical variable l ranges over all the objects
that exist before the object creation u := new . We do not
have the constant domain assumption here: Object creations
modify the domain by adding the new object (see Sect. 2.1.3
for a detailed formal semantics of object creations). Conse-
quently, after the execution of u := new , we have that the
new object is not equal to any object that already existed
before, i.e., ¬(u = l), when l refers to an “old” object. Note
that the formula 〈u := new 〉∀l.¬(u = l) has a completely
different meaning. In fact, that formula is false (cf. Sect. 5.2).
These examples also illustrate a further advantage of DL over
Hoare logic: In the presence of abstract creation, it allows for

123

Integrating deductive verification and symbolic execution 1121

a direct logical expression of the dynamic scope of the object
quantifiers (as illustrated above).

All major program logics (Hoare logic, wp calculus, DL)
have in common that the resolving of assignments requires
substitutions in the formula, in one way or the other. In the
KeYapproach, the effect of substitutions is delayed by having
explicit substitutions (called“updates”) in the logic. Updates
are of the form {loc := r}, where loc is a location in the given
language and the right-hand side r determines the value to
be stored. The semantics of updates are the same as those
for the corresponding assignments. The presence of explicit
substitutions in the logic has a number of advantages. First of
all, it allows us to disentangle the resolving of an assignment
and the application of the resulting substitution. Here, both
steps can happen at different times during the process of
building a proof. Second, our approach to object creation
demands a non-standard way of applying substitutions, and
updates are a vehicle to treat this issue explicitly on the level
of the syntax (see Sect. 5). And at last, to enable symbolic
execution in a forward direction, wewill in Sect. 6 generalize
the notion of updates, allowing the parallel composition of
elementary updates to accumulate the effect of (a prefix of)
a program. With that, updates become the cornerstone in
integrating deductive verification and symbolic execution for
abstract object creation.

Therefore, our DL is extended with updates. We close
expressions and formulas under update prefixing as follows:
If e′ is an expression, then so is {loc := r}e′, and if φ is a DL
formula, then so is {loc := r}φ. Note that this construction is
part of the overall recursive definition of terms and formulas,
such that updates can appear not only at the top level of
formulas or expressions, but also nested inside. For instance,
0 < v → {u := v} (0 < u) is a formula, and e1 + {u := v}e2
is an expression.

In the language considered in this paper, assignments are
“simple enough” to be turned into updates directly, once
the assignment is in the focus of the proof step to be per-
formed. (This is not the case for many real world languages,
where expression evaluation may have side effects, may pass
control to a different method and may throw exceptions. In
KeY style logics for such languages, like DL for Java [12],
complex assignments are flattened to simple assignments
before turned into updates). The language considered in this
paper allows the following forms of assignments: u := new ,
u := e, e1.x := e2 and e1[e2] := e3. They can all be turned into
explicit substitutions without modifying them, for instance
when transforming the formula 〈loc := r; s〉φ into the for-
mula {loc := r}〈s〉φ during symbolic execution.We therefore
use the same syntactic category for both, loc := r within the
〈〉 modality and within the {} modality, see the next section.
Calling updates “explicit substitutions” refers to the intu-
ition that they are substitutions which have not been applied
yet, but will be later in the proof. However, locally within

individual formulas, the updates act more like an additional
modality, both syntactically and semantically. In the follow-
ing, we will use the terminology “update” in an overloaded
manner by referring to both, the modality {loc := r} and the
loc := r contained in the modality. A full account of KeY
style DL can be found in [12].

2.1 Language

We introduce here a core class-based object-oriented lan-
guage with support for recursive methods, unbounded arrays
and object creation. A corresponding assertion language is
presented which is based on first-order dynamic logic.

2.1.1 Types and declarations

The language is strongly typed and contains the primitive
types Nat and Boolean. Additionally, there are user-defined
class typesC, predefined class types T []ofunbounded arrays
in which the elements are of type T and a union type Object.
Arrays are dynamically allocated and are indexed by natural
numbers. Multi-dimensional arrays are modeled (as in Java)
as arrays in which the elements themselves are arrays. For
instance, Nat[] is the type of one-dimensional arrays of nat-
ural numbers, and Nat[][] is the type of two-dimensional
arrays of natural numbers. We assume a transitive reflexive
subtype relation between types. Object is the super type of
any class type. We will not be concerned with type checking,
but only note that it can be done statically and is orthogonal
to the semantics of the language.

There are three kinds of declarations: variable declara-
tions, field declarations and method declarations. A variable
declaration associates a type to a name. If the type is not an
array type, we call the variable a simple variable. Arrays are
assumed to be unbounded, but we show how bounded arrays
can be handled by a transformation in Sect. 3.

Declarations of fields of a class C associate a type C → T
to a field name. Fields can thus be seen as mappings from
objects of C to values.

A method declaration m(this , u1, . . . , un) :: s associates
the method parameters as a list of variables this , u1, . . . , un
and a statement s (its body) to a method name m. Unlike
in Java, methods do not return anything. Return values can
be simulated using variables. The first formal parameter of
each method is the special variable this . It stores the cur-
rently executing object and is special since it is read-only
(assignments to this are not allowed).

We do not represent declarations explicitly in the language
syntax, which we are about to introduce. Instead, we assume
to be given a set Var of variable declarations and for each
class C a set FC of fields and MC of methods. Var is parti-
tioned into a set PVar of program variables and a set LVar
of logical variables. Logical variables do not occur in pro-

123

1122 S. de Gouw et al.

grams. They are used in dynamic logic formulas to express
properties of programs and can be quantified over. The set
of program variables consists of both local and global vari-
ables. For technical convenience, we restrict local variables
to formal parameters (for a treatment of blocks, we refer to
[9]).

2.1.2 Syntax

Expressions of our language are side effect free. The follow-
ing grammar generates the language of expressions:

e ::= u | e.x | null | e1 = e2 | if b then e fi | if b then e1 else e2 fi |
e1[e2] | f (e1, . . . , en) | C(e) | {U}e

Variables are indicated by the typical element u, and x is
a typical field. Since u and x can be of an array type, this
implies that arrays are also expressions. A dot denotes deref-
erencing, i.e., e.x is the value of the field x of the object to
which e points. This is syntactic sugar for x(e) since fields
will be considered to be functions from objects to values
(this reflects the fact that field types have the form C → T).
The expression null denotes the undefined reference. The
Boolean expression e1 = e2 denotes the test for equality
between the values of the expressions e1 and e2. For object
expressions, thismeans thatwe use the Java reference seman-
tics: The expressions must denote the same object. It is there-
fore possible for two expressions of type object to be unequal
even if all fields of the objects they denote have the same
value. The expression if b then e fi has value e if the Boolean
expression b is true; otherwise, it has an arbitrary value. This
expression allows a systematic approach to prove properties
about partial functions. A conditional expression is denoted
by if b then e1 else e2 fi . The motivation for including it in
our core language is that it significantly simplifies treatment
of failures (Sect. 3) and aliasing (Sect. 5). If e1 is an expres-
sion of type T [] and e2 is an expression of type Nat, then
e1[e2] is an expression of type T . Here, T itself can be an
array type. For example, if a is an array variable of type
Nat[][], then the expression a[0] denotes an array of type
Nat[]. The function f (e1, . . . , en) denotes an arithmetic or
Boolean operation of arity n. For class types C, the Boolean
expression C(e) is true if and only if the (dynamic) type of e
is exactly C.We restrict ourselves to the following operations
on expressions of a class type: comparing for equality, deref-
erencing, accessing as an array if the object is of an array type
or used as argument of a class predicate, if-then expression
or conditional expression. The last expression form ({U}e)
is not allowed in programs, i.e., it appears only in formu-
las outside programs (This form is mainly used for defining
the application of updates on formulas recursively via the
application of updates on expressions, see Sect. 5).

The language of statements is generated by the following
grammar:

s ::= skip | s1; s2 | if b then s1[else s2] fi | while e do s od |
m(e1, . . . , en) | U

U ::= u := new | u := e | e1[e2] := e | e1.x := e

By skip , we denote the empty statement. A semicolon
denotes sequential composition. Conditional branching is
denoted by if – then –else – fi . If the optional else is not
present and the condition b holds, s1 is executed. If b is
false , this statement causes a failure. The statement while
denotes the usual looping. The condition for both looping
and branching is given by a Boolean expression. In a method
call m(e1, . . . , en), the first actual parameter e1 denotes the
callee. Method calls provide the only way to transfer con-
trol from the current object to another (the callee). Updates
are generated by the productions for U . The first u := new
assigns to the program variable u a newly created object of
the declared type (possibly an array type) of u. Objects are
never destroyed. The next three updates denote assignments
of an expression e to a programvariable u, a subscripted vari-
able e1[e2] (where e1 must have an array type and e2 a nat-
ural number) and a field x , respectively. For technical conve-
nience only, we do not have assignments e1[e2] := new and
e1.x := new . We reason about such assignments in terms
of the statement u := new ; e1[e2] := u, where u is a fresh
program variable, to separate object creation from the alias-
ing problem. Following standard practice, assignments are
well-typed when the type of the value is a subtype of the
type of the variable to which it is assigned. We assume that
every statement and expression to be well-typed. A program
in our language consists of a statement (referred to as the
main statement) together with sets for variable declarations,
field declarations and method declarations.

Dynamic logic formulas are built from the Boolean
expressions and statements defined above. Formally, formu-
las are generated by the following grammar:

φ ::= b | φ1∧φ2 | φ1 ∨ φ2 | φ → φ2 | ∃l : φ | ∀l : φ | {U}φ | [s]φ | 〈s〉φ

In this grammar, b is a Boolean expression, s is a statement,
U is an update, and l is a logical variable of any type of our
core language. The meaning of such formulas was already
described informally in the beginning of this section and will
be formalized below.

Conventions We use ≡ for syntactic equality. For expres-
sions e and statements s, var(e) and var(s) denote the sets
of variables that appear in them. This set is extended to
sets of method declarations in a point-wise manner: For a
set of method declarations MC, var(MC) is the set of all
variables that appear in some method body of the meth-
ods in MC. The set change(s) contains the variables that
appear on the left-hand side of an assignment in s. For a
method declarationm(u1, . . . , un) :: s, change(m) is defined
as change(s)\{ this , u1, . . . , un}. This reflects the fact that

123

Integrating deductive verification and symbolic execution 1123

the formal parameters are not changed bymethod calls, since
they are reset to their initial values. For a set MC of method
declarations, change(MC) is the union of all sets change(m)

with m ∈ MC. We abbreviate the set of all method declara-
tions of all classes by D and extend var and change to D in
the obvious way. The set f ree(φ) contains all variables that
occur free in the formula φ.

