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Abstract

The local effective Holder exponent has been applied to evaluate the variability of heart
rate locally at an arbitrary position (time) and resolution (scale). The local effective Hélder
exponent!? used is effectively insensitive to local polynomial trends in heartbeat rate due to
the use of the Wavelet Transform Modulus Maxima (WTMM) technique. Also the variability
so obtained is compatible in the sense of distribution to the multifractal spectra of the analyzed
heart rate time series. This provides the possibility of standardizing the variability estimation
for comparison between different patients and between different recordings for one patient. The
previously reported global correlation behavior® is captured in the effective Hélder exponent-
based, local variability estimate. This includes discriminating healthy and sick (congestive
heart failure patients) on the basis of both the central (Hurst) exponent and the width of the
multifractal spectra. In addition to this, we observed intriguing patterns of individual response
in variability records to daily activities. A moving average filtering of Ho6lder exponent-based
variability estimates was used to enhance these fluctuations. We find that this way of local
presentation of scaling properties may be of clinical importance.

1. INTRODUCTION ' has been anticipated, requiring multiple, densely

) ) 5 interwoven scaling (roughness) exponents to de-
Recent findings reported in Ivanov et al. (1999)°  seribe it. This is in contrast to the more estab-

suggest that heartbeat rate is more complex than  Jished view which associated one global roughness
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exponent with each heartbeat record.* This expo-
nent, of course, could be different for various peo-
ple and also depended on the state of health.5-8
A multifractal description reveals exponents chang-
ing from point to point in a way which suggests
some higher order organization. Such multifractal
exponents cannot be simply grouped in patches of
constant or stationary behavior, but display com-
plex, nonstationary structure at any time scale
(resolution) considered.

The multifractality discovery was made possi-
ble by the application of the wavelet transform
modulus maxima (WTMM) method in the mul-
tifractal analysis of the heartbeat signal. The
formalism, developed by Arneodo et al. in the
early nineties has been successfully used to test
many natural phenomena.®~1® One of the key as-
pects of this methodology is that it is intrinsi-
cally statistical and provides only global estimates of
scaling (of the moments of relevant quantity).
‘While this is often a required property, in some
cases local information about scaling may be more
relevant than the global spectrum. This is partic-
ularly true for time series where scaling properties
are nonstationary, whether it be due to intrinsic
changes in the signal scaling characteristics, noise
or simply the boundary effects.

To address this problem, we have introduced»? a
method of estimation of the local scaling exponent
through the paradigm of the multiplicative cascade.
‘We reveal the hierarchy of the scaling branches of
the cascade with the WITMM tree, which has proved
to be an excellent tool for the purpose.l%?? Con-
trary to the intrinsically unstable local slope of the
maxima lines, this estimate is robust and provides a
stable, effective Holder exponent, local in scale and
position.

For model multifractals, the mechanism behind
multiscale nonstationarity in the roughness expo-
nent values does not change with resolution (scale).
It can be captured in a distribution (or spectrum)
of multifractal exponents, which for idealized mul-
tifractal signals shows the same spectrum indepen-
dent of the length or starting position of the investi-
gated time series. Such behavior is typical for model
multifractals, but in heartbeat and in other real life
signals, changes are observed in all spectral charac-
teristics: positioning, shape and modality, depend-
ing on the time series investigated, but also on the
selected time and scale range of analysis.

2For example, into the way the spectrum is built.

While this adds to the complexity of the global
(spectral) description, it also validates the local ap-
proach, where we choose to look back at the tem-
poral organization of the scaling (effective Holder)
exponent in the hope that the analysis of its intrin-
sic nonstationarities will provide insight into global
behavior.?

In this paper, we applied the local effective
Holder exponent to evaluate the variability of the
heartbeat rate locally at an arbitrary position
(time) and resolution (scale). Just as is the case
in global WIMM based multifractal formalism, the
technique is effectively insensitive to local polyno-
mial trends in heartbeat rate. Also the variability so
obtained is compatible in the sense of distribution
to the multifractal spectra of the analyzed heart-
beat rate time series.

