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Chapter 1

Deontic Logic

Dansla lutte antiterroriste, il y a des choses qui ne doivent pas sefaire. S ellesse
font, on ne doit paslesdire. S elles sedisent, il faut les nier.! Jose Antonio Saenz
de SantaMaria, Le Monde, September 9, 1995, p.3.

There should then be an obligation to make the best out of the sad circumstances.
Bengt Hansson [Han71]

In this thesis we investigate reasoning about obligations. In particular, we focus on defeasible
deontic logics with preference-based semantics. In this chapter, we give ageneral introduction
to deontic logic. We identify when deontic logic can be used as a knowledge representation lan-
guage for computer applications. Moreover, we give a survey of deontic logic, as developed
within philosophy. Finally, we give a personal perspective, the objectives of thisthesis and its
layout.

1.1 Defeasibledeonticlogic

There does not seem to be an agreement in deontic logic literature on the definition of ‘ defeasible
deonticlogic.” Itisgenerally accepted that a defeasible deontic logic has to formalize reasoning
about the following two issues.

1. Resolving conflicts. Defeasibility becomes relevant when there is a (potential) conflict
between two obligations. In adefeasible deontic logic a conflict can be resolved, because
one of the obligations overrides, in some sense, the other one.

2. Diagnosing violations. Consider the obligation 'normally, you should do p.” Now the
problem is what to conclude about somebody who does not do p. Isthis an exception to
the normality claim, or isit aviolation of the obligation to do p?

However, it is an open question whether defeasibility is related to the following issue.

LIn fighting terrorism, there are things that should not happen. If they happen, then we must not tell them. If
they are told, we must deny them.
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3. ? Solving paradoxes. Deontic logic has been supplied with a wealth of puzzles — usu-
ally referred to as deontic paradoxes. They are discussed in detail later in this chapter.
A paradox isan intuitively consistent set of sentences that derives an inconsistency (or a
counterintuitive sentence). Most of the deontic paradoxes can easily be solved, but some
of them — most notably the Chisholm and Forrester paradoxes — still trouble deontic logi-
cians. These troublesome paradoxes contain obligations conditional on aviolation, which
are called contrary-to-duty obligations. An exampleis‘you should not trade drugs, but if
you trade drugs, then you should pay taxes for it.” The second sentence is a contrary-to-
duty obligation, becauseitscondition—trading drugs—isaviolation (of thefirst sentence).
Thiskind of sentences often have counterintuitive consequences.

Thereisarelation between defeasibility and solving paradoxes viaan anal ogy between solv-
ing paradoxes and resolving conflicts. For example, in a survey on deontic logic Meyer and
Wieringainterpret overriding to resolve conflicts as del eting (declaring out of force) obligations
in order to restore consistency. This quote also illustrates that there has been alively debate in
deonticlogic literature during thelast five yearswhether deontic reasoning isakind of defeasible
reasoning.

‘Treating contradictory norms by means of defeasible reasoning means, however, is
totally different. It is more pragmatical in nature, ordering the various (contradic-
tory) obligations or norms according to relevance / importance / priority, deleting
(declaring out of force) least relevant ones to obtain a consistent set of norms. So
one or more of the normative rules one was confronted with to begin with is not
considered as relevant / applicable any more to the case (situation) of concern.

Rather than judging thisway of proceeding against other ones we consider this ap-
proach avery interesting one, leaving it to future devel opments as to how successful
thiswill be; the proof of the pudding will bein the eating.” [MW93]

The problem of a deontic paradox is that it is inconsistent, whereas intuitively it is consis-
tent. Hence, a pragmatic solution of the contrary-to-duty paradoxes can make use of restoring
consistency techniques in case of a paradox. However, this solution is ad hoc. Restoring con-
sistency is like treating symptoms without treating the disease. The term hack comes to mind!
Moreover, defeasible deontic logic based on conflict resolution does not solve all deontic prob-
lemsrelated to contrary-to-duty reasoning. Thisis probably best illustrated by Prakken and Ser-
got [PS96], when they discuss the so-called pragmatic oddity. We discuss this pragmatic oddity
inamodal languagein which Op standsfor the obligationto do p. The details of the modal logic
are explained later in this chapter. Prakken and Sergot consider the following three sentences of
amodal theory:

1. Ok: You should keep your promise.
2. =k — Oa: If you have not kept your promise, you should apologize.
3. —k: You have not kept your promise.

The second sentence is a contrary-to-duty obligation, because its condition — not keeping your
promise—isaviolation (of thefirst sentence). The problemisthat Ok A Oa can be derived from
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these three sentences, fromwhich O (k Aa) can be derived in most deontic logics (asis explained
later). Prakken and Sergot remark ‘but itisabit odd to say that in all ideal versions of thisworld
you keep your promise and you apologize for not keeping it. This oddity —we might call it the
‘pragmatic oddity’ — seems to be absent from the natural language version, which means that
the representation is not fully adequate.” In our opinion, the sentence ‘you ought to keep your
promise and apologize for not keeping it" O(k A a) is paradoxical and should not be derived
by adeontic logic. As a consequence, conflict resolution does not seem the right metaphor to
approach contrary-to-duty reasoning, because it does not solve the pragmatic oddity.

A second open question about defeasible deontic logic iswhether it has to formalize reason-
ing about the following issue.

4. ? Deontic choice. According to the concept of deontic choice, an obligation Op compares
situationsin which p istrue (isdone) with situationsin which p isfase (isnot done). If an
agent can choose between a situation in which p istrue and a situation in which p isfalse,
then she has to choose the former.

The relation between defeasibility and deontic choice is as follows. The concept of deontic
choice givesriseto a preference relation, i.e. abinary relation that represents different degrees
of ideality. Jennings observesthat the preference-based semanticsisakind of utilitarian seman-
tics[Jen74] and that preferences arerel ated to akind of defeasibility (non-monotonicity) [Jen85].
At this moment, we do not have the tools to discuss thisissue. It is one of the central issuesin
this thesis and discussed in detail in Chapter 4. For clarity, in the following we use the term
‘preference-based deontic logics' for deontic logics based on deontic choice, and we leave the
term ‘defeasible deontic logic’ for deontic logics with a conflict resolution mechanism.

There is a second relation between defeasibility and solving paradoxes via deontic choice.
Deontic choice is a solution for the contrary-to-duty paradoxes, as is explained in detail later
in this thesis. Moreover, preference-based deontic logics do not have the pragmatic oddity. In
contrast to the conflict resolution approach, the preference-based approach is not ad hoc, but it
is based on the intuitive semantic notion of deontic choice. In thisthesis we study the relation
between obligations, preferences and defeasibility.

1.1.1 Obligations, preferences and defeasibility

In the remainder of thisintroduction, we discuss two rel ations between obligations, preferences
and defeasibility. First, deonticlogic and default logic can both be preference-based logics. Sec-
ond, defeasi ble deontic logic can combine deontic preferences and default preferencesin amulti
preference semantics. We start with the use of preferences in deontic logic and default logic.
Deontic logic formalizes reasoning about obligations. It isbased on the fundamental distinc-
tion between what isideally the case on the one hand and what is actually the case on the other
hand. Agents should try to reach theideal. If an agent wants to know what she should do, then
sheonly hastoinspect theideal. Unfortunately, sometimesobligationsareviolated. Theideal is
no longer reachable, because the actual starts to deviate from theideal asaresult of aviolation.
If an agent wants to know what she should do, then it does not make sense anymore to inspect
theidedl. Instead, she considers a state that approximatestheidea as much as possible, and that
is still possible given the violation. That is, she considers an optimal state. Contrary-to-duty
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obligations tell what is obligatory, given the sad circumstances that obligations have been vio-
lated. Preference-based deontic logics are developed to formalize contrary-to-duty reasoning.
The preferences represent different degrees of ideality. Preferences can be represented explic-
itly in the language of the logic (the deontic logic is defined in a so-called preference logic), but
usually the preference ordering is only part of the semantics. In thisthesis we introduce several
preference-based deontic logics.

Default logic (also called defeasiblelogics or logics of defeasible reasoning) formalizesrea
soning about default assumptions. It is based on the distinction between what normally is the
case on the one hand and what is actually the case on the other hand. In such alogic, conclusions
can be defeated. This defeasibility is usually formalized in a non-monotonic logic.? For exam-
ple, consider the default that birds normally fly. If we know that a certain animal isabird, then
we caninfer by default that it can fly. However, if we get to know that thisbird isapenguin, then
the conclusion that it can fly isretracted. That is, the conclusion that it can fly is defeated. Ina
non-monotonic logic, the conclusion that the bird can fly isno longer derivable. In apreference-
based default ogic, the preferences represent different degrees of normality. In the most normal
case, birds fly. However, penguins are abnormal birds (asfar asflying isregarded). If we know
that the bird is a penguin, then we know that the situation is exceptional. The most normal of
these exceptional casesisthat the penguin cannot fly.

deontic logic

obligations

preferences ——= defeasibility

preference logic default logic

Figure 1.1: Obligations, preferences and defeasibility

The first relation between obligations, preferences and defeasibility is represented in Fig-
ure 1.1. Deontic logic and default logic can both be preference-based logics. In particular, there
Is an analogy between the treatment of violations in preference-based deontic logics and the
treatment of exceptionsin preference-based default logics. Given thisanalogy, it isno surprise
that most preference-based deontic logics are defeasible. However, a priori thisisquite remark-
able. A violation makes the ideal unreachable, but a violated obligation is till in force. The
obligation is not cancelled. It is only no longer a cue for action. In this thesis, we study the

2Another possibility to formalize this defeasibility is a conditional logic in which the conditionals do not have
strengthening of the antecedent. Thisis explained later in thisthesis.
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source of the defeasibility in preference-based deontic logic, and we study the similarities and
the distinctions between the defeasibility in deontic logic and default logic.

The second relation between obligations, preferences and defeasibility is defeasible deon-
ticlogic, i.e. deontic logic with a conflict resolution mechanism. Defeasible deontic logic can
combine deontic preferences and default preferencesin amulti preference semantics. Thereisa
substantial overlap between deontic and defeasibility aspects. As a consequence, the diagnosis
of violations has to distinguish carefully between exceptions and violations. In this thesis we
analyze this overlap, and we aso show that this confusion between exceptions and violations
can be avoided if one makes the proper distinctions between different types of defeasibility.

The layout of this chapter is as follows. In Section 1.2 we discuss when deontic logic can be
used as a knowledge representation language, and which type of deontic logics should be used.
In Section 1.3 we give asurvey of deontic logic as developed within philosophy. In Section 1.4
we give apersonal perspective on deontic logic. In Section 1.5 we present the objectives of this
thesisand in Section 1.6 we present the layout of the rest of thisthesis.

