
SIAM). SCI. STAT. COMPUT.
Vol. 11, No. 2, pp. 354-367, March 1990

© 1990 Society for Industrial and Applied Mathematics
009

VECTORIZATION OF THE ODD-EVEN HOPSCOTCH SCHEME
AND THE ALTERNATING DIRECTION IMPLICIT SCHEME

FOR THE TWO-DIMENSIONAL BURGERS EQUATIONS*

E. D. DE GOEDEt AND J. H. M. TEN THIJE BOONKKAMP:j:

Abstract. A vectorized version of the odd-even hopscotch (0 EH) scheme and the alternation direction
implicit (ADI) scheme have been implemented on vector computers for solving the two-dimensional Burgers
equations on a rectangular domain. This paper examines the efficiency of both schemes on vector computers.
Data structures and techniques employed in vectorizing both schemes are discussed, accompanied by
performance details.

Key words. vector computers, Burgers equations, odd-even hopscotch scheme, alternating direction
implicit scheme, vectorization

AMS(MOS) subject classifications. primary 65V05; secondary 65M05, 76DXX

1. Introduction. This report is written as a contribution to a project for developing
numerical software for vector- and parallel computers. Vectorized versions of the
odd-even hopscotch (OEH) scheme and the alternating direction implicit (ADI)
scheme are developed in FORTRAN77 for the two-dimensional Burgers equations. In
the near future, the vectorized codes will be combined with a pressure correction
technique [8], [13] in order to solve the time-dependent, incompressible, Navier-Stokes
equations.

The 0 EH scheme and the ADI scheme are integration schemes for time-dependent
partial differential equations (PDEs) and are applicable to wide classes of problems.
The OEH scheme has shown to be an efficient scheme on serial (scalar) computers,
in the sense that it is fast per timestep. Moreover, the scheme is relatively easy to
implement. Due to its near-explicitness the OEH scheme is also very suitable for use
on vector computers. A detailed discussion of the OEH scheme is given in [4]. The
ADI scheme we consider in this report is the Peaceman-Rachford scheme [11]. The
ADI scheme is more expensive per timestep than the OEH scheme since it requires
the solution of tridiagonal systems of equations. However, the ADI scheme is more
robust than the OEH scheme.

For the solution of the tridiagonal systems we use the Gaussian elimination method,
a variant of the partition method of Wang [17], which is described in [3], [9], and a
method developed by De Goede and Wubs [3]. By the approach of De Goede and
Wubs, the tridiagonal systems are solved by a combination of explicit and implicit
calculations, thus resulting in an alternating direction explicit-implicit (ADEI) scheme.
Since the Gaussian elimination method is a sequential method, this method seems to
be unsuitable for use on vector computers. However, for the two-dimensional ADI
scheme a number of (independent) tridiagonal systems must be solved. Therefore, this
method allows vectorization across the systems. Moreover, this method does not
increase the operation count, unlike the above-mentioned partition methods. Further­
more, it turns out that also the partition method and the explicit-implicit method are
efficient on vector computers.

*Received by the editors November 18, 1987; accepted for publication (in revised form) November
30, 1988.

t Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, the Netherlands.
t Nederlandse Philips Bedryven B.V., P.O. Box 80000, 5600 JA Eindhoven, the Netherlands.

354

VECTORIZATION OF THE OEH AND ADI SCHEMES 355

The purpose of this paper is to report our experience in vectorizing both schemes
for the two-dimensional Burgers equations. Much effort has been spent in optimizing
the FORTRAN code for vector computers, avoiding the explicit use of assembler code.
The experiments have been carried out on a (2-pipe) CDC Cyber 205 and a Cray
X-MP/24. We used one (portable) code on both machines. Since the code contains
many long vector operations, it is our opinion that on other vector machines (such as
the NEC SX-2, Fujitsu VP200, Alliant FX/8, etc.) we will also obtain good perform­
ances.

Section 2 contains a brief summary of the conceptual features of vector computers,
which are relevant to the present application. In § 3 a description of the OEH scheme
and the AD I scheme is given. Section 4 is devoted to the description of the techniques
used for vectorizing both the OEH scheme and the ADI scheme. In § 5, we compare
the accuracy and performance of both schemes. Finally, § 6 contains some concluding
remarks.

2. Vector processing. Vector operations fall into two main categories: those that
perform floating-point arithmetic, and those that may be called data-motion operations
(for example, operations to compress or expand an array using an index-list). The
need for vector data-motion operations also becomes apparent when we consider the
definition of a vector on a CDC Cyber 205: a vector is a set of similar elements
occupying consecutive memory locations. The reason for this vector definition is that
when performing vector operations on a CDC Cyber 205 the input elements stream
directly from the memory to the vector pipes (arithmetic units) and the output elements
stream directly back into the memory. A Cray-computer accepts vectors for which the
number of memory locations between consecutive elements (the so-called stride) is
constant.

