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Abstract 

The local effective Holder exponent has been applied to evaluate the variability of heart 
rate locally at an arbitrary position (time) and resolution (scale). The local effective Holder 
exponent1•2 used is effectively insensitive to local polynomial trends in heartbeat rate due to 
the use of the Wavelet Transform Modulus Maxima (WTMM) technique. Also the variability 
so obtained is compatible in the sense of distribution to the multifractal spectra of the a.nalyzed 
heart rate time series. This provides the possibility of standardizing the va.riability estimation 
for comparison between different patients and between different recordings for one patient. The 
previously reported global correlation behavior3 is captured in the effective HOlder exponent
based, local variability estimate. This includes discriminating healthy and sick (congestive 
heart failure patients) on the basis of both the central (Hurst) exponent and the width of the 
multifractal spectra. In addition to this, we observed intriguing patterns of individual response 
in variability records to daily activities. A moving average filtering of Holder exponent-based 
variability estimates was used to enhance these fluctuations. We find that this way of local 
presentation of scaling properties may be of clinical importance. 

1. INTRODUCTION 

Recent findings reported in Ivanov et al. (1999)3 

suggest that heartbeat rate is more complex than 
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has been anticipated, requiring multiple, densely 
interwoven scaling (roughness) exponents to de
scribe it. This is in contra.st to the more estab
lished view which associated one global roughness 
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exponent with each heartbeat record.4 This expo
nent, of course, could be different for various peo
ple and also depended on the state of health.5- 8 

A multifractal description reveals exponents chang
ing from point to point in a way which suggests 
some higher order organization. Such multifractal 
exponents cannot be simply grouped in patches of 
constant or stationary behavior, but display com
plex, nonstationary structure at any time scale 
(resolution) considered. 

The multifractality discovery was made possi
ble by the application of the wavelet transform 
modulus maxima (WTMM) method in the mul
tifractal analysis of the heartbeat signal. The 
formalism, developed by Arneodo et al. in the 
early nineties has been successfully used to test 
many natural phenomena.9- 15 One of the key as
pects of this methodology is that it is intrinsi
cally statistical and provides only global estimates of 
scaling (of the moments of relevant quantity). 
While this is often a required property, in some 
cases local information about scaling may be more 
relevant than the global spectrum. This is partic
ularly true for time series where scaling properties 
are nonstationary, whether it be due to intrinsic 
changes in the signal scaling characteristics, noise 
or simply the boundary effects. 

To address this problem, we have introduced1•2 a 
method of estimation of the local scaling exponent 
through the paradigm of the multiplicative cascade. 
We reveal the hierarchy of the scaling branches of 
the cascade with the WTMM tree, which has proved 
to be an excellent tool for the purpose.10•22 Con
trary to the intrinsically unstable local slope of the 
maxima lines, this estimate is robust and provides a 
stable, effective Holder exponent, local in scale and 
position. 

For model multifractals, the mechanism behind 
multiscale nonstationarity in the roughness expo
nent values does not change with resolution (scale). 
It can be captured in a distribution (or spectrum) 
of multifractal exponents, which for idealized mul
tifractal signals shows the same spectrum indepen
dent of the length or starting position of the investi
gated time series. Such behavior is typical for model 
multifractals, but in heartbeat and in other real life 
signals, changes are observed in all spectral charac
teristics: positioning, shape and modality, depend
ing on the time series investigated, but also on the 
selected time and scale range of analysis. 

aFor example, into the way the spectrum is built. 

While this adds to the complexity of the global 
(spectral) description, it also validates the local ap
proach, where we choose to look back at the tem
poral organization of the scaling (effective Holder) 
exponent in the hope that the analysis of its intrin
sic nonstationarities will provide insight into global 
behavior.a 

In this paper, we applied the local effective 
Holder exponent to evaluate the variability of the 
heartbeat rate locally at an arbitrary position 
(time) and resolution (scale). Just as is the case 
in global WTMM based multifractal formalism, the 
technique is effectively insensitive to local polyno
mial trends in heartbeat rate. Also the variability so 
obtained is compatible in the sense of distribution 
to the multifractal spectra of the analyzed heart
beat rate time series. 

Therefore, the previously reported global corre
lation behavior is captured in the effective Holder 
exponent based, local variability estimate. This 
includes discriminating healthy and sick ( conges
tive heart failure patients) on the basis of both the 
central (Hurst) exponent5 and the width of the mul
tifractal spectra.3 However, in addition to this, we 
observed intriguing patterns of individual response 
( nonstationarities) in variability records to daily 
activities and during sleep. 

The observation of nonstationarity of the vari
ability estimate obtained with the effective Holder 
exponent prompted us to conduct a series of ex
periments. The main objective of the tests was 
to develop a methodology capable of answering the 
following questions: 

(1) Is the observed multifractal behavior of the 
heartbeat the result of nonstationarity of the 
local effective Holder exponent? 

(2) Can the nonstationarity be linked with activity, 
i.e. the particular mental or somatic state of the 
person? 