1.2 Computer applications

Deontic logic might be a useful knowledge representation language if (and only if) the modeler
wantsto represent violations and contrary-to-duty obligations. In this section we discuss several
examples of the use of deontic logic from deontic logic literature, and we discuss an example
from the international trade domain.

1.2.1 Knowledge representation language

Jones and Sergot [JS92, JSO3] argue extensively and convincingly that deontic logic is a use-
ful knowledge representation language when the modeler wants to formalize reasoning about
violations and obligations that arise as a result of these violations, the contrary-to-duty obliga-
tions. McCarty [McC94b] observes that ‘one of the main features of deontic logic is the fact
that actors do not aways obey the law. Indeed, it is precisely when a forbidden act occurs, or
an obligatory action does not occur, that we need the machinery of deontic logic, to detect a vi-
olation and to take appropriate action.’ In this section we give three examples of deontic logic
literature: the United Nations Convention on Contracts, the Imperial College Library Regula
tions and the Cottage Regulations. These examples are very small — we can consider them as
toy examples — but they neatly illustrate the contrary-to-duty reasoning in deontic logic appli-
cations. Before we consider situations in which deontic logic might be used, we warn against
anaive use of deontic logic. In particular, the use of ‘ought’ in atext is not areason to use de-
ontic logic as a knowledge representation language. Susskind [Sus87] argues that the fact that
typically normative vocabulary such as must, ought, may shall are found in law-formulations
necessitates the inclusion of some deontic logic within alegal inference engine. Thisclaim s
disputed by Bench-Capon [BC89], who points out that words like must, shall and ought do not
always signal deontic modalities. Jones and Sergot [Jon90, JS92, JS93] discuss this issue and
observe that in general, natural language is a bad guide for formal representations: ‘if we must
over-simplify, then our preference is to assert bluntly that surface is never a faithful guide to
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context.’

Since deontic logic traditionally has been used to analyze the structure of normative law and
normative reasoning in law, it isonly natural that interest in applicationsin deontic logic started
in the area of legal applications. For example, Smith [Smi94] notices several contrary-to-duty
constructionsin legal reasoning (which hints at the use of deontic logic to formalize legal rea-
soning).

“In the process of |eafing through law-books, law-reports and legal literature it be-
comes apparent that contrary-to-duty constructions are by no means exceptional:*
the law isnot only concerned with describing the deontically perfect world, but also
with what should be done in case norms are not complied with (for whatever rea-
son). Very often, breaking obligations makes the agent liable to punishment, dam-
ages and the like, and/or gives other persons the right to see to it that the desired
situation arises — sometimes at the expense of the person who was responsible for
it.” [Smi94]

However, later she notices: ‘It turned out to be rather difficult to find clearly formulated ex-
amples of genuine contrary-to-duty obligations, i.e. things that the agent must do if (or aslong
as) his primary obligation remains unfulfilled. The examplesthat | have found come down to:
making it known (to the parties concerned) that the primary obligation is not fulfilled.” The ap-
parent contradiction (contrary-to-duty constructions are by no means exceptional, but clearly
formul ated examples arerather difficult to find) can also be explained by thefact that natural lan-
guageisabad guideto context. The surface structure of law texts does not show many contrary-
to-duty structures, but the deep structure of law does. Smith'sfirst example is from the United
Nations Convention on Contracts for the International Sale of Goods.*

Example 1.1 (Convention on Contracts) [Smi94, p.127] Section 79 subsection 4 reads as fol-
lows: “The party who failsto perform must give notice to the other party of theimpediment and
itseffect on hisability to perform. If the noticeisnot received by the other party within areason-
able time after the party who fails to perform knew or ought to have known of the impediment,
heisliable for damages resulting from such non-receipt.” Here we have a double contrary-to-
duty construction: first a contrary-to-duty obligation (to give notice), and then a prevision of
what the consequences will be if that contrary-to-duty obligation remains unfulfilled (liability
for damages). O

A second topic identified —besideslegal knowledge-based systems—where deontic logic can
be used is the specification of fault tolerant systems. A benchmark example of deontic logicis
the following Library Regulations example of Jones and Sergot [JS93]. They argue that deontic
logic can be used for (normative) system specification. In particular, Jones and Sergot identify
three situations in which it might be useful to formalize contrary-to-duty reasoning.

Example 1.2 (Library regulations) [JS93] Consider thefollowing rulesof the Imperia College
Library Regulations.

3See [Jon90]. In every-day cases, the presence of a contrary-to-duty provision is sometimes felt to be essential
even for the existence of aprimary norm: if nothing happensafter anorm violation, that is sometimestaken to mean
that apparently there is no norm.

4The same convention is quoted by [Jon90].
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1. A separate form must be completed by the borrower for each volume borrowed.
2. Books should be returned by the date due.

3. Borrowers must not exceed their allowance of bookson loan at any onetime. Allowances:
undergraduates 6, postgraduates 10, academic staff 20.

4. No book will beissued to borrowers who have books overdue for return to the library.

The rules of the library regulations can be interpreted from several perspectives. For example,
they contain obligationsfor userslike ‘if you borrow a book, then you ought to compl ete a sep-
arate form.” Moreover, they aso contain obligations for the system designer: ‘it ought to be
that the system does not issue abook to borrowers that do not compl ete a separate form for each
volume borrowed.’ It isthe latter perspective Jones and Sergot are interested in.

We now consider Jones and Sergot’s discussion whether deontic logic can be used for sys-
tem specification. Imagine the following scenario. The chief librarian wishes to improve the
efficiency of the library, and asks us to develop a computer representation of the library regula-
tions. Jones and Sergot distinguish the following two representations of the regulations.

1. He want usto develop a system that advises on the obligations and rights of the various
users of the library asit currently exists.

2. Hewants usto take the regulations as a specification of how the library ought to function,
giving us the task of developing a computer system which automates the library, at least
as regards the issueing and returning of books.

In the latter case, the chief librarian wants us (the system engineers) to introduce a system of
computers as a specification of how the system should operate. We may call this the system
specification scenario. The task here facing the system designer is to develop alibrary system
which actually behaves in the way the library regulations require. Taking the chief librarian at
his word, we might consider how we can force actuality and ideality to coincide in this exam-
ple. However, such aso-called ‘regimentation’ of theregulation in the systemisquiteinflexible.
Jones and Sergot see the following three roles for deontic logic in system specification.

1. We might require aformal language in which to express precisely the specification of an
organization (here the library together with its computer and other administrative proce-
dures). Such a specification must usually make provision for the possibility of violation,
where actual behavior deviates from the ideal, and for this a deontic logic is necessary.

2. Wemight requirein addition aformal language in which to specify precisely theintended
operation of acomputer system. A deonticlogicisnecessary for specifying computer sys-
temsif we want to make provision for violations — whether resulting from faulty compo-
nents or from extraneous factors. We should like to be able to reason with these specifi-
cations, for example to test the interna consistency of the specification, or to determine
whether oneisalogica consequence of another.

3. We might wish to use an automated theorem prover for a deontic logic as a means of im-
plementing some of the software components of a computer system.
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TheLibrary Regulations Exampleillustratesthat deontic logic can be used if theformal language
has to be able to express violations and the associated contrary-to-duty structures. O

The third example we discussis the following Cottage Regul ations Example of Prakken and
Sergot [PS96]. The sentences are, according to Prakken and Sergot, genuine. The exampleil-
lustrates the occurrence of contrary-to-duty structures in defeasible deontic reasoning.

Example 1.3 (Cottage regulations) [PS96] The following three sentences come from a set of
formal and informal regulations governing the appearance and use of holiday cottages. Both of
theregulations (1) and (2) are intended to hold at one and the sametime, and (2) isintended asa
contrary-to-duty rule for (1) rather than some kind of exception. In contrast, (3) isan exception
to (1). If someone has a fence because the cottage is by the sea, then (1) has certainly not been
violated.

1. There must be no fence.
2. If thereisafence, then it must be awhite fence.
3. If the cottage is by the sea, then there may be afence.

Two important features of the example are that it concerns states of affairsinstead of actionsand
that all three statements pertain to the same point in time; this makes proposal s based on action
logics or temporal logics inapplicable. d

In this section we discussed the fact that deontic logic can be used as a knowledge represen-
tationlanguageif (and only if) the model er wantsto formalize viol ations and the obligationsthat
arise as aresult of violations, the so-called contrary-to-duty obligations. We gave three exam-
ples from deontic logic literature that illustrate the occurrence of contrary-to-duty obligations.
Besides legal knowledge based systems and the specification of fault tolerant systems, topics
identified in deontic logic literature are the specification of security policies, the automatization
of contracting and the specification of normativeintegrity constraintsfor databases[WM93]. We
discuss some new applications, (robot) planning and diagnosis, in Chapter 5. In the following
section we discuss an example of the international trade domain.

1.2.2 Trade procedures

You cannot trust people, only the deals they make. People are only as good as the
deals they make and keep. The unbelievable truth — Hal Hartley

Theresearchinstitute EURIDIS islocated at Rotterdam, the (at |east in some respects) largest
port of the world. One of theinterests of EURIDIS is modeling inter-organizational trade proce-
dures, with the long term goal to facilitate el ectronic commerce. For example, in [BLWW95] it
Is observed that the introduction of EDI can have tremendous benefits for the efficiency of the
execution of trade procedures, both among and within organizations. The most obvious benefit
isthe reduction of time needed for the execution of the transaction. It isnow possibleto replace
many paper documents with electronic equivalents, particularly since standards for the structure
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of the messages have matured. Regarding the benefits, it could be expected that many organi za-
tions would be eager to start with EDI implementation. However, it is observed in [BLWW95]
that successful EDI implementationshave mainly been realized in trading relationshipswith fre-
guent transactions, mostly over alonger period of time. EDI linkages are seldom observed when
the partnership isestablished for alimited period, covering afew transactionsonly, sincethe cost
of the necessary negotiations cannot be recovered from EDI efficiency gains. These shorter term
partnerships are called ‘ electronic market relationships'. The introduction of e ectronic market
relationships can be facilitated by decreasing the set-up costs for EDI linkages. In particular,
they have to agree on the trade procedure (also called the trade scenario, business scenario, or
business protocol) they are going to follow. A trade procedure is a mutually agreed upon set
of rules that governs the activities of all parties involved in a set of related business transac-
tions [BLWW95]. The following example illustrates a simple trade procedure.