2.1.3 Semantics

Before the semantics of statements and expressions of our
programming language can be defined, a meaning must be
assigned to the non-logical symbols of our language. For
reference, we list all non-logical symbols here:

1. The constants (functions of arity 0): null C (of type C), 0
(Nat) and true and false (Boolean).

2. Arithmetical operations. We assume at least the successor
function, addition and multiplication.

3. Boolean operations (at least conjunction, disjunction and
negation).

4. For each type T the conditional (if b then e1 else e2 fi)T .
5. For each type T : (if b then e1 fi)T .
6. For each array type T [] an access function []T [] of type

Nat → (T [] → T).
7. For every class C a unary predicate C of type Object →

Boolean.
8. Variables declared in Var.
9. For every class C, its fields declared in FC.

The basic notion underlying the semantics of both the pro-
gramming language and the assertion language is that of a
many-sorted structure of the form
(⋃

T
dom(T), I

)

consisting of a disjoint union of domains dom(T) for each
type T and an interpretation I . The interpretation assigns
a total function (a meaning) to each function symbol and
a relation to each relation symbol. Thus, for example, for
the constant null C, the interpretation assigns an element of
dom(C) to it. We omit explicit type annotations of null and
the conditional expression if no confusion occurs. What we
call a model is sometimes called a model plus a valuation
(i.e., an assignment of the variables).

A model M for our language is a structure that satisfies
the axioms:

– Arithmetical operations satisfy the theory of Peano arith-
metic.

– Boolean operations satisfy the axioms for Boolean alge-
bras.

– Each class predicate C satisfies C(null).

– If o1 and o2 have the same type T , then the conditional
satisfies
(if true then o1 else o2 fi)T = o1 and (if false then else
fi o1o2)T = o2.

– Ifo ando′ have the same typeT , then the if-then expression
obeys
if true then o fi T = o and if false then fi oT = If false
then o′ fiT .
This axiomexpresses that if the first argument is false , the
whole expression always has the same (arbitrary) value,
regardless of the value of the second argument.

The above first-order axioms are not categorical: There are
multiple structures in which all of the above axioms are true.
We stipulate that any structure that satisfies the axioms is a
model for our language, including those structures in which
for example the arithmetical operations have a non-standard
interpretation. For notational convenience, we write M(s)
instead of I (s) for the interpretation of the non-logical sym-
bol s in the model M and use the abbreviation M(T) for the
phrase “dom(T) inM .” If u is declared in Var as a variable of
type T , it is interpreted as an individual of the domain M(T).
A field x ∈ FC of type C → T is interpreted as a unary func-
tion M(C) → M(T). Array access functions []T [] are inter-
preted as binary functions M(Nat) → (M(T []) → M(T)).
Thus, array indices can be seen as fields.

Semantics of expressions and statements The meaning of an
expression e of type T is a (total) function [[e]] that maps a
model M to an individual of M(T). This function is defined
by induction on e. Here are the main cases:

– e ≡ e1.x : [[e]](M) = M(x)([[e1]](M)).
– e ≡ e1[e2]: [[e]](M) = M([]T [])([[e2]](M))([[e1]](M))

where e1 has the array type T [] and e2 has type Nat.
– e ≡ C(e1): [[e]](M) = true iff [[e1]](M) ∈ M(C)

– e ≡ if b then e1 else e2 fi :

[[e]](M) =
{ [[e1]](M), if [[b]](M)

[[e2]](M), otherwise

– e ≡ if b then e1 fi :

[[e]](M) =
{ [[e1]](M), if [[e1]](M)

def T , otherwise

Note that for the last two cases, the left-hand side denotes
a syntactical expression and the right-hand side denotes the
corresponding (semantic) function as interpreted in the given
model. It is easily checked that this semantics satisfies the
axioms for models. One feature of our semantics is that
since the meaning function is total, some meaning is also

123

1124 S. de Gouw et al.

assigned to the expression null .x . In other words, no fail-
ures occur at the expression level; instead, execution con-
tinues with unpredictable behavior. A different semantics of
expressions, which can cause failures, can be simulated by
means of a program transformation (see Sect. 3).

Statements in our language are deterministic and can fail
(if − then − fi) or diverge. We define the meaning of a
statement in terms of a small-step operational semantics and
use the (quite common) notation

〈s, M〉 → 〈s′, M ′〉
to express that executing s in the model M reduces to exe-
cuting s′ in the model M ′. We use →∗ for the reflexive and
transitive closure of →. By

〈s, M〉→ M ′,

we express that executing s in the model M terminates in
the model M ′. Since calls can appear in statements, the
definition of the transition relation depends in general on
the method declarations. For an if b then − fi -statement,
there is no next step if b is false : The execution “hangs”
and there are no s′ and M ′ (not even an empty s′) such
that 〈 if b then s fi , M〉 → 〈s′, M ′〉. Throughout execution,
assignments to variables and fields change the model in the
interpretation of the variables and fields, respectively. The
interpretation of the array access function changes due to
assignments to subscripted variables. Moreover, during exe-
cution, the domain dom(C) for instances of C is extended
with new objects by object creations u := new . Conse-
quently, all functions that take an argument of C (including
conditional expressions and if− then− fi)must be extended
appropriately for the new object. Statements do not affect the
domains of natural numbers and Booleans, and the interpre-
tation of other non-logical symbols. In summary, statements
map models to models, potentially changing variables, array
access functions, fields and the domains for class types, leav-
ing the interpretation of functions and relations that do not
take arguments of a class type fixed.

The meaning of normal assignments, conditional state-
ments and while loops is defined in the standard way. There-
fore, we focus on the semantics of object creation, field
assignments andmethod calls. Since object creation involves
initialization of the fields of the new object, we first define for
each type a default value: initNat = 0, initBoolean = false
and initC = null . Furthermore, for the selection of a new
object of class C, we use a choice function ν on a model
M and class C to get a fresh object ν(M,C) of class C
which satisfies ν(M,C) /∈ M(T) for any type T (in partic-
ular, ν(M,C) /∈ M(C)). Clearly, without loss of generality,
we may assume that ν(M,C) only depends on M(C) in the
sense that ν(M,C) = ν(M ′,C) if M(C) = M ′(C). It is
worthwhile to observe that this choice function preserves the
deterministic nature of our core language. Non-deterministic

(or random) selection of a fresh object would require reason-
ing semantically up to a notion of isomorphic models which
would unnecessarily complicate soundness proofs. Note fur-
thermore that the above definition of the choice function fol-
lows the general and standard approach in formal seman-
tics of the introduction of fresh variables in language like
the π -calculus or Prolog, where these variables are selected
from some domain which does not appear in the actual con-
figuration. The semantics of an object creation statement
u := new , where u has type C, can now be defined as fol-
lows:

〈u := new , M〉→ M ′

where, for o = ν(M,C), M and M ′ only differ with respect
to the following clauses:

1. M ′(C) = M(C) ∪ {o}.
2. M ′(u) = o.
3. M ′(x)(o) = initT for any field x of type C → T .
4. M ′(f) = M(f), for every arithmetic and Boolean oper-

ation f .
5. if false then o fi = if false then o′ fi , for every o′ ∈

M(C).

This semantics for object creation corresponds to the intuition
that an object creation first adds a new object to the domain
for the class C, then sets the values of the fields in the new
object to their default value and finally assigns the new object
to u. Note that the above semantics ensures that the if-then
with false as its first argument and any arbitrary object as
its second argument (even the newly created object) always
denotes the same arbitrary object as the one in the model
before executing the object creation.

The semantics of an array creation

〈u := new , M〉→ M ′

where u has type T [] is similar to the above: for o =
ν(M, T []), M and M ′ only differ with respect to the fol-
lowing clauses:

1. M ′(T []) = M(T []) ∪ {o}.
2. M ′(u) = o.
3. M ′([]T [])(n)(o) = initT for all n ∈ M(Nat).
4. M ′(f) = M(f), for every arithmetic and Boolean oper-

ation f .
5. if false then o fi = if false then o′ fi,

for every o′ ∈ M(T []).

The third clause states that all elements in the array are ini-
tialized to their default value.

Assignments to fields are executed as follows:

〈e.x := e1, M〉→ M ′

123

Integrating deductive verification and symbolic execution 1125

where M ′(x)([[e]](M)) = [[e1]](M) and the domains and the
interpretations of the other non-logical symbols in M ′ are the
same as in M . Assignments to an array element are defined
analogously and therefore omitted.

For method calls, we use a copy rule: Whenever a call is
encountered, the program proceeds by executing the method
body. Themethod body is chosen statically based on the class
type of the parameter this (we show in Sect. 3 how dynamic
binding can be supported). The values of the actual para-
meters are evaluated in parallel and assigned to the formal
parameters before the method body executes. Directly after
the call succeeds, the formal parameters are restored to their
initial values. This leads to the following rule:

〈s, M ′〉 → 〈s′, M ′′〉
〈m(e1, . . . , en+1), M〉 → 〈s, M ′′′〉

where

– the method m is declared as m(this , u1, . . . , un) :: s,
– M ′ differs from M only as follows:

– M ′(this) = [[e1]](M)

– M ′(ui) = [[ei+1]](M), for 1 ≤ i ≤ n

– and M ′′′ differs from M ′′ only as follows:

– M ′′′(this) = M(this)

– M ′′′(ui) = M(ui), for 1 ≤ i ≤ n.

Intuitively, this corresponds to defining the operationalmean-
ing of calls in three steps: In the first step, M ′ is obtained by
assigning the actual parameters to the formal parameters. In
the second step, the actual method body is executed in M ′,
resulting in M ′′. In the final step, M ′′′ is obtained by resetting
the formal parameters to their initial values.

Semantics of formulas Since calls may occur inside the
modal operators of a dynamic logic formula, the truth of
a dynamic logic formula φ depends in general on a set of
method declarations to bind calls to the right method body.
Given a set of method declarations, we write M |� φ if the
formula φ is true in the model M . A formula φ is valid if
M |� φ holds for every model M .

The modal operators have their usual semantics:

M |� [s]φ iff M ′ |� φ for all M ′ such that 〈s, M〉→ M ′

and

M |� 〈s〉φ iff M ′ |� φ for some M ′ such that 〈s, M〉→ M ′.

Interestingly, even though we allow quantification over
arrays, all assertions are first-order dynamic logic formu-
las because arrays are objects which are used to represent
sequences, but are not sequences themselves. For example,

if s has an array type, ∃s : s[0] = 0 expresses that there exists
an array object which points to a sequences whose first ele-
ment is 0. This modeling of arrays as pointers (to sequences)
is also taken by Java.