(3) In the case of known physiological input like /3-
blocker, is the nonstationarity affected? 

( 4) In the case of non-activity such as during sleep, 
is the nonstationarity still observed? 

Of course all the above questions lead to the cen
tral question of the physiological reasons for the ap
parent multifractal behavior of .the heartbeat. We 
will not attempt to provide a detailed answer in this 
mainly methodological paper. Rather, we will show 
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that the methods described can give answers to 
particular questions of the kind listed above. We 
therefore hope that the methodology presented can 
help, through extensive study, in understanding 
systems characterized by apparently multifractal 
behavior. 

The structure of the paper is as follows. In 
Sec. 2, we focus on the relevant aspects of the 
wavelet transformation, in particular the ability to 
characterize scale-free behavior through the Holder 
exponent. Together with the hierarchical, scale
wise decomposition provided by the wavelet trans
form, it will enable us to reveal the scaling prop
erties of the tree of the multiplicative cascading 
process. In Sec. 3, we briefly describe a technical 
model enabling us to estimate the sea.le-free char
acteristic (the effective Holder exponent) for the 
branches of such a process. A more extensive cov
erage of this method is available in Refs. 1 and 
2. In Sec. 4, we use the derived effective Holder 
exponent for the local temporal description of the 
various test heartbeat time series. Section 5 pro
vides an extension to fluctuation analysis of the 
effective Holder exponent. Again a number of 
test signals are used to illustrate the effectiveness 
of the method and address the central questions 
arising from the nonstationarity of local effective 
Holder exponent. Section 6 closes the pa.per with 
conclusions. 

2. CONTINUOUS WAVELET 
TRANSFORM AND ITS 
MAXIMA USED TO REVEAL 
THE STRUCTURE OF 
SINGULARITIES IN THE 
TIME SERIES 

Conceptually, the wavelet transformation16- 18 is a 
convolution product of the time series with the 
scaled and translated kernel - the wavelet 'f/;(x), 
usually a nth derivative of a smoothing kernel O(x). 
Usually, in the absence of other criteria, the pre
ferred choice is the kernel, since it is well local
ized both in frequency and position. In this paper, 
we chose the Gaussian O(x) = exp(-x2 /2) as the 
smoothing kernel, since it provides wavelets with 
optimal localization in both domains. 

The scaling and translation actions are per
formed by two parameters; the scale parameter s 
"adapts" the width of the wavelet kernel to the res-

elution required and the location of the analyzing 
wavelet is determined by the parameter b: 

1100 . ((]; ._ b) Wf(s, b) = - · dxf(x)'I{; -
. s -oo s 

(2.0) 

where s, b E R and s > 0 for the continuous version 
(CWT). 

The 3D plot in Fig. 1 shows how the wavelet 
transform (WT) reveals more and more detail while 
going towards smaller scales, i.e. towards smaller 
log( s) values. The WT is sometimes referred to as 
the "mathematical microscope", 9 due to its ability 
to focus on weak transients and singularities in the 
time series. The wavelet used determines the optics 
of the microscope; its magnification varies with the 
scale factor s. 

This property makes the continuous wavelet 
transform very useful in analyzing local regularity 
(scaling/roughness) properties of functions. In par
ticular, such local scaling behavior is often charac
terized by the Holder exponent h. The following 
scaling equation defines the Holder exponent 
h(xo) E (n, n + 1) of the cusp singularity at xo: 

If (x) - Pn(x - xo)l $ Clx - xolh (2.1) 

as the supremum of all h such that the above rela
tion holds for some polynomial Pn of degree n <h. 
Pn. can often be associated with the Taylor expan
sion off around xo, but Eq. (2.1) is valid even 
if such an expansion does not exist.19 The Holder 
exponent is, therefore, a function defined for ea.eh 
point of f 1 and it describes the local regularity of 
the function (or distribution) f. 

It can be shown20 that for cusp singularities, the 
location of the singularity can be detected, a.nd the 
related exponent can be recovered from the scal
ing of the WT, along the so-called maxima line, 
converging towards the singularity. This is a. line 
where the wavelet transform reaches local ma.xim.um 
(with respect to the position coordinate). Connect
ing such local maxima within the continuous WT 
"landscape" gives rise to the entire tree of max
ima lines. Restricting oneself to the collection of 
such maxima lines provides a particularly useful 
representa.tion21 of the entire CWT, the so-called 
WTMM representation. It incorporates the main 
characteristics of the WT: the ability to reveal the 
hierarchy of (singular) features, including the scal
ing behavior. In particular, we have the following 
power law proportionality for the wavelet transform 
of the cusp singularity in f(xo): 

w<n) f(s, xa) ,...., lslh(wo). {2.2) 
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Fig. 1 (a) Representation of tlie random walk (Browrtian process) time ~eri<Js. The wavelet used is the Mexican hat·-- the 
second derivative of the Gaussian kernel. T'hc coordinate ax~s me: position x:, scale in logarithm log( s), and thiJ value of the 
transform W(s, :t:). (b) The i·dated 'vVTMM rcprcscntat.ion. 