Example 1.4 (Trade procedure) Consider a simple trade procedure with two agents, a buyer
and a seller, represented in Figure 1.2. The seller makes an offer, which the buyer can accept.
If the offer is accepted and everything goes well, then the seller delivers some goods, and when
the goods are delivered the buyer pays for the goods. Thisisthe ideal behavior of the agents.
Obviously, other scenarios are possible, for example in which the buyer makes the offer, or the
buyer has to pay before or at the same time as the goods are delivered. Moreover, the protocol

can be described in more detail, if necessary for the analysis. O
e off dli state-changing actions
L"ef: #ef —=
[\ sdler '
} accept L py
/\ buyer
_—
time

Figure 1.2: Trade procedure

The set-up costs of EDI linkages can be decreased by facilitating the agreement on the trade
procedure [BLWW95]. Automated support for setting up the linkages depends crucially on the
possibility to reason about these norms. At EURIDIS, trade procedures are modeled in Petri
nets. Petri nets [Pet81] are a popular formalism for the modeling and analysis of discrete dy-
namic (distributed) systems, because they combine the advantages of agraphical representation
with the expressive power of parallelism and synchronization. One of the application domains
is the modeling of procedures and processes within and between organizations. For example,
Van der Aalst [VdA92] devel oped the ITCPN model to model |ogistic processes in organizations,
and Lee [Lee9l, Lee92] developed the CASE/EDI tool to model bureaucratic procedures. The
latter tool can be used to dynamically simulate Petri nets (scenario analysis) and check the pro-
cedures represented in a Petri net for consistency and dead-locks. It has been applied to model
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inter-organi zational proceduresin international trade, like contract negotiation, the exchange of
bill-of-lading for |etter-of-credit and custom clearance [BLWW95].

A drawback of the representation of the trade procedure in Figure 1.2, as well as represen-
tations in Petri nets [RTvdT96] is that they only model the ideal behavior. It isimportant that
violations of obligations, i.e. sub-ideal states, are represented explicitly in the modeling of pro-
cedures, because in most proceduresit is described explicitly what is considered asill-behavior,
and how thiswill be punished (the corresponding sanction). Since thisviolation behavior is de-
scribed explicitly, it should also be represented explicitly. Representing ideal behavior does not
make sense if there is no way to represent sub-ideal behavior, just as the notion of master does
not have ameaning without there being aslave. Hence, both ideal and sub-ideal behaviors must
be represented and distinguished from each other for modeling procedures. As a consequence,
deontic logic is a candidate to formalize the normative aspects of the procedures, because de-
ontic logic can be used as a knowledge representation language if the modeler wants to model
violationsand the new obligationsthat arise as aconsequence of violations, the contrary-to-duty
obligations, aswewe discussed in Section 1.2.1. Thefollowing exampleillustratesthat the pro-
cedures can be modeled as a set of norms, i.e. asa set of conditional obligations.

Example 1.5 (Trade procedure, continued) If the offer is accepted, then there are several con-
ditional obligations, according to the protocol. For example, the seller is obliged to deliver the
goods, and the buyer is obliged to pay for the goods, when the seller has delivered them. More-
over, there are (conditional) obligations when no offer has been accepted yet. For example, if
the seller makes an offer, then sheis obliged to deliver the goods, if abuyer acceptsthe offer. [

Finally, we discuss some desirable properties of adeontic logic that can be used for the for-
malization of the trade procedures. In Section 1.2.1 we discussed that the minimal requirement
to use deontic logic is that the modeler wants to model violations and the contrary-to-duty obli-
gations. Additional requirements of a deontic logic are that it can model exceptions of norms,
that it can discriminate between different agents and that it can model that obligations vary in
time.

1. Violationsand contrary-to-duty obligations. A deonticlogic hasto be suitableto repre-
sent violationsand formalize contrary-to-duty reasoning. For example, it isimportant that
violationsof obligationsare represented explicitly in themodeling of trade procedures, be-
cause in most proceduresit is described explicitly what is considered as ill-behavior, and
how this will be punished.

2. Exceptions of norms. Knowledgeis usually represented by general rules and exceptions
tothesegeneral rules. For example, consider thefollowing ruleof atrade procedure: ‘ Nor-
mally goods have to be paid on delivery, but regular customers may have some credit.” If
the formalization follows this scheme, then we need defeasibility of ageneral rule (goods
must be paid on delivery), in case of exceptional circumstances (regular customer). It is
very important that the language is able to distinguish between exceptions and violations.
The problem iswhat to conclude about somebody who does not pay on delivery. Isthisan
exception to the normality claim, or isit aviolation of the obligation to pay at delivery?

3. Agents. Usudly, there are several different agentsthat each have their own set of obliga-
tions and rights. For example, in atrade procedure there are, besides the buyer and seller
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in Example 1.4, also forwarders, banks, customs, etc. Asobserved in e.g. [AB81, Alc93,
Roy96], obligations expressed by amodal operator O can easily be relativized to particu-
lar agents and normative systems by OZ, where a is the agent and s the normative system
(sometimes called the authority). Moreover, an obligation of an agent a is often directed
towards a specific agent a,, in the sense that if the agent a, violates the obligation, then
the agent a, has a claim towards her. This can be represented by O;, ,,. Alternatively,
the agents can be formalized as an element of the o of O, see e.g. [HB95, Hor96]. Al-
though the agents are easily introduced, we do not suggest that the formalization of the
agents themselves and the formalization of reasoning with obligations of different agents
iseasy! On the contrary, wethink that reasoning with obligationsin amulti agent system
isone of the most interesting challenges of the formalization of normative reasoning.

4. Time. Obligationschangeinthe course of time; thustherel ation between timeand obliga-
tions has to be expressed. Obligations can be relativized to a certain moment (or interval)
t intime by O,«. For example, certain obligations have to be fulfilled before a certain
moment in time, the so-called dead-line. Moreover, in time obligations are created and
destructed. For example, in atrade procedure obligations are created by making an offer,
accepting an offer and other acts. Thus, related to the interaction of obligations and time
Is the representation of actions with their causal structure.

In this thesis we only investigate the first two items. We do not investigate the relation be-
tween deontic logic, agents and time. There is some recent research in the area of obligations
and agents. For example, directed obligations O3, ,, can be modeled in the logic of Krogh and
Herrestad [KH96]. Deontic statements invariably suppress explicit references to time, strongly
suggesting that temporal information is redundant, namely, it can be reconstructed if required,
but glossed over otherwise [Pea93]. Thisisin contrast to theories of action, that are normally
formulated as theories of temporal changes [Sho88, DK89]. Actions and causal structure have
been investigated in Pearl’slogic of pragmatic obligation [Pea93], seeal so Section 1.3.7and 5.2.
However, most problemsin thisarea of agents, time and actions are not related to the deontic in-
terpretation of the modal operator. For example, the notorious frame problem of temporal logic
also occurs in the deontic setting: when does an obligation O« persist in time?

In this section we discussed desiderata for a deontic logic that can be used as a knowledge
representation language to formalize trade procedures. It isan example of the application of log-
ical toolsto thetask of modeling aspects of commercial activity, including communication about
contracts. Thisisadomaininwhich agreat deal of work remainsto be done, and wheretherapid
development of electronic commerce is creating an urgent need for precise formal methods for
modeling the processes involved. In the following section we discuss the philosophical founda-
tions of deontic logic, and we focus on the problems caused by contrary-to-duty obligations.

1.3 Philosophical foundations

We start with afew observationsfrom Fallesdal and Hilpinen [FH71], who give an introduction
on the area of deontic logic, as developed within philosophical logic. Ernst Mally [Mal26] was
the first to use the term Deontik to refer to the logical study of the normative use of language.
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Normative expressions include the words ‘obligation’, ‘duty’, ‘permission’, ‘right” and the re-
lated expressions. These expressions may be termed deontic words, and sentences involving
them deontic sentences. A deontic sentence is a truth of deontic logic if it is true and remains
true for al variations of its non-logical and non-deontic words (that is, expressions which are
not logical or deontic words). Deontic logic is closely related to the logic of imperatives (or the
logic of commands); in fact, many authors regard these fields as essentially the same. Bengt
Hansson [Han71] observes that a deontic statement is not ssmply an imperative, because ‘one
can point out to a person that he ought to do so-and-so without actually telling him to do it.’
What is here called deontic logic has aso been referred to as the logic of obligation and logic
of norms (or logic of normative systems). One may say that Deontic Logic came into existence
in 1951 with the publication of G.H. von Wright’s paper ‘ Deontic Logic’ [VW51] that appeared
in Mind (see [FH71, Knu81] for a discussion on earlier proposals). In that paper, von Wright
presented the first viable system of deontic logic. Most of the discussion of deontic logic after
1951 has been inspired — directly or indirectly — by von Wright's article.

Two characteristic properties of obligations have been identified. The first property can be
paraphrased as what is obligatory is thereby permitted. The intuition for this principle is that
you cannot oblige someone to do something, without giving him at the same time a permission
to doit. Inaformal language, this property is expressed as Oa. — Pa, to beread as‘if a is
obligatory, then « is permitted.’

The second property of obligations goes back to Kant’s famous dictum ‘ ought implies can’
or intheoriginal German termsasthe* sollen-kdnnen’ principle, seefor example[VW71b, p122-
p125]. Thisconcept bringsuscloser to traditional discussionsof moral philosophy. Asthe name
indicates, the question here is whether each obligation presupposes a possibility of fulfilling it.
The related second deontic axiomis =0 L, to be read as ‘theimpossibleis not obligatory’ (L is
asymbol that stands for a contradiction likep A —p). Alternatively, if we express the concept of
possibility by the modal operator M , then the second deontic axiom can bewritten astheformula
Oa — Ma.

Besides these two usually® undisputed properties, there is athird property that has been de-
fended by some authors, see e.g. [Con82, Prad6]: the absence of conflicting obligations. We
call it the no-dilemma assumption. The related axiom is =(Oa A O—«). Von Wright [VW8L1,
p.5] observes an analogue with Bentham’slogic of the Will. Bentham regarded it asalaw of his
Logic of the Will that if something is obligatory (Bentham says ‘commanded’) thenitisnot aso
prohibited.

Besides these properties, the area of deontic logicischaracterized by lack of consensus. The
philosophers encountered severa problems, which we briefly discussin the following subsec-
tion. In the remainder of this section on the philosophical foundations of deontic logic, we give
a crash course in deontic logic by discussing the main formal systems.

