
JOURNAL OF
SYSTEMS
ARCHITECTURE

ELSEVIER Joumal of Systems Architecture 42 (1996) 351-365 --··-··~~- ·-~-···--·~.. ·- ..

ANDES: Evaluating mapping strategies with synthetic programs

Joao Paulo Kitajima a,*, Brigitte Plateau b' Pascal Bouvry C, Denis Trystram 11

1 U11i1Jersidade Federal de Minas Ger11is, Dept1rrm1wnt1J de Cj{}ncit1 tla Computa~·iio, C.P. 702, .Wl6l·Y70 !Jc/CJ lloriwmt'. MG, /Ired!
b Laboraraire de Modelisatiim et Cairn/, Pmjet APACHE/ /MAG-IN PG, 100. r11e cle.v MrtthC111atiq11c.~. 38041 C1r1m11/11c! CIWJ:X 9, fr11111·1•

c Centrum voor Wisk1mde 1111 Infrinnaticll (CW!), Deparrment of llltertit'tive Sy.l'lems. P.O. Box 94079, 1090 Gil Ams11n/11111. '/11(•
Netherlwuls

Received I June 1995; revised 19 Marcil 1996; acccptetl 26 April 1996

Abstract

This paper presents the ANDES perfomumce evaluation tool. ANDES is bnsed on the synthetic execuLion or purnllcl
programs and it is used for the evaluation of mapping strategies. The Meganode, u distributed memory pnrullcl rn1nputcr, ii;
considered as our target architecture. ANDES tnkes into uccount a benchmark of qunntitutivc mm.leis of purullel ul~orilhms
and a set of mapping strategies (greedy and iterative algorithms are used). We show how this 100! nllows un eKtensivl~
comparison of mapping strategies by using the benchmark, tl1e mapping strategies anti different cost functions.

Keywords: Pcrfonnance evaluation; Parallelism; Tool; Synthetic cxcctllion; Mapping; Mullicmnputcr

1. Introduction

Distributed memory parallel machines (DMPM)
are the current trend of high-performance parallel
computers. They represent a good balance between
cost and performance, mainly because of the connec­
tion of several commercial, general and relatively
cheap microprocessors. A distributed memory paral­
lel machine is a computer composed of autonomous
processors connected by u high speed communica-

• Corresponding n11thor. Email: kitnjima@dcc.ufmg.br.

tion network. Each processor has its own ntldrcss
space. The Intel Parag(m, the Thinking Machirn!s
CM-5, the IBM SP and the C'ruy T3D arc lypicul
e>tumples of tl1is generation of purnllt:ll computers.
The different processing elemcntH inside such u par·
allel machine simultaneously execute different pieces
of the parallel code, and euch piece dcmamls some
machine resources, like the processor itself, the
memory and the inter-processor communienlilin me­
dia. The low level programming parudigm imposed
by this kind of architecture is basetl on message
passing, considering tlrnt no memory is physirnlly
shared by the processors

1383-7621/0165-6074/96/$15.00 Copyright© 1996 Elsevier Science B.V. All rights reserved.
PI/ S 1383-7621(96)00022-7

352 J.P. Kiraji111e1 er ul. /Journal of Systems Arcliitecrure 42 (1996) 351-365

Although more abstract programming models have
been developed for DMPMs (e.g., paradigms based
on data parallelism, remote procedure calls, logical
and functional programming, etc.), the programmer,
the compiler or the operating system is always faced
with the problem of choosing which processor should
ex.ecute each of the different pieces of the compiled
parallel program. In this allocation problem, known
as mapping, the workload is represented by a quanti­
tative and structural model of the parallel program to
be e)(ecuted. On the other side, the DMPM is com­
posed of a set of specific resources: processors with
a certain processing power (e.g., expressed in
MFLOPS or MIPS), distinct memories with a finite
capacity and a communication network with a de­
fined bandwidth. Finally, one or more performance
criteria (like execution time or processor load) should
be optimized.

The inputs of a typical mapping are a model of
the parallel program and one of the parallel com­
puter. These entities, mainly the DMPMs, can how­
ever be very complex and their respective models
can be somewhat far from the reality. Therefore, it
would be interesting to compare the value of a
performance criterion computed by the mapping al­
gorithm against the same criterion measured from a
true execution of the parallel program on the real
DMPM. It is desired, however, to stay in the domain
of performance prediction, that is, evaluation should
be done without executing the real paralJel program
on the real parallel machine. It is well known that
coding and debugging of parallel algorithms are a
quite expensive task.

ANDES is a tool that supports performance evalu­
ation of parallel programs at the prediction level,
which considers the existing complex overheads of
parallel computers. This is achieved through the use
of synthetic parallel executions directly on the paral­
lel machine. In a synthetic parallel execution, the
resources of the DMPM are used in a controlled
way, but no code is generated. All the steps from the
interpretation of the parallel program and from the

interpretation of the parallel machine model to the
synthetic execution on the target parallel machine are
automatically managed by ANDES. ANDES finally
computes perfonnance indices from the execution of
that workload implemented according to mapping
and/or scheduling strategies. Synthetic execution is
the chosen performance technique due to the easy
control of parameters as well due to the used real
environment. The idea is to conjugate the best of the
model approach with the best of the real environ­
ments.

The next section presents related work. Next, the
mapping problem and some strategies used to solve
it are introduced. Two aspects of AND ES are then
explained: the parallel algorithm modeling language
and the synthetic execution manager. A comparison
of the mapping algorithms is presented in order to
show that the tool is useful. Finally, some conclu­
sions and perspectives are presented. ANDES is an
evolution of the ALPES environment presented in
[8], which was based on the generation of source
files of synthetic programs. The new approach is
based on a more efficient synthetic execution, con­
trolled by a kernel that accepts a synthetic workload
described in an intermediate format.

2. Related work

Any parallel programming environment (e.g.,
PPSE [!OD can be used to generate synthetic pro­
grams. The drawback in using tl1ese general environ­
ments is that the generation is not automatic. On the
other hand, some computer-aided tools use specifi­
cally the synthetic approach and, then, a synthetic
workload is automatically generated. Three environ­
ments can be considered representative: MIMD,
OLGA and HASTE.