This is under the conrlition that Lhe wavelet hw; aL 

least n vanishing moments, i.e. it is orthogonal to 
polynomials up to degree n: J!:;' J;m·ijJ(x)d;;; = 0 
V m, 0 :S m < n. The reatfor will note that thi::; 
requirement is needed to filtm tlw polynomial Pn 
in Eq. (2.1) in order to access the unbiased sea.ling 
exponent. 

An additional benefit of using the vVT is that we 
are not limited to the continuous function f in the 
analysis of local regularity, Eq. (2.2). Through the 
convolution with continuous kernels, we can also an
alyzc distributions or, in particular, discretely sam
pled inputs. As r:~ conscquellce, the exponent h can 
take negative values. F'or example, as can be quickly 
verified front Eq. (2.0), for the Dime pulse D(:r:0 ), 

we have li\/(D(xo)) = l/s. Thus hDirac = --1. 

3. ESTIMATION OF THE LOCAL, 
EFFECTIVE HOLDER 
EXPONENT USING THE 
MULTIPLICATIVE CASCADE 
MODEL 

We have shown in the previous section that the \i\TT, 
and in particular its maxima lines, can be used in 
eva.luating the Holder exponent in isolated singu
larities. In most real-life situations, however, the 
singularities in the time series are not isolat.ed but 

densely packed. The logarithmic rate of increase 
or decay of the corresponding WT maximum line 
is usually not stable but fluctuates, following the 
action of some process involved, sec Pig. 2(a) for a 
typical example. 

To capture I.he Huctuations and estimate the re
lated exponents (to which we will n:fcr to as an 
ejj'ecfrue1 Holder exponent of the singularity), we 
will model I.he siugularities as created in some kind 
of a collective process of a very generic class -·- t,he 
multiplicative cascade model. Each point of this 
rnscade is uniquely characterized by the sequence of 
indices (s 1 • • • s,1 ), taking index v;1lues from the set 
of weights {pi}. The o;c;quence indicates the unique 
urdfff in which the weight;; are successively acting 
along the process branch lea.ding to tlHJ particular 
singularity. 

Suppose that we denote the density of the rns
cade at the generation level F, (i running from 0 to 
rnax) by r~(Pi), we then have 

·( D ') -- ' ' . (F' 'J - pF,,.,,, ·(}? ) r.. L'rnux - Ps1 · · · />s,.K. 0 - · Po f,. 0 

and the local exponent is related to the mte of 
increase ol:' the product. P}:',,,.., over the gained 

Q 

scale difference. In any experimental situation, the 
weights p; are not known and h has to be csLimated. 
This can be simply done using the fact that for the 
multiplicative cascade proce;;s, the effective product 
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Fig. 2 (a) It is impossible to evaluate the scaling exponent for a.n arbitrary ma.xiruum line participating in a complex process: 
tt real life example of a rrmximum line. (b) The local effective Holder exponent estimate takes the effective difference in the 
logarithm of the den8ity of the process with respect to the logarithm of the scale difference gained along the proCE!SS path. 

Fig. 3 Color range for the strips of the effective Holder exponent. 

of the weighting factors is reflected in the difference 
of logarithmic values of the densities at Fo and F'max 
along the process branch: 

hFo = log(r.:(F;rn,x)) - log(/-\:(F(,)) . 
F'max log((l/2)ma:<) - log((l/2)0) 

The densities along the procesi; branch can be es
timated with the WT, using its remarkable ability 
to reveal the entire process tree of a multiplicative 
process.22 •23 It can be shown that the densities K.(F',) 
correspond with the value of the WT along the max
ima lines belonging to the given process branch. 
The estimate of the effective Holder exponent 
becomes: 

f/i,; = log(W fwp1i(s1 0 )) - log(W fwpb(shi)) 
sio log(s10 ) - log(s1ii) 

where Wfwpb(s) is the value of the WT at the scale 
s, along the maximum line Wpb corresponding to the 
given procei:;s branch bp. Scale s10 corresponds with 

generation F 01a.x, while Shi corresponds with gener
ation Po (simply the largest available scale in our 
case), see Fig. 2(b).b 

4. EMPLOYING THE LOCAL 
EFFECTIVE HOLDER 
EXPONENT IN THE 
CHARACTERIZATION OF 
HEARTBEAT INTERVAL 
TIME SERIES 

Such an estimated local h(x0 , s) can be depicted in 
a temporal fashion, for example with color stripes as 
we have clone in Fig. 3. The color of the stripes is cle
tcnnined by the value of the exponent h(xo, s) and 
its location is simply the xo location of the analyzed 
singularity (in practice this amounts to the location 
of the corresponding maximum line). Colar coding 
is done with respect to the mean value, which is 
set to the green color central to our rainbow range. 

bFor s1,, we will use a = 5 in the examples presented iu this paper. This is the lowest resolution for which we can maintain 
the shape of the Mexica11 hat .. 