In general, for a logical variable l of type T , we have the
following semantics of existential quantification

M |� ∃l.φ iff for some o ∈ M(T) : M ′ |� φ.

whereM ′ differs fromM only inM ′(l) = o. The semantics of
universal quantification can be derived using the equivalence
(∀l : φ) ↔ (¬∃l : ¬φ). Note that the extensionality axiom
∀a, b, n : a[n] = b[n] → a = b for arrays is not valid.
In contrast, this axiom clearly holds if a and b range over
sequences.

As an illustration of the semantics for object creation and
quantification, we show that the scope of quantification over
objects is dynamic:

M |� ∀l.〈u := new 〉¬(u = l)
iff
for all o′ ∈ M(T) : M ′ |� 〈u := new 〉¬(u = l)

where M ′ differs from M only in M ′(l) = o′ and
l has type T . Let o = ν(M[l := o′],C) and suppose
〈u := new , M ′〉→ M ′′. Then, by the semantics of the dia-
mond modality of dynamic logic and the above semantics of
object creation, we conclude that

M ′ |� 〈u := new 〉¬(u = l)
iff (semantics of object creation)
M ′′ |� ¬(u = l)
iff (compute values of u, l in the model M ′′)
o �= o′

In the last step of the proof, we have used properties of the
semantics of object creation to deduce that M ′′(l) = o′ and
M ′′(u) = o. This is justified by the following line of reason-
ing. By definition of o = ν(M,C), we have o /∈ M(C). Fur-
thermore, since M(C) = M ′(C), we also have o /∈ M ′(C).
On the other hand, o′ ∈ M ′(C); hence,we indeed have o �= o′
for all o′ ∈ M(C).

3 Transformations

We show here that our core language contains suitable prim-
itive constructs from which more intricate features can be
handled by a completely mechanical translation. The fea-
tures to which this transformational approach applies include
failures, bounded arrays, inheritance and dynamic binding.

Failures A failure normally occurs (but not in the semantics
described previously) in the execution of statements when
executing if b then s fi if b is false , calling a method or
accessing a field of the null object and when evaluating an

123

1126 S. de Gouw et al.

undefined expression (such as division by zero). To achieve
this in principle, checks for definedness have to be added to all
expressions and statements. This seriously obfuscates both
proof rules for and semantics of programs. We solved this
problem by assuming that only an execution of if b then s fi
can fail.

We now define a transformation which guarantees that
whenever such an “undefined” expression is evaluated in the
original program, if false then s fi is executed in the trans-
formed program. In the definition of the transformation, we
will make use of a Boolean expression def(e) with the fol-
lowing property:

[[def(e)]](M) if and only if no failure would occur when

evaluating e in M .

In principle, any definition of def which satisfies the above
property will suffice, but as an example, we define here a
few representative cases of the definition. A more complete
treatment can be found in [21].

– def(u) ≡ true
– def(e.x) ≡ def(e) ∧ e �= null
– def(e1[e2]) ≡ def(e1) ∧ def(e2) ∧ e1 �= null
– def(f (e1, . . . , en)) ≡ def(e1) ∧ . . . ∧ def(en) ∧
def(f)(e1, . . . , en)

– def(if b then e1 else e2 fi ≡ def(b) ∧ ((b ∧ def(e1)) ∨
(¬b ∧ def(e2)))

The fourth case covers arithmetical operationswhich can fail,
such as division. For such operations, we assume to have a
condition def(f)(v1, . . . , vn) on the arguments on which f
is defined. For division, this condition is def(div)(x, y) ≡
y �= 0.

We are now in the position to define the transformation
Θ(s) by induction on the structure of s:

– Θ(u:=e) ≡ if def(e) then u:=e fi
– Θ(s1; s2) ≡ Θ(s1);Θ(s2)
– Θ(if e then s1 else s2 fi)≡ if def(e) then (if e thenΘ(s1)

elseΘ(s2) fi) fi
– Θ(m(e1, . . . , en)) ≡ if (def(e1) ∧ · · · ∧ def(en) ∧

e1 �= null) thenm(e1, . . . , en) fi

The cases not covered here are trivial adaptations of the above
cases. The final result is a transformed program where the
above transformation is applied to the main statement of the
program and to each method body.

In addition to transformations of expressions and pro-
grams, it is also possible to define a transformation on for-
mulas, depending on the intended semantics of assertions.
For instance, in the proof system we shall use in this paper,
arrays will be treated in the assertion language as unbounded.

Consequently, if an array of natural numbers is created (more
on bounded arrays follows below) and assigned to the vari-
able a, then afterward a[a.length + 1] = 0 will be provable
(because natural numbers are initialized to 0), despite the fact
that a.length + 1 lies “outside the array bounds.” If instead
a semantics of assertions is desired in which this formula is
not provable, a transformation on assertions could be defined
as: Θ(a[e]) ≡ if 0 ≤ e < a.length then a[e] fi .

To describe the relation between a given program and its
transformed counterpart, we define the following fail predi-
cate on statements.

– fail(u:=e) ≡ ¬def(e)
– fail(s1; s2) ≡ fail(s1)
– fail(if e then s1 else s2 fi) ≡ ¬def(e)
– fail(m(e1, . . . , en)) ≡

¬(def(e1) ∧ . . . ∧ def(en) ∧ e1 �= null)

The intention is that fail(s) holds in a given model, if the exe-
cution of s in that model immediately fails. The next theorem
summarizes the outcome of the above transformations:

Theorem 1 Let ⇒ be the transition relation restricted to
non-failing models in the computation of a statement s (i.e.,
models in which fail(s) is false). Then, for all statements s
and models M:

if then

1. 〈Θ(s), M〉 →∗ 〈s′, M ′〉 if and only if 〈s, M〉 ⇒∗
〈s′′, M ′〉, where Θ(s′′) = s′.

2. If there is no transition step for 〈s′, M ′〉, then
[[fail(s′)]](M ′) is false .

Proof The proof of this theorem proceeds by induction on s.

Besides failures, other features such as dynamic binding,
return values, constructors and bounded arrays (which are
not strictly part of the core language) are handled by the
below shallow embeddings that allow to view them as syn-
tactic sugaring.

Dynamic binding in closed programs Note that the language
already contains an inheritance relation, but we now use it
to handle dynamic binding. In our semantics (described in
Sect. 2.1.3), subclasses do not correspond to subsets: If C
is a subclass of D, then their sets of instances dom(C) and
dom(D) are disjoint. This, for example, allows us to define
the e instanceof C operator of Java as the Boolean expression
n �= null∧(C(e)∨C1(e)∨· · ·∨Cn(e) of all the superclasses
C1, . . . ,Cn of C (note that this uses our restriction to closed
programs).

To add support for dynamic binding, we first rename each
method uniquely by prefixing its class: If m is a method of

123

Integrating deductive verification and symbolic execution 1127

class C , then its new name is C.m. Dynamic binding is then
achieved by transforming each method call m(s, e1, . . . , ek)
to the statement Sn , defined inductively as follows:

S0 ≡ skip

Si+1 ≡ ifCi+1(s) thenCi+1.m(s, e1, . . . , ek)else Si fi

where {C1, . . . ,Cn} is the set of subclasses of the type of s.
In this scheme, we make essential use of the fact that C(s)
returns true only if s is exactly of type C , not if the type of s
is merely a subclass of C .

Return values and constructormethods Java constructors are
special methods that initialize the fields of a newly created
object, do not return anything and are named after their class.
In Java, the statement new C(e) initializes the fields of the
new object by executing the constructor C (with actual para-
meters e). Constructors can be handled in our core language
by the following simple transformation (the argument of Θ

is a Java code fragment; the result is a code fragment of our
core language):

– Θ(new C(e)) ≡ u := new; u.C ′(e)

where u is a fresh variable of typeC . Intuitively, this first cre-
ates the new object and then invokes the constructor (which
is renamed to C ′) on it; treating it like a normal method.
The renaming avoids name clashes with class predicates.
Return values of methods can be simulated by introducing a
fresh (global) variable result and assigning the return value
to result whenever the return-statement would be executed
in the original Java program. This results in the following
transformation:

– Θ(return e) ≡ result := e

Bounded arrays An unbounded array a is of “unlimited”
length, and hence, the expression a[n] is well-defined for
each natural number n. Bounded arrays are defined only on
an initial segment {0, . . . , b} of the natural numbers. The
number b is called the bound of the array. In Java, bounded
arrays are created with the statement new T[n]. We model
the bound by adding a read-only field length of type Nat
to each array type and defining the following transformation
from Java to our core language:

– Θ(new T[n]) ≡ a := new; a.length := n.

where a is a fresh array variable of type T . The intention
is that a[k] is defined if and only if 0 ≤ k < a.length. If
an element outside of the bounds of the array is accessed, a
failure occurs. This requires only the following revision in
the definition of def(e):

– def(e1[e2]) ≡ if (def(e1) ∧ def(e2)) then (e1 �= null ∧
0 ≤ e2 < e1.length)else false fi

Note that the length of the array is not part of the type of an
array variable. This follows the usual practice in Java where
the number of dimensions is part of the type of an array vari-
able, but the length is not. Consequently arrays with different
lengths can be assigned to the same array variable during a
program execution.

4 Sequent calculus

In this section, we introduce a proof system for dynamic
logic with object creation which abstracts from the explicit
representation of objects in the semantics defined above. As a
consequence, the rules of the proof system are purely defined
in terms of the logic itself and do not refer to the semantics. It
is characteristic for dynamic logic, in contrast to Hoare logic
or weakest precondition calculi, that program reasoning is
fully interleavedwith first-order logic reasoning because dia-
mond, box or update modalities can appear both outside and
inside the logical connectives and quantifiers. It is therefore
important to realize that in the following proof rules, φ,ψ

and alikematch any formula of our logic, possibly containing
programs or updates.

We follow [11,13] in presenting the proof system for
dynamic logic as aGentzen-style sequent calculus. A sequent
is a pair of sets of formulas (each formula closed for logi-
cal variables) written as φ1, . . . , φm � ψ1, . . . , ψn . The for-
mulae φi on the left of the sequent arrow � are called the
antecedent, the formulae ψ j on the right the succedent of
the sequent. The meaning of such a sequent is identical to
the meaning of the logic formula
∧

i=1...m

φi →
∨

i=1...n

ψi

where an empty antecedent (or succedent) is the neutral
element of the conjunction (true), respectively, disjunction
(f alse).

We use capital Greek letters to denote (possibly empty)
sets of formulas. For instance, by Γ � φ → ψ,Δ, we mean
a sequent containing at least an implication formula on the
right side. Sequent calculus rules always have one sequent
as conclusion and finitely many sequents as premises:

Γ1 � Δ1 · · · Γn � Δn

Γ � Δ

Semantically, a rule states that the validity of all n premises
implies the validity of the conclusion (“top-down”).