To enhance an effective data flow rate in order to match the computation rate of
vector computers, the memory is divided into memory banks that may operate concur­
rently. For example, the memory of the CDC Cyber 205 is divided into 16 memory
stacks, each of which is divided into eight independent banks. When one memory
stack is busy with a memory request, further references to the same stack cannot be
made. If a vector operation calls for an operand whose elements are located w words
apart in the memory (i.e., stride w), then the data flow rate might be reduced due to
the memory conflicts and thus result in a longer vector operation time. So, in order to
obtain a good performance on vector computers it is important to consider the data
structure very carefully (see § 4) [6].

For an efficient use of vector computers, the compiler plays an important role.
The compiler translates FORTRAN DO-loops into vector machine instructions, if
possible. This process is called auto-vectorization. The nature of vector operations is
such that only DO-loops are candidates for vector operations. Specific characteristics
of a given DO-loop determine its vectorizability [1]. It is not always possible to vectorize
a code, as in the following example:

(2.1)

DO 10I=1, N

A(I + 1) = A(I)+S

lOCONTINUE

Because in vector processing the arguments must be determinable before the operation
starts, this loop cannot be vectorized. This restriction is known as recursion; it conflicts
with the nature of vector processing.

356 E. D. DE GOEDE AND J. H. M. TEN THIJE BOONKKAMP

In many situations the compiler can be instructed to generate more efficient codes.
We have used such instructions, e.g., in the following situation. The compiler can be
instructed to vectorize DO-loops, ignoring possible vector dependencies, by inserting
a so-called comment-directive:

for the CFT77 compiler (Cray X-MP/24):
and for the VAST compiler (Cyber 205):

CDIR$ IVDEP
CVD$ NODEPCHK

3. The OEH scheme and the ADI scheme for the two-dimensional Burgers
equations. Consider the two-dimensional Burgers equations:

u, = !1 (u, v) with !1 (u, v) = - UUx - VUy + (Uxx + Uyy) I Re,
(3.1)

v, =f2(u, v) with f 2(u, v) = -uvx-VVy +(vxx+ Vyy)/Re,

with Re denoting the Reynolds number and u and v the velocity components in x­
and y-direction, respectively. On the boundary r of the connected space domain 0,
we prescribe the Dirichlet conditions

u =ur, v= Vr.

The Burgers equations have the same convective and viscous terms as the incompressible
Navier-Stokes equations, although the pressure gradient terms are not retained. Also
a solution to the Burgers equations would not, in general, satisfy the continuity equation.
These equations possess the desirable property that exact solutions can be constructed
by means of the Cole-Hopf transformation [2]. This enables us to compare the
numerical solution of the Burgers equations with the exact solution.

In this section we give a description of the OEH scheme and the ADI scheme for
the Burgers equations. The space discretization is discussed in § 3 .1 and the time
integration in § 3.2.

3.1. Space discretization. For the space discretization the computational domain
is covered by a N x M rectangular staggered grid, with h and k being the grid sizes
in x- and y-direction, respectively (see Fig. I). In a staggered grid different variables
are defined at different grid points. The reason for this choice is that in continuation
to this report we want to apply the OEH scheme and the ADI scheme to the incompress­
ible Navier-Stokes equations, for which a staggered grid is most suitable [14].

In what follows, U is a grid function approximating the velocity u (likewise for
V, F 1 , and F 2) with components Uij. The components UiJ are numbered lexicographi­
cally. The application of standard second-order central differences converts (3.1) into

cell i,j

Fro. 1. The staggered grid.

VECTORIZATION OF THE OEH AND ADI SCHEMES

the system of ordinary differential equations (ODEs):

d

357

(3.2a) dt Uu = Fl,ij(U, V), i = 1, ... ' N -1, j = 1, ... , M (interior x -points),

d
(3.2b) dt V;1 = F2 ,;1(U, V), i = 1, · · ·, N, j = 1, · · · , M -1 (interior 0-points),

where

F .. = _ u. (U;+1.1- V-1.J
l,•J lj 2h

(3.3a)
+__!_ (ui+1,1 -2 uij+ ui-1) +-1- (uiJ+I -2 U;1 + uiJ-1)

Re h 2 Re k 2 '

(V+1 - V. 1 ·) F .. = - o.. I ,] ,_ ,]

2,1] lj 2h
(3.3b)

+-1- (V.+1,1 -2 v;J + v.-1,) +-1- (v,J+l -2 v;J + V.r1)
Re h 2 Re k2

In (3.3a) V;i represents an approximation to V at the x -points; likewise in (3.3b) Ou
represents an approximation to U at the 0-points. The values of Ou and Vu are
determined by averaging over neighbouring values. For the ADI scheme 0;1 and Vu
are trivially defined by

(3.4a)

However, for the OEH scheme we choose
- l - l

(3.4b) UiJ=2(U;-l,j+U;,J+1), Y;1=2(V;,1-1+\/;+1,j).