82 Z. R. Slmzik 

(a) 

6 

4 

3 

2 

11(rnax.(h)) 

-..--·--""1o~g--t1i-st-og-ram[h·~-~ 

healthy heartbeat 

o~--~--

-1 -0.5 0 05 

#(nmx.(h)) 

1 h 

8.-----,--~---,----.,..--~ 

7 

6 

4 

3 

2 

0 '----
·1 -0.5 

log-histogram(h) -
white noise record 

0 0.5 

(b) 

1 h 

Fig. 4 (a) Example time series with local Hurst exponeut indicated in culor: l:hc record of healthy heartbeat. intervals 
(above) and white noise (below). The background color indicates the lii.ilder exp0ncnt locally, ccnten~d at thf) Hnrnt expmicnt; 
at green; the c:olor gnos towards blue for higher h aad towards red for lower ii. (b) The corre8pon<ling log-histograms of the 
local HOl<..ler uxpuucmt. 

All exponent values lower than the mean value are 
given colors from the "warmer" side of the rainbow, 
all the way towards dark red. All higher t>itan av
erage exponent.s get "colder" colors, down to dark 
blue. 

The first. example in Fig. 4(a) is a record24 of 
heart.beat intervals recorded from a healthy human 
heart and it shows an intricate structure of intcrwo
veu singularities at various strengths. This bchavior 
has been recently reported3 to correspo!lcl with the 

multifracLal bchavior of tile heartbeat. The green 
is centercd at h = 0.1 for thi:-:: panel. The second 
example time series is a cornput.er-gencrnted sam
ple of white noise. It shows almost monochromatic 
bchavior, centcrcd at h = -0.5.c Tlw color green 
is dominant. There a.re, however, several instancm; 
of darker green and light. blue, indicating locally 
smooth componento. 

In Fig. <1(b), t.hc log-histograms arc shown or the 
HOlder exponent di;;playe<l in the color panels. They 

cThe negative exponent for whitu noise (crmtrnl, meau value) h = -0.5 is perfectly admissible for a time ~1:rifls i11 the gener
alized formulation, and can be mea.surl:ld with tlw \VT, see Eq. (2.2). It is also consistent with the Hurst exponent. H = 0.5 
for the random walk - the integral of white noise: H = h.-an<lom whlk = hwbito t>ui•• + l.. 
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Fig. 5 Local Hurst expoll!lnt indicated in color for four heartbeat interval tirno series (not shown). The green color iB centered 

<et h = 0.0 for all plots. It saturates at dark blue for h = 0"1 and at. dark red for h = -0.4. 

are made by taking the logarithm of the measure 
in each histogram bin. This conserves t.he mono
tonicity of the original histogram, but allows us to 
compare the log-histograms with the spectrum of 
singularities D(h). The log-histograms are actually 
closely related to the (multifractal) spectra of the 
Holder exponent. 2 The multif.ractal spectrum of Lhe 
Hblcler exponent is the "limit histogrnm" D s-+O (h) 
of the Holder exponent in the limit of infinite re.s
olution. Of course, we cannot speak of such a 
limit other than theoretically, and therefore, a limit 
histogram (rnulLifradal spectrum) has to be es
timated from the evolution of the log-histograms 
along scale. For details, sec Struzik (2000).2 

The ability to clisplay the scaling properties of the 
Lime series in a local manner has already proven 
quite successful. We have applied the method 
to a set of heartbeat interval time series in a 
(double) blind test. The purpose of the test was 
to establish whether the local effective Holder ex
ponent "panels" can be used in discerning whether 
the time series is from a healthy or an ill subject.. 

In Fig. 5, we show one such set of panels. There 
are two records of healthy heartbeats and two of 
heart disease. The cent.er value of the effective 
Holder exponent is h = 0.1, and is displayed in 
green color. For h > 0.1, the color becomes darker 
green, through light blue, it saturates as dark blue 
for h. = 0.5. All h > 0.1 correspond with a higher 
than average local degree of correlation, which has 
been associated with heart failure. On the con
trary, all h < 0.1 indicate stronger than average 
(relative) anti-correlation, which can be associated 
with healthy heartbeat behavior. The colors dis
played for h < 0.1 are from light green through 
yellow and orange towards red at h = -0.3. 