SHintikka[Hin71, p.83] arguesthat the discussions of the ‘ ought impliescan’ problem one can find in the litera-
ture can scarcely to be said to have resulted in any kind of consensus. He therefore concludesthat, in the context of
alogical discussion, ‘it therefore seems advisable not to try to salvage the ‘ought implies can’ principle by means
of additional assumptions.’
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1.3.1 Problems

In this section we discuss severa philosophical problems: whether norms have truth values,
whether deontic logic should be developed as a branch of modal logic, what kind of entities
the operators operate on, and the deontic paradoxes. In thisthesis, in which we study deontic
logic from a knowledge representation perspective, the first three problems do not play an im-
portant role. The deontic paradoxes, however, are used extensively in this thesis to analyze the
properties of the logics that are devel oped.

Thefirst problem philosophers encountered was the question whether norms have truth val -
ues. For example, von Wright [VW8L1] feels a certain hesitation to call deontic formulas ‘log-
ical truths' at all, because ‘it seems to be a matter of extra-logica decision when we shall say
that “there are” or “are not” such and such norms.” We restrict ourselves to quotes from respec-
tively Alchourron and Bulygin, von Wright and B. Hansson, because this philosophic problem
is somewhat hard to follow for non-philosophers. First, Alchourron and Bulygin [AB81] make
a distinction between norms and normative propositions.

‘For the hyletic conception norms are proposition-like entities, i.e. meaningsof cer-
tain expressions, called normative sentences. [ ... ] In this conception, norms are
not language-dependent; they can only be expressed by linguistic means, but their
existence is independent of any linguistic expression. [ ... ] Norms must be dis-
tinguished from normative propositions, i.e. descriptive propositions stating that p
is obligatory according to some unspecified norm or set of norms. For the expres-
sive conception, instead, norms are the result of the prescriptive use of language.
[...]Itisonly onthe pragmatic level of the use of language where the difference
between statements, questions, commandsetc. arises: [ ... ] Theexpressiont pin-
dicatesthat p isasserted and !p indicatesthat p iscommanded, whereas Op expresses
aproposition that p ought to be (done). So Op isthe symbol for anorminthehyletic
conception whereas ‘!'p’ symbolizes a norm in the expressive conception.’

Alchourron [Alc93] further explains the distinction between norms and normative propositions
with a box metaphor.

“We may depict the difference between the descri ptive meaning (normative proposi-
tions) and the prescriptive meaning (norm) of deontic sentences by means of think-
ing the obligatory sets as well as the permitted sets as different boxes ready to be
filled. When the authority « uses a deontic sentence prescriptively to norm an ac-
tion, hisactivity belongsto the same category as putting somethinginto abox. When
«, Or someone else, uses the deontic sentence descriptively his activity belongs to
the same category as making a picture of o putting something into a box. A propo-
sition is like a picture of reality, so to assert a proposition is like making a picture
of reality. On the other hand to issue (enact) a norm islike putting something in a
box. It isaway of creating something, of building a part of reality (the normative
qualification of an action) with the purpose that the addressees have the option to
perform the authorized actions while performing the commanded actions.’

Von Wright [vW81] makesadistinction between norm-formul ationsand norm-propositions, that
is analogous to Alchourron’s distinction:
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‘Normative sentenceswill be called norm-formulations. A characteristic use of them
isfor giving (issuing, laying down) normsor rulesfor human agents. When thisuse
IS in question, the normative sentences may be said to express norms. Normative
sentences, however, can aso be used for making statements to the effect that there
are (have been given or issued) such and such norms or rules. When used in this
way, normative sentences express what | propose to call norm-propositions.’

Bengt Hansson [Han71] has a pragmatic approach to the problem.

‘I will take here the view that deontic statements are descriptive, that they describe
what is obligatory, forbidden and permitted respectively, according to some (unde-
termined) system of normsor moral or legal theory. [ ... ] Thisdescriptiveinterpre-
tation has one advantage in addition to making formulas into propositions; it makes
clear that deontic logic isatool of meta-ethics and not part of ethics proper.’

The second problem encountered waswhether deontic | ogi ¢ should be devel oped asa branch

of modal logic. Thisissue has been discussed extensively in many papers by von Wright, here
werepeat the argumentsof [VW71a]. Deonticlogicwas, in origin, an off-shoot of modal logic. It
got itsdecisiveimpetusfrom observations of some obvious anal ogies between the modal notions
of normative ideas of necessity, possibility, and impossibility on the one hand and the deontic
or normative ideas of obligation, permission and prohibition on the other hand. Von Wright ob-
serves that besides the analogies and similarities, however, there is aso a number of striking
dissimilarities between the two types of modalities, and moreover, that many of the problems
which have beset deontic logic since its birth are related to these discrepancies.

1. Onedifferenceis the absence in deontic logic of an analogue to the principle Np — p of

modal logic. That what necessarily isthe case is aso as a matter of fact the case; but that
which ought to be the case is far from being always actually the case.

. The second formal difference between modal and deontic logic observed by von Wright is

that, whereas it is obvious that the tautology necessarily istrue (N T), it isnot intuitively
clear that the tautology also ought to betrue (O T). Theideaof OT doesnot seem to make
good sense. For example, it excludesthepossibility of an empty norm system. Von Wright
shows that we can get rid of the unwanted result by adding a so-called contingency clause
to the definition of an obligation.® If we express the concept of possibility with the modal
operator M, then the contingency clause of an obligation for p is Mp A M—p, such that
Op implies Mp and M —p (hence, we have Op — (Mp A M—p) as atheorem).

. Finally, von Wright observes a further noteworthy difference between the two logics. In

modal logic, the interdefinability of the two ideas of necessity and possibility through the
schema Mp =. —IN —p provokes no serious objection. But the corresponding schema or
equivalenceindeonticlogic Pp =4 —~O-p isby nomeansunproblematic. For example, a
consequence of the definitionisthe counterintuitivetheorem OpV P—p, whichisdiscussed
inthe next section. 1t seemsfeasibleto admit a‘weak’ notion of permittedness, according

5The consistency clause was introduced in a deontic logic based on necessary and sufficient conditions.

Stelzner [Ste92] recently proposed aformalization based on relevance. Unfortunately, these approaches are prob-
lematic, becauseit is difficult to formalize conceptslike ‘ sufficient condition’ and ‘relevance’.
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to which something may be, if and only if it is not the case that the contradictory of this
thing ought to be.”

Despitevon Wright's observations, the modal approach to deontic logic has becomethe standard
approach to deontic logic. This approach is discussed in detail in the following section.

The third problem the philosophers encountered — related to the second one —is what kind
of entities the deontic operators operate on. In von Wright's [VW51], deontic operators are ap-
plied to names of acts, not to descriptions of states-of-affairs. Thus, the system of proposi-
tional logic which constitutes the basis of von Wright’s system is not, strictly speaking, alogic
of propositions, but a logic of act-names. In thislogic, the notion of truth-value is replaced by
the notion of performance-value: a proposition can be performed or not performed. Later, von
Wright [vVW71b, p.106] no longer regards the reading of O« as one ought to do « as *fully cor-
rect,” and reads the formula O« as follows: one ought to see to it that «. Hence, the relation
between the operator O and o in O« iseither operator and act-type, or operator and proposition.
This distinction is analogous to the distinction between the relation between predicate and term
in predicate logic and between modal operator and propositional sentence in modal logic. An
advantage of the latter reading is that the language contains mixed formula. For example, the
mixed formulac A O—a can represent aviolation.®

Since the publication of von Wright's ‘ Deontic Logic’, the discussion of the subject and the
proliferation of different deontic logics is amost incredible [Alc93]. Thereis no principle or
feature of von Wright’s original system which has not been the object of the strongest criticism.
Even von Wright himself has advanced serious objections to each of hisoriginal statementsand
has produced many different deontic logical systems in order to overcome the supposed defi-
ciencies of hisfirst ideas. Alchourron [Alc93] observes that the source of the doubts lay in the
difficulties involved in the process of finding intuitive correlates to his principlesin the highly
ambiguous uses of deontic and related sentences (such asimperatives) in everyday discourseand
in more sophisticated (legal and moral) contexts.

The criticism of principles or features of deontic logic has been formulated in terms of de-
ontic puzzles. Consider the following quote of Bertrand Russell in *On Denoting'.

‘A logical theory may be tested by its capacity for dealing with puzzles, and it isa
wholesome plan, in thinking about logic, to stock the mind with as many puzzles as
possible, since these serve much the same purpose as is served by experimentsin
physical science.’

Alchourrén and Bulygin [AB81] discuss the question whether there are permissive norms. They notice that a
great number of philosophers (especially philosophersof law) deny that there are permissive norms, admitting only
one type of horms (mandatory norms, imperatives, commands), whereas logicians and lawyers — though probably
for different reasons—feel lessinclined to such a monistic conception and see no obstacle that would prevent them
from speaking of permissive norms (independently of the question whether they are definablein termsof obligations
or not).

8Moreover, in modal logic the deontic operators can be nested. However, there is no intuitive or useful reading
of nested operators (what does ‘it ought to be that it ought to be that o’ tell us?). Nested formulalike O(Oa — «)
have been discussed by e.g. Prior [Pri62], see also [FH71, p.15]. A potential use is the nesting of operatorsin
a multi-modal logic, like P; Pyp: ‘I permit you to permit someone else to do p.” Nevertheless, it remains to be
shown that such sentences can be formalized and reasoned with. The multi agent perspective remains still mainly
unexplored.
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Tomberlin[ Tom81] observesthat deontic logicians agree with Russell, because deontic logic has
been supplied with awealth of puzzles—usualy referred to as deontic paradoxes. Moreover, he
observes that the majority of the paradoxes evaporate comfortably enough under close scrutiny
and yet, some — most notably the contrary-to-duty imperative paradox and certain strengthened
versions of the Good Samaritan paradox — persist. We discuss these troublesome cases in Sec-
tion 1.3.3. First, we discuss the main types of monadic deontic logics.

1.3.2 Monadic obligations

We start with a classification of deontic logics based on three formal properties represented in
Table 1.1. For example, consider the obligation to pay for received goods within two weeks.
Thefirst property isthe derivability of weaker obligations, likethe obligation to pay for received
goods (at an unspecified time). The second property isthe derivability of the conjunction of two
obligations, like the obligation to pay for two shipments of received goods. The third property
is the possibility to represent violations in the language, like the violation that certain received
goods are not paid for within two weeks.

| | | SoL | Os | MpL | PoL |

W eakeni ng O(Ofl N 012) — 0011 X X X
And (0061 A OOfQ) — O(Ofl A 062) X X X
Violations | wif: a A O—a X X X

Table 1.1: Three classification properties of deontic logic

Table 1.1 shows four deontic logics, which are discussed later in this section. The most fa-
miliar deontic logic, so-called Standard Deontic Logic SDL, hasall three properties. Three well-
known weakenings of this logic each lack one property. Von Wright's Old System Os [VW51]
lacks the possibility to express violations (because the o in O« is not a proposition but an act-
type), Chellas' Minimal Deontic Logic MDL [Che74] lacksthe derivability of the conjunction of
obligations, and S.O. Hansson’s Preference-based Deontic Logic PDL [Han90b] lacks the prop-
erty to derive weaker obligations. Since logics can also lack two or al three of the properties,
our classification gives eight classes of deontic logics.

