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VECTORIZATION OF THE ODD-EVEN HOPSCOTCH SCHEME 
AND THE ALTERNATING DIRECTION IMPLICIT SCHEME 

FOR THE TWO-DIMENSIONAL BURGERS EQUATIONS* 

E. D. DE GOEDEt AND J. H. M. TEN THIJE BOONKKAMP:j: 

Abstract. A vectorized version of the odd-even hopscotch ( 0 EH) scheme and the alternation direction 
implicit (ADI) scheme have been implemented on vector computers for solving the two-dimensional Burgers 
equations on a rectangular domain. This paper examines the efficiency of both schemes on vector computers. 
Data structures and techniques employed in vectorizing both schemes are discussed, accompanied by 
performance details. 
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1. Introduction. This report is written as a contribution to a project for developing 
numerical software for vector- and parallel computers. Vectorized versions of the 
odd-even hopscotch (OEH) scheme and the alternating direction implicit (ADI) 
scheme are developed in FORTRAN77 for the two-dimensional Burgers equations. In 
the near future, the vectorized codes will be combined with a pressure correction 
technique [8], [ 13] in order to solve the time-dependent, incompressible, Navier-Stokes 
equations. 

The 0 EH scheme and the ADI scheme are integration schemes for time-dependent 
partial differential equations (PDEs) and are applicable to wide classes of problems. 
The OEH scheme has shown to be an efficient scheme on serial (scalar) computers, 
in the sense that it is fast per timestep. Moreover, the scheme is relatively easy to 
implement. Due to its near-explicitness the OEH scheme is also very suitable for use 
on vector computers. A detailed discussion of the OEH scheme is given in [ 4]. The 
ADI scheme we consider in this report is the Peaceman-Rachford scheme [11]. The 
ADI scheme is more expensive per timestep than the OEH scheme since it requires 
the solution of tridiagonal systems of equations. However, the ADI scheme is more 
robust than the OEH scheme. 

For the solution of the tridiagonal systems we use the Gaussian elimination method, 
a variant of the partition method of Wang [17], which is described in [3], [9], and a 
method developed by De Goede and Wubs [3]. By the approach of De Goede and 
Wubs, the tridiagonal systems are solved by a combination of explicit and implicit 
calculations, thus resulting in an alternating direction explicit-implicit (ADEI) scheme. 
Since the Gaussian elimination method is a sequential method, this method seems to 
be unsuitable for use on vector computers. However, for the two-dimensional ADI 
scheme a number of (independent) tridiagonal systems must be solved. Therefore, this 
method allows vectorization across the systems. Moreover, this method does not 
increase the operation count, unlike the above-mentioned partition methods. Further­
more, it turns out that also the partition method and the explicit-implicit method are 
efficient on vector computers. 
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The purpose of this paper is to report our experience in vectorizing both schemes 
for the two-dimensional Burgers equations. Much effort has been spent in optimizing 
the FORTRAN code for vector computers, avoiding the explicit use of assembler code. 
The experiments have been carried out on a (2-pipe) CDC Cyber 205 and a Cray 
X-MP/24. We used one (portable) code on both machines. Since the code contains 
many long vector operations, it is our opinion that on other vector machines (such as 
the NEC SX-2, Fujitsu VP200, Alliant FX/8, etc.) we will also obtain good perform­
ances. 

Section 2 contains a brief summary of the conceptual features of vector computers, 
which are relevant to the present application. In § 3 a description of the OEH scheme 
and the AD I scheme is given. Section 4 is devoted to the description of the techniques 
used for vectorizing both the OEH scheme and the ADI scheme. In § 5, we compare 
the accuracy and performance of both schemes. Finally, § 6 contains some concluding 
remarks. 

2. Vector processing. Vector operations fall into two main categories: those that 
perform floating-point arithmetic, and those that may be called data-motion operations 
(for example, operations to compress or expand an array using an index-list). The 
need for vector data-motion operations also becomes apparent when we consider the 
definition of a vector on a CDC Cyber 205: a vector is a set of similar elements 
occupying consecutive memory locations. The reason for this vector definition is that 
when performing vector operations on a CDC Cyber 205 the input elements stream 
directly from the memory to the vector pipes (arithmetic units) and the output elements 
stream directly back into the memory. A Cray-computer accepts vectors for which the 
number of memory locations between consecutive elements (the so-called stride) is 
constant. 