The reason for this choice will become apparent in § 3.2.1.
For the treatment of the boundary conditions, we apply a simple reflection

technique [13]. Consider, e.g., (3.2b) and (3.3b) at the 0-points (1,j), which involves
the outside value V0 ,1. The reflection technique consists of writing the boundary value
V112,1 as a mean value of its neighbouring values V0,1 and V1,1, so that V0,1 = 2 V112,J - V1,1

(see Fig. 1).

3.2. Time integration. Let U=(U, V)T and F(U)=(F1(U, V), F 2(U, V))T; then
(3.2) can be written in the vector form

(3.5)
d
dt U=F(U).

For reasons of computational feasibility, we apply a two-term splitting formula for
the numerical integration of (3.5). Let

F(U) = F 1(U) + F2 (U),

and consider the two-stage formula

(3.6)
U"+ 112 = U" +1r[F1 (U"+ 112) + F1(U")],

U"+1 = U"+112+!r[F1(U"+1;2) + F2(U"+1)],

with r denoting the timestep. It can be easily verified that this integration formula is
second-order consistent for any ODE system (3.5) [7]. Both the OEH scheme and the
ADI scheme are special cases of (3.6).

358 E. D. DE GOEDE AND J. H. M. TEN THIJE BOONKKAMP

3.2.1. The OEH scheme. In what follows, Uu denotes the discrete approximation
to u at the grid point (ih,jk) at time level tn = nT (likewise for V0)- The OEH scheme
for (3.5) is given by the numerical integration formula [4]

(3.7)

where U7j = (U7j, V7j) T (likewise for Fij(Vn)). The function e0 is defined by

n {1 ifn+i+jisodd (oddpoints),
(3.8) e =

u 0 ifn+i+jiseven (evenpoints).

Writing down two successive steps of (3.7) yields

(3.9a)

(3.9b)

U'!/1 = U7j+ rOuF;iVn) + T0u+ 1 Fu(Un+i),

un.+2 = un.+I + rer:.+1 F-(un+l) + T0n+2 F(un+2)
I) J) tl IJ I] I} •

Let F 0 (U) and F dU) denote the restriction of F(U) to the odd and even points
respectively, then replacing r by r /2, (3.9) can be written in the form

(3.IOa)

(3.lOb)

un+1;2 = U" +!r[F dUn+1;2) + Fo(U")],

un+l = un+l/2+!r[F E(un+l/2) + F o(Un+l)].

The order of computation for the OEH scheme is

(3.lla)

(3.llb)

(3.llc)

(3.lld)

u 0+112 = U 0+!rF0 (U") (= 2U 0- u0- 112 ifn~1),

u~,+1/2 =Vi-+ !rF E cun+l/2),

u:;i,+1 = u~,+112+!rF E(un+1;2)

Uo+1 = U~t1;2+~rFo(Un+1).

Note that (3.lla) is just the forward Euler rule at the odd points, whereas (3.llb) is
the backward Euler rule at the even points. For (3.1 lc) and (3.1 ld) it is just vice versa.
Substituting (3.4b) into (3.3), it can be easily verified that in (3.11) there exists an
odd-even coupling between the variables, i.e., a variable at an odd point is only coupled
to variables at even points and vice versa. Because of this odd-even coupling and the
alternating use of the forward- and backward Euler rule, scheme (3.11) is only
diagonally implicit. Note that the computation of the forward Euler rule in (3.lla)
and (3.llc) can be economized by using a simple interpolation formula. The scheme
thus obtained is called the fast form of the OEH scheme [4].

3.2.2. The ADI scheme. For the ADI scheme we use the splitting formula

F(U) = Fx(U)+ Fy(U),

where F x and F Y represent the space discretization terms contammg the x- and
y-derivatives, respectively. For the Burgers equations such a splitting is possible,
because there are no mixed derivatives. So, the ADI scheme for (3.5) is given by [11]

(3.12a)

(3.12b)

vn+112 = U" +1r[Fx(un+1;2) + Fy(U")],

un+t = un+1;2 +!r[Fx(Un+1;2) + Fy(Vn+1)].

Note that (3.12a) is explicit in the y-direction and implicit in the x-direction, and vice
versa in (3.12b). Since there is a 3-point coupling in each direction, the ADI scheme

VECTORIZATION OF THE OEH AND ADI SCHEMES 359

can be implemented such that only nonlinear tridiagonal systems must be solved at
each step.