Most deontic logics have weakening, because deontic logic has been developed as a branch
of modal logic. We therefore first discuss the classes of deontic logicsthat have weakening, and
criticize weakening at the end of this section. We give a proof-theoretic analysis of different
types of deontic logicsthat have weakening by discussing theformulasin Table 1.2. We assume
acomplete set of principles (axioms and rules of inference) for classical propositional logic and
the following two rules of inference, which state that there is substitution of logical equivaents
within the scope of the modal operator.

Fop & o Foa <o
I—Oa1<—>0a2 }_P(),/l(—)PCYQ

The two main types of deontic logics are variants of so-called minimal deontic logic (MDL)
and standard deontic logic (SpL). All variants of minimal deontic logic have as axioms OW,
PW and D. The axioms OW and PW expressthat obligations and permissions are closed under
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| | | SoL | Os | MpL | PoL |

OWeakening | O(a; A ag) = Oay X X X
PWeakenlng P(a1 A 012) — Pay X X X
D Oa — Pa X X X X
D’ -0_L X X X X
oT X X
And (Oay ANOay) - O(ag Aag) | X | X X
D* —(Oa A O—a) X | X X
—(Oa A P-a) X | X X
OaV P-«
Oa + P«
Violations wif: a A O—« X X X
Nested O wif: OO« X X X

Table 1.2: Different types of deontic logics

logical consequence and axiom D gives the relation between obligations and permissions: what
isobliged isthereby permitted. Chellas' [Che74] MDL isanon-normal modal logic (i.e. it does
not have axiom K: O(ac — ) — (Oa — Of)) and has the expressive power to represent
violations and nested modal operators. Two extensions of minimal deontic logic which only
induce a minor change of the system are the axioms OT and —O_, where T stands for any
tautology likepv—p (and L for acontradictionlikepA—p). OT and —O L refer to extreme cases,
and they are not so interesting for the concept of obligation. It is therefore very easy for any
system to adapt the definitions such that these extreme cases are excluded or included. Anaxiom
with larger impact is the axiom O« vV P—a. The axiom states that every situation is normed,
because for every proposition « we have that « is either obligatory or its negation is permitted.
However, usually not everything is normed, and this axiom should not be accepted.®

Standard deontic logic consists of minimal deontic logic plus the axiom And.° In minimal
deontic logic it is possible that there are two obligationsfor «; and «, without an obligation for
a1 A as. Inminimal deontic logic these two obligations refer to two unrelated normative stan-
dards. Thereisnot anormative standard that saysthat «;; A «; is obligatory. The axiom And of
standard deontic logic expresses that such asituationisnot possible. It expresses the uniqueness
of thenormativestandard. ThetheoremD*: =(OaAO-«) followsfrom And and D'. It saysthat
there cannot be a dilemma. Standard deontic logic has in contrast to minimal deontic logic the
no-dilemma assumption. Again, theaxioms OT and —~O 1. may be added. SDL isusualy rep-

9When we discussed the representation of deontic logicin modal logic, we observed that the interdefinability of
the two ideas of necessity and possibility through the schema M p =44 =N —p provokes no serious objection. But
the corresponding schemaor equivalencein deontic logic is by no means unproblematic. It seemsfeasibleto admit
a ‘weak’ notion of permittedness, according to which something may be, if and only if it is not the case that the
contradictory of this thing ought to be. A weak permission P~ isintroduced by the definition P~ a =g -O—«,
see [Alc93]. If theaxiom O« V P—a isadded to =(Oa A P-a), then we have P~ a +» Pa.
1A restricted version of the conjunction rule And, so-called consistent aggregation, was given by Van
Fraassen [vF73, Hor94]. With consistent aggregation, we may derive O(a; A as) from Oay and Oas only when
a1 A ag isconsistent. The extension of minimal deontic logic with consistent aggregation is a system in between
MDL and SpbL. Restricted And does not imply the no-dilemma assumption.
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resented by anormal modal system of type K D according to the Chellas classification [Che8(].
The axiom K states that modus ponens holds within the scope of the moda operator, and the
axiom D states that the impossible cannot be obliged.™

Definition 1.6 (SDL) Thelanguage £ isformed from adenumerable set P of propositional vari-
ables together with the connectives —, —, and O. The connectives A, V and <> are defined in
terms of them in the usual way. Thelogic SDL isthesmallest S C £ such that S contains clas-
sical propositional logic and the following axiom schemata, and is closed under the following
rules of inference.

K O(a— B) = (Oa— Opf) MP froma and o — 3 derive 3
D -OL Nes from a derive Oa O

Definition 1.7 (Kripke semantics) A possible world (Kripke) model for a deontic theory in
SpL isatuple M = (W, R, V) that consists of a nonempty set of worlds W, a binary serial 2
accessibility relation R between worlds, and a valuation function V' that assigns in each world
w € W atruth valueto the atomic propositions. A formulaOa istrueinworld w in M, written
M, w =, Oq, iff, for al accessible worlds w” with R(w, w'), it istruethat M, w' =g, «. AS
usual, aformula « entails g, written o =4, 3, iff M, w =g, aimplies M, w =g, g for dl
models M and worlds w. O

The following example illustrates that the binary accessibility relation associates with each
world aset of ideal aternatives. Moreover, there are also ideal aternatives of ideal aternatives,
which are used to give nested modal sentences like OOp atruth vaue.

Example 1.8 (Kripke semantics) Consider the Kripke model M = (W, R, V') in Figure 1.3.
The set of worlds W consists of six worlds, and the accessibility relation is such that the ac-
tual world w sees four worlds, which see the sixth world. Notice that the accessibility rela-
tion is seria, because all worlds see another world (the right-most world sees itself). We have
M, w s, Op, becausepistruein al theided dternatives of the world w. O

Although MDL and SDL have been the prime deontic logicsfor at least three decades, there
are several paradoxes related to weakening. Whereas O(p A ¢) — Op might seem intuitive,
the equivalent Op — O(p V ¢) looks less convincing. The following four problems related to
weakening illustrate the purpose served by theselogical puzzles (which, as Russell remarked, is
much the same purpose as served by experimentsin physical science). Ingeneral, itisargued that
the following puzzles related to weakening evaporate comfortably enough under close scrutiny.

The inference rules are sometimes written as follows.

a,o = f3 Fa
MP—— N
3 SF0a

In this representation, a distinction between the two inference rulesis made explicit. Modus ponensis applicable
on every two derivable formulas, whereas necessitation is only applicable on logical theorems. However, in Defi-
nition 1.6 we only describe the set of logical theorems, and this distinction is not relevant.

L2A binary relation R is sevial iff for all w € W, thereisaw’ € W suchthat R(w, w'). Hence, abinary relation
isserid if there are no so-called ‘dead ends'.
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ideal alternatives of w

OIO
actua worldw () Oé O O
Op ideal aternative

O of theideal
p dternatives of w

Figure 1.3: A Kripke model

Example 1.9 (Ross paradox) [Ros41] Ross gave the following counterintuitive example of the
sentence Op — O(pVq), called theRoss paradox: ‘ If you should mail theletter, then you should
mail or burn the letter.’ O

Fellesdal and Hilpinen [FH71, p.22] observe that the Ross paradox above ‘may perhaps be
explained by reference to very general conventions regarding the use of language. For instance,
it is generally assumed that a person makes as strong statements as heisin aposition to make.’
Castaiieda [Cas81, p.65] also observes that some writers have observed correctly that few per-
sons would engage in reasoned commanding of the form ‘Do A, therefore, do A or B.” How-
ever, he argues that thisfact about communication or speech cannot tell against theimplications
behind the inferences in question, because ‘ there are reasons pertaining to the transfer of infor-
mation that explain why those inferences are not drawn,” and ‘the very same reasons apply to
the corresponding indicative or propositional inferences.” Thus, Castaiieda concludes, ‘we must
simply forget about Ross's paradox.” However, there are more paradoxes associ ated with weak-
ening.

Example 1.10 (Good Samaritan paradox)[Aqv67] Thefollowing counterintuitive example of
the sentence O (p A q¢) — Op iscalled the Good Samaritan paradox: ‘ If you ought to help some-
one who has been robbed, then he ought to be robbed.’ O

The usually accepted solution (see e.g. [Cas81, Tom81]) of the Good Samaritan paradox is
that the obligation ‘you ought to hel p someone who has been robbed’ isaconditional obligation
which cannot be represented as a monadic obligation. We consider this solution of the paradox
in Section 1.3.3.

Example 1.11 (Par adox of theknower ) [Aqv67] Thefollowing counterintuitiveexample of the
sentence O Kp — Op iscalled the paradox of the knower: ‘If you ought to know that p, then it
ought to bethat p.” The paradox follows from the well-known theorem of epistemic logic ‘what
iIsknown isfactually true’ Ka — «. O

Surprisingly, the paradox of the knower has received very limited attention in deontic logic
literature, although it is more complicated than the Good Samaritan paradox. The following ex-
ampleillustrates that weakening is also problematic for the concept of permission.
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Example 1.12 (Free choice paradox)[Kam74] The following counterintuitive example of the
sentence Pp — P(p V q) is caled the free-choice paradox: ‘If a person is permitted to smoke,
then she is aso permitted to smoke or to kill.’ O

Von Wright [VW71a] suggests ‘that a so-called free-choice permission and the permission
concept defined by the standard system of deontic logic have different logics; the former concept
does not satisfy the distribution principle P(p V q) <+ PpV Pgq, but instead the law represented
by P(pV q) <> Pp A Pq.

Severa authors have criticized weakening. Beatty [Bear73] discusses what he calls the de-
scriptive aspect of obligation sentences, and observes that, in terms of description, weakening
‘seemsmuch lessplausible’” Von Wright [VW8L, p.7] observesthat ‘in adeonticlogic which re-
jectstheimplication from left to right in the equivalence O(p A q) < (Op A Oq) whileretaining
the implication from right to left, the paradoxes would not appear.” Later, Von Wright [vVW81]
devel opsadeontic action | ogic that does not have weakening, because‘ from thefact that an agent
isunder an obligationto perform actionswhich exhibit two characteristics, it doesnot follow that
he is under an obligation to perform actions which have (only) one of the characteristics.’