We use the sequent calculus analytically, i.e., we start with
the sequent to be proven valid. A sequent calculus proof is a
tree in which each node is labeled with a sequent. The root

123

1128 S. de Gouw et al.

Fig. 1 Some first-order rules

node is labeled with the initial sequent to be proven valid.
Rules are applied on the leaves of the proof tree in a bottom-
up manner. This means that a rule is applied to the sequent
seqn of a leaf node n bymatching its conclusion against seqn ,
instantiating the premises with the obtained instantiation and
adding them as new children of n. This reduces the prov-
ability of the conclusion to the provability of the premises
step-wise until the obtained sequents are trivially valid (same
formula on both sides, f alse in the antecedent or true in
the succedent) and can be closed by applying rules with no
premise. A proof is closed if and only if all its branches are
closed.

In Fig. 1, we present some of the rules dealing with propo-
sitional connectives and quantifiers (see [30] for the full set).
We omit the rules for the left-hand side, the rules to deal with
negation and the rule to cover conditional expressions. We
write φ[e/ l] to denote the standard substitution of l with e
in φ.

Several sequent rules resemble more (conditional) rewrite
rules, which replace a formula φ by an equivalent formula φ′
or a term t by a semantically equal term t ′. Most rules dealing
with programs are actually of this kind as most of them are
not sensitive to the side of the sequent and can moreover
even be applied to sub-formulas. For instance, 〈s1; s2〉φ can
be split up into 〈s1〉〈s2〉φ regardless of where it occurs. For
ease of presentation, we introduce the following syntax

�φ′ �
�φ �

to express these kindof ruleswhere the premise is constructed
from the conclusion via replacing an occurrence of φ by φ′.

Example 1 Asimple example for a rewrite rule is for instance

concreteAnd
�φ �

�φ ∧ true �
which can be applied on all occurrences of A ∧ true in the
sequent

B → (A ∧ true), A ∧ true � B ∧ (A ∧ true)

reducing it step-wise to the sequent

B → A, A � B ∧ A

Fig. 2 Dynamic logic rules

In Fig. 2, we present the rules dealing with statements.
The schematic modality 〈[·]〉 can be instantiated with both [·]
and 〈·〉, though consistently within a single rule application.

Total correctness formulas of the form 〈while ...〉φ are
proved by first applying the induction rule ind (possibly
after generalizing the formula), followed by the unwind rule
in the induction step. To deal with formulas of the form
[while . . .]φ, we use the standard loop invariant rules, e.g.,
[12,13]. The invariance rule (Sect. 2) is an adaptation rule.
This name originates from the fact that it allows adapting
a contract to a specific context. For while programs, adap-
tation rules are unnecessary, but they are essential for a
relative complete proof system with recursive procedures
(see [7]).

Method calls In the specification of methods, we employ
auxiliary variables, sometimes also called ghost variables.
Such variables are used to specify and verify properties that
would otherwise be difficult or even impossible to specify
(see the case study Sect. 7 for an example of such a prop-
erty). One aspect in which our approach differs from the
seminal work of Owicki and Gries [48] is that due to object
creation, their rule for deleting assignments to ghost vari-
ables does not hold in our approach. For instance, the formula
{u := new }(∃x .x �= null) might not be valid if the update
is deleted.

From a pure logic point of view, ghost variables (or ghost
fields) are nothing else than normal local variables (or fields)
and their semantics are exactly the same. The syntactic dis-
tinction ismade to distinguish cleanly between program code
and specification. This allows us to strip the whole specifica-
tion code out of the source code without altering its seman-
tics; in particular, the production program code can be com-
piled such that it does not contain variable declarations and
other statements which are used for specification purposes
only.

To ease specification, we restrict the usage of ghost vari-
ables as follows: In our approach, ghost variables do not
occur in method bodies and are used only to express prop-
erties of methods. The value of ghost variables will be set
in a special block of code that executes directly after the

123

Integrating deductive verification and symbolic execution 1129

Fig. 3 Update application,
general cases

method body. This code block is required to terminate for
obvious reasons. In the block, fields and normal variables
are read-only and only ghost variables may be assigned to.
To avoid complicated analyses of the control flow, we dis-
allow method calls in the code block: The block is a while
program.

We associate two dynamic logic formulas to eachmethod:
a precondition and a post-condition. Following the design
by contract paradigm, the partial correctness contract of
a method m with u1, . . . , un as its formal parameters, a
precondition p and a post-condition q is given by the
formula p→ [m(t1, . . . , tn)]〈s〉q. Intuitively, the formula
states that when precondition p is satisfied then the post-
condition q must hold after execution of method m (or m
must diverge). In more detail, in the contract we require
f ree(q) ∩ {u1, . . . , un} = ∅. The while program s is the
code block for ghost variables (note that themodality ensures
termination of this statement), and t1, . . . tn is a sequence of
fresh variables representing the actual parameters (which can
be used in the post-condition to refer to the actual parame-
ters’ value). The freshness of the variables ensures that the
contract specifies a property of a generic call. The restriction
that the formal parameters do not occur in the post-condition
is necessary for the soundness of the verification conditions
we are about to introduce. To prove for example that the value
of the formal parameters before and after the call is the same
(they are reset to their initial values according to the seman-
tics of method calls), other rules such as the invariance rule
must be used.

Proving correctness of a program where the main state-
ment has the contract p→ [smain]q involving (possibly
recursive) methods with contracts of the form pi → [mi

(t1, . . . , tn)]〈si 〉qi and method body Bi amounts to proving
the following verification conditions:

1. � p→ [smain]q
2. � (pi ∧ u1 = t1 ∧ . . . ∧ un = tn)→ [Bi]〈si 〉qi

These verification conditions are inspired by the (partial cor-
rectness) rules for Hoare logic given in [8].

5 Applications of updates

In this section, we define a rewrite relation on dynamic logic
formulas with updates, to standard first-order logic formulas
without updates. This relation is necessary to reason about
formulas containing updates. Updates are essentially delayed
substitutions.1 They are resolved by application to the suc-
ceeding formula, e.g., {u := e}(u > 0) leads to e > 0.
Update application is only allowed on formulas not start-
ing with either a diamond, box or update modality. The last
restriction is dropped for symbolic execution, see Sect. 6.

We now define update application on formulas in terms of
a rewrite relation {U}φ � φ′ on formulas. It is here where
we also need, as a technical vehicle, the update applied to
expressions, {U}e (see the syntax of expressions, Sect. 2).

5.1 General updates

Figure 3 defines � for general updates. The symbol U
matches all updates, whereas Unc (‘non-creating’) excludes
the form u := new . Most rules are standard (see also
[11,49]); the non-standard rules R14, R15 and R16 are dis-
cussed separately below. Note that � is not defined for for-
mulas of the form {U}〈s〉φ, {U}[s]φ or {U}{U ′}φ, i.e., they
are not subject to update application.

Object creation of the form u := new is only covered in
so far as it behaves like any other update. The cases where
object creation differs are discussed separately in Sect. 5.2.
The relation � is defined in a big-step manner, such that
updates are resolved completely in a single � step.

1 The benefit of delaying substitutions in the context of symbolic exe-
cution is illustrated in Sect. 6.

123

1130 S. de Gouw et al.

Fig. 4 Update application,
special cases

For ruleR14, observe that the axioms formodels (Sect. 2.1.3)
imply that conditional expressions satisfy the following iden-
tity:

op(e1, . . . , if b then ei else e′
i fi , . . . , en)

= if b then op(e1, . . . , ei , . . . , en) else op(e1, . . . , e′
i , . . . , en) fi

where op is any function symbol or relation symbol in our
language (including dereferencing a field and taking sub-
scripts of an array). Rule R14 formalizes this outward shift-
ing of the conditional expression. The shifting continues until
the conditionals reach the formula level, at which rule R7 is
applicable.

Such “shifting” is not sound for if b then e fi -expressions.
For example, if proj is a binary function defined by
proj (x, y) = x , then proj (x, if false then e fi) = x ,
but if false then proj (x, e) fi = if false then x fi , which
denotes an arbitrary object (of the same type as x). Thus,
clearly proj (x, if false then e fi) = if false then proj
(x, e) fi is not valid. However, from the axioms for models,
we can infer the following identity:

if b then e fi = if b then e else (if false then e fi) fi

Hence, as a first step to treating updates on if b then e fi -
expressions, we introduce the rule R15. The resulting if −
then − else -expression can then be shifted outward using
the previously discussed rule R14. Updates applied to an
expression if false then e fi can simply be discarded due to
the following two reasons. First, updates only affect the inter-
pretation of the variables or fields, but not the interpretation
of if − then − fi (see Sect. 2.1.3). Second, if the condition
is false , applying the update to e is not needed since the
value of the expression then does not depend on the second

Fig. 5 Illustration of the array rules. a and u are two-dimensional
integer arrays, v a one-dimensional integer array, i , j are integers and
U ≡ s.a[1] := v

argument e (again, see Sect. 2.1.3): if false then e fi T =
if false then e′ fi T . This justifies rule R16.
Figure 4 shows the update application rules for special

cases. Rule R8 is the simple case where an update is applied
to a termwhich is syntactically equal to the update’s left-hand
side. RuleR9 eliminates an update application in caseswhere
it is syntactically decidable that the update has no effect. Rule
R10 propagates the update over a field access expression if
the left-hand side of the update is not identical to the accessed
field. The conditional expressions used in the rules R11 and
R13 take into account possible aliases. For example, inR11,
we have to check whether the object denoted by e2 after the
update {U} equals that of e (before the update), because in
that case its values obviously also change by the update.

Figure 5 contains an example illustrating the use of the
rules. Note that in the derivation, both R12 and R13 are
applied to subscripted expressions, but that R12 is applied
in case s.a and u[i] have a different type, and R13 is applied
if s.a and u have the same array type, and consequently may
be the same array.

The following rule links the rewrite relation � with the
sequent calculus:

applyUpd
�φ′ �

� {U}φ �
with {U}φ � φ′

123

Integrating deductive verification and symbolic execution 1131

The soundness of the rewrite relation for non-creating
updates is stated in the next substitution lemma:

Lemma 1 (Substitution lemma)
Suppose 〈Unc, M〉 →∗ M ′.