To enhance an effective data flow rate in order to match the computation rate of 
vector computers, the memory is divided into memory banks that may operate concur­
rently. For example, the memory of the CDC Cyber 205 is divided into 16 memory 
stacks, each of which is divided into eight independent banks. When one memory 
stack is busy with a memory request, further references to the same stack cannot be 
made. If a vector operation calls for an operand whose elements are located w words 
apart in the memory (i.e., stride w), then the data flow rate might be reduced due to 
the memory conflicts and thus result in a longer vector operation time. So, in order to 
obtain a good performance on vector computers it is important to consider the data 
structure very carefully (see § 4) [6]. 

For an efficient use of vector computers, the compiler plays an important role. 
The compiler translates FORTRAN DO-loops into vector machine instructions, if 
possible. This process is called auto-vectorization. The nature of vector operations is 
such that only DO-loops are candidates for vector operations. Specific characteristics 
of a given DO-loop determine its vectorizability [1]. It is not always possible to vectorize 
a code, as in the following example: 

(2.1) 

DO 10I=1, N 

A(I + 1) = A(I)+S 

lOCONTINUE 

Because in vector processing the arguments must be determinable before the operation 
starts, this loop cannot be vectorized. This restriction is known as recursion; it conflicts 
with the nature of vector processing. 
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In many situations the compiler can be instructed to generate more efficient codes. 
We have used such instructions, e.g., in the following situation. The compiler can be 
instructed to vectorize DO-loops, ignoring possible vector dependencies, by inserting 
a so-called comment-directive: 

for the CFT77 compiler (Cray X-MP/24): 
and for the VAST compiler (Cyber 205): 

CDIR$ IVDEP 
CVD$ NODEPCHK 

3. The OEH scheme and the ADI scheme for the two-dimensional Burgers 
equations. Consider the two-dimensional Burgers equations: 

u, = !1 ( u, v) with !1 ( u, v) = - UUx - VUy + ( Uxx + Uyy) I Re, 
(3.1) 

v, =f2(u, v) with f 2(u, v) = -uvx-VVy +(vxx+ Vyy)/Re, 

with Re denoting the Reynolds number and u and v the velocity components in x­
and y-direction, respectively. On the boundary r of the connected space domain 0, 
we prescribe the Dirichlet conditions 

u =ur, v= Vr. 

The Burgers equations have the same convective and viscous terms as the incompressible 
Navier-Stokes equations, although the pressure gradient terms are not retained. Also 
a solution to the Burgers equations would not, in general, satisfy the continuity equation. 
These equations possess the desirable property that exact solutions can be constructed 
by means of the Cole-Hopf transformation [2]. This enables us to compare the 
numerical solution of the Burgers equations with the exact solution. 

In this section we give a description of the OEH scheme and the ADI scheme for 
the Burgers equations. The space discretization is discussed in § 3 .1 and the time 
integration in § 3.2. 

3.1. Space discretization. For the space discretization the computational domain 
is covered by a N x M rectangular staggered grid, with h and k being the grid sizes 
in x- and y-direction, respectively (see Fig. I). In a staggered grid different variables 
are defined at different grid points. The reason for this choice is that in continuation 
to this report we want to apply the OEH scheme and the ADI scheme to the incompress­
ible Navier-Stokes equations, for which a staggered grid is most suitable [14]. 

In what follows, U is a grid function approximating the velocity u (likewise for 
V, F 1 , and F 2) with components Uij. The components UiJ are numbered lexicographi­
cally. The application of standard second-order central differences converts (3.1) into 

cell i,j 

Fro. 1. The staggered grid. 
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the system of ordinary differential equations (ODEs): 

d 

357 

(3.2a) dt Uu = Fl,ij( U, V), i = 1, ... ' N -1, j = 1, ... , M (interior x -points), 

d 
(3.2b) dt V;1 = F2 ,;1( U, V), i = 1, · · ·, N, j = 1, · · · , M -1 (interior 0-points), 

where 

F .. = _ u. ( U;+1.1- V-1.J 
l,•J lj 2h 

(3.3a) 
+__!_ ( ui+1,1 -2 uij+ ui-1) +-1- ( uiJ+I -2 U;1 + uiJ-1) 

Re h 2 Re k 2 ' 

( V+1 - V. 1 ·) F .. = - o.. I ,] ,_ ,] 

2,1] lj 2h 
(3.3b) 

+-1- ( V.+1,1 -2 v;J + v.-1,) +-1- ( v,J+l -2 v;J + V.r1) 
Re h 2 Re k2 

In (3.3a) V;i represents an approximation to V at the x -points; likewise in (3.3b) Ou 
represents an approximation to U at the 0-points. The values of Ou and Vu are 
determined by averaging over neighbouring values. For the ADI scheme 0;1 and Vu 
are trivially defined by 

(3.4a) 

However, for the OEH scheme we choose 
- l - l 

(3.4b) UiJ=2(U;-l,j+U;,J+1), Y;1=2(V;,1-1+\/;+1,j). 