2.1. MIMD

MIMD (Multiple Instruction stream, Multiple Data
stream) [3] is a simulation system developed on top

J.P. Kitajima et al./ Journal of Sys1e11i~ Architecture 42 (1996) 151-365 353

of DEMOS, a discrete event modeling package writ­
ten in Simula. MIMD runs on Sun workstations and
it simulates the execution of message-passing paral­
lel programs on arbitrary distributed memory multi­
processors. The parallel program (assumed to be
correct) is modeled as a directed graph where ver­
tices represent processes and the arcs represent uni­
directional channels. A process can execute only
four types of statements: compute(n) (compute
spending n CPU cycles), sleep(n) (sleep for n sec­
onds), send(Ci,n) (send message of length n bytes
through channel C1) and receive(C1) (receive a mes­
sage on channel CJ The parallel machine is repre­
sented by an undirected graph where the vertices
model the processors and the edges model the hard
links. All the processors are of the same type (homo­
geneous). Additional information concerning the
characteristics of the processors and of the links are
given. Process-to-processor mapping is done through
specific procedures. The simulation produces perfor­
mance information like processor /link usage and
process/ channel activity. Global snapshots can be
obtained without interfering with the execution simu­
lation. MIMD is used inside a larger experimental
context. In this context, there is a program genera­
tor that automatically generates the synthetic pro­
gram from an experiment control file, a process
model (defining a particular programming paradigm),
and a software graph generation strategy (random
graphs are used in (3]).

2.2. OLGA

OLGA (Occam Load Generation Application) [18]
is an environment for performance evaluation based
on synthetic programs derived from a skeleton file
(the synthetic task: describes the sequence of compu­
tation and communication phases) and from a pa­
rameter file (describing the kind and duration of
computation phases and sizes of the data exchanged
between processes). A skeleton file is an Occam
process containing the code executed on each pro-

cessor. This skeleton is obtained from a skeleton
library associated with BACS, the Basel Algorithm
Classification Scheme. BACS provides a base for the
description and classification of parallel algorithms.
OLGA is composed of four parts: (J) the parser
scans the parameter file in order to determine the
workload; (2) the library contains the algorithm
skeletons, process interaction structures, basic data
structures, random generators, load process primi­
tives and other global services; (3) the loader loads
the code and the (probabilistic and dynamic) distri­
bution tables, and (4) the frame executes on each
processor. It is responsible for time measurements,
for the execution of the computation and communi­
cation loads. OLGA currently executes on a Trans­
puter network and it is used to evaluate ParStone, a
synthetic benchmark based on BACS [18].

2.3. HAMLET

HAMLET is a computer-aided environment devel­
oped to support the design of parallel industrial
applications. Emphasis is given to the early stages of
the design, considering that "the later a mistake is
detected, the more expensive it is to fix" [15].
Currently, HAMLET is composed of three modules:
(1) the Design Entry System (DES) tliat allows the
specification of the application, the target hardware
and the mapping of the software on the hardware; (2)
HASTE (HAmlet Simulator Tool (E)), a tool that
simulates (by discrete events) tl1e execution of tl1e
application (described with tl1e DES) on a (also
simulated) parallel machine, and (3) TATOO, a
graphical interface used to analyze the tracefile gen­
erated by the simLJ!ation. The Design Entry System
allows the specification of ''delays'' that model syn­
thetic processor workload. HASTE is a more general
tool than MIMD, since the first tries to embed the
synthetic approach in a wider context of parallel
software engineering. MIMD and OLGA (and, as we
will see next, ANDES) are more performance evalu­
ation oriented, although they eventually can be used

354 J.P. Kitajima et al./ Journal c>f Systems Architecture 42 (1996) 351-365

in a more general tool for supporting the develop­
ment of parallel programs.

As presented above, other environments using the
synthetic approach are available, but only OLGA is
comparable with ANDES, considering that a syn­
thetic execution on a real parallel machine is done.
MIMD and HASTE use simulators, not a real paral­
lel system. The simulation is only interesting if the
parallel computer is accurately modeled, mainly the
contention generated when using the machine re­
sources.

3. The mapping problem

the main goal of a good mapping is to minimize
the execution time of the whole program. Other
objectives can also be achieved, for instance in a
multi-user processor network, it is interesting to
minimize the average use of the different resources.
The goal to be reached is often represented by a cost
function.

Let us denote:

T, the set of tasks,
P, the set of processors,
calc{t), the total computing time of task t,
comm(t,t'), the total communication time between
t and r',
the function alloc(t) returns the processor where
task t is allocated.

Fonnally defined, a mapping is an application
from T to P which associates to each task a unique
processor, The cardinality of all possible solutions is
ITllPI. Even if this number can be slightly decreased
due to some symmetry considerations, it remains too
large for practical problems.

Several algorithms can be found in the literature
for solving the mapping problem. We can roughly
distinguish two classes of methods, namely, exact
algorithms and heuristics [4). Exact algorithms can

only be used when the space of solutions is small
enough, for instance when only a few tasks have to
be allocated to a machine with a small number of
processors. Exact algorithms give the optimal solu­
tions but in practical cases they cannot be used
because of the combinatorial explosion of the num­
ber of solutions.

The goal of heuristic algorithms is to give good
solutions in relatively reasonable time. Two sub·
classes of heuristic algorithms have mainly been
explored: greedy algorithms which progressively
construct the solution, and iterative algorithms whose
principle is to improve an existing solution. Random
mapping is also an alternative and generally sup­
ported by known environments (eg., PVM [17]).
However, better mappings can be found if some
knowledge is acquired from the application structure
and behavior. Naturally, the time to treat this knowl­
edge should not be greater than the time gained with
this supposed better mapping.

3.1. Greedy algorithms

In a greedy algorithm, the mapping is done with·
out backtracking (a choice already made can never
be reconsidered). The allocation of the i-th task is
based on a criterion depending on the mapping of the
first (i- I) tasks. Two kinds of greedy algorithms
can be envisaged for the mapping problem: the first
ones are based on empirical methods and the second
ones come from the relaxation of classical graph
theory algorithms which are optimal for some re­
stricted cases.