Therefore, the previously reported global corre-
lation behavior is captured in the effective Holder
exponent based, local variability estimate. This
includes discriminating healthy and sick (conges-
tive heart failure patients) on the basis of both the
central (Hurst) exponent® and the width of the mul-
tifractal spectra.® However, in addition to this, we
observed intriguing patterns of individual response
(nonstationarities) in variability records to daily
activities and during sleep.

The observation of nonstationarity of the vari-
ability estimate obtained with the effective Hélder
exponent prompted us to conduct a series of ex-
periments. The main objective of the tests was
to develop a methodology capable of answering the
following questions:

(1) Is the observed multifractal behavior of the
heartbeat the result of nonstationarity of the
local effective Holder exponent?

(2) Can the nonstationarity be linked with activity,
i.e. the particular mental or somatic state of the
person? .

(3) In the case of known physiological input like -
blocker, is the nonstationarity affected?

(4) In the case of non-activity such as during sleep,
is the nonstationarity still observed?

Of course all the above questions lead to the cen-
tral question of the physiological reasons for the ap-
parent multifractal behavior of the heartbeat. We
will not attempt to provide a detailed answer in this
mainly methodological paper. Rather, we will show
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that the methods described can give answers to
particular questions of the kind listed above. We
therefore hope that the methodology presented can
help, through extensive study, in understanding
systems characterized by apparently multifractal
behavior.

The structure of the paper is as follows. In
Sec. 2, we focus on the relevant aspects of the
wavelet transformation, in particular the ability to
characterize scale-free behavior through the Holder
exponent. Together with the hierarchical, scale-
wise decomposition provided by the wavelet trans-
form, it will enable us to reveal the scaling prop-
erties of the tree of the multiplicative cascading
process. In Sec. 3, we briefly describe a technical
model enabling us to estimate the scale-free char-
acteristic (the effective Holder exponent) for the
branches of such a process. A more extensive cov-
erage of this method is available in Refs. 1 and
2. In Sec. 4, we use the derived effective Holder
exponent for the local temporal description of the
various test heartbeat time series. Section 5 pro-
vides an extension to fluctuation analysis of the
effective Holder exponent. Again a number of
test signals are used to illustrate the effectiveness
of the method and address the central questions
arising from the nonstationarity of local effective
Hélder exponent. Section 6 closes the paper with
conclusions.

2. CONTINUOUS WAVELET
TRANSFORM AND ITS
MAXIMA USED TO REVEAL
THE STRUCTURE OF
SINGULARITIES IN THE
TIME SERIES

Conceptually, the wavelet transformation®18 is a
convolution product of the time series with the
scaled and translated kernel — the wavelet 1(x),
usually a nth derivative of a smoothing kernel 6(x).
Usually, in the absence of other criteria, the pre-
ferred choice is the kernel, since it is well local-
ized both in frequency and position. In this paper,
we chose the Gaussian 6(z) = exp(—z?/2) as the
smoothing kernel, since it provides wavelets with
optimal localization in both domains.

The scaling and translation actions are per-
formed by two parameters; the scale parameter s
“adapts” the width of the wavelet kernel to the res-

18

olution required and the location of the analyzing
wavelet is determined by the parameter b:

Wi = [~ wrew () o)

L)

where s, b € R and s > 0 for the continuous version
(CWT).

The 3D plot in Fig. 1 shows how the wavelet
transform (WT) reveals more and more detail while
going towards smaller scales, i.e. towards smaller
log(s) values. The WT is sometimes referred to as
the “mathematical microscope”,® due to its ability
to focus on weak transients and singularities in the
time series. The wavelet used determines the optics
of the microscope; its magnification varies with the
scale factor s.

This property makes the continuous wavelet
transform very useful in analyzing local regularity
(scaling/roughness) properties of functions. In par-
ticular, such local scaling behavior is often charac-
terized by the Holder exponent h. The following
scaling equation defines the Holder exponent
h(zo) € (n, n+ 1) of the cusp singularity at xzq:

|f(z) — Po(z — z0)] < Clz — zo|* (2.1)

as the supremum of all h such that the above rela-
tion holds for some polynomial P, of degree n < h.
P, can often be associated with the Taylor expan-
sion of f around zg, but Eq. (2.1) is valid even
if such an expansion does not exist.’® The Holder
exponent is, therefore, a function defined for each
point of f, and it describes the local regularity of
the function (or distribution) f.