The reason for this choice will become apparent in § 3.2.1. 
For the treatment of the boundary conditions, we apply a simple reflection 

technique [13]. Consider, e.g., (3.2b) and (3.3b) at the 0-points (1,j), which involves 
the outside value V0 ,1. The reflection technique consists of writing the boundary value 
V112,1 as a mean value of its neighbouring values V0,1 and V1,1, so that V0,1 = 2 V112,J - V1,1 

(see Fig. 1). 

3.2. Time integration. Let U=(U, V)T and F(U)=(F1(U, V), F 2(U, V))T; then 
(3.2) can be written in the vector form 

(3.5) 
d 
dt U=F(U). 

For reasons of computational feasibility, we apply a two-term splitting formula for 
the numerical integration of (3.5). Let 

F(U) = F 1(U) + F2 (U), 

and consider the two-stage formula 

(3.6) 
U"+ 112 = U" +1r[F1 (U"+ 112) + F1(U")], 

U"+1 = U"+112+!r[F1(U"+1;2) + F2(U"+1)], 

with r denoting the timestep. It can be easily verified that this integration formula is 
second-order consistent for any ODE system (3.5) [7]. Both the OEH scheme and the 
ADI scheme are special cases of (3.6). 
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3.2.1. The OEH scheme. In what follows, Uu denotes the discrete approximation 
to u at the grid point (ih,jk) at time level tn = nT (likewise for V0)- The OEH scheme 
for (3.5) is given by the numerical integration formula [ 4] 

(3.7) 

where U7j = ( U7j, V7j) T (likewise for Fij(Vn)). The function e0 is defined by 

n {1 ifn+i+jisodd (oddpoints), 
(3.8) e = 

u 0 ifn+i+jiseven (evenpoints). 

Writing down two successive steps of (3.7) yields 

(3.9a) 

(3.9b) 

U'!/1 = U7j+ rOuF;iVn) + T0u+ 1 Fu(Un+i), 

un.+2 = un.+I + rer:.+1 F-(un+l) + T0n+2 F(un+2) 
I) J) tl IJ I] I} • 

Let F 0 (U) and F dU) denote the restriction of F(U) to the odd and even points 
respectively, then replacing r by r /2, (3.9) can be written in the form 

(3.IOa) 

(3.lOb) 

un+1;2 = U" +!r[F dUn+1;2) + Fo(U")], 

un+l = un+l/2+!r[F E(un+l/2) + F o(Un+l )]. 

The order of computation for the OEH scheme is 

(3.lla) 

(3.llb) 

(3.llc) 

(3.lld) 

u 0+112 = U 0+!rF0 (U") ( = 2U 0- u0- 112 ifn~1), 

u~,+1/2 =Vi-+ !rF E cun+l/2), 

u:;i,+1 = u~,+112+!rF E(un+1;2) 

Uo+1 = U~t1;2+~rFo(Un+1). 

Note that (3.lla) is just the forward Euler rule at the odd points, whereas (3.llb) is 
the backward Euler rule at the even points. For (3.1 lc) and (3.1 ld) it is just vice versa. 
Substituting (3.4b) into (3.3 ), it can be easily verified that in (3.11) there exists an 
odd-even coupling between the variables, i.e., a variable at an odd point is only coupled 
to variables at even points and vice versa. Because of this odd-even coupling and the 
alternating use of the forward- and backward Euler rule, scheme (3.11) is only 
diagonally implicit. Note that the computation of the forward Euler rule in (3.lla) 
and (3.llc) can be economized by using a simple interpolation formula. The scheme 
thus obtained is called the fast form of the OEH scheme [ 4]. 