Examples of such criteria are given below:

• LPTF (Largest Processing Time First) is a heuris­
tic whose criterion is restricted to load balancing.
It is well-known that its performance in the worst
case is about 4 /3 from the optimal when consid­
ering independent tasks [9].

• Lo presents in [12] an algorithm based on a
maximal matching which minimizes the costs of

J.P. Kitajima er al./ Journal of Systems Architecture 42 11996) 351-365 355

communications between tasks. This algorithm is
optimal for UET (Unitary Execution Time) tasks
if the number of tasks is less than twice the
number of processors and if at most two tasks are
allocated to one processor.

• Algorithms based on a minimal cut of bi-parted
graphs can also be used [12,16].

Greedy algorithms are easy to implement and
have a polynomial complexity (often less than
O(ITI\ for instance LPTF is of ITlloglTI complex­
ity).

3.2. Iterative algorithms

All iterative algorithms start from an initial solu­
tion and try to improve it. Note that the initial
solution can be found using a greedy algorithm.
Usual iterative algorithms try to exchange tasks be­
tween processors to locally improve the solution.
Most such algorithms use random perturbations to
leave local minima and to jump to better solutions.

A well-known iterative algorithm is the Bokhari
algorithm [1]. Its cost function (called cardinality)
takes into account the number of tasks correctly
mapped on the processor network and uses pair-wise
exchanges of tasks to improve it. The basic hypothe­
sis is that the number of tasks must be equal to the
number of processors. Grouping methods must be
used to take into account a greater number of tasks.

3.2.I. Hill climbing
The basic iterative algorithm, called hill climbing

consists of starting from a given solution and to
improve it iteratively using a neighborhood relation.
This solution leads directly to a local optimum.

3.2.2. Simulated annealing
One of the most popular iterative methods is

simulated annealing [2,14). This method is based on
an analogy with statistical physics: The annealing
technique allows a metal with the most regular struc-

ture as possible to be obtained. It consists of heating
the metal and reducing the heat slowly so that it
keeps its equilibrium. When the temperature is low
enough, the metal is in a equilibrium state corre­
sponding to the minimal energy. At high tempera­
ture, there is a lot of thennic agitation which can
locally increase the energy of the system. This phe­
nomenon occurs with a given probability decreasing
with the temperature. It corresponds mathematically
to giving a chance to leave a local minimum of the
function to optimize.

3.2.3. Tahu search
Tahu search is an iterative meta-heuristic [6]. It

tries to find the best neighbor of a given solution. To
avoid cycling and local optima, a tabu list is estab­
lished. This tabu list contains infonnatlon concerning
the last moves. A tabu move is not allowed except if
an aspiration criterion is satisfied (i.e., if the pro­
posed neighbor gives a better value of the objective
function).

33. Mixed strategies

The two preceding classes of heuristic mapping
algorithms are not the only ones but are tbe most
present in the literature. Other solutions can be ob­
tained by mixing the preceding algorithms: an initial
solution could be obtained by simulated annealing
and then tabu or algorithms like the branch & bound
algorithms [7] could be used to improve the map­
ping.

3.4. Quality of the solution

Most solutions of the mapping problem are based
on the optimization of cost functions. Let us denote
by z such a function.

Under the previous assumptions in the model, we
have two opposite criteria to take into account: (1)
minimizing inter-processor communications, and (2)
balancing the computations between processors.

356 J.P. Kitajima et al./ Journal of Systems Architecture 42 (1996) 35 I-365

These criteria are opposite in the sense that minimiz·
ing external communications leads to group all tasks
on one processor and balancing the computing costs
leads to distribute the tasks on all available proces·
sors (if !TI> lPD.

The cost functions given below correspond re­
spectively to the two previous criteria and try to
minimize the most loaded processor (in tenns of
communication, computation or both):

Minimum communications:

z = max. E L comm(t,t').
pel' 1lalloc(1)-p 1'lullo~·(r'),op

Load imbalance:

z = max. E calc(t).
peP ilalloc(t)""p

Trade-off:

z = max E (calc(t)
peP dalloc(1)-p

+ '[, comm(t/)).
I'lalloc(l'),Op

This criterion that we have chosen to consider is a
trade-off between both previous criteria.

In the cost functions previously described, no
overlap between communications and computations
was considered. If all communications can occur at
the same time as computation (i.e., with the help of
specialized processors), the cost function could be
adapted by trying to find the maximum between the
processor which communicates the more and the
processor which computes the more, giving a second
cost function. In fact, the cost function shou1d be
adapted following the characteristics of the target
machine (for instance, distance between processors
can be taken into account by analyzing routing ta­
bles, etc.).

4. Modeling parallel algorithms in ANDES

Parallel algorithms are modeled in ANDES as
precedence valued DAGs. The graph vertices model
computations and the arcs model the precedence and
possibly a communication between computations. A
numerical value is associated to the vertices in order
to quantify a processing load (e.g., number of in­
structions to be executed). Also, a numerical value is
associated to the arcs, in order to quantify a commu­
nication load (e.g., number of integers exchanged).
These values are closely related to the application
costs. They can be converted to a normalized cost,
for example to costs expressed in time units, if a
parallel machine model is associated. A more de­
tailed description of ANDES can be found in [8).

The DAG used in ANDES is not given "as isn
(for example, as a communication matrix or as a
formatted file). Indeed, it is extracted from a more
abstract textual description which models a family of
parallel algorithms. This abstract description, named
DO-ANDES, is a C program using a specific library,
which allows the representation of computation nodes
and of precedence between these computation nodes.
A computation node is more than a single task: it is
composed of an input, of an output and of a compu­
tation description. These annotations allow the mod­
eling of more complex relationships among the tasks.
The concept of "computation" is variable. It may be
a single arithmetic operation or a complex algorithm.