In order to obtain linear systems, the terms Fx(un+i/2) in (3.12a) and Fy(un+t)

in (3.12b), which can be written in the form (cf. (3.3))

(3.13a)

are linearized as follows:

(3.13b)

with A and B tridiagonal matrices and U* and V* approximations to un+i/ 2 and
yn+i, respectively. To maintain second-order accuracy, the approximations U* and
V* are given by (see [12])

V* = 2 yn+1;2 _ yn_

Now, the ADI scheme only requires the solution of linear tridiagonal systems. In § 4.2
we will discuss some algorithms for the solution of these systems. Due to the lineariz­
ation process, it is not possible to formulate a fast form for the ADI scheme, as for
the OEH scheme (cf. (3.lla) and (3.llc)).

3.3. Stability. Finally, we make some remarks about the stability of both the OEH
scheme and the ADI scheme. Consider to this purpose the linear convection-diffusion
equation

(3.14)

Here, the vector (q1 , q2)T represents a constant velocity. Now suppose that for the
space discretization we use standard central differences, with constant grid sizes h and
kin x- and y-direction, respectively. Then von Neumann stability analysis applied to
the OEH scheme (3.10) yields the following necessary and sufficient timestep restriction
[14], [15] for (3.14):

This inequality shows that the OEH scheme is conditionally stable (r = O(h)), indepen­
dent of Re. The ADI scheme for the linear equation (3.14) is unconditionally stable
in the sense of von Neumann stability [10].

Remark. A drawback of the OEH scheme is the so-called Du Fort-Frankel (OFF)
deficiency [14], [15]. By this we mean that for r, h, k~o, the solution of the OEH
scheme converges to the solution of the problem

1 2(1 1)
u, = -uux - VUy + (Uxx + Uyy)/Re - Re T h2 + k2 U11,

(3.15)

In general, for convergence it is thus necessary that r= o(max(h, k)).

4. Implementations. In this section we describe implementation techniques for
vectorizing both the OEH scheme and the ADI scheme for use on vector computers.
It is our goal to implement the schemes in such a way that they perform efficiently on

360 E. D. DE GOEDE AND J. H. M. TEN THIJE BOONKKAMP

vector computers. We utilize the vector processing concepts discussed in § 2. The
programs have been written in the ANSI FORTRAN77. Thus, the resulting software
is portable.

4.1. The OEH scheme. The OEH scheme is based upon the alternating use of the
forward and backward Euler rule. Because of the 5-point coupling that exists between
the variables, the OEH scheme is diagonally implicit (see § 3.2.1). Specifically, the
scheme only requires scalar divisions and no nonlinear equations must be solved.

The obvious choice for the ordering of the grid points is the red-black or chess­
board ordering, where all the four neighbours of each point belong to another colour.
The grid points may be subdivided accordingly into two vectors that contain the red
and black points, respectively. The grid points are numbered along horizontal grid
lines. The OEH scheme is performed in four stages (see (3.l la)-(3.1 ld)). For example,
in the first stage the values in the red points are updated using the value in the red
point itself and old values in neighbouring black points (i.e., the forward Euler rule),
then in the second stage the values in the black points are updated using the old value
in the black point and new values in red points (i.e., the backward Euler rule).
Throughout the code the elements of the two vectors are stored in consecutive memory
elements (i.e., stride 1), which is, in general, an advantage on vector computers.
Moreover, no data reorderings must be performed.

Note that the two vectors are not confined to one horizontal grid line, but they
extend over the whole grid. This was done in order to achieve improved performance
through utilization of longer vectors. As a penalty for using those longer vectors, the
values in the boundary points are overwritten, thus destroying the correct boundary
values. To restore the correct boundary values, these values are stored separately.
Moreover, the first and the last grid points of each horizontal line must be of the same
colour to maintain the red-black ordering. Thus, the number of grid points in horizontal
direction (= N) has to be odd.

The OEH scheme requires minimal storage. In our implementation we used only
one extra array of length NM /2, which is one fourth of the total number of unknowns.
Hence, the total storage amounts approximately to 2.5NM memory locations.

4.2. The ADI scheme. The ADI scheme for two-dimensional problems requires
the solution oftridiagonal systems along horizontal and vertical grid lines, respectively.
Tridiagonal systems form an important class of linear algebraic equations. Con­
sequently, efficient algorithms have been developed for the solution of such systems.
The tridiagonal systems can be viewed in various ways. For example, for (3.12a) we
have M tridiagonal (linear) systems of order N. The first method we use to solve this
system is the Gaussian elimination method. Since the M systems are uncoupled, we
can vectorize across the systems, thus resulting into vector operations of length M. On
the other hand, the M individual systems can be combined in a single tridiagonal
system of order NM to obtain longer vectors. As a consequence, extra memory is
needed. Due to the large memory capacities of today's vector computers, it is possible
to execute programs with large memory requirements. For example, on the Cyber 205
and the Cray X-MP/24 the maximal memory size is about four million 64-bit words.