1. For all expressions e: if {Unc}e � e′ then [[e′]](M) =
[[e]](M ′).

2. For all formulas φ: if {Unc}φ � φ′ then M |� φ′ iff
M ′ |� φ.

Proof All cases are standard and can be found in [8], except
for the subscripted assignment. Let U ≡ e1[e2] := e3 and
suppose 〈U , M〉 →∗ M ′.
[[e4[e5]]](M ′)
= (semantics of array access)

M ′([])([[e5]](M ′))([[e4]](M ′))
= (induction hypothesis)

M ′([])([[{U}e5]](M))([[{U}e4]](M))

= (definition of M ′, semantics of subscripted assignment)⎧⎪⎨
⎪⎩

[[e3]](M) if [[e1]](M) = [[{U}e4]](M)∧
[[e2]](M) = [[{U}e5]](M)

M([])([[{U}e5]](M))([[{U}e4]](M)) otherwise

= (semantics of array access)⎧⎪⎪⎨
⎪⎪⎩

[[e3]](M) if [[e1]](M) = [[{U}e4]](M)∧
[[e2]](M) = [[{U}e5]](M)

[[({U}e4)[{U}e5]]](M)) otherwise
= (semantics of formulas){

[[e3]](M) if [[e1 = {U}e4 ∧ e2 = {U}e5]](M)

[[({U}e4)[{U}e5]]](M)) otherwise

= (semantics of conditional expression)

[[if (e1 = {U}e4 ∧ e2 = {U}e5) then e3 else ({U}e5)[{U}
e4] fi]](M) = (definition of update application on array
expressions)[[{U}(e4[e5])]](M)

��
5.2 Contextual application of object creation

To define update application on {u := new }e, simple sub-
stitution, i.e., replacing u in e by some expression, is not suf-
ficient because we cannot refer to the newly created object in
the model prior to its creation. However, object expressions
can only be compared for equality, dereferenced, accessed as
an array if the object is of an array type or appeared as argu-
ments of a class predicate or conditional expression. Since
object expressions do not appear as arguments of any other
function, we define update application by a contextual analy-
sis of the occurrences of u in e. Some cases are already cov-
ered in Sect. 5.1 andFig. 3 (the rules dealingwith unrestricted
U). The other cases are discussed below.

Since the fields of a new object are initialized to their default
value, we have the following rules

C1 {u := new }(u.x) � ini tT
where C → T is the type of x

C2
({u := new }e).x � e′

{u := new }(e.x) � e′
where e is neither u nor a conditional expression

The next cases states that all elements in a newly created
array are initialized to their default value:

C3 {u := new }u[e] � ini tT
where T [] is the type of u

C4
({u := new }e)[{u := new }(e1)]) � e′

{u := new }(e[e1]) � e′
where e is neither u nor a conditional expression

Another possible context in which u can occur is that of an
equality e = e′. We distinguish the following cases:
If neither e nor e′ is u or a conditional expression, then they
cannot refer to the newly created object and we define2

C5
({u := new }e) = ({u := new }e′) � e′′

{u := new }(e = e′) � e′′
where neither e nor e′ is u or a conditional expression

If both the expressions e and e′ are u, we obviously have

C6 {u := new }(u = u) � true

On the other hand, if e is u and e′ is neither u nor a con-
ditional expression (or vice versa), then after u := new the
expressions e and e′ cannot denote the same object (because
one of them refers to the newly created object and the other
one refers to an already existing object); so we define

C7 {u := new }(e = e′) � false
where e is u and e′ is neither u nor a conditional

expression (or vice versa)

The final context in which u can occur is that of a class
predicate, where the following three rules apply:

C8 {u := new }(C(u)) � true
where u is of type C

2 To see why the shifting inward of {u := new } is necessary, consider
the case {u := new }(u.x = 0). Neither side of the equality denotes
the new object (at the top level), but the new object occurs in a sub-
expression (namely u.x). With shifting, {u := new }(u.x = 0) results
in (0 = 0). Without shifting, the (incorrect) result is u.x = 0.

123

1132 S. de Gouw et al.

Fig. 6 Simplification of object creation with U ≡ u := new

C9 {u := new }(C(u)) � false
where u is not of type C

C10
C({u := new }e) � e′

{u := new }(C(e)) � e′
where e is neither u nor the conditional expression

Now we define the rewriting of {u := new }φ, where φ is a
first-order formula in predicate logic (which does not contain
modalities). The rules for universal quantification are:

C11
({u := new }φ[u/ l]) ∧ ∀l.({u := new }φ) � ψ

{u := new }∀l.φ � ψ

where l is a logical variable of the same type as u

C12
∀l.({u := new }φ) � ψ

{u := new }∀l.φ � ψ

where l is a logical variable of a different type as u

The first rewrite rule takes care of the changing scope of
the quantified variable l by distinguishing two cases: φ

holds for the new object is expressed by the first conjunct
{u := new }φ[u/ l] (which is obtained by application of
the update to φ[u/ l]) and φ holds for all “old” objects is
expressed by the second conjunct ∀l.({u := new }φ). The
rules for existential quantification can be derived from the
rules for universal quantification and the equivalence ∃l.φ
iff ¬∀l.¬φ. For easy reference, the object creation rules are
summarized in Fig. 6.

Abstract rewrite systems in general can obey two proper-
ties: termination and confluence. Together these two prop-
erties ensure the existence of a unique normal form. In our
case, the normal form is an expression or formula without

updates and uniqueness of the normal form is clearly only
important up to logical equivalence (i.e., a sort of “semantic
version” of confluence). The next lemma characterizes the
expressions on which our rewrite relation terminates3

Lemma 2 (Termination of the rewrite relation)
Let φ′ be any pure first-order formula (no modal operators)
and let e′ be any expression not generated by the grammar

ennf ::= u | if b then ennf fi | if b then ennf else e fi |
if b then e else ennf fi

Then

1. {u := new }e′ � e where e contains no updates.
2. {u := new }φ′ � φ where φ contains no updates.

Proof Sketch For formulas φ with quantifiers, it suffices to
note that in the derivation of {u := new }φ � φ′, the quanti-
fier rule applies in its premises {u := new } to formulas with
one less quantifier. This proves the second case, by induction
on the number of quantifiers. For the first case, note that
there is a rewrite rule for each expression e′ �≡ u. In all
rules without premises, the resulting expression contains no
updates. The lemma now follows from the observation that
for ruleswith premises, but not involving the offending forms
of conditional expressions excluded by the grammar above,
the update is applied to expressions different from u, whose
parse trees are of a lesser height. ��

The following theorem extends Lemma 1 to object cre-
ations. It guarantees that the normal forms obtained from
applying the rewrite relation are unique up to logical equiv-
alence. Intuitively, the second case of the theorem together
with the second case of the previous lemma states that we can
computeweakest preconditions of abstract object creation for
any pure first-order formula (i.e., not involving modalities).

Theorem 2 Semantic correctness of the rewrite relation
Suppose 〈u := new , M〉 →∗ M ′.
1. For any expression e, if {u := new }e � e′ then

[[e′]](M) = [[e]](M ′).
2. For any formula φ, if {u := new }φ � φ′ then M |� φ′

iff M ′ |� φ.

Proof Suppose U ≡ u := new , 〈U , M〉 →∗ M ′, and o is
the newly created object.
We first prove the case for e ≡ if false then e fi :

[[{U}(if false then e fi)]](M)

= (rule R16)

[[if false then e fi]](M)

3 As a counterexample, the term {u := new }u cannot be simplified
further.

123

Integrating deductive verification and symbolic execution 1133

= (Operational semantics of object creation (pg. 13) and

last axiom for models)

[[if false then e fi]](M ′)

The other cases are proven by induction on the structure
of expressions and formulas.We illustrate two representative
cases, namely when the rewrite relation for object creation
is applied to an expression e′.x and when it is applied to a
formula ∀l : φ. Other cases follow analogously to these.

– If e ≡ e′.x , where x is a field of type C → T . We distin-
guish three sub-cases.

1. e ≡ u.x :

[[{U}(u.x)]](M)

= (rule C1 and value of ini tT in the model M)
ini tT
= (Since fields of new objects are initialized their
default value)
M(x)(o)
= (Operational semantics of object creation; pg. 13)
M(x)([[u]](M ′))
= (Semantics of field access)
[[u.x]](M ′)

2. e ≡ (if b then e1 else e2 fi).x :

[[{U}((if b then e1 else e2 fi).x)]](M)

= (rule R14)
[[({U} if b then e1.x else e2.x fi]](M)

= (rule R7)
[[if ({U}b) then ({U}(e1.x))else ({U}(e2.x)) fi]](M)

= (Semantics of conditional expression){
[[{U}(e1.x)]](M) if [[{U}b]](M)

[[{U}(e2.x)]](M) otherwise
= (Induction hypothesis){

[[e1.x]](M ′) if [[b]](M ′)
[[e2.x]](M ′) otherwise

= (Semantics of conditional expression)
[[if b then e1.x else e2.x fi]](M ′)

3. e ≡ if b then e fi .x where b �≡ false :

[[{U}(if b then e fi .x)]](M)

= (rule R15)

[[{U}(if b then e else if false then e fi fi .x)]](M)

= (rule R14)

[[{U}(if b then e.x else (if false then e fi).x fi)]](M)

= (rule R7)

[[(if {U}b then {U}(e.x)else
{U}((if false then e fi).x) fi)]](M)

= (Semantics of conditional expression)

{
[[{U}(e.x)]](M) if [[{U}b]](M)

[[{U}((if false then e fi).x)]](M) otherwise

= (Rule C2){
[[{U}(e.x)]](M) if [[{U}b]](M)

[[({U} if false then e fi).x]](M) otherwise

= (See proof above about if false then e fi){
[[{U}(e.x)]](M) if [[{U}b]](M)

[[(if false then e fi).x]](M ′) otherwise
= (Induction hypothesis){

[[e.x]](M ′) if [[b]](M ′)
[[(if false then e fi).x]](M ′) otherwise

= (Semantics of if-then)
[[if b then e fi .x]](M ′)

4. e ≡ e′.x and e′ is neither u nor a conditional expres-
sion:

[[{U}(e′.x)]](M)

= (rule C2)
[[({U}e′).x]](M)

= (Semantics of field access)
M(x)([[{U}e′]](M))

= (Induction hypothesis)
M ′(x)([[e′]](M ′))
= (Semantics of field access)
[[e′.x]](M ′)

– If φ ≡ ∀l : φ where l has the same (class) type as u then:

M |� {U}∀l.φ
iff (rule C11, semantics of formulas)

M |� {U}φ[u/ l] and M |� ∀l.{U}φ
iff (induction hypothesis, definition of M ′)
M ′ |� φ[u/ l] and M |� ∀l.{U}φ
iff (semantics of formulas)

M ′ |� φ[u/ l] and M[l := o′] |� {U}φ for all o′ ∈ M(C)

iff (substitution lemma and M ′(u) = o)