It can be shown?® that for cusp singularities, the
location of the singularity can be detected, and the
related exponent can be recovered from the scal-
ing of the WT, along the so-called mazima line,
converging towards the singularity. This is a line
where the wavelet transform reaches local maximum
(with respect to the position coordinate). Connect-
ing such local maxima within the continuous WT
“landscape” gives rise to the entire tree of max-
ima lines. Restricting oneself to the collection of
such maxima lines provides a particularly useful
representation® of the entire CWT, the so-called
WTMM representation. It incorporates the main
characteristics of the WT: the ability to reveal the
hierarchy of (singular) features, including the scal-
ing behavior. In particular, we have the following
power law proportionality for the wavelet transform
of the cusp singularity in f(zo):

W (s, zo) ~ |50 (2.2)
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Fig. 1 (a) Representation of the random walk (Brownian process) time series. The wavelet used is the Mexican hat — the
second derivative of the Gaussian kernel. The coordinate axes are: position «, scale in logarithin log(s), and the value of the

transform W(s, z). (b) The related WTMM representation,

This is under the condition that the wavelet has at
least n vanishing moments, i.e. it is orthogonal to
polynomials up to degree n: [T a™y(z)dz = 0
Vm, 0 < m < n. The reader will note that this
requirement is needed to filter the polynomial £,
in Eq. (2.1) in order to access the unbiased scaling
exponent.

An additional benefit of using the WT is that we
are not limited to the continuous function f in the
analysis of local regularity, Eq. (2.2). Through the
convolution with continuous kernels, we can also an-
alyze distributions or, in particular, discretely sam-
pled inputs. As a consequence, the exponent b can
take negative values. For example, as can be quickly
verified from Eq. (2.0), for the Dirac pulse D(zq),
we have W(D(xo)) = 1/s. Thus hpipac = —1.

3. ESTIMATION OF THE LOCAL,
EFFECTIVE HOLDER
EXPONENT USING THE
MULTIPLICATIVE CASCADE
MODEL

We have shown in the previous section that the WT,
and in particular its maxima lines, can he used in
evaluating the Holder exponent in isolated singu-
larities. In most real-life situations, however, the
singularities in the time series are not isolated but

densely packed. The logarithmic rate of increase
or decay of the corresponding WT maximum line
is usually not stable but fluctuates, following the
action of some process involved, sec Fig. 2(a) for a
typical example.

To capture the Huctuations and estimale the re-
lated exponents (to which we will refer to as an
effective Holder exponent of the singularity), we
will rnodel the singularities as created in some kind
of a collective process of a very generic class — the
multiplicative cascade model. Tach point of this
cascade is uniquely characterized by the sequence of
indices (sy - - sn), taking index values from the set
of weights {p;}. The scquence indicates the unique
order in which the weights are successively acting
along the process branch leading to the particular
singularity.

Suppose that we denote the density of the cas-
cade at the generation level £ (i running from 0 to
max) by &{F;), we then have

K{Finax) = Py - o k(Fo) = Py #(Fo)
and the local exponent is related to the rate of
increase of the product .P;;"“‘“ over the gained
scale difference. In any experimental situation, the
weights p; are not known and A has to be estimated.
This can be simply done using the fact that for the
multiplicative cascade process, the effective product
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Fig. 2 (a) It is impossible to evaluate the scaling cxponent for an arbitrary maxirmurn line participating in a complex process:
a renl life example of a maximum line. (b) The local effective Holder exponent estirmate takes the effective difference in the
logarithm of the density of the process with respect to the logarithm of the scale difference gained along the process path.
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Fig. 3 Color range for the strips of the effective Holder exponent.

of the weighting factors is reflected in the difference
of logarithmic values of the densities at £ and Fiax
along the process branch:

log (k(Finax)) — log(x(F0))
log ((L/2)max) — log((1/2)9)

The densities along the process branch can be es-
timated with the WT, using its remarkable ability
to reveal the entire process tree of a multiplicative
process.?2% It can be shown that the densities x(F£})
correspond with the value of the WT along the max-
ima lines belonging to the given process branch.
The estimate of the eflective Hélder exponent
becomes:

Iy

- o=
Floax

log(W fwp(Ssi0)) — log(W fwps(shi))
log(sio) — log(sni)

LSni —
hlslu -

where W fuwyy(s) is the value of the WT' at the scale
s, along the maximum line wyy corresponding to the
given process branch bp. Scale sy, corresponds with

generation Fr.x, while sy, corresponds with gener-
ation fy (simply the largest available scale in our
case), see Fig. 2(b).P

4. EMPLOYING THE LOCAL
EFFECTIVE HOLDER
EXPONENT IN THE
CHARACTERIZATION OF
HEARTBEAT INTERVAL
TIME SERIES

Such an estimated local h(zg, §) can be depicted in
a temporal fashion, for example with color stripes as
we have done in Fig. 3. The color of the stripesis de-
termined by the value of the exponent h(zg, s) and
its location is simply the xq location of the analyzed
singularity (in practice this amounts to the location
of the corresponding maximumn line), Color coding
is done with respect to the mecan value, which is
set to the green color central to our rainbow range.

bYor g, we will use @ = 5 in the examples presented in this paper. This is the lowest resolution for which we can aintain

the shape of the Mexican hat.
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Fig. 4 (a) Example time series with local Hurst exponent indicated in color: the record of healthy bheartbeat intervals
(above) and white noise (below). The background color indicates the Hdlder exponent locally, centered at the Hurst exponent
at green; the color gnes towards blue for higher fv and towards red for lower h. (b} The corresponding log-histograms of the

local Holder exponent.

All exponent values lower than the mean value are
given colors from the “warmer” side of the rainbow,
all the way towards dark red. All higher than av-
erage exponents get “colder” colors, down to dark
blue.

The first example in Fig. 4(a) is a record® of

heartbeat intervals recorded from a healthy human
heart and it shows an intricate structure of interwo-
ven singularities at various strengths. This behavior
has becn recently reported® to corvespond with the

multifractal behavior of the heartbeat. The green
is centered at h = 0.1 for this panel. The sccond
exarnple time series is a computer-generated sam-
ple of white noise. It shows alinost monochromatic
hehavior, centered at A = —~0.5.° The color green
is dominant. There are, however, several instances
of darker green and light blue, indicating locally
smooth components.

In Fig. 4(h), the log-histograms are shown of the
Hélder exponent displayed in the color panels. They

“The negative exponent for white noise {central, mean value) h = —0.5 is perfecily admissible for a time series in the gener-

alized formulation, and can be measured with the WT, see Eq. (2.2). It is also consistent with the Hurst expanent H = 0.8
. 4 ’

for the random walk ~— the integral of white noise: H = Arandom walk = Rwhite noise + 1.
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Fig. &

are made by taking the logarithm of the measure
in each histogram bin. This conserves the mono-
tonicity of the original histogram, but allows us to
compare the log-histograms with the spectrum of
singularities D(h). The log-histograms are actually
closely related to the (multifractal) spectra of the
Hblder exponent.? The multifractal spectrum of the
Hélder exponent is the “limit histogram”™ Dg_p(h)
of the Hdlder exponent in the limit of infinite res-
olution. Of course, we cannot speak of such a
limit other than theoretically, and therefore, a limit
histogram (rmultifractal spectrum) has to be es-
timated from the evolution of the log-histograms
along scale. For details, see Struzik (2000).2

The ability to display the scaling properties of the
time series in a local manner has already proven
quite successful. We have applied the method
to a set of heartbeat interval time series in a
(double) blind test. The purpose of the test was
to establish whether the local effective Hélder ex-
ponent “panels” can be used in discerning whether
the time series is from a healthy or an ill subject.

e

O

e

SRR

Local Hurst exponent indicated in color for four heartheat interval time series (not shown). The green color is centered
at h = 0.0 for all plots. It saturates at dark blue for A = 0.4 and at dark red for h = -0.4.