Surprisingly, hardly any arguments can befound in deontic literature that defend the property
weakening. Oneargument (which seemsto beimplicitin somediscussionsbut asfar asweknow
has not been defended explicitly) isbased on the analogy between deontic logic and the logic of
necessity. Theargument runsasfollows. If weakening should beregjected in deonticlogic, thenit
should be rgjected in the logic of necessity too. For example, the sentence ‘if it is necessary that
you mail the letter, then it is necessary that you mail or burn theletter’ isjust as counterintuitive
as'if you ought to mail theletter, then you ought to mail or burntheletter.” However, weakening
seemsto beintuitivefor logicsof necessity. Wedo not reject weakening for thelogic of necessity,
and as a consegquence we should not reject weakening for deontic logic. Thisargument relieson
the analogies and similarities between the two modalities, whereas there are also a number of
striking dissimilarities, as discussed in Section 1.3.1. The following (in our opinion aso not
very convincing) exampleis given by Sinnot-Armstrong (in response to Forrester [For84]).

“For example, if 1 both mow and water your grass, | mow your grass, so, if it is
obligatory for meto mow and water your grass, it is obligatory for meto mow your
grass. Such arguments cannot be justified if [weakening] is rejected, unless some
other rule or principle is substituted. Forrester gives no substitute for [weakening]
in his article, and it seems that any substitute would have to be very complex and
unintuitivein order to justify all such obviously valid arguments.” [SA85]

Finaly, the following argument is given by Nute and Yu in the introduction of a book on defea-
sible deontic logic.

“[Weakening] is one of the most fundamental principlesin SbL and has strong in-
tuitive appeal. The principle states that consequences of what ought to be the case
ought to be the case. It hence requires the agent to take the moral responsibility for
the possible consequences of what he/she has committed to do. Therejection of the
principle, therefore, will not only jeopardize SbL but also seems to be contrary to
one of our basic moral reasoning patterns.” [NY 97]
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From atechnical point of view, it is easy to construct a non-normal modal logic that does
not have weakening, but such a logic does not explain why the derivation weakening is not
valid. Forrester [For84] observes that most of standard deontic logic must be reconstructed,
which is ‘alarge task.” S.O.Hansson [Han90b] observes that ‘this situation seems to depend,
to a large degree, on the lack of a credible semantical basis for a weaker deontic logic.” Jen-
nings[Jen85] provides such an explanation. He observesthat ‘it has been suggested that aunary
operator O capable of bearing a deontic interpretation might be defined in alogic of preference
by Oa =4« a = —a’, where a; > a5 standsfor apreference of a; over a, and that *if the pref-
erence logic has the natural distributive properties as von Wright advocates, the defined deontic
necessity will be nonmonotonic’ (i.e. does not have weakening). This has been formalized in
preference-based deontic logic by Jackson [Jac85] and Goble [Gob90a, Gob90b]. In Chapter 2
we introduce the so-called ordering logic that is defined in a preference logic and we illustrate
why such preference-based logics do not have weakening. S.O. Hansson [Han90b] introduces
Preference-based Deontic Logic PDL that explains the absence of weakening by preferential se-
mantics, though differently from Jennings. In S.O.Hansson’s logic, obligations are defined by
the so-called property of negativity: ‘what isworse than something wrong isitself wrong.” We
discuss this preference-based deontic logic in Chapter 2.

1.3.3 Thecontrary-to-duty paradoxes of SDL

Deontic logic is hampered by many paradoxes, intuitively consistent sentences which are for-
mally inconsistent, or from which counterintuitive sentences can be derived. The most noto-
rious paradoxes are caused by so-called Contrary-To-Duty (CTD) obligations, obligations that
refer to sub-ideal situations. For example, Lewis describes the following example of the CTD
obligation that you ought to be helped when you are robbed.

Example 1.13 (Good Samaritan paradox) “It ought not to bethat you are robbed. Afortiori, it
ought not to be that you are robbed and then helped. But you ought to be helped, given that you
have been robbed. This robbing excludes the best possibilities that might otherwise have been
actualized, and the helping is needed in order to actualize the best of those that remain. Among
the best possible worlds marred by the robbing, the best of the bad lot are some of those where
the robbing is followed by helping.” [Lew74] d

The Forrester [For84] and Chisholm [Chi63] paradoxes are the most notorious CTD para
doxes. In Standard Deontic Logic (SbL), a conditional obligation is usualy formalized by the
formula 8 — Oa, where j is the condition and « the (deontic) conclusion. The conditional
obligation 3 — O« isaContrary-To-Duty (or secondary) obligation of the (primary) obliga-
tion Oy when 8 and «; are contradictory. Inanalyzing CTD paradoxes, it isuseful to makethe
following distinction. We call an obligation O« that can be derived from atheory 7" of SDL a
fulfilled obligation, violated obligation or deontic cue respectively, depending on whether o is
entailed by 7', -« isentailed by 7" or neither of them. Violated obligations represent what has
been done wrong (what is the case but should not be the case) and the deontic cues represent
what should be done now (what is not yet realized but should be made the case).*®* In Exam-

13This is not the only possible reading of the obligations. For example, assume that s stands for smoking. We
can have that s A O—s does not represent a violation that you are smoking, but the deontic cue to stop smoking.
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ple 1.15 and 1.16 we illustrate that the CTD paradoxes of SDL are conflicts between different
types of obligations.

Definition 1.14 (SDL obligations) Let 7" be atheory of SbL. The formula O« is a fulfilled
obligation of thetheory T iff T =5, OcandT =g, «. TheformulaO« isaviolated obligation
of thetheory T iff T =5, O and T =4, —a. TheformulaO« isadeontic cue of thetheory T
iff T =g O, T e aand T g, —ar. O

Thefollowing exampleisthe notorious Forrester paradox [For84], sometimes called the gen-
tle murderer paradox. It is a strengthened version of the Good Samaritan paradox.

Example 1.15 (Forrester paradox) Consider the following sentences of an SDL theory 7'
1. O—k: Smith should not kill Jones;
2. k — O(k A g): If Smith kills Jones, then he should do it gently;
3. k: Smith kills Jones.

The second obligation isa CTD obligation of the first obligation, because —£ and & are contra-
dictory. SDL alows so-called factual detachment, i.e.

Fo (BA (B = Oa)) — O«

and thereforewe have T' =5, O(k A g) from the last two sentences of 7. Moreover, we have
T =s. O—kandT =g, Ok, wherethelatter isderived fromthe CTD obligation O(k A g). The
main problem of this paradox is that O—-k and Ok are inconsistent in SpL, although the set of
premisesisintuitively consistent. Note that the paradox is a conflict between different types of
obligations: O—k isaviolated obligation and Ok is derived from the deontic cue O(k A g). O

Thefollowing, more complicated, CTD paradox was given by Chisholm [Chi63]. It ismore
complicated, because it also contains an According-To-Duty (ATD) obligation. A conditiona
obligation ‘ o ought to be the case if 5 isthe case,” represented by the sentence 3 — O« or by
the sentence O(5 — «), isan ATD obligation of O« iff 5 logically implies ;. The condition
of an ATD obligation is satisfied only if the primary obligation isfulfilled. Hence, the definition
of ATD isanalogousto thedefinition of CTD. A CTD obligationisan obligation conditional to a
violation and an ATD obligationisan obligation conditional to afulfillment of anobligation. The
paradox can be represented by several different setsof SpL formulas, which are either inconsis-
tent or not logically independent, see e.g. [Chi63, Aqu?, Smi93]. We first give an inconsistent
representation.

Example 1.16 (Chisholm paradox) Consider the following sentences of an SpL theory T

1. Oa: A certain man should go to the assistance of his neighbors;

However, the violation reading we give here of the formulais the reading given in the standard examples, like the
Forrester and Chisholm paradoxes below.

YForrester writesk — Og and g — k, wherethelatter hasthe status of atheorem (for the details, see Forrester’s
paper [For84]). Our simple representation is from [PS96].
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2. O(a — t): It should be that if he goes, then he tells them that he will come;
3. =a — O—t: If he does not go, then he should not tell them that he will come;
4. —a: He does not go.

The second obligation is an ATD obligation and the third obligation isa CTD obligation of the
first obligation, see Figure 1.4. Since SDL allows akind of so-called deontic detachment as a
result of the K-axiom, i.e.

Fo (OBANO(B— a)) — O«

we have T' =g, Ot from the first two sentences. We have T' =5, O—t from the last two sen-
tences by factual detachment. The paradox is that these two derived obligations are inconsis-
tent, although the set of premisesisintuitively consistent. The two conflicting obligations are
different types of obligations, because Ot is a consequence of a violated obligation and O—t is
adeontic cue. O

Oa Oa
implies inconsistent
Oa — t) —a — Ot
Figure 1.4: O(a — t) isan ATD of Oa and —a — O—tisaCTD of Oa

An alternative representation of the Chisholm set (see e.g. [Chi63, Aqv67, Smi93]) isto rep-
resent the second sentence by a« — Ot. An advantage of this representation is that the second
and third sentence are represented by logical formulas with the same structure. Moreover, it is
an attempt to solve the Chisholm paradox, because it makes the Chisholm set consistent. How-
ever, the following example illustrates that this ‘ solution” misses the point of the paradox. The
solution does not have deontic detachment whereas deontic detachment is in most cases intu-
itive. Thus, the representation O (a — t) derivestoo much (always deontic detachment) and the
representation a — Ot derivestoo little (never deontic detachment).