M ′[l := o] |�φ and M[l := o′] |�{U}φ for all o′ ∈M(C)

iff (〈U , M[l := o′]〉 →∗ M ′′ implies M ′′ = M ′[l := o′])
M ′[l := o] |� φ and M ′[l := o′] |� φ for all o′ ∈ M(C)

iff (since M ′(C) = M(C) ∪ {o})
M ′[l := o′] |� φ for all o′ ∈ M ′(C)

iff (semantics of formulas)

M ′ |� ∀l.φ

��
As an illustration of applying the rewrite relation, we

derive {u := new }∀l.¬(u = l) � ¬(true) ∧ ∀l.¬ false :

123

1134 S. de Gouw et al.

{u := new }(u = u) � true
{u := new }¬(u = u) � ¬(true)

{u := new }(u = l) � false
{u := new }¬(u = l) � ¬ false

∀l.{u := new }¬(u = l) � ∀l.¬ false
{u := new }¬(u = u) ∧ ∀l.{u := new }¬(u = l) � ¬(true) ∧ ∀l.¬ false

{u := new }∀l.¬(u = l) � ¬(true) ∧ ∀l.¬ false

The resulting formula is equivalent to false . We use this
to prove the formula 〈u := new 〉∀l.¬(u = l), which states
that u is different from all objects existing after the update
(including u itself), invalid. In fact, we have the following
derivation for ¬〈u := new 〉∀l.¬(u = l)

closeTrue ∀l.¬ false � true
notLeft ¬(true),∀l.¬ false �

andLeft ¬(true) ∧ ∀l.¬ false �
applyUpd {u := new }∀l.¬(u = l) �

assignToUpd 〈u := new 〉∀l.¬(u = l)) �
notRight � ¬〈u := new 〉∀l.¬(u = l)

On the other hand, we have the following derivation of

∀l.〈u := new 〉¬(u = l)

which expresses in an abstract and natural way that u indeed
is a new object different from objects existing before the
update.

closeFalse
false �notRight � ¬ falseapplyUpd � {u := new }¬(u = c)

assignToUpd � 〈u := new 〉¬(u = c)
allRight � ∀l.(〈u := new 〉¬(u = l))

The second example shows that the standard rules for quan-
tification apply to the quantification over the existing objects.

6 Symbolic execution

6.1 Simultaneous updates for symbolic state representation

The proof systempresented thus far allows for classical back-
ward reasoning, in a weakest precondition manner. We now
generalize the notion of updates, to allow for the accumu-
lation of substitutions, thereby delaying their application. In
particular, this can be done in a forward manner, giving the
proofs a symbolic execution nature. We illustrate this princi-
ple by example, in Fig. 7.

The first application of the update rule mergeUpd intro-
duces what is called the simultaneous updatew := u | u := v.
After applying the secondmergeUpd, note that the w from
the inner update was turned into a u in the simultaneous

update. This is achieved by applying the outer update to the
inner one:

mergeUpd
� {U1 | · · · |Un |U ′}φ �
� {U1 | · · · |Un}Uφ �

with {U1 | · · · |Un}U � U ′

For this, we need to extend the rewrite relation � toward
defining application of updates to updates:

u := {Unc}e � U ′

{Unc}(u := e) � U ′
({Unc}e1).x := {Unc}e2 � U ′

{Unc}(e1.x := e2) � U ′

What remains here is the definition of the application
of simultaneous updates to expressions. For non-creating
updates (like Unc above), this is standard, so we do not
include the full definition. (For a full account on simulta-
neous updates, see [49]. There, the standard cases are fully
defined, in a small-step rewriting style, but without creating
updates, instead using object activation.) Here, we only show
one interesting special case, where two left-hand sides both
write the field x which is accessed in e.x .

if ((Ue) = e2) then e′
2 else if ((Ue) = e1) then e′

1 else U(e).x fi fi � e′

U(e.x) � e′
with U = {e1.x := e′

1 | e2.x := e′
2}

This already illustrates two principles: using updates allows
us to delay the alias analysis to the actual application of an
update to a field expression. Delaying the analysis allows us
often to skip the analysis completely because of intermedi-
ate simplifications or because the analysis is—for the task
at hand—not necessary at all (e.g., imagine one never has to
evaluate an expression e.x). However, sometimes it is neces-
sary to perform the alias analysis. Here, this means that we

Fig. 7 Symbolic execution style proof

123

Integrating deductive verification and symbolic execution 1135

have to evaluate e under the update U and to check whether
it evaluates to same value as e2 or e1.

This brings us to the second principle, namely what hap-
pens in case of a clash, where e1, e2 andU(e) denote the same
object. In our semantics, the rightmost update will “win.”
This exactly reflects the destructive semantics of imperative
programming. Most cases are, however, much simpler. Most
of the time, it is sufficient to think of an application of a simul-
taneous update as an application of a standard substitution
(of more than one variable).

The idea to use simultaneous updates for symbolic exe-
cution was developed in the KeY project [11] and turned
out to be a powerful concept for the validation of real
world (Java) programs. A simultaneous update forms a rep-
resentation of the symbolic state which is reached by “exe-
cuting” the program in the proof up to the current proof
node. The program is “executed” in a forward manner,
avoiding the backward execution of (pure) weakest pre-
condition calculi, thereby achieving better readability of
proofs. The simultaneous update is only applied to the post-
condition as a final, single step. The KeY tool uses these
updates not only for verification, but also for test case
generation with high code coverage [27] and for symbolic
debugging.

6.2 Symbolic execution and abstract object creation

A motivation to choose the setting of dynamic logic with
updates is to allow for abstract object creation in symbolic
execution style verification. To do so, we have to answer
the question of how symbolic execution and abstract object
creation can be combined. The problem is that there is no
natural way of merging object creation {u := new } with
other updates. Consider, for instance, the following formulas
of which only the first is valid.

〈u := new ; v := u〉(u = v) 〈u := new ; v := new 〉(u=v)

Symbolic execution generates the following formulas:

{u := new }{v := u}(u=v) {u := new }{v := new }(u=v)

Merging the updates naively results in both cases in:

{u := new | v := new }(u = v)

Whichever semantics onegives to a simultaneous updatewith
two object creations, the formula cannot be both valid and
invalid.

The proposed solution is twofold: not to merge an object
creation with other updates at all, but to create a second ref-
erence to the new object, to be used for merging. For this, we
introduce a fresh auxiliary variable to store the newly created
object and generate two updates according to the following
rule:

createObj
� {a := new }{u := a}φ �

� 〈u = new 〉φ �
with a a fresh program variable

The inner update {u := a} can be merged with other updates
resulting from the analysis of φ. The next point to address is
the “disruption” of the symbolic state, caused by object cre-
ation being unable to merge with their “neighbors,” thereby
strictly separating state changes happening before and after
object creation. The key idea to overcome this is to grad-
ually move all object creations to the very front (as if all
objects were allocated up front) and perform standard sym-
bolic execution on the remaining updates. We achieve this
by the following rule:

pullCreation
� {u := new }Uncφ �
�Unc{u := new }φ �

with u not appearing in Unc

We illustrate symbolic execution with abstract object cre-
ation by an example.

AnotRight, closeFalse � ¬ falseapplyUpd � {a := new }¬(v = a)
applyUpd � {a := new }{u := v | v := a | w := u}¬(w = v)

mergeUpd � {a := new }{u := v | v := a}{w := u}¬(w = v)
mergeUpd,assignToUpd � {a := new }{u := v}{v := a}〈w := u〉¬(w = v)

pullCreation � {u := v}{a := new }{v := a}〈w := u〉¬(w = v)
split, createObj � {u := v}〈v := new ;w := u〉¬(w = v)
split,assignToUpd � 〈u := v; v := new ;w := u〉¬(w = v)

123

1136 S. de Gouw et al.

7 Case study and implementation

Consider a queue data structure, where items can be added
to the beginning of the queue and removed from the end of
the queue. The public interface of such a queue contains

– two global variables pointing to its f irst and last ele-
ment (which are both null in an empty queue),

– an enqueue(v) method which adds a Nat v to the begin-
ning of the queue

– and a dequeuemethod which removes the last item from
the queue.

The queue is implemented as a linked list using a next field
which points to the next item in the queue. Figure 8 visualizes
the result of themethod call f irst.enqueue(2), where f irst
initially (i.e., before executing the call) points to an itemwith
value 3 and last points to an item with value 25. We will
verify the following reachability property of the enqueue
method, expressed in first-order logic using a ghost array:

(f irst = last = null ∨ ∃a : ∃n : n ≥ 0 ∧ a[0]
= f irst ∧ a[n]
= last ∧ ∀ j (0 ≤ j < n) : a[j].next = a[j + 1])→

[enqueue(v)]〈s〉
(∃a : ∃n : n ≥ 0 ∧ a[0] = f irst∧
a[n] = last ∧ ∀ j (0 ≤ j < n) : a[j].next = a[j + 1])

The statement s is the block on the right in Fig. 9 and con-
tains updates to the ghost array variable. Intuitively, this prop-
erty means that after executing enqueue(v), last is reach-
able from f irst through repeated dereferencing of the next
field, provided this was the case initially. Note that by sim-
ply adding that last.next = null we can rule out cycles. For
readability, we use the following abbreviations:

– reach(f, l, a, n) ≡ n ≥ 0 ∧ a[0] = f ∧ a[n] = l ∧ f �=
null �= l ∧ l.next = null ∧ ∀ j (0 ≤ j < n) : a[j] �=
null ∧ a[j].next = a[j + 1]

– p ≡ reach(f irst.next, last, a, n) ∧ f irst �= null
– inv ≡ p ∧ 0 ≤ i ∧ b �= null ∧ b[0] = f irst ∧ ∀ j (0 <

j ≤ i) : b[j] = a[j − 1]
– B: the method body of enqueue (see the left code block
in Fig. 9)

– s: updates to the auxiliary variables (right code block in
Fig. 9)

Note that ∃a : ∃n : reach(f irst, last, a, n) is the precon-
dition and post-condition of the contract of enqueue, and p is
an intermediate assertion, which holds directly after the body
of enqueue and before the updates to the ghost array vari-
able. A symbolic execution style proof of this fact is shown
in Fig. 10. The loop invariant of the updates to the ghost array
variable in the right code block is abbreviated to inv.

Fig. 8 Queue resulting from f irst.enqueue(2)

Fig. 9 Proof outlines for the enqueue(v)method body and ghost vari-
able updates

Fig. 10 Symbolic execution proof of the left code block in Fig. 9

The proof outline on the right in Fig. 9 shows p →
〈s〉reach(f irst, last, b, n). This means after symbolic exe-
cution of the code (together with an application of the loop
invariant rule), we end up with the following proof situation

reach(f irst, last, b, n + 1) �
∃a : ∃n : reach(f irst, last, a, n)

which can be easily shown using our sequent calculus by
instantiating both existential quantifiers to match the argu-
ments of the reach predicate in the antecedent.