Several methods have been proposed to achieve efficient methods for such large
systems on vector computers. In this report we use a variant of the partition method
of Wang [3], [9], which will be discussed briefly now. First, the tridiagonal matrix is
partitioned into a l x I block tridiagonal matrix with each block a m x m matrix. The
method starts by reducing the tridiagonal system to a tridiagonal system of order l
using vector operations. Then the reduced system is solved by Gaussian elimination.

VECTORIZATION OF THE OEH AND ADI SCHEMES 361

Finally, the other unknowns are solved by back substitution using again vector
operations. Although the variant of the partition method has a higher operation count
than the Gaussian elimination method, this is an efficient method on vector computers
since the vector length of the operations is much higher.

For this variant of the partition method, it is plausible that the off-diagonal elements
of the reduced system are very small relative to the main diagonal elements [3], [5],
which is confirmed by numerical experiments. Following Van der Vorst [16] and De
Goede and Wubs [3], the solution of the reduced tridiagonal system is approximated
by a truncated Neumann series. The resulting explicit-implicit method is advantageous
for use on vector computers. The price to be paid for the approximation of the reduced
system is a possible drop in accuracy. However, due to the relatively small off-diagonal
elements, this approach hardly affects the accuracy.

As said in § 2, for the performance on vector computers the data structure is very
important. For the ADI scheme, tridiagonal systems must be solved along horizontal
grid lines and vertical grid lines, respectively. If the arrays are ordered horizontally,
then the x-differences can be calculated efficiently. Likewise, if the arrays are ordered
vertically, then the y-differences can be calculated efficiently. These two orderings
imply that during the performance of the ADI scheme, reorderings must be performed
to change from horizontal to vertical lines and vice versa. The reordering operations
have been implemented as efficiently as possible.

Moreover, during the solution of the tridiagonal systems, the variant of the partition
method requires vector operations with stride m. The Cray-computer is hardly hampered
by a stride unequal to one. However, the CDC Cyber 205 requires contiguous vectors
(i.e., stride 1). Therefore, compress/ expand instructions are necessary to restructure
the vectors. The alternative is to reorder in advance the data structure to obtain
contiguous vectors. On the CDC Cyber 205 this alternative may be useful. Both versions
have been implemented.

For each of the implementations, the storage requirements are significantly larger
than for the OEH scheme, viz. about 9NM memory locations.

Summarizing, for the Peaceman-Rachford ADI scheme the following implementa­
tions for the solution of the tridiagonal systems have been used:

ADI GE
ADIW
ADEI
ADIWl
ADEil

(Gaussian elimination),
(a variant of the partition method of Wang (stride m)),

(the explicit-implicit scheme (stride m)),
(ADIW with an extra reordering of the data structure (stride 1)),
(ADEi with an extra reordering of the data structure (stride 1)).

5. Performance. In this section we report on the accuracy and performance of
the OEH scheme and the ADI scheme on vector computers. For this purpose, we have
applied the schemes to a moving wave front problem. In general, moving wave front
problems are difficult to compute since the solution contains sharp gradients, both in
space and time. This necessitates the use of small timesteps and, when employing a
uniform grid, a small grid size. Therefore, such problems are time and memory
consuming and the application of powerful computers (such as, e.g., vector computers)
is obvious.

In our experiments the following vector computers and FORTRAN compilers
have been used:

(i) (2-pipe) CDC Cyber 205 (SARA, Amsterdam, the Netherlands), max. 200
MFLOP/s, FORTRAN 200 compiler, (the VAST (version 1.22W) precompilerof Pacific
Sierra Research Corporation is used).

362 E. D. DE GOEDE AND J. H. M. TEN THIJE BOONKKAMP

(ii) Cray X-MP/24 (Cray Research, Bracknell, UK), max. 235 MFLOP/ s.
FORTRAN CFTI7 (version 1.3) compiler.

An exact solution of the Burgers equations can be generated by using the Cole-
Hopf transformation [2],

(5.la)
2 <f>x

u=-- and
Re</>

2 </>y
v=---

Re <f>'

where <f> is the solution of

(5.lb)

In our test problem we choose </> = / 1 + !2 [18], with

f 1(x, y, t) =exp ((-12(x+ y) + 9t) * Re/32),
(5.2)

/ 2(x, y, t) =exp ((-4(x+ 2y) +St)* Re/16),

which yields the exact solution

(5.3a)
1 3/1 + 2f2 3 1 1

u =-* ---*
4 f 1+f2 4 4 l+exp((-4x+4y-t)*Re/32)'

1 3J; + 4f2 3 1 1 v =- * = -+- * ------------
4 / 1+/2 4 4 l+exp((-4x+4y-t)*Re/32)

(5.3b)

The solution represents a wave front at y = x + 0.25 t. The speed of propagation is
0.125.J2 and is perpendicular to the wave front. For increasing values of Re, the wave
front becomes sharper. In Fig. 2 the exact solution for u is shown at t = 2.5 for Re= 100;
1,000; 10,000.