3.2.2. The ADI scheme. For the ADI scheme we use the splitting formula 

F(U) = Fx(U)+ Fy(U), 

where F x and F Y represent the space discretization terms contammg the x- and 
y-derivatives, respectively. For the Burgers equations such a splitting is possible, 
because there are no mixed derivatives. So, the ADI scheme for (3.5) is given by [11] 

(3.12a) 

(3.12b) 

vn+112 = U" +1r[Fx(un+1;2) + Fy(U")], 

un+t = un+1;2 +!r[Fx(Un+1;2) + Fy(Vn+1 )]. 

Note that (3.12a) is explicit in the y-direction and implicit in the x-direction, and vice 
versa in (3.12b). Since there is a 3-point coupling in each direction, the ADI scheme 
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can be implemented such that only nonlinear tridiagonal systems must be solved at 
each step. 

In order to obtain linear systems, the terms Fx(un+i/2) in (3.12a) and Fy(un+t) 

in (3.12b), which can be written in the form (cf. (3.3)) 

(3.13a) 

are linearized as follows: 

(3.13b) 

with A and B tridiagonal matrices and U* and V* approximations to un+i/ 2 and 
yn+i, respectively. To maintain second-order accuracy, the approximations U* and 
V* are given by (see [12]) 

V* = 2 yn+1;2 _ yn_ 

Now, the ADI scheme only requires the solution of linear tridiagonal systems. In § 4.2 
we will discuss some algorithms for the solution of these systems. Due to the lineariz­
ation process, it is not possible to formulate a fast form for the ADI scheme, as for 
the OEH scheme (cf. (3.lla) and (3.llc)). 

3.3. Stability. Finally, we make some remarks about the stability of both the OEH 
scheme and the ADI scheme. Consider to this purpose the linear convection-diffusion 
equation 

(3.14) 

Here, the vector (q1 , q2)T represents a constant velocity. Now suppose that for the 
space discretization we use standard central differences, with constant grid sizes h and 
kin x- and y-direction, respectively. Then von Neumann stability analysis applied to 
the OEH scheme (3.10) yields the following necessary and sufficient timestep restriction 
[14], [15] for (3.14): 

This inequality shows that the OEH scheme is conditionally stable ( r = O(h)), indepen­
dent of Re. The ADI scheme for the linear equation (3.14) is unconditionally stable 
in the sense of von Neumann stability [10]. 

Remark. A drawback of the OEH scheme is the so-called Du Fort-Frankel (OFF) 
deficiency [14], [15]. By this we mean that for r, h, k~o, the solution of the OEH 
scheme converges to the solution of the problem 

1 2( 1 1) 
u, = -uux - VUy + ( Uxx + Uyy)/Re - Re T h2 + k2 U11, 

(3.15) 

In general, for convergence it is thus necessary that r= o(max(h, k)). 

4. Implementations. In this section we describe implementation techniques for 
vectorizing both the OEH scheme and the ADI scheme for use on vector computers. 
It is our goal to implement the schemes in such a way that they perform efficiently on 
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vector computers. We utilize the vector processing concepts discussed in § 2. The 
programs have been written in the ANSI FORTRAN77. Thus, the resulting software 
is portable. 

4.1. The OEH scheme. The OEH scheme is based upon the alternating use of the 
forward and backward Euler rule. Because of the 5-point coupling that exists between 
the variables, the OEH scheme is diagonally implicit (see § 3.2.1). Specifically, the 
scheme only requires scalar divisions and no nonlinear equations must be solved. 

The obvious choice for the ordering of the grid points is the red-black or chess­
board ordering, where all the four neighbours of each point belong to another colour. 
The grid points may be subdivided accordingly into two vectors that contain the red 
and black points, respectively. The grid points are numbered along horizontal grid 
lines. The OEH scheme is performed in four stages (see (3.l la)-(3.1 ld)). For example, 
in the first stage the values in the red points are updated using the value in the red 
point itself and old values in neighbouring black points (i.e., the forward Euler rule), 
then in the second stage the values in the black points are updated using the old value 
in the black point and new values in red points (i.e., the backward Euler rule). 
Throughout the code the elements of the two vectors are stored in consecutive memory 
elements (i.e., stride 1), which is, in general, an advantage on vector computers. 
Moreover, no data reorderings must be performed. 

Note that the two vectors are not confined to one horizontal grid line, but they 
extend over the whole grid. This was done in order to achieve improved performance 
through utilization of longer vectors. As a penalty for using those longer vectors, the 
values in the boundary points are overwritten, thus destroying the correct boundary 
values. To restore the correct boundary values, these values are stored separately. 
Moreover, the first and the last grid points of each horizontal line must be of the same 
colour to maintain the red-black ordering. Thus, the number of grid points in horizontal 
direction ( = N) has to be odd. 