In Fig. 5, we show one such set of panels. There
are two records of healthy heartbeats and two of
heart disease. The center value of the effective
Holder exponent is h = 0.1, and is displayed in
green color. For h > 0.1, the color becomes darker
green, through light blue, it saturates as dark blue
for h = 0.5. All h > 0.1 correspond with a higher
than average local degree of correlation, which has
been associated with heart failure. On the con-
trary, all h < 0.1 indicate stronger than average
(relative) anti-correlation, which can be associated
with healthy heartbeat behavior. The colors dis-
played for h < 0.1 are from light green through
vellow and orange towards red at h = —0.3.

The two upper panels (1) and (2) in Fig. 5
both belong to healthy individuals but of course
there is no reason why they should be identical;
and indeed individual patterns all have a differ-
ent arrangement of color stripes. Also the density
of colors changes; some nonstationary behavior is
apparent in the Fig. 5, panels (1) and (2). Both
panels show a wide range of colors reflecting fully
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developed dynamics of the healthy heartbeat. Such
panels correspond to a wide multifractal spectrum?

The two lower panels (3) and (4), on the contrary,
are taken from heartbeats of congestive heart failure
(CHF) cases. The deviation from healthy behavior
cani occur in a number of ways but these two are
perhaps the most generic. One type of deviation
causes a narrowing of the dynamics and therefore
a narrowing of the range of colors — it is reminis-
cent of the monofractal noise shown in Fig. 4. The
other type of deviation, in addition to a narrower
color spectrum, is that it drifted away in its entire
color spectrum in the direction of green and blue,
that is towards smoother (more correlated) behav-
ior. This shift in the central color reflects the change
in the global correlation exponent between healthy
and CHF individuals.®

We have left the background between the stripes
uncolored (white) although it corresponds with even
more smooth regions (at the resolution considered!)
and can all be painted dark blue. This would en-
hance the color range and help diagnosis, but we
preferred not to introduce any additional informa-
tion to the panels in this research paper.

[t is apparent that the color panels provide more
information than the global averages, like the cen-
tral color or the range of colors used, i.e. the width
of the multifractal spectrum. In the following, we
will show how to exploit this additional informa-
tion pertinent to the local color fAuctuations (non-
stationarities) in the panels.

5. COLLECTIVE PROPERTIES
OF THE LOCAL VARIABILITY
ESTIMATE

Inn the context of heartbeat, one may ask the
question: what is the meaning of the varying lo-
cal scaling exponent. Also, its temporal organiza-
tion and its relevance to the multifractal spectrum
may be tested. Ultimately, we would like to identify
physiological reasons for the apparent multifractal
behavior of the heartbeat. Let us first go back to
numerical information, the Holder exponent which
we used to represent in color, and exploit a few
generic cases of nonstationarity.

In Fig. 6, three example heartbeat interval time
geries are shown with their corresponding local
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effective Hélder exponent. The first cxample from
the left shows a consistent linear trend -~ the in-
crease of the exponent value with time (bottom
plot). This can also be verified in the corresponding
time series above (leftmost, top plot): the rough-
ness of the time series decreases with time {except
for some minor Auctuations). In the sccond example
(center panel), two distinct regimes can be distin-
guished with a somewhat different mean A value:
one region up until sample 5000 and the other of
slightly lower value of h for samples 5500 and more.
Both the above cases will result in a broadening of
the D(h) spectrum as a result of the nonstation-
ary behavior of A. This effect alone, if observed
at one global resolution, would not be sufficient for
multifractal behavior — it would simply mean that
the local variability is nonstationary in these time
series.  In the following, we will detect multiscale
nonstationarity of k. In the last cxample in the
rightmost panels, we show that the h exponent and
the roughness of the time series are independent of
the fluctuations or trends in the time series.

The evident nonstationary behavior in these fig-
ures can be quantified, and for this purpose we
used a low pass moving average filter (MA) to
detect/enhance trends.  This processing is, of
course, done on the Holder exponent value set
{hi(f(z))}, not on the input signal f(z). A n-MA
filtering of n base is defined as follows:

i==T

Paan) = =30 W) (5)
=3

where h;(f) are the subsequent values of the effec-
tive Holder exponent of the time series f. Standard
deviation from the hya, (1) mean exponent can also
be calculated:

P

SDhnn, (i) = % S (half(5)) - bata, (D)2

i=1
(5.2)
The observation of nonstationarity of the vari-
ability estimnate obtained with the effective Holder
exponent prompted us to do a series of experiments.
The main objective of the test was to altempt to
answer the questions posed in the Introduction. In
the following, we are going to show how the tech-
niques described can help in finding the answers to
those questions. We analyzed several data sets but
only the typical behavior will be presented, leaving
broader coverage of the data and related conclusions

to a separate publication.