The two upper panels (1) and (2) in Fig. 5 
both belong to healthy individuals but of course 
there is no reason why !,hey should be identical; 
and indeed individual patterns all have a differ
ent arrangement of color stripes. Also the density 
of colors changes; some nonstationary behavior is 
apparent in the Fig. 5, panels (1) and (2). Both 
panels show a wide range of colors reflecting fully 



developed dynamics of the healthy h1,;irt.beat.. Such 
panels cmornr,;pond to a wide multifru.cl;;d spec:ln1n1.:J 

The two lower panels (3) a.nd (4), on the contrnry, 
are taken frcnn heartbeats of congestive heart failure 
(C:HF) cases. The deviation from hmdth_y belmvior 
can occur in a number of ways but these two arc 
perhaps the rnost generic. One Lype of deviation 
causes a narrowing of the dynamics and therefore 
a narrowing of the range of colors - it. is reminis
cent of the monofractal noise shown in Fig. 4. The 
other type of deviation, in a<lditiou to a narrower 
color spectrum, is that it drifted away iu iLs entire 
color spcdrurn in the direction of greNt and blue, 
that is towards smoother (more correlated) behav
ior. This shift in the central color reflects the change 
in the global correlation exponent between healthy 
and CHF inclividuals. 5 

We have left the background bet.ween the stripes 
uncolorecl (white) although it corresponds with even 
more srnooth regions (at the resolution considered!) 
and can all be painted dark blue. This would en
hance the color range and help diagnosis, but we 
preferred not to introduce any additional informa
tion tu Lhe panels in this research paper. 
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It is ap111Ln•nt th;d. the cc;lor panels providc- more 
infonna.ti\)n than the global averages, like the cen
t.ml C(1!or or !.he range of colors used, i.e. the width 
or the nmllifractal spectrum. In the following, we 
wlll show how to <exploit. this additional informa
tion pertinent to the local color fluctuations (non
statiomuities) in the panels. 

5. COLLECTIVE PROPERTIES 
OF THE LOCAL VARIABILITY 
ESTIMATE 

ln the context of heartbeat, one may ask the 
question: what; is tlie meaning of the varying lo
cal scaling e>...-_ponent. Also, its temporal organiza
tion and its relevance to the mull.ifrnctal spectrum 
may be test.eel. Ultimately, we would like to identify 
physiological reason::; for t.lw apparent rnultifrnctal 
behavior of the hearLbeat. Let us first go back to 
numerical inforrnat.ion, the HOlder exponent which 
we used to represent. in color, and exploit a few 
geueric cases of nonstationarity. 

In Fig. 6, three example heartbeat interva.l time 
series are shown with their correspoucling local 
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Fig. 6 Three example heartbeat interval time seri<is (top row) witt1 thei1· corresponding local effective' Hiildcr exponeat 

(bottom row). Two examples of 11onsta.tionarities in local Holder exponent; they are intrinsic tu the lucnl Holder exponent not. 

to the nonstatiom1riLies of the i11;rnt time series, as is shown in the third example, showing inclependcuce of the polynomial 

trend in the iuput. 
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effective Holder exponent. The first cxampk from 
the left show:; a consistent lineM trend -- the in
crease of t.be exponent valtw with time (bot.torn 
plot). This can also be verified in the corresponding 
time series above (leftmost, top plot): the rough
ness of the time series decreases with time (except 
for some minor fiuct.uations). In the second example 
(center panel), two distinct regimes can be distin
guished wit.h a somewlmt. different mean h value: 
one region up until sample 5000 and the other of 
slightly lower value of h for samples 5500 and more. 
Both the above cases will result in a broadening of 
t.he D(h) spectrum as a result of the nonstation
ary behavior of h. This effect alone, if observed 
at one global resolution, would noL be Huflicient. for 
mult:ifractal behavior - it would simply mean that 
the local variability is nonstationary in these time 
8eries. In the following, we will detect mull:iscale 
nonst.ationarity of h. In the last example in the 
rightmost panels, we show that the h exponerrt and 
the roughness of the time scric:;; are indepeudent of 
the fluctuations or trends in the time series. 

The evident nonstatiormry behavior in these fig
ures can be quantifk<l, and for this purpose we 
used a low pass moving aw.lrage filter (MA) to 
detect/enhance trends. This processing is, of 
course, done on the lHildcr exponent value set 
{hi(f(x))}, not on the input signal f(:c). A n-MA 
filtering of n base is defined as follows: 

1 ·i=n 

hMA (i) = - L hi(f(x)) (5.1) 
" n i=l 

where h; (!) are the subsequent values of the effec
tive Holder exponent of the time series f. Standard 
deviation from the hMA,. (i) mean exponent. can also 
be calculated: 

i:=.n 

S'DhMA,. (i) = ~· ~(h;(f(x)) - hMAJi)) 2 . 
;.=[ 

(5.2) 
The ohserva.tion of nonsta.tionarity of the vari

ability estimate obtil.ined with the effective Holder 
exponent. prompted us to do a series of experiments. 
The main objective of the test was to attempt to 
answer the questions posed in thfJ Introduction. In 
the following, we am going to show how the tech
niques described can help in finding the answers to 
those questions. We analyzed several data. sets but 
only the typical behavior will be presented, leaving 
broader coverage of the data and related conclusions 
to a separate publication. 