The basic type in a DO-ANDES is Node. This
type is needed when declaring the computation nodes
of a parallel algorithm model and it is used as a
classical C data type. Two basic functions are used
to build the graph: comp_node and prec.
comp_node identifies the input, the computation
and the output descriptions. For example,

gauss[O] [l]

• comp_node ("gauss task",

input_desc, comp_desc, output_desc);

J.P. Kirajima et al./ Journal of Systems Architecture 42 (1996) 351-365 357

creates the computation node gauss [O] [l] (of
Node type), whose input, computation and output
descriptions are input_desc, comp_desc and
output_desc. These descriptions are classical C
procedures. The string "gauss task" is a com­
ment.

prec is the procedure which defines a prece­
dence between two computation nodes. For example,

prec("Precedence" / gauss[O] [1],

0, gauss(l][l], 3)i

defines a precedence between gauss [OJ [1] (out­
put port 0) and gauss (1] [1] (input port 3). Input
and output ports numbers identify specific input and
output precedences of a computation node and they
are important if a reference is needed. For example,
it may be necessary to model constructions like the
Occam2 alternative where some action is taken de­
pending on which channel a message arrived. In this
case, the identification of the port is necessary in
order to associate the port with the corresponding
action. The string "Precedence'' is a comment.

Finally, there are three methods used for input,
computation and output descriptions: type_input,
type_oper and type_output. For example,

void input_desc (n);
Node n;
(type_input ("inp", n, AND, SYSTEM_SIZE+l); J
void comp_desc (n) ;
Node n;
{type_oper ("comp", n, uniform(lOOXINT)); J
void output_desc (n);

Node n;
[type_output("out",n, OR, 3,

l*int_size, 0. 4,
3*int_size, 0.1,
5 *int_size, 0. 5);}

details the input, computation and output descrip­
tions for the previous gauss [OJ [1] computation
node (see above paragraphs, in the example of
comp_node). The strings "inp", "comp" and

"out" are comments. The parameter n is a formal
parameter used by the library. This variable is a
pointer to the current computation node being de­
scribed. It is important because the same inputjout­
put/computation description can be used by differ­
ent computation nodes. In the above example of
type_input, an AND input with SYSTEM_SIZE+
1 inputs (SYSTEM_SIZE being a constant of the
application description) is described. TI1is means that
all the inputs of gauss [O] [1] should arrive before
executing the computation associated with the com­
putation node gauss [OJ (1}. In comp_desc, a
computation of average 100 integer instructions, dis­
tributed uniformly, is represented. Finally, in out­
put_desc, an output of type OR is described. This
kind of output means that only one output will be
chosen: an output of I integer with probability 0.4,
an output of 3 integers with probability 0.1, or an
output of 5 integers with probability 0.5.

Originally, three types of inputs/outputs can be
described: (1) Boolean descriptions (like AND, OR).
An AND input models a join of control threads, and
an OR input models an Occam2 alternative [l l]. An
AND output models a fork of control threads, and an
OR output models the C case instruction; (2) global
operations, like data broadcast. A data broadcast can
be considered as an AND output, but the data are the
same for each output; and (3) grouping inputjout­
put, that is, two computation nodes linked by a
grouping should be executed by the same processor.
This kind of description is important to model, for
example, sequential pieces of code that share the
same address space and tl1at should be mapped to the
same processor. Another application of grouping in­
puts/ outputs is the possibility of clustering several
tasks of the graph in order to study the impact of this
grouping on the final performance of the application.
In other words, grouping task is useful to perform a
granularity analysis of a parallel program.

Tile quantitative costs can also be described as
variable quantities: (1) as a constant distribution, in
order to model well-known workload, as for exam·

35S J.P. Kitujima et al./ Journal of Systems Architecture 42 (/996! 351-365

ple, message sizes; (2) random variables, in order to
model, for example, branching probabilities; and (3)
dependent variables, that is, costs that depend on
other costs of the graph or on the inputs of the
algorithm.

Very compact descriptions can be created using
the native iterative constructions of the C language.
Also, the C random function can be employed to
create random variables. Standard structures of algo­
rithms (e.g., trees, grids, diamonds) can be "canned"
in procedures which also allow the representation of
recursive and hierarchical constructions. In a DG­
ANDES, a loop is unrolled in order to fit the directed
graph representation. The iterative instruction of the
host language are suitable for the representation of
loops. For example,

for (i•O; i<LOOP_LIMIT; i++)

iteration [i] =cornp_node ("iteration",

input_desc, comp_desc, output_desc) ;

describes a loop in the model. When compiling and
executing the program describing the model, the for
instruction is executed and consequently the modeled
loop is unrolled. The constant LOOP _LIMIT can be
substituted by a random function or a value related
to another attribute of the DG-ANDES.

The DG-ANDES is then a description of a family
of parallel algorithms. Indeed, in a DG-ANDES,
uncertainties can be modeled (e.g., average costs,
branching probabilities, OR outputs). A DO-ANDES
can be compiled and executed (it is a C program).
For the work presented here, this execution produces
a DAG with all the vertices having AND inputs and
outputs and all the (computation and communica­
tion) costs being constants. This means that all un­
certainty is removed. The DAG is used by the map­
ping strategy and by the synthetic execution manager
in order to produce a synthetic execution from which
the required perfonnance indices are computed.

5. ANDES and the synthetic execution manager

From the DAG until the synthetic execution, AN­
DES performs four main steps: (1) cost conversion,
that is, given a parallel machine model, the graph
costs (e.g. number of instructions to be executed, the
number of exchanged integers) are reduced to the
same unit (e.g., microseconds); (2) the DAG cluster­
ing; (3) the choice of which processor will execute
each cluster (execution of the mapping strategies);
and (4) file treatment in order to be read by the
synthetic execution manager. These four steps plus
the compilation of the DG-ANDES are executed
sequentially on a Spare Sun/ 4 workstation. The
synthetic execution manager executes on the Megan~
ode, a DNIPM with 128 Transputers and a statically
reconfigurable interconnection network. This target
machine is used due to its availability in the context
of this research, but another DMPM could be used
instead, with little changes.