Example 1.17 (Chisholm paradox, continued) Consider the following SbL theory
T ={0a,a — Ot,—a — O—t,—a}

Notice that the second formula can be derived from the fourth formula. Chisholm remarked that
this logical dependence is counterintuitive, and several logicians (see e.g. [Aqv67]) have de-
manded that a solution of the Chisholm paradox should represent the sentences such that they
are logically independent. However, Tomberlin [Tom81] observes that the criterion is a ‘rather
glaring theoretical commitment’ which ‘would be a case of flagrant methodological question-
begging.” Moreover, thislogical dependence is easily solved by introducing aweaker notion of
implication. For example, the two conditional obligations can be represented by ¢ > Ot and
—a > O-t where ‘>’ isaso-called strict implication. This solves the logical dependence, be-
causetheformulaac — (« > () isin contrast to the formulaa — (a@ — () not atheorem, asis
explained in Section 1.3.5 below.
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The main problem underlying the Chisholm paradox iswhether we allow for deontic detach-
ment or not. If aconditional obligationisrepresented by O(3 — «) then deontic detachment is
(OB ANO(B — a)) — Oca, and when a conditional obligation is represented by 5 — O« then
deontic detachment in SDL is represented by the SbL formula

(OB A (B — Oa)) = O«

Thislatter formulais not valid in SbL, hence Ot cannot be deontically detached from the first
two sentences in SDL, unless the formulais added as an axiom. However, if it is added as an
axiom, then it reinstates the inconsistency of the Chisholm paradox. d

We argue in Chapter 4 that deontic detachment should sometimes hold and sometimes not.
Most people have aclear intuition that O—t should be preferred over Ot. Also we would expect
that if thefact —a was not the case, the preference would be the other way round. But this cannot
be obtained from the SDL representation, because in both cases Oa is true, from which Ot is
derived. Inthefirst case Oa isaviolated obligation and in the second case a deontic cue. Given
theintuitivereading above, Ot should only beinferred from Oa when Oa isafulfilled obligation
or adeontic cue. When it isadeontic cue, Ot is derived on the assumption that a will be true.
This reading of the example has a non-monotonic character, i.e. conclusions can be lost by the
addition of new information. On the other hand, SDL isaclassical modal logic, in which it is
Impossible to model such non-monotonic reasoning.

1.3.4 Solutionsof the contrary-to-duty paradoxes of SDL

B.Hansson [Han71] shows that the fundamental problem underlying these paradoxesis that the
type of possible world semantics of SDL is not flexible enough. In these semantics only two
types of worlds are distinguished in a model; actual and ideal ones. The ideal worlds have to
satisfy all obligationsin adeontic theory T'. Clearly, if these obligations contradict each other,
then a problem arises. As Lewis[Lew74] observes, ‘a mere division of worlds into the ideal
and the less-than-ideal will not meet our needs. We must use more complicated val ue structures
that somehow bear information about comparisons or gradations of value.” For example, in the
Chisholm paradox both Ot and O—t are implied. No ideal world can satisfy both ¢ and —t, and
this causes the paradox. Hence, ideal worlds are simply not enough. In order to model these
paradoxes properly, we need a notion of sub-ideal worlds, in which some but not all obligations
are satisfied. For example, in the Chisholm paradox we could distinguish between two types of
(sub-)ideal worlds: (sub-ideal) worldsinwhich —t istrue but not ¢, and (ideal) worlds in which
t istruebut not —¢. Thissolvestheinconsistency intheideal worlds. Moreover, having the finer
distinction between a hierarchy of (sub-)ideal worldsinstead of one type of ideal world, we can
define a preference ordering on these sub-ideal worlds. Given that it is afact that the man does
not go to the assistance, it is better not to tell the neighbors that he is coming than not going
and telling them that he will come. Hence, athough the sub-ideal worldsin which —a and —t
are true are not ideal, they are better than the worlds in which —a and ¢ are true. We say that
B.Hansson [Han71] introduced a dyadic deontic logic in which the ideality principle of SDL is
replaced by an optimality principle.
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“The problem of conditional obligation is what happens if somebody nevertheless
performs a forbidden act. Ideal worlds are excluded. But it may be the case that
among the still achievable worlds some are better than others. There should then be
an obligationto makethe best out of the sad circumstances.” Bengt Hansson[Han71]

The optimality principle is asolution of the Forrester paradox phrased in semantic terms. It
isformalized by dyadic deontic logic, and discussed in the following section. Four other solu-
tions of the Forrester paradox are based on temporal distinctions, the distinction between settled
and non-settled facts, scope distinctions and lack of weakening. All these solutions have their
shortcomings. In the remainder of this section we discuss a solution in temporal deontic logic,
and we discuss the alternative solutions and their shortcomingsin Chapter 2.

Sincethelate seventies, several temporal deontic logicsand deontic action logicswereintro-
duced, which formalize satisfactorily aspecia typeof CTD obligations, seefor example[ Tho81,
VES82, LB83, Mak93, Alc93]. We can distinguish two types of temporal deontic logics.

1. Themodal operatorsarerelativized with atemporal index. We mentioned thistype of tem-
poral deonticlogicin Section 1.2.2. By itself, this extension does not solve the paradoxes.

2. Thecondition of aconditional obligation occursbeforethe obligatory formula. Inthistype
of tempora deontic logic, the dyadic obligation O(« | 3) isread as‘if 3 isthe case, then
at later moments o ought to be the case’” The temporal lag between the condition and the
obligatory formulacan either be formalized by amodal operator [Alc93] or by atemporal
connective [Mak93].

Inthelatter temporal approach, the underlying principle of theformalization of CTD obligations
Isthat facts of the past are not inthe* context of deliberation’ [Tho81]. Hence, they can formalize
the Good Samaritan paradox in Example 1.13. We call thetemporal deontic logics of the second
type — condition before conclusion — the tempora solution of the CTD paradoxes. However,
they cannot formalize the variant of the paradox described by Forrester in Example 1.15 and the
Chisholm paradox in Example 1.16, because in these paradoxes there are CTD obligations of
which the consequent occurs at the same time or even before its antecedent.

Thedistinction between theideality principleand the optimality principle can berephrased in
terms of thistemporal perspective. Thomason [ Tho81] makes a distinction between the context
of deliberation and the context of justification, the latter is called the * context of judgment’ by
Loewer and Belzer [LB83]. He distinguishes between two ways in which the truth values of de-
ontic sentences are time-dependent. First, these values are time-dependent in the same, familiar
way that the truth values of all tensed sentences are time-dependent. Second, their truth values
are dependent of aset of choicesor future optionsthat variesasafunction of time. The context of
deliberation isthe set of choices when you are looking for practical advice, whereas the context
of justification is the set of choices for someone who isjudging you. The essential contrast be-
tween judgment and deliberationisadifferenceinwhat wetake as settled [Tho81, LB83, AB96].
The crucial distinction between the ideality and the optimality principleis also in what we take
as being settled.
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1.3.5 Dyadic obligations

Dyadic deontic logic formalizes conditional obligations. A dyadic obligation O(« | ) is read
as '« ought to be the case if 3 isthe case”’” The monadic obligations O« we discussed in the
previous sections can be seen asa special kind of dyadic obligationsO(«: | T). However, thisis
neither the only nor the obvious way to represent absol ute obligationsin adyadic deontic logic,
aswe discuss below. Theintroduction of the dyadic representation was inspired by the standard
way of representing conditional probability, thatis, by Pr(«|3) which standsfor ‘the probability
for a given 5.’ In Table 1.3 we reconsider the three main classification properties of Table 1.1
for dyadic deontic logics. Inthistable X standsfor the validity of atheoreminalogic (first two
rows) or for thefact that aformulaisawell-formed formula (wff) and satisfiable (last two rows).
R stands for restricted validity.

Condition Context
Ch-MbL ‘ Ch-SpL ‘ A-W | H-L ‘ ORD
Weakening | O(ay A as|8) = O(a1|8) X X X | X
And (O(a1]8) A O(az|B)) = O(a1 A as|B) X X | X R
Contextual | wff+sat: a A O(—a|T) X | X
Conditional | wff+sat: a A O(=a|T) and O(—a|a) X X

Table 1.3: Three main classification properties for dyadic deontic logic

The two properties weakening and conjunction remain the same, but the possibility to rep-
resent violations becomes more complicated. A dyadic deontic logic either has no possibility to
represent violations, only the possibility to represent them by the formulaa A O(—a| T), or the
two possibilitiesa A O(—a/|T) and O(—a|«). Hence, in the former case the formula O (—a|«)
Isnot satisfiable, but in the latter caseitis. We say that thelogic givesacontextual interpretation
of the antecedent of the dyadic obligationsif thelogic can represent violationsby a A O(—a| T)
but not by O(—«|«). In the other cases, we say that the logic gives a conditional interpretation
of the antecedent. The distinction between the conditional and the contextual interpretation of
the antecedent of dyadic deontic logics corresponds to the distinction between the ideality and
the optimality principle. Theideality principle correspondsto the conditional interpretation, and
the optimality principle is underlying the contextual interpretation of the antecedent of dyadic
deontic logics. Hence, the distinction between the conditional and contextual interpretation of
the antecedent ismotivated by attemptsto model contrary-to-duty reasoning. Moreover, thedis-
tinction corresponds to the distinction between the context of justification and the context of de-
liberation. The contextua interpretation of the antecedent refers to the set of options when you
are looking for practical advice (to make the best out of the sad circumstances). For example,
consider the formula O(—« | «), that characterizes the distinction between the conditional and
the contextual interpretation. With a conditional interpretation of the antecedent, the obligation
O(—a| ) considers the set of choices of someone who isjudging you, and this person observes
aviolation. With a contextua interpretation of the antecedent, the obligation O (—«/|«) consid-
ersthe set of choices when you are looking for practical advice. In the latter case, -« cannot be
reasonable advice if we know that « isthe case.

Whereas the distinction is very clear in the semantics, it is not very clear in the proof the-
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ory.™® Indeontic logic literature, the distinction between the two classesisrather confusing. For
example, B.Hansson [Han71] introduced the first deontic logic with a contextual interpretation,
and remarked that ‘ circumstances are regarded as something which has actually happened (or
will unavoidably happen) and which cannot be changed afterwards.” Lewis[Lew74] discusses
four logicswith acontextual interpretation of the antecedent and says that some other treatments
of dyadic deontic logic ‘ seem to be based on ideas quite unlike the one | wish to consider,” but
he does not give any formal discriminating properties. Moreover, Prakken and Sergot [PS97]
call a dyadic obligation a contextual obligation if its antecedent ‘stands for a constellation of
acts or situations that agents regard as being settled in determining what they should do,” quot-
ing Hilpinen [Hil93], but they also do not give formal properties of how contextual obligations
differ from other types of obligations.

Table 1.3 shows five deontic logics, three with a conditional interpretation of the antecedent
and two with acontextual interpretation of the antecedent, which are discussed below. Ch-MDL
and Ch-SbL are two ‘conditional’ logics proposed by Chellas [Che74], A-W is adyadic logic
proposed by Alchourron [Alc93] inthe tradition of von Wright's dyadic deontic logics, H-L are
deontic logics proposed by B. Hansson [Han71] and further investigated by Lewis[Lew74], and
ORD isthe ordering logic proposed in Chapter 2 of thisthesis.

We give a proof-theoretic analysis of the distinction between the conditional and the con-
textual interpretation of the antecedent of dyadic deontic logics by discussing the axiomsin Ta-
ble 1.4.1% Inthe dyadic case, we assumethe following two rules for substitution of logical equiv-
aents within the modal operator O (and similar rulesfor P).