With the purpose of testing the (order of) accuracy of the schemes, we first compare
the exact solution of the Burgers equations with the numerical solution obtained for
grid sizes h = k = 1/ 17, 1/33, 1/ 65, 1/ 129 and for timesteps r = 1/ 10, 1/ 20, 1/ 40, 1/ 80,
1/ 160, 1/320 (provided that the time integration is stable). The computational domain
is D = [O, 1] x [O, l] and the time integration interval is [O, 2.5]. We prescribe time­
dependent Dirichlet boundary conditions that are taken from the exact solution and
we choose Re= l 00. For the time integration we use the 0 EH scheme, the AD IW
scheme, and the ADEI scheme (see § 4).

To measure the accuracy of the numerical solution we define

(5.4) cdoo = - 10log (II global error at t = 2.5 lloo),
denoting the number of correct digits in the numerical approximation at the endpoint
t = 2.5.

Since maxju(x,y,t)l=0.75 and maxjv(x,y,t)j=l.O, von Neumann stability
analysis applied to the OEH scheme suggests the timestep restriction

(5.5)

In Table 5.1 we list the cdoo-values for all three schemes. We only list the cd00-values
for the u-field; for the v-field we obtain nearly the same results.

First consider the OEH scheme. From Table 5.1 we can conclude the following:
(i) For small timesteps (e.g. r= 1/320) the time integration error is neglectable,

and we can observe the second-order behaviour in space (1°Iog (4) = 0.6). On a fine
grid (e.g., h = 1/ 129) we can observe the second-order behaviour in time since the
space discretization error is neglectable.

VECTORIZATION OF THE OEH AND ADI SCHEMES

Re= 100

Re= 1,000

Re= 10,000

FIG. 2. Exact solutions (5.3a) for
Re= 100; 1,000; 10,000.

Re= 100

Re= 1,000

co .
0

o.o
Re= 10,000

FIG. 3. Corresponding numerical solutions.

363

(ii) For r fixed and h...,. 0 the accuracy decreases if r / h is sufficiently large. This
is caused by the OFF deficiency (cf. (3.15)).

(iii) When looking along diagonals (r / h constant) we observe a second-order
behaviour if r/ his small enough. For larger values of r/ h the scheme fails to converge
due to the OFF deficiency.

364 E. D. DE GOEDE AND J. H. M. TEN THIJE BOONKKAMP

TABLE 5.1
cdx·values for the OEH, ADIW, and ADEI schemes.

Correct digits for u-field (co-norm)

Scheme h-1 T = 1/10 T = 1/20 T=l/40 T = 1/80 r= 1/160 r= 1/320

OEH 17 2.54 2.55 2.55 2.55 2.55
33 3.05 3.21 3.20 3.20
65 2.82 3.37 3.73 3.85

129 2.84 3.44 3.98
ADIW 17 1.92 2.29 2.48 2.51 2.52 2.52

33 2.10 2.56 2.89 3.07 3.15 3.18
65 2.24 2.75 3.19 3.51 3.68 3.77

129 2.25 2.77 3.26 3.67 3.99 4.19
ADEI 17 1.92 2.29 2.48 2.51 2.52 2.52

33 2.12 2.57 2.89 3.07 3.15 3.18
65 2.24 2.75 3.19 3.51 3.68 3.77

129 2.25 2.78 3.26 3.67 3.98 4.17

Now, consider both ADI-type schemes. In the same way as for the OEH scheme,
we can observe second-order behaviour in space and time. In general, the accuracy
of the OEH scheme is comparable with that of the ADI-type schemes. However,
especially on the finest grid the ADI-type schemes are more accurate than the OEH
scheme, because the latter suffers from the DFF deficiency. Note that the accuracy
results for the ADIW scheme and the ADEi scheme are comparable. So, the accuracy
is hardly reduced if the tridiagonal systems are solved by the approximating method.

Table 5.2 presents the execution times obtained for a single example, namely, for
a 129x129 grid with t = 2.5, r = 1/80, and Re= 100. We compare the OEH scheme
with the five implementations of ADI-type schemes (see § 4). As an illustration, the
implementations have also been performed without vectorization on the CDC Cyber
205 (scalar code). In parentheses we list the ratio in performance of the vectorized
code to the scalar code. We emphasize that Table 5.2 contains the execution times for
the computation of 200 timesteps without paying attention to the accuracy or stability.

From this experiment we can draw the following conclusions:
(i) On both vector computers the OEH scheme is considerably faster than the

implementations of the ADI-type schemes. This is due to the fact that no systems of
equations must be solved and no data reorderings must be performed. For the scalar
code, it is fair to say that the ratio of the execution time for the ADI-type schemes

TABLE 5.2
Execution times in seconds for a 129x129 grid with t = 2.5, T = 1/80 and Re= 100.