As already indicated above, even though the fluc-
tuations in the heart rate variability are clearly vis-
ible in the effective Holder exponent data, they will
benefit from filtering with the moving average fil-
ter. The moving average, Iq. (5.1) is performed
directly on the subsequent ordered maxima, each
carrying the corresponding cffective Holder expo-
nent value. The number of maxima at the lowest
scale of analysis ts only roughly related to the num-
ber of heartbeats in the time series. However, this
problem is negligible for the large length of aver-
aged exponent values (we use 100, 1000, 10 000 ex-
ponent values, i.e. maxima lines). Since the actual
temporal information can be associated with cach
maximum value, we map it back on the average
values obtained from the moving average and use it
for the abscissa of the plots. Additionally, for each
moving average window, we calculate the standard
deviation from the mean valuc. This standard de-
viation, Eq. (5.2) is closely related to the width of
histograms of the local effective Holder exponent.
Therefore it also reflects the width of the multifrac-
tal spectra over the MA-base — the range of the
moving average window.

51 Ad. 1)

We have included in the same plot, Fig. 7, the result
of running exactly the same procedure on a random
noise sample and on the heartbeat rate. The re-
sulting fluctuations for the random noise are much
smaller in magnitude, thus supporting the observa-
tion that the Auctuations in variability of heartbeat
may be of physiological or other origin and are not
pure statistical fluctuations of noise data. Addi-
tionally, we checked the standard deviation of the
variability, which clearly indicated a broader spec-
trurn for the heartbeat than for the same length of
white noise data.

The reader may, of course, ask the question
whether the nonstationarities in the Hoélder expo-
nent are the only source of wide multifractal spec-
trum of the heartbeat. Firstly, the nonstationar-
ities observed show up at all temporal resolutions

just as is the case for model multifractals. Tt is not

possible to select one single temporal scale captur-
ing the nonstationary behavior. Therefore, the con-
tributions to the multifractal spectrum come from
various temporal scales in comparable degree. If
this were not the case, this would mean that for
long base MA averages, we would get considerably
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Fig. 7 Plot of the 100 base MA-smaothed effective Holder exponent, for the heartbeat test case and for white noise. Mean
and standard deviation are shown.
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Fig. 8 Three widths of MA window, 100, 1000 and 10000 are used to test whether the fluctuations observed can be used to
explain the wider multifractal spectra for the longer tire series normally used for spectra estimation (> 5000 maxiraa).
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higher standard deviation of the Holder exponent
than for shorter base MA averages.

Therefore, we performed a test to indicate
whether the fluctuation effects observed can be used
to explain the wider multifractal spectra. We used
three widths of MA window -— 100, 1000 and 10 000,
see IMig. 8. The result of running MA with the
longest window (approximately 2 hours record) gave
a clear indication that long lengths of data result
in a wider spectra than shorter records. How-
ever, in defense of the multifractality of the heart-
beat, we find in shorter base MA levels of standard
devialion which are larger than those in the
longer base MA. In other words, locally standard
deviation (and therefore the “local” multifractal
spectrum) in MA gy exceeds that of MA ggo. Sim-
ilarly, locally standard deviation within a MAjpe
exceeds that of MA gpoo. Note that it is not the plot
in Fig. 8 that is being averaged. Rather, it gives the
standard deviation of the result of averaging of the
local effective Hoélder exponent (not shown).