The OEH scheme requires minimal storage. In our implementation we used only 
one extra array of length NM /2, which is one fourth of the total number of unknowns. 
Hence, the total storage amounts approximately to 2.5NM memory locations. 

4.2. The ADI scheme. The ADI scheme for two-dimensional problems requires 
the solution oftridiagonal systems along horizontal and vertical grid lines, respectively. 
Tridiagonal systems form an important class of linear algebraic equations. Con­
sequently, efficient algorithms have been developed for the solution of such systems. 
The tridiagonal systems can be viewed in various ways. For example, for (3.12a) we 
have M tridiagonal (linear) systems of order N. The first method we use to solve this 
system is the Gaussian elimination method. Since the M systems are uncoupled, we 
can vectorize across the systems, thus resulting into vector operations of length M. On 
the other hand, the M individual systems can be combined in a single tridiagonal 
system of order NM to obtain longer vectors. As a consequence, extra memory is 
needed. Due to the large memory capacities of today's vector computers, it is possible 
to execute programs with large memory requirements. For example, on the Cyber 205 
and the Cray X-MP/24 the maximal memory size is about four million 64-bit words. 

Several methods have been proposed to achieve efficient methods for such large 
systems on vector computers. In this report we use a variant of the partition method 
of Wang [3], [9], which will be discussed briefly now. First, the tridiagonal matrix is 
partitioned into a l x I block tridiagonal matrix with each block a m x m matrix. The 
method starts by reducing the tridiagonal system to a tridiagonal system of order l 
using vector operations. Then the reduced system is solved by Gaussian elimination. 
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Finally, the other unknowns are solved by back substitution using again vector 
operations. Although the variant of the partition method has a higher operation count 
than the Gaussian elimination method, this is an efficient method on vector computers 
since the vector length of the operations is much higher. 

For this variant of the partition method, it is plausible that the off-diagonal elements 
of the reduced system are very small relative to the main diagonal elements [3], [5], 
which is confirmed by numerical experiments. Following Van der Vorst [16] and De 
Goede and Wubs [3], the solution of the reduced tridiagonal system is approximated 
by a truncated Neumann series. The resulting explicit-implicit method is advantageous 
for use on vector computers. The price to be paid for the approximation of the reduced 
system is a possible drop in accuracy. However, due to the relatively small off-diagonal 
elements, this approach hardly affects the accuracy. 

As said in § 2, for the performance on vector computers the data structure is very 
important. For the ADI scheme, tridiagonal systems must be solved along horizontal 
grid lines and vertical grid lines, respectively. If the arrays are ordered horizontally, 
then the x-differences can be calculated efficiently. Likewise, if the arrays are ordered 
vertically, then the y-differences can be calculated efficiently. These two orderings 
imply that during the performance of the ADI scheme, reorderings must be performed 
to change from horizontal to vertical lines and vice versa. The reordering operations 
have been implemented as efficiently as possible. 

Moreover, during the solution of the tridiagonal systems, the variant of the partition 
method requires vector operations with stride m. The Cray-computer is hardly hampered 
by a stride unequal to one. However, the CDC Cyber 205 requires contiguous vectors 
(i.e., stride 1 ). Therefore, compress/ expand instructions are necessary to restructure 
the vectors. The alternative is to reorder in advance the data structure to obtain 
contiguous vectors. On the CDC Cyber 205 this alternative may be useful. Both versions 
have been implemented. 

For each of the implementations, the storage requirements are significantly larger 
than for the OEH scheme, viz. about 9NM memory locations. 

Summarizing, for the Peaceman-Rachford ADI scheme the following implementa­
tions for the solution of the tridiagonal systems have been used: 

ADI GE 
ADIW 
ADEI 
ADIWl 
ADEil 

(Gaussian elimination), 
(a variant of the partition method of Wang (stride m)), 

(the explicit-implicit scheme (stride m) ), 
(ADIW with an extra reordering of the data structure (stride 1) ), 
(ADEi with an extra reordering of the data structure (stride 1) ). 