As already indicated a.bove, even though the fluc
t.uations in the heart rate variability are clearly vis
ible ln the effective Hi.'>ldcr exponent data, they will 
benefit. from filtering with the moving average fil
ter. Tlie moving average, Eq. (5.1) is performed 
directly on the sub8eqU<mt. ordered maxima, each 
carrying the corresponding effective HOlder expo
nent value. The number of maxima. at the lowest 
scale of analysis is only roughly related to the num
ber o[ heartbeat::! in the time series. However, this 
problem is negligible for the large length of aver
aged exponent values (we use 100, 1000, 10 OOO ex
ponent values, i.e. maxima. lines). Since the actual 
temporal information can be associated with each 
maximum value, we map it back on the average 
valnes obtained from the moving average and use it 
for the abscissa of IJ1e plots. Additionally, for each 
moving average window, we calculate the standard 
deviation from the mean value. This standard de
viation, Eq. (5.2) is closely related to the width of 
histograms of tJrn local effect.ive Holde1· exponent. 
Therefore it also rcfiec:tfi the width of the multifrac
tal spectra over the MA-base - the range of the 
moving average window. 

5.1 Ad. 1) 

We have included in the same plot, Fig. 7, the result 
of running exactly the same procedure on a random 
noise sample and on the heartbeat rate. The re
sultiug fluctuations for the random noise are much 
srmLller in ma.gni tude, thus supporting the observa
tion that the fluct.uations in variability of heartbeat 
may be of physiological or other origin and are not 
pure statistical fluctuations of noise data. Addi
tionally, we checked the st.a.ndard deviation of the 
variability, which clearly indicated a broader spec
tmm for the heartbeat than for the same length of 
white noise data. 

The reader may, of course, ask the question 
whether the nonstatiom1rities in the Holder expo
nent are the only source of wide multifractal spec
trum of the heftrtbeat. Firstly, the nonstationar
ities observed show up at a.I! t.emporal resolutions 
just as is the case for model rnultifract.als. It is not 
possible to select one single temporal scale captur
ing the nonstationary behavior. Therefore, the con
tributions to the multifractal spectrum come from 
various temporal scales in comparable degTee. If 
this were not the case, this would mean that for 
long base MA averages, we would get considerably 
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Fig. 7 Plot of the 100 base MA-smout.lwd effective !folder exponent, for the heartbeat. tnst case and for white uoisc. Mean 
ar1d standard deviation nre shown. 
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Fig. 8 Three widtho of MA window, 100, 1000 a11d 10 OOO are used to test whether the fluctuations o!Jserved cau be used to 
explain t,ltf) wider multifmctal spfJctra for the longer time series normally \lSE!d for spectra estimation ( > '1000 rnaxinrn). 
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higher standard deviatio11 uf' Llw l1iildc:r cxpcmcnt 
t !tan for shorter base l'v1.A ;1,verng<:s. 

'Therefore, we performed a test to indic.:ate 
whetlwr the fluctuation effricts observed can be used 
to explain the wider mult.ifrnctal spectra. 'vVe 1.1sec! 

three widths of MA window -- 100, 1000 and 10 OOO, 
see Fig. 8. The resulL of running MA with the 
longest window (approximately 2 hours record) g;:rvc 
a clear indication that lo11g lengths of data result 
in a wider spectra than shorter records. How
ever, in defonse of the multifractality of the heart
beat, we find in shorter bas<-J MA levds of c;Laudard 
devin,l.io11 which a.re larger than those in the 
longer base MA. In other words, locally sta.nclfvd 
deviation (and therefore the "local" multifmctal 
speclrurn) in MAtoo exceeds that of MA1000. Sim
ilarly, locally standard deviation within a MAwoo 
exceeds U:rnt of MA10 ooo- Note that it is not the plot 
in Fig. 8 tlmL is beillg a,vcrn,ged. Rather, it gives the 
standard deviation of the result of averaging of the 
local effective Hi.'ilder exponent (not. shown). 
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5.2 Ad. 2) 

'Ihe variability plots shown iu Figs. 9 and 10 come 
fron1 <:t long run of expnrirnent:; where the l.est per
sons were given placebo or (J-blocker. We amJyzcd 
two records to be referred to as "tomo" and "!mu". 
The <;ffodive I-Ii.ildrn· expollent was first. calculated 
for each record and served as input for two runs 
of MA fmer performed with 100 and 1000 ma..-x:ima 
long winc!uw. The observed dfo<:t of the ,6-blocker 
is nil or negligible, indicating there is little change 
t.o Lh<: dynamics of the heart clue to the /)-blocker 
only (al. least for the two cases analyzed and for 
the s1o = 5 resolution considered). However, we 
fmmcl an interesting pattern of response to activity 
in these data sets. The firsL set shows a particularly 
strong response of Llie person in question to food. 
Let us remind the reader that higher values of the 
exponent are normally associated with a pathologic 
condition. Tbe observed shift towards higher values 
a;; the result of miting (it i8 almost possible to esti
mate the vol urue of the meal!) may indicate some 
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Fig. 9 The v;ufabiliLy ploL from a loug ruu of experiments where the t<'~St persons were given placebo or {'i-blocker (tomo 
record). Two nmo of MA filter were performed with 100 and 1000 ma)(.ima long window. The obscirved effect; of the ,li'-bloch~r 
i8 nil or negligible. However, an interesting patt•"rn of r"spouse to food is evidnnt. 
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Fig. 10 Another variability plot from with the placebo or /3-blocker (kou record). Ag<i.iu no response was r€gistercd. For 
this p1;rnm1, howev!ll', an internsting p;ittern of' response to sleep has bee.n found. 