5.1. DAG pre-processing

The application quantitative model given to a
mapping algorithm is a valued undirected graph,
where the vertices model processes and the edges
model communication between processes (see Sec­
tion 3). The DAG is a richer application model, due
to the precedence. However, it does not seem sensi­
ble to give a DAG for a mapping strategy. Therefore,
a clustering algorithm is used to group the computa­
tion nodes of the DAG into clusters. In ANDES,
clustering is done using the PYRROS DSC (Domi­
nant Sequence Clustering) Algorithm [19). The DSC
algorithm "performs a sequence of clustering refine­
ment steps and at each refinement step, it tries to
zero an edge to reduce the paral1e1 time" [19]. It has
O((v + e)log v) time complexity and O(v + e) space
complexity (v is the number of DAG tasks and e is
the number of arcs). Clustering is done considering
an unbounded number of processors of a completely

J.P. Kitajima et al./ Journal of Systems Architecrure 42 (1996) 351-365 359

connected architecture. The mapping strategies pre­
sented in Section 3 are then used to choose which
processor executes each cluster. Clustering in this
study is only used to adapt the models described by
a directed graph in an understandable representation
for the mapping algorithms (undirected graphs). Cur­
rently, no detailed study is conducted in order to
compare different clustering strategies and the im­
pact of these strategies on the application perfor­
mance. Finally, the DAG and the mapping informa­
tion are stored in a file that is read by the synthetic
execution manager running on the Meganode. It is
important to remark that during this DAG pre­
processing, there is an available Meganode computa­
tion and communication model which allows estima­
tion of the computation and communication costs
{expressed in time units) used by the clustering and
mapping algorithms. These models are linear func­
tions that associate a number of operations to time in
computation models and message size and topology
to time in communication models. During this phase,
it is also possible to estimate the total computation
demand of the DAG tasks (tl1eir costs and the ma­
chine computation model are known - see tap P

below).

5.2. Synthetic execution

The synthetic execution performed in order to
obtain the desired performance indices is executed
on the Meganode (Fig. 1), a DMPM that contains
128 Transputers (T800/20 MHz and 1 Mb of mem­
ory - communication links adjusted to 10 Mbits/s),
interconnected by a hierarchical and reconfigurable
network. The 128 Transputers are grouped in 4
tandems of 32 processors each. There is an internal
switch connecting these 32 processors. Another
switch interconnects the 4 tandems. This second
level switch also interconnects the tandems to the
host machine, a Spare Sun/ 4 with a 4-Transputer
board (each Transputer is a T800/20 "MHz and 4 Mb
of memory), 3 of them used for program develop-

Sun/4

:- ii"- Program Development Tmnsputers

: 1- - ~ Global Inter-tandem Switvh
I I
I
1 32 Transputers
I
I

Interface

Transputer

Tandem Local Switch

Fig. I. 111e Meganode.

32 Transputers

32 Transputers

32 Transputers

ment and only one connected to the Transputer
network. The available Meganode is a single-user
machine: there is no operating system that allows
more than one application to execute on it. The
available programming languages are Occam2 and C
(mainly the InmosC toolset IMS-D4214). Routing is
done by software using VCR (Virtual Channel
Router), Version 2.0k [5].

The synthetic execution manager is the kernel that
controls the synthetic execution on the parallel com­
puter. It is a SPMD parallel program written in
Inmos C using routing facilities provided by VCR.
There are two types of processes (Fig. 2): one exe~
cuting on the root interface Transputer inside the
host workstation (the root task) and one executed
on each Transputer of the network (the manager
tasks). These tasks (all the manager tasks and the
root) are virtually completely connected, that is,
there is a virtual communication channel between
any pair of processes.

The root process reads the application quantita­
tive DAG plus the mapping info1mation and sends,
to each manager process on the network, the infor­
mation of the nodes (tasks) of the DAG mapped on
the receiver manager process. In this way, each

J6U J.P. Kirajimu e1 al./ Joumal of Systems Archirecrure 42 (1996) 351-365

message receiver

la1k

table

Fig. 2. Process structure of the S}nthetic ext:cution manager.

manager has a partial knowledge of the complete
DAG. 111e root keeps the processor identification
of the DAG tasks which do not have predecessors.
After each network processor has received from the
root processor all the information of the tasks mapped
on it, the root process starts the synthetic execution
and measures time. This root process sends a startinu
signal to all Transputers containing DAG tasks with
no predecessors. After this communication, the root
waits for a tenninal signal from all manager pro­
cesses, stops measuring time and receives from all
manager processes the load information.

The manager process is composed of two dis­
tinct parts. The first one receives, from the root
process, the DAG information (computation and
communication costs, number of predecessor tasks,
number of successor tasks) and puts them into a
table (the T-Table). The second part consists of
effectively managing the synthetic execution. It is
only started if there are tasks placed on the associ­
ated processor. Three types of (sub)processes are
created just before managing synthetic execution
(Fig. 2):

1. a message receiver process: this process receives
all the messages for the tasks residing on the

processor. When a message arrives, this process
verifies the identification of the receiver DAG
task. The local DAG T-table is then consulted in
order to check whether all the incoming messages
for the receiver tasks have arrived. If not, the
incoming message counter is decremented, and
the process waits for a new message. If yes, a
synthetic task execution is signaled (through a
local work queue) to the synthetic execution pro­
cess;

2. a set of synthetic execution processes: when a
DAG task is to be executed, the message receiver
process informs one of the synthetic execution
processes that a synthetic DAG task can be exe­
cuted. This last process loops for a specific amount
of time defined by the application quantitative
DAG and the output communications are done.
Opposite to the reception of messages, there is
not a process that manages the emission of mes­
sages: the synthetic execution process itself sends
the appropriate messages to the successor DAG
tasks. One important remark is that the number of
synthetic execution processes ls specified by the
user of the kernel. This parameter is known as the
"multiprogramming degree", and the higher is
this degree, the more exploited is the Transputer
time-sharing capacity;

3. an idle process: this process runs only when no
other process is running (including the VCR inter­
nal processes). The idle process only increments
a counter. The final value of this counter is used
to estimate the processor idle time.