5. Performance. In this section we report on the accuracy and performance of 
the OEH scheme and the ADI scheme on vector computers. For this purpose, we have 
applied the schemes to a moving wave front problem. In general, moving wave front 
problems are difficult to compute since the solution contains sharp gradients, both in 
space and time. This necessitates the use of small timesteps and, when employing a 
uniform grid, a small grid size. Therefore, such problems are time and memory 
consuming and the application of powerful computers (such as, e.g., vector computers) 
is obvious. 

In our experiments the following vector computers and FORTRAN compilers 
have been used: 

(i) (2-pipe) CDC Cyber 205 (SARA, Amsterdam, the Netherlands), max. 200 
MFLOP/s, FORTRAN 200 compiler, (the VAST (version 1.22W) precompilerof Pacific 
Sierra Research Corporation is used). 
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(ii) Cray X-MP/24 (Cray Research, Bracknell, UK), max. 235 MFLOP/ s. 
FORTRAN CFTI7 (version 1.3) compiler. 

An exact solution of the Burgers equations can be generated by using the Cole-
Hopf transformation [2], 

(5.la) 
2 <f>x 

u=-- and 
Re</> 

2 </>y 
v=---

Re <f>' 

where <f> is the solution of 

(5.lb) 

In our test problem we choose </> = / 1 + !2 [18], with 

f 1(x, y, t) =exp ((-12(x+ y) + 9t) * Re/32), 
(5.2) 

/ 2(x, y, t) =exp ((-4(x+ 2y) +St)* Re/16), 

which yields the exact solution 

(5.3a) 
1 3/1 + 2f2 3 1 1 

u =-* ---* 
4 f 1+f2 4 4 l+exp((-4x+4y-t)*Re/32)' 

1 3J; + 4f2 3 1 1 v =- * = -+- * ------------
4 / 1+/2 4 4 l+exp((-4x+4y-t)*Re/32) 

(5.3b) 

The solution represents a wave front at y = x + 0.25 t. The speed of propagation is 
0.125.J2 and is perpendicular to the wave front. For increasing values of Re, the wave 
front becomes sharper. In Fig. 2 the exact solution for u is shown at t = 2.5 for Re= 100; 
1,000; 10,000. 

With the purpose of testing the (order of) accuracy of the schemes, we first compare 
the exact solution of the Burgers equations with the numerical solution obtained for 
grid sizes h = k = 1/ 17, 1/33, 1/ 65, 1/ 129 and for timesteps r = 1/ 10, 1/ 20, 1/ 40, 1/ 80, 
1/ 160, 1/320 (provided that the time integration is stable). The computational domain 
is D = [O, 1] x [O, l] and the time integration interval is [O, 2.5]. We prescribe time­
dependent Dirichlet boundary conditions that are taken from the exact solution and 
we choose Re= l 00. For the time integration we use the 0 EH scheme, the AD IW 
scheme, and the ADEI scheme (see § 4). 

To measure the accuracy of the numerical solution we define 

(5.4) cdoo = - 10log (II global error at t = 2.5 lloo), 
denoting the number of correct digits in the numerical approximation at the endpoint 
t = 2.5. 

Since maxju(x,y,t)l=0.75 and maxjv(x,y,t)j=l.O, von Neumann stability 
analysis applied to the OEH scheme suggests the timestep restriction 

(5.5) 

In Table 5.1 we list the cdoo-values for all three schemes. We only list the cd00-values 
for the u-field; for the v-field we obtain nearly the same results. 

First consider the OEH scheme. From Table 5.1 we can conclude the following: 
(i) For small timesteps (e.g. r= 1/320) the time integration error is neglectable, 

and we can observe the second-order behaviour in space (1°Iog ( 4) = 0.6). On a fine 
grid (e.g., h = 1/ 129) we can observe the second-order behaviour in time since the 
space discretization error is neglectable. 
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Re= 100 

Re= 1,000 

Re= 10,000 

FIG. 2. Exact solutions (5.3a) for 
Re= 100; 1,000; 10,000. 

Re= 100 

Re= 1,000 

co . 
0 

o.o 
Re= 10,000 

FIG. 3. Corresponding numerical solutions. 
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(ii) For r fixed and h...,. 0 the accuracy decreases if r / h is sufficiently large. This 
is caused by the OFF deficiency (cf. (3.15)). 

(iii) When looking along diagonals ( r / h constant) we observe a second-order 
behaviour if r/ his small enough. For larger values of r/ h the scheme fails to converge 
due to the OFF deficiency. 
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TABLE 5.1 
cdx·values for the OEH, ADIW, and ADEI schemes. 