nearly pathologic response in this individual caso. 
Another data set shows a much smaller response 
to food but it does show higher correlation levels 
dm'ing the first hours of sleep. Again this makes 
us speculate that the particular person ma.y have 
nearly pathologic behuvior during first stages of 
sleep. (It should be noted that the person in ::;~u<ly 
was going to bed very late 0-2 am and waking up 
afttir a relatively short sleep, 5-6 hours.) 

5.3 Ad. 3) 

P1uticulnrly in the second data set, the clay /11ight. 
oscillations25 can be clearly observed in the width 
of the multifractal spectrum and the range of the 
variability (as is reflected by the standard deviation 
plotted in both Figs. 9 and 10). The oscillations 
nearly follow the sinusoidal line (with a 24-hour 
period), which we superimposed on the standard de
viation of the local effective Holder exponent. The 
actual phase of the oscillations is shifted by some 
4--5 hours with respect to the clock. (It actually is 

5-6 in the plot but about 1 hour delay comes from 
the MA 1000 beat. base average.) This means that 
the physiological "rnidc.llc of the night." is not at 
12 midnight but at 4-6 mn, similarly "middle of 
the cl~cy" falls at 4-G pm, not ut 12 noon.) 

In the upper plot in Fig. 11, we show the stm1dn.rcl 
deviation of the local effective Holder exponent for 
the tomo record. It is the enlarged plot from Fig. 9. 
The influence of the /3-blocker on the variability 
range (the width of the multifractrd spectrum) can 
be ob8ervcd. Especially during the day, standard 
devin.tion of the effccti ve Holder exponent is high, 
which would correspond with a wide multlfractal 
spectrum calculated traditionally. This effect di
minished after the placebo tablet was replaced with 
tlw /3-blocker. For the last three days of the test, 
the standard deviation of the I-folder exponent looks 
much smoother and seems to follow the clay /night 
sinusoidal pattern better. 

This effect is not visible in the lower plot 
in Fig. 11, corresponding with the kou record 
(enlarged from Fig. 10). In this cF1.Se the ,6-blocker 
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Fig. 11 Enlarged plots of stan<brd deviat.icm [rom Fig. (9) (tomo) and Fig. (10) (kou), above and below respectively. The 
day /night oscillations t:a.n be ob~crvod ir1 the ra.ngc of the V(U'iability f\S rnflectcd by the standard devia:tion of the local effective 
Holder exponent .. Th"' adual phase of the oscillatious is shifted by some 4-6 hours with respect to the dock. In the upper 
plot, the iuflucnce of the )3-blockcr on th() variability range (thi, width of the multifractal spectrum) can be observed. This is 
not visible in the lower plot. (12p111 = 12 miduight; 1211.m = 12 noon). 

was taken during the fir::;t few days of the Lest and 
was later replaced with placebo. 

5.4 Ad. 4) 

In Figs. 12 and 13, two samples of the sleep period 
taken from the tomo and kou data are displayed. 
The actual time period between going to bed and 
waking up is indicated with a. line segment. A part 
of the sinusoidal d£LY /night rhythm is also visible, 
reaching maximum somewhere near the early morn
ing hours (4-6 am). The mean effective Holder 
exponent obtained with 100 base MA is shown to
gether with the standard deviation from the mean. 

Both show large nonstationarities, different for each 
sample (a.nd each night period within samples), but 
still considerably larger than statistical fluctuations 
would be in a rnonofmctal (e.g. white) noise sample 
of comparable length. 

The origin of these nonstationarit.ies is not known 
at. the moment of writing. It is possible that they 
are related to sleep pha.ses,26 but this relation does 
not appear to be trivial and a follow-up study is 
expected to shed more light on this. 

5.5 Let Us Summarize 

We were able to test answers to the questions posed 
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in the 1nt.roc\11ctiou: 

1. The obsmved rrmlti.frnctul beh:wim oJ' u,,, heart
beat is tlie result. of "r1onstatio1mri Ly., or· t.ltb local 
effective HC.lder exponent. i:tt ali resolutions, j u:;t 
as is the case ·with mult.ifract:1ls. We still du not 
know the actual rnec!11mism of these :nonstation
mities. Probably different meclw.nisms control 
Lhem at variOLl!:i temporal rcsolut1ous. 

2. Yes, for part.icular te1np0ral i-csolutions (we 
tested about 100-1000 maxima), it is cvide11t 
thaL lhe nonstat.ionarit.y c:an be linked witl1 ac
tivity. The exact mechanisrn of Ll1i:' dcpenclcnce 
m11sL he further studied since it cannot. be vali
dated from a limited tc::;t or U1e kind presented 
here. 