7.1 Implementation

The described dynamic logic for abstract object creation has
been implemented based on the KeY verification system for
Java [11]. In particular, we implemented all dynamic logic
rules and update simplification rules as described in Sects. 4
and 5.

A notable feature of the implementation is that actual Java
programs are supported, not just the core Java-like language
introduced in this paper to focus on the relevant issues. In fact,
due to building upon KeY, we inherit support for a consider-
ably larger subset of Java than discussed in the paper. Besides

123

Integrating deductive verification and symbolic execution 1137

Table 1 Proof statistics

Rule apps. Interactions

AOC 4,366 1

Activation 5,959 28

inheritance, dynamic method binding and bounded arrays,
which are discussed in detail in Sect. 3, we support classes
with constructors, static fields and static methods, assign-
ments with expressions containing side effects, etc. The sup-
ported subset is basically equal to sequential Java 1.4 without
floating point arithmetic and garbage collection. Support for
Java 5 features is preliminary. Enhanced for loops and vari-
able arguments methods are fully supported; generics on the
other side need to be transformed away using a provided but
external tool.

None of these features required changes in the rules pre-
sented in this paper, which strengthens our belief that first,
abstract object creation as introduced in Sect. 5 allows an
orthogonal treatment of other features of Java, and second,
that the base language in Sect. 2 is chosen appropriately. We
could also reuse the proof search strategies from standard
KeY with only minor modifications. This gives us instan-
taneous support for a highly automated proof search includ-
ing advanced reasoning about linear and nonlinear arithmetic
problems. To investigate the degree of automation, wemech-
anized the case study in both our own abstract object creation
KeY variant (AOC) and the traditional activation style ver-
sion. Table 1 summarizes the results of the comparison. The
only required interaction in ourAOCversionwas to provide a
suitable loop invariant. Once the loop invariant was given, the
correctness of the case study program could be proven fully
automatically. The proof in the activation style KeY version
required additional user interactions for suitable quantifier
instantiations.

Standard KeY already supports the Java Modeling Lan-
guage (JML) [17] as assertion language instead of dynamic
logic. Assertions given in JML are first translated into
dynamic logic proof obligations before being loaded into the
prover. To achieve support for our KeY variant, we had to
adopt the JML translation to make it aware of abstract object
creation. By performing the required changes, we were able
to support almost all of the JML features that are also sup-
ported by standard KeY and can use it as a convenient way
to specify our programs.

8 Discussion

In this section, we discuss and compare the two main seman-
tic approaches to object creation as well as the expressive-
ness of the core programming language and the assertion
language.

8.1 Object creation versus object activation

Proof systems for object-oriented languages [1] usually
achieve the uniqueness of objects via an injective mapping,
here called obj, from the natural numbers to object identities.
Only the object identities obj(i) up to a maximum index i
are considered to stand for actually created objects. In each
model, the successor of this maximum index is stored in a
ghost variable, here called next. (In case of Java, nextwould
be a static field, for each class.) Object creation increases
the value of next, which conceptually is more an activation
than a creation.Quantifiers cover the entire co-domain of obj,
including “not yet created” objects. In order to restrict a cer-
tain property φ to the “created” objects, the following pattern
is used: ∀l.(ψ → φ), whereψ restricts to the created objects.
Formulas of the form ∃n. (n < next ∧ obj(n) = l) are the
approach taken in ODL[13]. To avoid the extra quantifier, a
ghost instance variable of Boolean type, here called created,
can be used to indicate for each object whether or not it has
already been “created” [12]. In this case, we set the created
status of the “new” object (identified by next) and increase
next. The assertion ∀n.(obj(n).created ↔ n < next)
retains the relation between the created status and the object
counter next on the level of the proofs. In both case, we need
further assertions to state that fields of created objects always
refer to created objects.

To state in this object activation setting that a new object is
indeed new, we need to prove the formula ∀l. (l.created→
〈u := new 〉¬(u = l)). In fact, the corresponding formula
∀l. 〈u := new 〉¬(u = l) for abstract object creation is not
valid in this setting. An object activation style proof of this is
given in Fig. 11 (abbreviating created by cr). Many steps in
this proof are caused by the particular details of the explicit
representation of objects and the simulation of object creation
by object activation.

8.2 Object destruction

We briefly illustrate the flexibility and generality of our
approach by an indication of how to formalize in an abstract
manner object destruction. To this end, consider the com-
mand destroy(u) which removes the object denoted by u
from the domain of existing objects and sets u to null . In
case u already denoted as null , the operation has no effect.
In the calculation of the weakest precondition of destroy(u),
setting u to null can be modeled in the standard way by the
corresponding substitution. Formally, this leads to the base
case:

{destroy(u)}u � null

The main problem concerns the dynamically changing scope
of the quantifiers. This can be dealt with in an elegant manner

123

1138 S. de Gouw et al.

Fig. 11 Abstract object
creation proof (left) versus
activation (right)

by excluding the destroyed object from the range of quantifi-
cation in the weakest precondition. More formally, this gives
rise to the following rewrite rule:

∃l �= u.({destroy(u)}φ) � ψ

{destroy(u)}∃l.φ � ψ

8.3 Expressiveness

The programming language In Sect. 3, we show that our
core language contains suitable primitive constructs from
whichmore intricate features can be handled by a completely
mechanical translation. As such, this justifies the core lan-
guage as an intermediate target language for the verifica-
tion of general object-oriented languages. The features to
which this transformational approach applies include fail-
ures, bounded arrays, inheritance and dynamic binding. The
transformational approach (see also [9]) in general clarifies
the relation between programs of our core language and pro-
gramswritten in (for example) Java using such “derived” fea-
tures. Moreover, the transformations allow us to treat object
creation orthogonal to such features, thereby indicating that
our approach scales up to modern languages.

The assertion language Standard first-order logic cannot
express reachability properties.We have proposed first-order
logic together with auxiliary variables to specify proper-
ties of the heap. In the case study, an example of a reach-
ability property was expressed and proved subsequently.
The question now arises how expressive our approach is
in general. In the presence of general abstract data types,
Tucker and Zucker [51] observe that for expressing, for
example, strongest post-conditions standard arithmetic cod-
ing techniques do not apply. Therefore, Tucker and Zucker
prove expressibility of strongest post-conditions in a weak
second-order language that contains quantification over finite
sequences. It is not difficult though tedious to show that
using auxiliary array variables we can express in our first-
order language strongest post-conditions for our program-

ming language. In fact, in [23], we prove that the strongest
post-condition of a formula in the language of Presburger
arithmetic and a program instrumented with auxiliary vari-
ables in a suitable manner is definable in Presburger arith-
metic itself. This is surprising, since the standard approach
to show that the strongest post-condition is definable is based
on the usual Gödel encoding of partial recursive functions,
which relies on the presence of multiplication in the asser-
tion language, and multiplication is not available in Pres-
burger arithmetic. The basic idea is that one can instrument
any program to store the computation in auxiliary array vari-
ables. The computation can then be recovered in an assertion
by accessing these auxiliary variables. The above encoding
of the strongest post-condition provides the basis for a stan-
dard relative completeness proof for instrumented programs
as described in [31].

9 Conclusion

In this paper, we presented the state of the art in the KeY
theorem prover. We showed how the assertion language
used in KeY can be used conveniently together with auxil-
iary variables to provide a powerful way to express prop-
erties of the heap. Moreover, the assertion language sup-
ports abstract object creation (including dynamically created
arrays), abstracting from irrelevant implementation details
of object creation, which in general complicate proofs. We
formalized a computation of the weakest precondition of
abstract object creation in terms of a rewrite relation on for-
mulas in first-order dynamic logic. We further showed how
more complicated features can be handled by the transforma-
tional approach. Tool support is provided by a special version
of KeY available on http://www.key-project.org/aoc/.

Future work A main line of future research concerns the
integration of different techniques to further support mod-
ularity, i.e., local reasoning as supported by the separating
conjunction of separation logic and dynamic frames.

123

http://www.key-project.org/aoc/

Integrating deductive verification and symbolic execution 1139

References

1. Abadi,M., Leino, K.R.M.: A logic of object-oriented programs. In:
Proceedings of 7th International Conference Theory and Practice
of Software, volume 1214 of Lecture Notes in Computer Science,
pp. 682–696. Springer, Berlin (1997)

2. Ábrahám, E., de Boer, F.S., de Roever, W.P., Steffen, M.: A deduc-
tive proof system for multithreaded Java with exceptions. Fundam.
Inform. 82(4), 391–463 (2008)

3. Ahrendt, W., de Boer, F.S., Grabe, I.: Abstract object creation in
dynamic logic. In: FM, pp. 612–627 (2009)

4. Ahrendt, W., Mostowski, W., Paganelli, G.: Real-time Java API
specifications for high coverage test generation. In: Proceedings
of the 10th International Workshop on Java Technologies for Real-
time andEmbedded Systems. JTRES ’12, pp. 145–154.ACM,New
York, USA (2012)

5. America, P.: Designing an object-oriented programming language
with behavioural subtyping. In: REXWorkshop, pp. 60–90 (1990)

6. America, P.: Formal techniques for parallel object-oriented lan-
guages. In: CONCUR, pp. 1–17 (1991)

7. Apt, K.R.: Ten years of Hoare’s logic: a survey—part 1. ACM
Trans. Program. Lang. Syst. 3(4), 431–483 (1981)

8. Apt, K.R., de Boer, F.S., Olderog, E.-R.: Verification of sequen-
tial and concurrent programs, 3rd edn. Texts in computer science.
Springer, Berlin (2009). ISBN: 978-1-84882-744-8

9. Apt, K.R., de Boer, F.S., Olderog, E.-R., de Gouw, S.: Verifica-
tion of object-oriented programs: a transformational approach. J.
Comput. Syst. Sci. 78(3), 823–852 (2012)

10. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte,
W.: Verification of object-oriented programs with invariants. J.
Object Technol. 3(6), 27–56 (2004)

11. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification ofObject-
Oriented Software: The KeY Approach, volume 4334 of Lecture
Notes in Computer Science. Springer, Berlin (2007)

12. Beckert, B., Klebanov, V., Schlager, S.: Dynamic logic. In: Beckert
et al. [11], pp. 69–177

13. Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions.
In: Furbach, U., Shankar, N. (eds.) IJCAR, volume 4130 of Lecture
Notes in Computer Science, pp. 266–280. Springer, Berlin (2006)

14. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular auto-
matic assertion checkingwith separation logic. In: FMCO, pp. 115–
137 (2005)

15. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory safety for
systems-level code. In: CAV, pp. 178–183 (2011)

16. Bormer, T., Brockschmidt, M., Distefano, D., Ernst, G., Filliâtre,
J.-C., Grigore, R., Huisman, M., Klebanov, V., Marché, C., Mona-
han, R., Mostowski, W., Polikarpova, N., Scheben, C., Schellhorn,
G., Tofan, B., Tschannen, J., Ulbrich, M.: The COST IC0701 ver-
ification competition 2011. In: Beckert, B., Damiani, F., Gurov,
D. (eds.) FoVeOOS, volume 7421 of Lecture Notes in Computer
Science, pp. 3–21. Springer, Berlin (2011)

17. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leav-
ens, G.T., Leino, K.R.M., Poll, E.: An overview of JML tools and
applications. STTT 7(3), 212–232 (2005)

18. Burstall, R.M.: Program proving as hand simulation with a
little induction. In: Information Processing ’74, pp. 308–312.
Elsevier/North-Holland, Amsterdam (1974)

19. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams. In: Draves, R., van Renesse, R. (eds.) 8th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI,
San Diego, USA. USENIX Association (2008)

20. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and com-
plexity results for a spatial assertion language for data structures. In:
Hariharan, R., Vinay, V., Mukund, M. (eds.) FST TCS 2001: Foun-

dations of Software Technology and Theoretical Computer Sci-
ence. vol. 2245, pp. 108–119, Springer, Berlin, Heidelberg (2001)

21. Darvas, Á., Mehta, F., Rudich, A.: Efficient well-definedness
checking. In: IJCAR, pp. 100–115 (2008)

22. de Boer, F.S.: A WP-Calculus for OO. In: Thomas, W. (eds.) FoS-
SaCS, volume 1578 of Lecture Notes in Computer Science, pp.
135–149. Springer, Berlin (1999)

23. deGouw, S., deBoer, F.S., Ahrendt,W., Bubel, R.:Weak arithmetic
completeness of object-oriented first-order assertion networks. In:
SOFSEM, pp. 207–219 (2013)

24. De Halleux, J., Tillmann, N.: Parameterized unit testing with Pex.
In: Proceedings of 2nd International Conference on Tests and
Proofs, LNCS, pp. 171–181. Springer, Berlin (2008)

25. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall,
Englewood Cliffs (1976)

26. Distefano,D., Parkinson,M.J.: jStar: Towards practical verification
for Java. In: OOPSLA, pp. 213–226 (2008)

27. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In:
Gurevich, Y., Meyer, B. (eds.) TAP, volume 4454 of Lecture Notes
in Computer Science, pp. 169–188. Springer, Berlin (2007)

28. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus plat-
form for deductive program verification. In: CAV, pp. 173–177
(2007)

29. Galeotti, J., Rosner, N., Lopez Pombo, C., Frias, M.: TACO: effi-
cient SAT-based bounded verification using symmetry breaking
and tight bounds. IEEE Trans. Softw. Eng. 39(9), 1283–1307
(2013)

30. Giese, M.: First-order logic. In: Beckert et al. [11], pp. 21–68
31. Harel, D.: Arithmetical completeness in logics of programs. In:

ICALP, pp. 268–288 (1978)
32. Hoare, C.A.R.: An axiomatic basis for computer programming.

Commun. ACM 12(10), 576–580 (1969). 583
33. Huizing, K., Kuiper, R.: Verification of object-oriented programs

using class invariants. Fundam. Approach. Softw. Eng. 1783, 208–
221 (2000)

34. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W.,
Piessens, F.: VeriFast: a powerful, sound, predictable, fast verifier
for C and Java. In: Proceedings of the Third international confer-
ence on NASA Formal Methods, NFM’11, pp. 41–55, Springer,
Berlin, Heidelberg (2011)

35. Kassios, I.T., Müller, P., Schwerhoff, M.: Comparing verifica-
tion condition generation with symbolic execution: an experience
report. In: Proceedings of the 4th International Conference onVeri-
fied Software: Theories, Tools, Experiments, VSTTE’12, pp. 196–
208, Springer, Berlin, Heidelberg (2012)

36. King, J.C.: Symbolic execution and program testing. Commun.
ACM 19(7), 385–394 (1976)

37. Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz,
V., Alkassar, E., Arthan, R., Bronish, D., Chapman, R., Cohen, E.,
Hillebrand, M., Jacobs, B., Leino, K.R.M., Monahan, R., Piessens,
F., Polikarpova, N., Ridge, T., Smans, J., Tobies, S., Tuerk, T.,
Ulbrich,M.,Weiß, B.: The 1st verified software competition: expe-
rience report. In: Proceedings of the 17th International Conference
on Formal Methods. FM’11, pp. 154–168. Springer, Berlin, Hei-
delberg (2011)

38. Klein, G., Nipkow, T.: A machine-checked model for a Java-like
language, virtual machine, and compiler. Trans. Program. Lang.
Syst. 28(4), 619–695 (2006)

39. Leavens, G.T., Kiniry, J.R., Poll, E.: A JML tutorial: Modular spec-
ification and verification of functional behavior for Java. In: CAV,
p. 37 (2007)

40. Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacobs, B., Leav-
ens, G.T., Ruby, C.: JML: Notations and tools supporting detailed
design in Java. In: In OOPSLA 2000 Companion, pp. 105–106.
ACM (2000)

123

1140 S. de Gouw et al.

41. Leino,K.R.M.:Dafny: an automatic programverifier for functional
correctness. In: Clarke, E.M., Voronkov, A. (eds.) LPAR (Dakar),
volume 6355 of Lecture Notes in Computer Science, pp. 348–370.
Springer, Berlin (2010)

42. Leino,K.R.M.,Müller, P., Smans, J.: Foundations of security analy-
sis and design V. In: Chapter Verification of Concurrent Programs
with Chalice, pp. 195–222. Springer, Berlin, Heidelberg (2009)

43. Leino, K.R.M., Müller, P., Smans, J.: Deadlock-free channels
and locks. In: Proceedings of the 19th European Conference on
Programming Languages and Systems. ESOP’10, pp. 407–426.
Springer, Berlin, Heidelberg (2010)

44. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM
Trans. Program. Lang. Syst. 16(6), 1811–1841 (1994)

45. Mostowski,W.: Formalisation and verification of Java card security
properties in dynamic logic. In: Cerioli, M. (ed.) Proceedings of
Fundamental Approaches to Software Engineering (FASE), Edin-
burgh, volume 3442 of Lecture Notes in Computer Science, pp.
357–371. Springer, Berlin (2005)

46. Mostowski, W.: Fully verified Java Card API reference implemen-
tation. In: Beckert, B. (ed), VERIFY (2007)

47. Object Modeling Group: Object Constraint Language Specifica-
tion, Version 2.0, June (2005)

48. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel
programs I. Acta Inf. 6, 319–340 (1976)

49. Rümmer, P.: Sequential, parallel, and quantified updates of first-
order structures. In: Hermann, M., Voronkov, A, (eds.) LPAR, vol-
ume 4246 of Lecture Notes in Computer Science, pp. 422–436.
Springer, Berlin (2006)

50. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. ACM
Trans. Program. Lang. Syst. 34(1), 2:1–2:58 (2012). doi:10.1145/
2160910.2160911

51. Tucker, J., Zucker, J.: Program Correctness over Abstract Data
Types, With Error-State Semantics. Elsevier Science, Amsterdam
(1988)

52. van denBerg, J., Jacobs, B.: The LOOP compiler for Java and JML.
In: Margaria, T., Yi, W. (eds.) TACAS, volume 2031 of Lecture
Notes in Computer Science, pp. 299–312. Springer, Berlin (2001)

53. Wittgenstein, L.: Tractatus logico-Philosophicus. London: Rout-
ledge, 1981 (1922)

Stijn de Gouw is a postdoc
in a public (Centre for Mathe-
matics and Computer Science)-
private (SDL) partnership project
focussing on checking and mon-
itoring cloud applications. He
previously obtained his Ph.D. in
2013 at Leiden University and
the Centre for Mathematics and
Computer Science in the con-
text of the 7th Framework Euro-
pean HATS project, introducing
a novel method that allows com-
bining run-time assertion check-
ing with monitoring. He gradu-

ated with a master degree in Computer Science in 2009 at Leiden Uni-
versity.

Frank de Boer graduated in
1985 at the University of Gronin-
gen (The Netherlands) in Phi-
losophy. He obtained his Ph.D.
degree in Computer Science
(Free University, Amsterdam) in
1991. He is currently employed
by the Centre for Mathematics
and Computer Science (Amster-
dam) as leader of the Formal
Methods Research Group and as
professor “programCorrectness”
by the LeidenAdvanced Institute
of Computer Science. His main
interests are formal methods for
concurrency.

Wolfgang Ahrendt is associate
professor at Chalmers Univer-
sity of Technology in Gothen-
burg, Sweden. He graduated in
1995 at the University of Karl-
sruhe in Computer Science, and
obtained his Ph.D. there in 2001.
His main interests and contribu-
tions are in automated reasoning,
logics and systems for the veri-
fication of (in particular object-
oriented) software, and the ver-
ification of distributed systems.
Wolfgang Ahrendt has served as
secretary of the Association for

Automated Reasoning and was member of the steering committee of
CADE (Conference on Automated Deduction).

Richard Bubel He graduated in
2003 at the University of Karl-
sruhe (Germany) in Computer
Science and obtained his Ph.D.
there in 2007. He worked as a
postdoc at the Chalmers Uni-
versity in Gothenburg. Currently
he is employed as postdoc at
the Computer Science Depart-
ment of the Technical University
of Darmstadt. He participated in
the EUprojectsMOBIUS,HATS
and Envisage. His main interests
are deductive program verifica-
tion, theorem proving and formal

methods in software development.

123

http://dx.doi.org/10.1145/2160910.2160911
http://dx.doi.org/10.1145/2160910.2160911

	Integrating deductive verification and symbolic execution for abstract object creation in dynamic logic
	Abstract
	1 Introduction
	Related work
	Outline

	2 Dynamic logic
	2.1 Language
	2.1.1 Types and declarations
	2.1.2 Syntax
	2.1.3 Semantics

	3 Transformations
	4 Sequent calculus
	5 Applications of updates
	5.1 General updates
	5.2 Contextual application of object creation

	6 Symbolic execution
	6.1 Simultaneous updates for symbolic state representation
	6.2 Symbolic execution and abstract object creation

	7 Case study and implementation
	7.1 Implementation

	8 Discussion
	8.1 Object creation versus object activation
	8.2 Object destruction
	8.3 Expressiveness

	9 Conclusion
	References