After the execution of the kernel, some data are
obt~ne~ conce~ng the execution of the synthetic
~pphcat1on. The t1~e of the synthetic execution (Tex.)
is measured. The time spent by the iterations of the
i~le process in processor p (tidleP) can be ob­
tained through the linear model of number of itera­
tions versus execution time, specific for a given
processor. In this way, twork == T - tidle gives th . P ex. P

e time a processor p worked. tworkP can still be

J.P. tl

a processor
spends communicating, man;:ging the exe-
ctllion housekeeping overhead
tohl'). is computed before the synthetic execu-
tion. is then computed doing
tidleP, for each processor p. For a given applica1ion,
the estimated overhead on processor p in microsec­
onds due to the tool foot taking into account VCR
and communication overheads) is 204 x NT+ 2 J 5
X MD+ 140 X MSGA t 40 X MSGD + where
NT is the number of tasks placed on p, !YID is the
"multiprogramming degree" on p, MSGA is the
number of arriving messages in p and finallv ""- ") ~

MSGD is the number messages leaving p.

6. Evaluation of the mapping strategies

ANDES is then used in the evaiuation of task
mapping strategies. In this experimental approach,
the set of experiments described below has been
performed. The starting point is a benchmark com­
posed of 17 models of parallel algorithms (DG­
AllfDES). This benchmark is derived from different
sources (the llterature and real benchmarks). We
hope that it is represenmtive for scientific computing.
The models are of 0) the Bellman-Ford iterative
algorithm for computing tl1e path lengL~ in a graph:
(2}-(5) 4 systolic diamond-shaped computations; (6)
a divide-and-conquer; (7) one-dimensional FFT; (8)
Gaussian elimination a generic iteration; (!O)
master-slave; (Ii) master-slave followed by Gauss­
ian elimination (this model tries to model an irregu­
lar application); 02)-(13) two partial differential
equation iterative algorithms; (l 4) a tree computa­
tion; (15) a quantum dynamics algorithm; (16) the
recursive Strassen algorithm for matrix multiplica­
tion, and (17) the Warshall algorithm for finding tl1e
transitive closure of an adjacency matrix. For each
program of this benchmark, some parameters a.re

Ard11rect11rt 42 (19915! 351-365 .'Ui l

ccn:Sic11=rea important for performance evaluation: the
of generated PYRROS, the

~v ,,w._ •• ,v .. cost, the total communication cost (and

costs among the tasks, the number of
inputs j outputs of a group, its granularity {Le., tlle
mean rime intental between two external communi­
cations of a group) and its virtual parallelism (the

of the DG-AJ'IDES). For example, executing
program corresponding to the ANDES model of
Strassen benchmark, the following values for I.he

main parameters are obtained; ! I 4Q groups, a total
computation cost of 8,623, 185 microseconds, a total
commumcation cost of 11,564,613 microseconds and
a virtual para!ielism of 92.69.

There are four types of cost functions:

• ADD is an additive cost function (non-overlap of
computation and communication);
MAX is a maximum cost function (overlap com­
putation-communication);
ROUT considers non-overlap of computation and
communication and a store-and-forward routing;
TOR considers non-overlap of computation and
communication and a packet switching muting.

Considering the above 4 cost functions used to
evaluate the quality of the placement, there are 4
greedy strategies (modulo, LPTF, LPTF with a quan­
titative criterion, and LPTF with a structural crite­
rion). There are also 2 iterative algorithms: a simu­
lated annealing and a tabu search, both starting from
a solution defined by a greedy algorithm (LPTF with
a quantitative criterion). These algorithms are avail­
able in our research environment. Each model of the
benchmark, clustered automatically or manually, is
given 10 each mapping strategy and the correspond­
ing synthetic charge is executed 100 times in order
to obtain an average execution time. For each model,
the communication/ computation ratio is modified
three times. The total number of different workloads
is !02.

362 J.P. Kirajima et al./ Journal of Systems Architecture 42119961351-365

The target architecture is the Meganode multi­
computer itself, configured as a 4 X 4 torus. Topolo­
gies with more processors are considered (larger tori)
in order to evaluate the scalability of the obtained
measures. Also, the multiprogramming degree can be
changed (if more than one task of the DG-ANDES is

(a) 140

130
l)

E
·.:::

8 120
><
liJ

1 llO

~ ..
100 §

g
90

g
<ii 140
>

5
·.::: 120

~
~ JO{)

~ ·a
~ 80

§ 60
i::

i

mod !pt qua str sq tab qtab sirn qsim
mapping strategies

. i

-4.

' ·i· •. ,, ...

mod !pt qua str sq tab qlllb sim qsim
mapping strategies

Fig. 3. Synthetic ex.ec\ltion time and cost function values per
mapping strategy for S trassen benchmark (mod = modulo, !pt=
standard lpt, qua .. quantitative lpt, str .. structural !pt, sq =
structural and quantitatlve lpt, tab= tabu, qtab = tabu from a
quantitative solution, siin =simulated annealing, qsim ==simulated
annealing from a quantitative solution).

able to execute, they are executed in a time-sliced
fashion).

Finally, the following indices can be obtained
when using ANDES: the value of the cost function
of the final solution given by the mapping strategies,
the execution time of the mapping strategy, the
execution time of the synthetic program, the fraction
of the execution time corresponding to the execution
of the application tasks, the fraction corresponding to
the overhead (due to the communication and to the
tool itself) and the fraction corresponding to the idle
time. The performance indices that can be analyzed
when using these strategies are the distribution of the
groups on the processors and the reduction of the
communication costs between groups due to the
mapping (the communication cost between two
groups mapped to the same processor is considered
null).

For example, graphics like those presented in Fig.
3 support the comparison between the synthetic exe­
cution and the performance given by the mapping
strategies (the values are normalized: the reference
value is that given by the modulo strategy). Fig. 4
presents an example of a graph representing the load
of the machine during the synthetic execution. On a
given bar, the lower region represents the useful
work, the middle region corresponds to the overhead
and the upper region corresponds to the idle time of
the processor. The large overhead fraction is caused
by an excessive degree of the application communi­
cations, considering that the overhead caused by the
tool is forced to be inferior to 10% of the total
computation cost of the program model.