2 Ad. 2)

5}

The variability plots shown in Figs. 9 and 10 come
from a long run of experiments where the test per-
sons were given placebo or (B-blocker. We analyzed
two records to be referred to as “tomo” and “kou”.
The effective Holder exponent was first calculated
for each record and served as input for two runs
of MA (lter performed with 100 and 1000 maxima
long window. The observed effect of the f-blocker
is nil or negligible, indicating there is little change
to the dynamics of the heart due to the S-blocker
only (at least for the two cases analyzed and for
the s;, = 5 resolution considered). However, we
found an interesting pattern of response to activity
in these data sets. The first set shows a particularly
strong response of the person in question to food.
Let us remind the reader that higher values of the
exponent are normally associated with a pathologic
condition. The observed shift towards higher values
as the result of cating (it is almost possible to esti-
mate the volume of the meall) may indicate some
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Pig. 9 The variability plot from a long run of experiments where the test persons were given placebo or B-blocker (tomo
record). Two runs of MA filter were performed with 100 and 1000 maxima long window. The observed effect of the f-blocker
is nil or negligible. However, an interesting pattern of response to food is evident.
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Fig. 10 Another variability plot from with the placebo or S-blocker (kou record). Agaiu no response was registered. For
this person, however, an interesting pattern of response to sleep has been found.

nearly pathologic response in this individual case.
Another data set shows a much smaller respanse
to food but it does show higher correlation levels
during the first hours of sleep. Again this makes
us speculate that the particular person may have
nearly pathologic behavior during first stages of
sleep. (It should be noted that the person in study
was going to bed very late 0-2 am and waking up
after a relatively short sleep, 5-6 hours.)

5.3 Ad. 3)

Particularly in the second data set, the day/night
oscillations® can be clearly observed in the width
of the multifractal spectrum and the range of the
variability (as is reflected by the standard deviation
plotted in both Figs. 9 and 10). The oscillations
nearly follow the sinusoidal line (with a 24-hour
period), which we superimposed on the standard de-
viation of the local effective Holder exponent. The
actual phase of the oscillations is shifted by some
4-5 hours with respect to the clock. (It actually is

5-6 in the plot but about 1 hour delay comes from
the MA 1000 beat base average.) This means that
the physiological “middle of the night” is not at
12 midnight but at 4-6 am, similarly “middle of
the day” falls at 4-6 pm, not at 12 noon.)

In the upper plot in Fig. 11, we show the standard
deviation of the local cffective Holder exponent for
the tomo record. [t is the enlarged plot from Fig. 9.
The influence of the [(-blocker on the variability
range (the width of the multifractal spectrum) can
be observed. Especially during the day, standard
deviation of the effective Hélder exponent is high,
which would correspond with a wide multifractal
spectrum caleulated traditionally. This effect di-
minished after the placebo tablet was replaced with
the (-blocker. For the last three days of the test,
the standard deviation of the Hiolder exponent looks
much smoother and seems to follow the day/night
sinusoidal pattern better.

This effect is not visible in the lower plot
in Fig. 11, corresponding with the kou record
(enlarged from Fig. 10). In this case the 8-blocker
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Fig. 11 Enlarged plots of standard deviation from Fig. (9) (tomo) and Fig. (10) (kou), above and below respectively. The
day /night oscillations can be observed in the range of the variability as reflected by the standard deviation of the local effective
Haélder exponent. The actual phase of the oscillations is shifted by some 4-6 hours with respect to the clock. In the upper

plot, the influence of the B-blocker on the variability range (the width of the mullifractal spectrum) can he observed. This is

nol visible in the lower plot. (12pm = 12 miduight; 12am = 12 noon).

was taken during the first few days of the test and
was later replaced with placebo.

5.4 Ad. 4)

In Figs. 12 and 13, two samples of the slecp period
taken from the tomo and kou data are displayed.
The actual time period between going to bed and
waking up is indicated with a line segment. A part
of the sinusoidal day/night rhythm is also visible,
reaching maximum somewhere near the early morn-
ing hours (4-6 am). The mean effective Holder
exponent obtained with 100 base MA is shown to-
gether with the standard deviation from the mean.

Both show large nonstationarities, different for each
sample (and each night period within samples), but
still considerably larger than statistical fluctuations
would be in a monoefractal (e.g. white) noise sample
of comparable length.

The origin of these nonstationarities is not known
at the moment of writing. It is possible that they
are related to sleep phases,®® but this relation does
not appear to be trivial and a follow-up study is
expected to shed more light on this.