~1. It scerns that the iuflmmcc of /3-blocker is rather 
small and limited rnain.ly to the !'itandarcl dc
viaL ion or the Hi.ilcl<:r cxpo11ent (corresponding 
with the width of tlie rnult;ifractal spectra). Jn 
the only Ca.tie where we observed such a <lepfm
dence, it was nanowing the spectra width (less 
"dynamic" beha.vior) clue to the ,B-blodcer. The 
,8-blocker does not seem to influence the mean 
value of the Holder exponent (which reflects the 
correlation properties of the heart bec"t). 

0.3 ,..-.-,-------...------r---· 

mei.ln Holder exp. 1 OOMA ba~o 

0.25 

·l. WE· observe h full rnnge of nonstatio1rn.ry bcha.vior 
ili the case of non-<1.ctivity imch as during sleep; 
it sc1.·rns tn be nrniuly nonstatiouari1.y of short.er 
time sca.leo:. 

Fir1ally, we twt.0 that the loci:,! information re
vealed with the effective Holder exponent seems to 
have potential diagnostic meaning. In particular, 
t.his holds for fluctuations revealed with the MA 
proccdme. 'T'beir link with activity may be inter
usting to explore further in a diagnostic context. Of 
course~, the global properties like the log-histogrnrn, 
which can be c<dcuiated from the flffoctive I-folder 
(:xponent, inherit the diagnostic capabilities of the 
MF spectra calculated traditio11ally. 3 In addition to 
this, it seems pc1ssible to display the mapping 

/1rv1A,. (i)--+ S'DhMAJi) 

bdw12cn the rncan and the standard deviation for 
the .investigated signals. The nonstationarities and 
their interrch1tion \Vill be captured in such F1. map. 
Below we plotted it for two test signals, tomo 
and !mu, for t.wo resolutions MA100 and MA10oo 
[Figs. 14(a) and (b), respectively]. The ranges, 

day/ni!]hl :::.inuso1d-B · · ·-~· · 

.. 
'' 

sleep 

700 800 90[) 1000 1100 1200 

time in minutes 

Fig. 12 A sample of the slc.:p period taken from the tomo data. Tl1e time period bfJtwccn goiug to bed and waking up 
is indicated with a line segmeut. The mean effective Holder (;xpcment obtained with .lOD ba.se MA is showu together with 
the standa.rd deviation from the mean. Large nonstationaritie~ are visil>lE1. A part of the sinusoidal day /night. rhyt.hm is abo 
visible. 
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Fig. 13 A Hample of the sleep period taken from the kou data. The time period between going to bed and waking up is 
iudicat.ed with a line segment. The• mean effective Hi:ilclcr exponent obtained wit.h 100 base MA is shown together with the 
standard deviation from the mean. Large uonstatiomuitics are visible. A part of the sinusoidal day /night rhyth.rn is also 
visible. 
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Fig. 14 Standard deviation versus mean maps for tomo (a) a11d kou ( b). 100 and 1000 MA bas<:>.s are plotted with different 
colors. The ranges, shape and compactness (or the degree of scatter) of these plots dearly differ for both records and ma.y 
have diagnostic meaning. (Line goiug to 0.0 is due to firiite sample t;i;-.e.) Note that both char:act,eristics are uot. oft.he input 
signal but its local effective Holder exponent, and therefore, can be compared without normalizing. Due to the very fine dot 
size, the local clot density in these maps can be readily perceived. In general, binning the dots may be required, cspcc:ially for 
longer time series records. 



shape and compa(·trw:;~1 (yr tlw dq.;rcc• of scattm·) 
of these plot:;; dnarJy c\ilfoi- fur both rncurds, which 
suggests that. they may ha.ve diagnostic meani11g 
(Fig. 14). 

6. CONCLUSIONS 

The local effective fii.ilder exponent. has been ap
plied to evaluate variability of heart rate locally at 
an arbitrary position (time) and resolution (scale). 
The variability so obtained is compatible in the 
sense of distribution to the multifractal spectra of 
the ana.lyzcd heart rate time series. This provides 
the possibility to stanclardi~c the variability estima
tion for comparison between differeut patients and 
between different recordings for one patient. 

In addition to thi:;, we observed intriguing pat
terns on nonstationary behavior of the local effoc
tive HOlcler exponent. These can be related to 
individual response iu variability records to daily 
activities. 

We have attempted to build a methodological 
approach aiming at revealing such nonst.ationari
ties in local variablity at various tirrie scales. A 
moving avernge filtering o.f Hr.\lder exponent-based 
variability estimates was used to cnhanec these 
ft uctuations / uonstationa.ri tic~'!. 

We find that this way of local presentation of scal
ing properties may be of clinical importance. Bui; 
ultimately, we believe that the findings and method
ology presented open a way better to address t.hc 
question of physiological rmi.8ons for apparent mul
tifractal behavior of the heartbeat.. 
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