6.1. Results

A linear regression was performed between the
set of cost function values (which estimates the
execution time of the synthetic workload) and the set
of measured execution times. The cost function TOR
which represents well the behavior of the Meganode
is the best cost function. The linear model given by

J.P. Kitajima et al./ Journal of Systems Architedure 42 (1996) 351-365 363

IOOF""""""""""""'...,...i~.""='"'"='~==,.,..,,,=··=~=···~=····~~.~­
i ! .

1 !

80 ' .~.i .• ; ... ; .•. i

] I;
.g 60 .. l ... ~;. . !· '" .: .. ·- .:.

~ Ii "
~ 40 ·+ . I) .. ; .1.: ,

I' 'l Lt - ' ...

I ; >i.

20

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
processor identification

Fig. 4. The load profile of the Strassen benchmark for qtabu
mapping strategy.

the regression is the closest if compared with the
execution time (i.e, cost function value close to the
measured execution time). The cost function ADD
(non-overlap of communication and computation) is
also good. Table l gives the slope of the obtained
linear model and the quality of the regression (a
good regression has quality close to 1).

Considering a given program model (among 17),
a given communication/computation ratio (there are
3 for each model) and a given clustering (there are 2
types of clustering), 6 mapping strategies were ap­
plied. In 76% of the cases, the worst mapping algo­
rithms (the algorithm that gives the worst execution
time) are modulo and LPTF. In 12% of the cases,
modulo and LPTF are not the worst strategies but the

Table I

ADD MAX TOR ROUT Clustering

Slope 1,213 1,620 1,185 1,636 Pyrros
Quality 0,923 0,894 0,907 0,947 Pyrros
Slope 1,370 2,147 1,302 1,664 Manual
Quality 0,734 0,796 0,794 0,771 Manual

difference between the best strategy and the worst is
not superior to 10%. When this difference is greater
than 10%, the worst strategy is iterative {it may go to
a local minimum that is not a global minimum). The
conclusion is that all the strategies that do not con­
sider the communication as mapping criterion (mod­
ulo and LPTF) are not good in practice. In 81 % of
the cases, the best strategy is one that considers the
existence of the communications. We verify also that
the best speed-ups (the ratio between the total sum of
the computation costs of the graph and the measured
execution time) are obtained for the models having
the lowest communication/ computation ratio. A very
interesting conclusion is that the iterative algorithms
do not improve reasonably the mapping given by a
greedy algorithm. It is verified that for the given
benchmark the improvements obtained with the sim­
ulated annealing and the tabu are inferior to 10%. A
possible reason of this behavior is the regularity and
symmetry of the 17 models. A modification of a
already done mapping (e.g., by pair exchanging) on
these program models do not represent a consider­
able gain in tenns of execution time. Taking into
account that a benchmark is a representative set of
models of real programs, a greedy mapping algo­
rithm is enough to map tasks on processors.

7. Conclusion and perspectives

ANDES is a performance evaluation tool based on
synthetic programs and was developed initially for
support of the evaluation of different mapping strate­
gies. The tool is being used intensively in order to
acquire knowledge of the strategies behavior. The
goal is to obtain some rules of thumb about the
choice of the best mapping strategy given a specific
parallel program and a specific parallel architecture.
However, ANDES has been designed for.wider use.
Other implementation and execution strategies can
be evaluated like scheduling and load balancing,

364
J.P. Kitajima et al./ Journal of System.• Architecture 42 (1996) 351-365

implying a change of the synthetic execution man-

ager. . .
The choice of the synthetic approach was done m

order to take into account the real overheads of the
execution of a parallel program on a parallel ma­
chine. These overheads (for example, those associ­
ated with the communication system of a parallel
machine) are sometimes difficult to model when
using analytical and simulation models. In this way,
ANDES allows perfonnance evaluation at the model
level, but with some realistic (or almost realistic)
components. This experimental approach is rather
new, considering that normally mapping strategies
are compared according to different values of the
cost function [13].

Future work is planned. ANDES currently runs on
a Transputer machine. It will be ported on the IBM
SP multicomputer. With the SP version, mapping,
scheduling and load balancing strategies will be
evaluated. A toolbox of the best strategies will com­
pose the kernel of the parallel programming environ­
ment currently being developed inside the APACHE
project This environment is based on Athapascan, a
programming language based on Remote Procedure
Calls. Later, ANDES will be used inside this pro­
gramming environment as a tool used for perfor­
mance prediction. With the version on the SP, AN­
DES models will be described using C + + (instead
of C, as done today). This language seems to be
more adequate to model objects like tasks. C + +
will also be used to describe machine models.

Acknowledgements

Meganode is a Telmat trademark. Sun and Spare
Sun/ 4 are Sun Microsystems Inc. trademarks. Oc­
cam, Occam2 and Transputer are Inmos, Inc. trade­
marks. The ANDES environment is related to the
ALPES (Algorithms, Parallelism and Evaluation of
Systems) research group inside the APACHE pro­
ject The ALPES group is supported by the CNRS,

INPG, PRC C3• MESR, CNPq/Brazil and the
Rhone-Alpes Region.

References

[l] Shahid H. Bokhari. On U1e mapping problem. IEEE Tran;ac­
tionHm Computers, C-30{3):207-214, March 1981.

[2] S.W. Bollinger and S.F. Midkiff. Processor and link assign­
ment in multicomputers using simulated annealing, In 1988
International Conference 011 Parallel Processing, Unive11ity
Park, The Pensylvania State University Press, 1988.

[3] Rosemary Candlin and Neil Skilling. A modelling system for
the investigation of parallel program performance. In: Glan·
franco Balbo and Giuseppe Scrazzl, eds., Computer Perfor·
mance Evaluation: Modellini; Techniques and Tools, pages
397-409, Elsevier, Amsterdam, 1992.

[4] T.L. Casavant and J.G. Kuhl. A taxonomy of scheduling in
general-purpose distributed computing systems. IEEE Tran1-
actio11.1011 Software E11gi11eerinx. SE-14(2):141-154, Febru­
ary 1988.