Execution times (in seconds)

Cyber 205 Cyber 205
Scheme (vectorized code) Cray X-MP/24 (scalar code)

OEH 1.8 1.0 15.4 (8.6)
ADI GE 15.0 6.0 118.2 (7.9)
ADIW 27.3 8.7 181.6 (6.6)
ADEI 22.4 6.1 176.6 (7.8)

ADIWl 18.6 8.9 187.1 (10.0)
ADEil 12.6 6.7 182.2 (14.4)

VECTORIZATION OF THE OEH AND ADI SCHEMES 365

to the OEH scheme is misleading. For example, the data reorderings (from x-ordering
to y-ordering and vice versa) are uneconomical for use on scalar computers. So, the
scalar code for the ADI-type schemes is far from optimal.

(ii) On the CDC Cyber 205 the vectorized code is much faster than the scalar
code. For all schemes a considerable speed-up factor is obtained.

(iii) On the CDC Cyber 205 it is beneficial to reorder the data structure to obtain
contiguous vectors (compare ADIW with ADIWl and ADEI with ADEil). The
speed-up in performance justifies the overhead due to the data reordering. On the
Cray X-MP/24 this does not hold since the Cray is hardly hampered by a stride unequal
to one.

(iv) In general, the Cray X-MP/24 is considerably faster than the (2-pipe) CDC
Cyber 205. This is due to a smaller clock cycle and a better compiler.

(v) On the CDC Cyber 205 the fastest method is ADEil (i.e., the explicit-implicit
method with an extra reordering of the data structure). On the CRAY X-MP/24
however, the Gaussian elimination method and the explicit-implicit method ADEI
are the fastest methods.

Finally, we examine the accuracy behaviour of the OEH scheme and the ADIW
scheme for increasing values of Re. In this experiment we compute the numerical
solution at T = 2.5 and use the grid size values h = k = 1/33, 1/65, 1/ 129, 1/257.
Especially for large values of Re we may expect oscillations in the solution. Therefore,
the cd00-value, as defined in (5.4), is a too strict measure for the accuracy. Instead, we
define

cd1 = - 10log (llglobal error at t = 2.5111).

We start our computations for Re= 100 on a 33 x 33 grid. On each grid and for each
Re-number we choose the timestep as large as possible such that cd 1 ~ 3. As soon as
cd1 < 3 for each timestep we switch to the next finer grid and choose an appropriate
timestep. In Table 5.3 we list the cd1-values for the u-field for increasing values of Re;
for the v-field we find nearly the same results. For the ADIW scheme the timestep is
listed in parentheses. In this experiment we used the ADIW scheme; however, nearly
the same results would have been obtained for the ADEi scheme.

TABLE 5.3
cd 1-values for the OEH and ADIW scheme for increasing values of Re.

Correct digits for u-field (1-norm)

OEH scheme ADIW scheme

h = 1/33 1/65 1/129 1/257
Re T= 1/40 1/80 1/160 1/320 h = 1/33 h = 1/65 h=l/129 h = 1/257

100 4.05 3.30(1/10)
500 3.08 2.95 (1/80) 3.37 (1/40)

1,000 2.51 3.42 3.19 (1/80)
1,500 3.06 2.91 (1/160) 3.36 (1/80)
2,000 2.86 3.74 3.15 (1/80)

3,000 3.39 3.09(1/160)

4,000 3.18 2.81 (1/160) 3.01 (1/80)

5,000 3.03 3.23 (1/160)
6,000 2.88 3.70 3.32 (1/320)

7,000 3.59
10,000 3.35

366 E. D. DE GOEDE AND J. H. M. TEN THIJE BOONKKAMP

From Table 5.3 we can conclude the following:
(i) In order to obtain the prescribed accuracy, the ADI scheme requires in general

a finer grid than the OEH scheme. This is possibly due to the linearization process of
the ADI scheme (see (3.13)). Both schemes require a comparable timestep. So, for
large Re-numbers the OEH scheme seems to be more suitable than the ADI-type
schemes for the numerical solution of the Burgers equations, at least for the present
type of solution.

(ii) The OFF-deficiency of the OEH scheme is virtually absent for large Re­
numbers since the terms uu/Re and v11 /Re are very small, except in a small region
near the wave front (see (3.15)).

In Fig. 3 we present the numerical solution for the u-field for Re= 100; 1,000;
10,000 computed with the OEH scheme.

6. Concluding remarks. In this paper we examined the efficiency and performance
of the odd-even hopscotch (OEH) scheme and the alternating direction implicit (ADI)
scheme on vector computers, viz. the CDC Cyber 205 and the Cray X-MP/24. For the
ADI scheme the following methods for the solution of the tridiagonal linear systems
have been used: the Gaussian elimination method (ADIGE), a variant of the partition
method of Wang (ADIW) and the explicit-implicit method (ADEi). The vectorized
codes were considerably faster than the corresponding scalar codes.