5

5.5 Let Us Summarize

We were able to test answers to the questions posed
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in the Introduction:
1. The obscrved multifractal behavior of thie heart-
beat is the result of “nonstationarity” of the local
effective Holder exponent at all rrqolu"ic‘n:, just
as is the case with multifractals. We still do not
know the actual mechanism of these nonstation-
arities. Probably different mechanisms control
them at various temporal resolutions.
Yes, for particular temporal resolutions (we
tested about 100-1000 rmaxima), it is evident
that the nonstationarity can be linked with ac-
tivicy. The exact mechanisim of this dependence
mush be further studied since it cannot be vali-
dated from a limited test of the kind presented
here.

3. It seems that the influence of -blocker is rather
small and limdted mainly to the standard de-
viation of the Hoélder exponent (corresponding
with the width of the multifractal spectra).
the only case where we observed such a depen-
dence, it was narrowing the spectra width (less
“dynamic” behavior) due to the fF-blocker. The
B-blocker does not seem to influence the mean
value of the Holder exponent (which reflects the
correlation properties of the heartbeat).

o)

We observe a tull range of nonstationary behavior
in the case of non-activity such as during sleep;
it scets to be mainly nonstationarity of shorter
time scales.

finally, we note that the local information re-
vealed with the effective Hélder exponent seems to
have potential diagnostic meaning. In particular,
this holds for fluctuations revealed with the MA
procecdure. Their link with activity may be inter-
esting to explore further in a diagnostic context. Of
course, the global properties like the log-histogram,
which can be calculated from the effective Holder
exponent, inherit the diagnostic capabilities of the
MF spectra calculated traditionally.? In addition to
this, it secms possible to display the mapping

fva, (0) = SDhya, (2)

between the mean and the standard deviation for
the investigated signals. The nonstationarities and
their interrelation will be captured in such a map.
Below we plotted it for two test signals, tomo
and kou, for two resolutions MAg and MAioso
[Figs. 14(a) and (b), respectively]. The ranges,
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Fig. 12 A sample of the sleep period taken from the tomo data. The time period between going to bed and waking up
The mean effective Holder exponent obtained with 100 base MA is shown together with
the standard deviation frorn the mean. Large nonstationarities are visible, A part of the sinusoidal day/night rhythm is also

is indicated with a line segment.

visible.
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indicated with a line segment. The mean effective Holder exponent obtained with 100 base MA is shown together with the
standard deviation from the mean. Large nonstationarities are visible. A part of the sinusoidal day/night rhythm is also
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Fig. 14 Standard deviation versus mean maps for tomo (a) and kou (b). 100 and 1000 MA bases are plotted with different
colors. The ranges, shape and compactness (or the degree of scatter) of these plots clearly differ for both recerds and may
have diagnostic meaning. (Line going to 0.0 is due to finite sample size.) Note that both characteristics are not of the input
signal but its local effective Hélder exponent, and therefore, can be compared without normalizing. Due to the very fine dot
size, the local dot density in these maps can be readily perceived. In general, binning the dots may be required, especially for

longer time series records.
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shape and compaciness {ur the degree of scatber)
of these plots clearly ditfer for both records, which
suggests that they may have diagnostic meaning
(Fig. 14).

6. CONCLUSIONS

The local effective Holder exponent has been ap-
plied to evaluate variability of heart rate locally at
an arbitrary position (time) and resolution (scale).
The variability so obtained is compatible in the
sense of distribution to the multifractal spectra of
the analyzed heart rate time series. This provides
the possibility to standardize the variability estima-
tion for comparison between different patients and
between different recordings for one patient.

In addition to this, we observed intriguing pat-
terns on nonstationary behavior of the local effec-
tive Holder exponent. These can be related to
individual response in variability records to daily
activities.

We have attempted to build a methodological
approach aiming at revealing such nonstationari-
ties in local variablity at varvious (ime scales. A
moving average filtering of Holder exponent-based
variability estimates was used to enhance these
fluctuations/nonstationarities.

We find that this way of local presentation of scal-
ing properties may be of clinical importance. But
ultimately, we helieve that the findings and method-
ology presented open a way better to address the
question of physiological reasons for apparent mul-
tifractal behavior of the heartheat.
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