Correct digits for u-field (co-norm) 

Scheme h-1 T = 1/10 T = 1/20 T=l/40 T = 1/80 r= 1/160 r= 1/320 

OEH 17 2.54 2.55 2.55 2.55 2.55 
33 3.05 3.21 3.20 3.20 
65 2.82 3.37 3.73 3.85 

129 2.84 3.44 3.98 
ADIW 17 1.92 2.29 2.48 2.51 2.52 2.52 

33 2.10 2.56 2.89 3.07 3.15 3.18 
65 2.24 2.75 3.19 3.51 3.68 3.77 

129 2.25 2.77 3.26 3.67 3.99 4.19 
ADEI 17 1.92 2.29 2.48 2.51 2.52 2.52 

33 2.12 2.57 2.89 3.07 3.15 3.18 
65 2.24 2.75 3.19 3.51 3.68 3.77 

129 2.25 2.78 3.26 3.67 3.98 4.17 

Now, consider both ADI-type schemes. In the same way as for the OEH scheme, 
we can observe second-order behaviour in space and time. In general, the accuracy 
of the OEH scheme is comparable with that of the ADI-type schemes. However, 
especially on the finest grid the ADI-type schemes are more accurate than the OEH 
scheme, because the latter suffers from the DFF deficiency. Note that the accuracy 
results for the ADIW scheme and the ADEi scheme are comparable. So, the accuracy 
is hardly reduced if the tridiagonal systems are solved by the approximating method. 

Table 5.2 presents the execution times obtained for a single example, namely, for 
a 129x129 grid with t = 2.5, r = 1/80, and Re= 100. We compare the OEH scheme 
with the five implementations of ADI-type schemes (see § 4). As an illustration, the 
implementations have also been performed without vectorization on the CDC Cyber 
205 (scalar code). In parentheses we list the ratio in performance of the vectorized 
code to the scalar code. We emphasize that Table 5.2 contains the execution times for 
the computation of 200 timesteps without paying attention to the accuracy or stability. 

From this experiment we can draw the following conclusions: 
(i) On both vector computers the OEH scheme is considerably faster than the 

implementations of the ADI-type schemes. This is due to the fact that no systems of 
equations must be solved and no data reorderings must be performed. For the scalar 
code, it is fair to say that the ratio of the execution time for the ADI-type schemes 

TABLE 5.2 
Execution times in seconds for a 129x129 grid with t = 2.5, T = 1/80 and Re= 100. 

Execution times (in seconds) 

Cyber 205 Cyber 205 
Scheme (vectorized code) Cray X-MP/24 (scalar code) 

OEH 1.8 1.0 15.4 (8.6) 
ADI GE 15.0 6.0 118.2 (7.9) 
ADIW 27.3 8.7 181.6 (6.6) 
ADEI 22.4 6.1 176.6 (7.8) 

ADIWl 18.6 8.9 187.1 (10.0) 
ADEil 12.6 6.7 182.2 (14.4) 
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to the OEH scheme is misleading. For example, the data reorderings (from x-ordering 
to y-ordering and vice versa) are uneconomical for use on scalar computers. So, the 
scalar code for the ADI-type schemes is far from optimal. 

(ii) On the CDC Cyber 205 the vectorized code is much faster than the scalar 
code. For all schemes a considerable speed-up factor is obtained. 

(iii) On the CDC Cyber 205 it is beneficial to reorder the data structure to obtain 
contiguous vectors (compare ADIW with ADIWl and ADEI with ADEil). The 
speed-up in performance justifies the overhead due to the data reordering. On the 
Cray X-MP/24 this does not hold since the Cray is hardly hampered by a stride unequal 
to one. 

(iv) In general, the Cray X-MP/24 is considerably faster than the (2-pipe) CDC 
Cyber 205. This is due to a smaller clock cycle and a better compiler. 

(v) On the CDC Cyber 205 the fastest method is ADEil (i.e., the explicit-implicit 
method with an extra reordering of the data structure). On the CRAY X-MP/24 
however, the Gaussian elimination method and the explicit-implicit method ADEI 
are the fastest methods. 

Finally, we examine the accuracy behaviour of the OEH scheme and the ADIW 
scheme for increasing values of Re. In this experiment we compute the numerical 
solution at T = 2.5 and use the grid size values h = k = 1/33, 1/65, 1/ 129, 1/257. 
Especially for large values of Re we may expect oscillations in the solution. Therefore, 
the cd00-value, as defined in (5.4 ), is a too strict measure for the accuracy. Instead, we 
define 

cd1 = - 10log (llglobal error at t = 2.5111). 