First, let us consider the advantages of the OEH scheme over the ADI-type
schemes:

(i) On both vector computers the OEH scheme is considerably faster than the
ADI-type schemes, due to the near-explicitness of the OEH scheme.

(ii) The OEH scheme has minimal storage requirements. In our implementations
we used about four times more memory space for the ADI-type schemes than for the
OEH scheme. This is due to the way in which the tridiagonal systems are solved (see
§ 4).

(iii) It is very easy to implement the OEH scheme for both linear and nonlinear
problems. For the ADI-type schemes the nonlinear tridiagonal systems of equations
must be Iinearized in some way (cf. (3.13)). Moreover, the OEH scheme can be extended
to multidimensional problems in a straightforward manner, contrary to the ADI-type
schemes.

The ADI-type schemes have the following advantages over the OEH scheme:
(i) The ADI-type schemes have a better stability behaviour than the OEH scheme.

(ii) The OEH scheme suffers from the Du Fort-Frankel (DFF) deficiency that in
general, has a negative influence on the accuracy.

Comparing the ADI-type schemes, the ADEI scheme and the ADIGE scheme
have a comparable performance on vector computers. However, for test problems with
an irregular domain, the ADEi scheme is to be preferred since in that case vectorization
across the systems requires extra operations. In the near future, we will extend the
codes for application to the incompressible Navier-Stokes equations.

Acknowledgments. We wish to express our gratitude to the ZWO Werkgroep
Gebruik Supercomputers (WGS) for providing the necessary computer time on the
CDC Cyber 205 and the Cray X-MP/24.

REFERENCES

[l) CDC Cyber 200 FORTRAN reference manual, version 1, pub!. number 60480200H, Sunnyvale, CA.
[2] C. A. J. FLETCHER, A comparison of finite element and finite difference solutions of the one- and

two-dimensional Burgers equation, 1. Comput. Phys., 51 (1983), pp. 159-188.

VECTORIZATION OF THE OEH AND ADI SCHEMES 367

[3] E. D. DE GOEDE AND F. W. Wuss, Explicit-implicit methods for time-dependent partial differential
equations, Report NM-R8703, Centre for Mathematics and Computer Science, Amsterdam, the
Netherlands, 1987.

[4] A. R. GOURLAY, Hopscotch: A fast second-order partial differential solver, J. Inst. Maths. Appl., 6
(1970), pp. 375-390.

[5] D. HELLER, Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems, SIAM J.
Numer. Anal., 13 (1976), pp. 484-496.

[6] R. W. HOCKNEY AND C.R. JESS HOPE, Parallel Computers: Architecture, Programming and Algorithms,
Adam Hilger, Bristol, 1981.

[7] P. J. VAN DER HouwEN AND J. G. VERWER, One-step splitting methods for semi-discrete parabolic
equations, Computing, 22 (1979), pp. 291-309.

[8] J. VAN KAN, A second-order pressure correction method for viscous incompressible flow, SIAM J. Sci.
Statist. Comput., 7 (1986), pp. 870-891.

[9] P.H. MICHIELSE AND H. A. VAN DER VORST, Data transport in Wang's partition method, Parallel
Computing, 7 (1988), pp. 87-95.

[10] A. R. MITCHELL AND D. F. GRIFFITHS, The Finite Difference Method in Partial Differential Equations,
John Wiley, Chichester, 1980.

[11] D. W. PEACE MAN AND H. H. RACH FORD, JR., The numerical solution of parabolic and elliptic differential
equations, J. Soc. lndust. Appl. Math., 3 (1955), pp. 28-41.

[12] B. P. SOMMEIJER, An ALGOL 68 implementation of two splitting methods for semi-discretized parabolic
differential equations, Report NM-NN 15/77, Centre for Mathematics and Computer Science,
Amsterdam, the Netherlands, 1977.

[13] R. PEYRET AND T. D. TAYLOR, Computational Methods for Fluid Flow, Springer-Verlag, Berlin, New
York, 1983.

[14] J. H. M. TEN THIJE BOONKKAMP, The odd-even hopscotch pressure correction scheme for the incompress­
ible Navier-Stokes equations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 252-270.

[15] J. H. M. TEN THIJE BOONKKAMP AND J. G. VERWER, On the odd-even hopscotch scheme for the
numerical solution of time-dependent partial differential equations, Appl. Numer. Math., 3 (1987),
pp. 183-193.

[16] H. A. VAN DER VORST, A vectorizable variant of some ICCG methods, SIAM J. Sci. Statist. Comput.,
3 (1982), pp. 86-92.

[17] H. H. WANG, A parallel method for tridiagonal system equations, ACM Trans. Math. Software, (1981),
pp. 170-183.

[18] G. B. WHITHAM, Linear and Non/inear Waves, John Wiley, New York, 1974.