[5] Mark Debbagc, Mark B. Hill and Denis A. Nicole. The
Virtual channel router. Tra1L1puter Cm111111mic11ti1111s, l(l)~-
18, August 1993.

[6] Fred Glover, Tabu search: A tutorial. lllterjl1ces, 20(4):74-94,
July 1990.

[7] H. Kasahara and S. Narila. Pmcticnl multiprocessor schedul­
ing algorithms for efficient pnrullcl processing. IEEE Trans·
actions m1 Computers, 1984.

[B] Joii.o Paulo Kitajima, Cecile Tron nnd Brigitte Plateau.
ALPES: a tool for tl1c performance evaluation of parallel
programs. In: Jack J. Dongarrn and Bernard Tournncheau,
eds., Environmenrs a11d fools jiir Parallel Scientific Compul·
ing, pages 213-228, North-Holland, Amsterdam, 1993,

[9] C-L. Lee. Parallel machines scheduling witl1 nonsimultane·
ous machine nvailuble time. Discrete Applied Ma1/re111atics,
1991.

[I O] Ted G. Lewis and Hesham El-Rcwini. l11trocl11ction to Para!·
le/ Computing. Prentice-Hnll lntematlonnl, Englewood Cliffs,
1992.

[l I] INMOS Limited. Ow1111 2 reference mmmal. Prcntice·H~I
international Series in Computer Science. Prentice-Hall Inter·
national, New York, 1988.

[12] Virginia M. Lo, et al. OREOAMI: software tools for mair
ping parallel comput.'llions to parallel architectures. Technical
Report TR-PPSE-89-13, OACIS, 19500 H.W. Gibbs Drive,
Suite 110, Beaverton, OR, USA, 1989.

[13] Michael G. Norman and Peter Thanisch. Models ofmachine.1
and computation for mapping in multicomputers. ACM Com·
puti11g Surveys, 25(3):263-302, September 1993.

J.P. Kitajima et al./ Journal of Systems Architecture 42 (/996) 351-365 365

[14) Jean-Louis Pazat. Outils pour Ja progmmmation d'un multi­
processeur a memoires distribuees. Ph.D. Thesis, Universite
de Bordeaux I, 1989.

(15) P. Pouzet, J. Paris and V. Jorrand. Parallel application de­
sign: !he simulation approach wi!h HASTE. In: Wolfgang
Gentzsch and Uwe Harms, eds., Proceedings of HPCN'94,
Lecture Notes in Computer Science - 797, pages 379-393,
Mlinchen, BRD, 1994. Springer-Verlag.

[16) Harold S. Stone and Shahid H. Bokhari. Control of dis­
tributed processes. Computer, J 1(7):97-106, July 1978.

[17) V.S. Sunderam, G.A. Geist, J. Dongarra and R. Manchek.
The PVM concurrent computing system: evolution, experi­
ences, and !rends. Parallel Computing, 20(4):531-546, April
1994.

[181 Stephan Waser and Helmar Burkhart. OLGA - A modelling
tool for algorithmic skeletons. In: Reinhard Grebe et al., eds.,
Tra11sputer Applicatio/IS and Systems '93, Volume l, pages
395-409, !OS Press, Amsterdam, 1993.

[19] Tao Yang and Apostolos Gerasoulis. PYRROS: Static
scheduling and code generation for message passing multi­
processors. In Proceedings of Jhe 61h ACM Inrernatio11al
Conference on S11percompu1ing, pages 428-437. ACM, July
1992.

Jolio Paulo Kltajima received a Master
degree in Computer Science from the
Universidade Federal do Rio Grande do
Sul, Brazil, in 1990, and a Doctorate
degree in Computer Science from the
Institut National Palytechnique de
Grenoble, France, in 1994. He worked
as an ass<iciated researcher at Univcrsi­
dade de Brasilia, Brazil, during 1995,
and, since February 1996, he holds a
position of professor in the Universi­
dade Federal de Minas Gerals, Brazil.
His research interests are parallel com­

puting mid perfonnance evaluation.

Brigitte Plateau received a Master in
Applied Mathematics from the Univer­
sity of Paris 6 in 1976, a These de
Troisieme Cycle in Computer Science
from the University of Paris 11 in 1980,
and a Th~e d'Etat in Computer Science
from the University of Paris 11 in 1984.
She was Charge de Recherche at CNRS
(France) from 1981 to 1985, Assistant
Professor at the Computer Science De­
partment of the University of Maryland
from 1985 to 1987. She currently holds
a position of Professor at the engineer­

ing school ENSIMAG in Grenoble (France) and is a meml>er of a
research group whose main interest is the study of massively
parallel machines. Her research interests include queuing theory
and performance evaluation of parallel and distributed corn puter
systems.

Pascal Bouvry received his M.Sc. De­
gree in computer science from FUNDP,
University of Namur, Belgium, in 1991
and his Ph.D. degree in computer sci­
ence from INPG, university of Greno­
ble, France, in 1994 at the LMC-IMAG
laboratory. He is currently Senior Re­
searcher at CWI (Center for Mathemat­
ics and Computer Science) in Amster­
dam, the Netherlands. His research in­
terests include ConcurrentjParallel Pro­
gramming Environments and Lan­
guages, Visual Programming and Opera­
tions Research.

Denis Trystram was bom in Paris in
l 95S. He has received two Ph.D. from
!he Institut National Polytechnique de
Grenoble respectively in Applied Math·
ematics (1984) and Computer Science
(1988). He is now Professor in Com­
puter Science at the Institut National
Polytechnique de Grenoble since 199 l.
Since 1990, he is at the Head of the
"Parallel Processing" group at LMC­
JMAG. He manages an interdisciplinary
regional group for paralleliz.ing practical
applications (ParAppli), and he is cur­

rently Regional Edito1 Parallel Computing Journal. His research
activities concern all aspects of the study of che impact of
parallelism on the conception of efficient algorithms (namely,
Model and Design of parallel algorithms, Scheduling and Map­
ping, Optimization of Communications, Implementation of real
applications on parallel machines). He has published five books,
and about 50 articles in international journals and as many intema·
tional conferences.