We start our computations for Re= 100 on a 33 x 33 grid. On each grid and for each 
Re-number we choose the timestep as large as possible such that cd 1 ~ 3. As soon as 
cd1 < 3 for each timestep we switch to the next finer grid and choose an appropriate 
timestep. In Table 5.3 we list the cd1-values for the u-field for increasing values of Re; 
for the v-field we find nearly the same results. For the ADIW scheme the timestep is 
listed in parentheses. In this experiment we used the ADIW scheme; however, nearly 
the same results would have been obtained for the ADEi scheme. 

TABLE 5.3 
cd 1-values for the OEH and ADIW scheme for increasing values of Re. 

Correct digits for u-field (1-norm) 

OEH scheme ADIW scheme 

h = 1/33 1/65 1/129 1/257 
Re T= 1/40 1/80 1/160 1/320 h = 1/33 h = 1/65 h=l/129 h = 1/257 

100 4.05 3.30(1/10) 
500 3.08 2.95 (1/80) 3.37 (1/40) 

1,000 2.51 3.42 3.19 (1/80) 
1,500 3.06 2.91 (1/160) 3.36 (1/80) 
2,000 2.86 3.74 3.15 (1/80) 

3,000 3.39 3.09(1/160) 

4,000 3.18 2.81 (1/160) 3.01 (1/80) 

5,000 3.03 3.23 (1/160) 
6,000 2.88 3.70 3.32 (1/320) 

7,000 3.59 
10,000 3.35 
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From Table 5.3 we can conclude the following: 
(i) In order to obtain the prescribed accuracy, the ADI scheme requires in general 

a finer grid than the OEH scheme. This is possibly due to the linearization process of 
the ADI scheme (see (3.13)). Both schemes require a comparable timestep. So, for 
large Re-numbers the OEH scheme seems to be more suitable than the ADI-type 
schemes for the numerical solution of the Burgers equations, at least for the present 
type of solution. 

(ii) The OFF-deficiency of the OEH scheme is virtually absent for large Re­
numbers since the terms uu/Re and v11 /Re are very small, except in a small region 
near the wave front (see (3.15)). 

In Fig. 3 we present the numerical solution for the u-field for Re= 100; 1,000; 
10,000 computed with the OEH scheme. 

6. Concluding remarks. In this paper we examined the efficiency and performance 
of the odd-even hopscotch (OEH) scheme and the alternating direction implicit (ADI) 
scheme on vector computers, viz. the CDC Cyber 205 and the Cray X-MP/24. For the 
ADI scheme the following methods for the solution of the tridiagonal linear systems 
have been used: the Gaussian elimination method (ADIGE), a variant of the partition 
method of Wang (ADIW) and the explicit-implicit method (ADEi). The vectorized 
codes were considerably faster than the corresponding scalar codes. 

First, let us consider the advantages of the OEH scheme over the ADI-type 
schemes: 

(i) On both vector computers the OEH scheme is considerably faster than the 
ADI-type schemes, due to the near-explicitness of the OEH scheme. 

(ii) The OEH scheme has minimal storage requirements. In our implementations 
we used about four times more memory space for the ADI-type schemes than for the 
OEH scheme. This is due to the way in which the tridiagonal systems are solved (see 
§ 4). 

(iii) It is very easy to implement the OEH scheme for both linear and nonlinear 
problems. For the ADI-type schemes the nonlinear tridiagonal systems of equations 
must be Iinearized in some way (cf. (3.13)). Moreover, the OEH scheme can be extended 
to multidimensional problems in a straightforward manner, contrary to the ADI-type 
schemes. 

The ADI-type schemes have the following advantages over the OEH scheme: 
(i) The ADI-type schemes have a better stability behaviour than the OEH scheme. 

(ii) The OEH scheme suffers from the Du Fort-Frankel (DFF) deficiency that in 
general, has a negative influence on the accuracy. 

Comparing the ADI-type schemes, the ADEI scheme and the ADIGE scheme 
have a comparable performance on vector computers. However, for test problems with 
an irregular domain, the ADEi scheme is to be preferred since in that case vectorization 
across the systems requires extra operations. In the near future, we will extend the 
codes for application to the incompressible Navier-Stokes equations. 
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