Fa < o F B < Bo
FO(a1]B) + O(a2|B) FO(alB1) < O(alB)

Chellas [Che74] proposed dyadic obligations defined in terms of monadic obligations and
a conditional from conditional logic, that is, a strict or relevant implication. For an excellent
survey on Chellas-type conditional obligations, see[Alc93, Alc96]. Inthetable, wediscriminate
between MDL and SbL for the monadic obligations.

Definition 1.18 (Chellas-Alchourr6n-von Wright) Assumeamulti modal logicwhere[] stands
for an alethic modal operator that satisfiesat least T: Do — «, and the operators O and P stand
for obligation and permission, as before. A conditional obligation ‘ « ought to be the case if
isthe case’ isdefined by O(«| ) =uw 8 > Oa, Where 5 > a =4 O(8 — «) (thus combined
O(a|B) =4 O(8 — Oc)). Similarly, permission isdefined by P(«|5) =u« 3 > Pa. O

15Thedistinction between the contextual and conditional interpretation of the antecedent originatesin thedistinc-
tion between the two representations of conditional obligationsin monadic deontic logic, O(a|8) = O(8 — )
and O(a|fB) =4 B — Oa. Alchourron [Alc96] calls the former representation the insular representation of con-
ditional norms and the latter representation the bridge conception of conditional norms. In the latter representation
conditional norms are like bridges which link what is (or might be) the case to what ought to be (done). They re-
late the * Sein-reign’ with the *Sollen-reign’. A second origin is the distinction between ‘relative obligation’ and
‘conditional obligation’ discussed by Jackson [Jac85].

161 nthisthesis, we have chosen not to refer to the standard’ namesof axiomsand inferencerulesfrom conditional
logic for our inference patterns, because we want to stress that our inference patterns should be read as semi-formal
analysistoolsinstead of rules of alogic. Moreover, the standard names sometimes refer to left and right (like LLE
= |eft logical equivalence) and left and right have been exchanged for the deontic conditional O(«|8) compared to
the conditional 8 > « from conditional logic. Finally, we do not use these names, because they are difficult to read
for people outside thefield of conditional logic. For example, weakening of the consequent is often represented by
RCM.
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Condition Context
Ch-MpL | Ch-SpL | A-W | H-L | Orp
WC | O(a1]8) = O(ey V a2|B) X X X | X
And | (0(a1|B) A O(az|B)) = O(a1 A as|f) X X X R
O(CM|,8) —def ,6 > O« X X X
O(CM|,8) =def ﬂ >oQ X R
O(alB) = O(a A B|B) X R
O(ala) X R
SA | O(alp1) = O(alBy A B2) X X X R
FD | (O(alB) AB) = Oa X X X
DD (0(a|B) AO(Bly)) = Olaly)
DDT | (O(eB) AO(B|T)) = O(a|T) X
DD' | (O(alB) AO(Bly)) = O(a A Bly) R
RBC | (O(aB1) A O(a|Bs)) = O(a|Br V B2) X X X X
P(a|B) = ~O(—a|B)
OO& =def O(a|T)

Table 1.4: Different types of dyadic deontic logics

In the discussion of the Chisholm paradox in SDL in Section 1.3.3, we observed that the
representation ¢ > Ot solves the logical dependence between ¢ — Ot and a. The formula
a — (o — () atheorem of SDL, and asaconsequence we can derivea — Ot froma. However,
with the strict implication we do not have the theorem o« — (« > (), i.e. we do not have the
theorem o — O(« — (), because we do not have o — . We now consider the propertiesin
Table 1.4. Given the well-known theorems of T,

(B>a) = (6—a)

(Br>a) = (B A B2) = )
(ﬁ>a1/\ﬂ>a2)<—>(ﬂ>(a1/\a2))
(61>a/\ﬂ2>a)—>((ﬂ1\/ﬂg)>a)

it follows directly that the dyadic obligations have the theorems FD, SA, And and RBC of Ta
ble1.4. Factual detachment FD, or the derivability of monadic obligationsfrom the dyadic ones,
followsfrom thefirst theorem, strengthening of the antecedent SA follows from the second the-
orem, the conjunction rule And follows from the third theorem and the conjunction rule of the
monadic obligations, and reasoning by cases RBC, or the sure-thing principle, followsfrom the
fourth theorem. Chellasarguesthat these dyadic obligationsrepresented by 5 > Oa donot ‘fuse
the notions of obligation and conditionality.” These deontic logics can be contrasted to condi-
tional obligationswhich are expressed with aprimitive dyadic operator (which werepresent with
>0 in Table 1.4), like the deontic logics with a contextua interpretation of the antecedent. In
particular, Chellas argues that for the latter obligations, the connection between the notion of
obligation involved in O(« | 3) and that expressed in nonconditional contextsis ‘not evident'.
Two potential extensions of the Chellas-type logics are the definitions of absolute obligations
and permissions in terms of the dyadic obligations. Alchourron [Alc93] shows that the repre-
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sentation of permission P(« | ) =« —O(—a | B) iswrong (the ‘first misfortune’), because
‘the negation of aconditional statement usually isnot a conditional statement.” Alchourron fur-
ther remarks that thiswas a so denounced as mistaken by Castaieda. The definition of absolute
obligations in terms of dyadic obligations with a tautological antecedent O =4 O(« | T) is
the *second misfortune.” Von Wright [VW68] proposed two ways to represent monadic obliga
tions O« inadyadic logic: by O(«| T) and by O(« | S), where S stands for what von Wright
calls the actual circumstance. Alchourron [Alc93] observes that the former has been followed
unanimously by all deonticlogicians, athough thereisadifficulty inthe procedure. The obliga
tion O(a| T) represents (O« i.e. the obligation to do « in all possible circumstances. On the
other hand, the simple monadic operators O and P admit the possibility of being used to norm
for asingle possible circumstance ¢ (which may be the actual circumstance). In this sense, they
may be used to express what Alchourron calls categorical norms, i.e. norms that are not gen-
eral in relation to circumstances. In Alchourron’s words, this misrepresentation is ‘ the ghost of
categorical norms.’

Lewis[Lew74] compares four deontic logics that give a contextua interpretation of the an-
tecedent of the dyadic obligations: dyadic logics proposed by B.Hansson [Han71], by Fallesdal
and Hilpinen [FH71], by van Fraassen [vF72] and by himself. All these logics are quite simi-
lar, because they do not have strengthening of the antecedent SA and factual detachment FD.
It is exactly for the lack of these two properties that these logics have been criticized. Lack of
strengthening of the antecedent is generally felt to be counterintuitive for logics of obligations,
see e.g. [Alc93]. Castaneda [CasB81] argues that the denial of strengthening of the antecedent is
a ‘negative solution that looks like overkill and leaves a converse problem unsolved,” because
‘it tempers with the extensionality of ought and it cannot account for the fact that only in very
few cases we seemto have the situation of an obligation cancelled by the addition of another cir-
cumstance.” Loewer and Belzer [LB83] distinguish between dyadic obligations that have fac-
tual detachment FD, and those that have deontic detachment DD (terminology introduced by
Greenspan [Gre75]). Moreover, they criticize Hansson-Lewis semantics because ‘it does not
contain the resources to express actual obligations and no way of inferring actual obligations
from conditional ones.” Again, two potential extensions of the logics are the definitions of abso-
lute obligations and permissions in terms of the dyadic obligations. Chellas [Che74] remarks
that ‘another problem with the unanalyzed deontic conditional operator concerns conditional
permission, typically taken to be expressed by sentences of the form —O(—« | 3), by analogy
with the rendering ~O—« for unconditional permission. It isnot clear that thisisafaithful rep-
resentation of conditional permission; P(« | 3) appears to be more the denial of a conditiona
prohibition than the conditional affirmation of a permission.’

The contrary-to-duty paradoxes lead to problems for dyadic obligations with a conditional
interpretation of the antecedent similar to the problems in standard deontic logic. As a conse-
guence, these logics cannot formalize contrary-to-duty reasoning. In Chapter 2 we show by the
dyadic version of the Forrester paradox {O(—k|T),O(k A g| k), k} in Figure 1.5 and 1.6 that
the underlying problem in the proof theory istwofold:

1. The combination of unrestricted strengthening of the antecedent SA and the conjunction
rule And derivesO(—kA(kAg)| k), asisrepresented in Figure 1.5 below. Strengthening of
the antecedent has to be restricted such that O(—k| k) cannot be derived from O(—k|T).
This can be done with a consistency check on the antecedent and the consequent of the
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obligation. If we express a ‘consistency check’ of « by the formulag «, then we can
expressarestricted form of strengthening of the antecedent by thefollowing formulaRSA:

(O(alB)A G (a A By A Ba)) — OalBi A By).

OkT)
OCkE) > Ofhnglk)
O~k A (kA g)[F)

Figure 1.5: The Forrester paradox in dyadic deontic logic (1)

2. Thecombination of restricted strengthening of the antecedent RSA, weakening of the con-
sequent W C and the conjunction rule And derivesthe obligation O (= (kA g) A (kA g) k),
asisrepresented in Figure 1.6 below. Thus, the weakening of SA to RSA isnot sufficient
to solve the paradox. A logic that combines (restricted) strengthening of the antecedent
with weakening of the consequent also has to block this second counterintuitive deriva-
tion.

O(k[T) o
OC=(kAIT)
O(=(k N g)lk) O(k A g|k)
O(—(kAg) N (kN g)lk)

Figure 1.6: The Forrester paradox in dyadic deontic logic (2)

From the discussion of the Forrester paradox in dyadic deonticlogicfollowsthat Chellastype
of dyadic deontic logicswith aconditional interpretation do not solve the paradox, because they
have sA and wc, asillustrated in Table 1.4. The Hansson-L ewis dyadic obligationswith acon-
textual interpretation of the antecedent can formalize the contrary-to-duty paradoxes, because
they do not have strengthening of the antecedent. Moreover, they cannot have any restricted
form of strengthening of the antecedent, because they aso have weakening of the consequent.
However, as we aready remarked the denial of strengthening of the antecedent is a ‘ negative
solution that looks like overkill’ [Cas81]. The ordering logic ORD in Table 1.4 we introduce
in Chapter 2 has strengthening of the antecedent and therefore does not have weakening of the
consequent. Inthisthesis, weintroduce three solutions of the problem of combining (restricted)
strengthening of the antecedent and weakening of the consequent. In Chapter 2 we introduce
two-phase deontic logic 2DL that blocks the second counterintuitive derivation in Figure 1.5 by
introducing two phases in the proof theory. The first phase has strengthening of the antecedent
and the second phase hasweakening of the consequent. Hence, itisnot possibleto usefirst weak-
ening of the consequent and afterwards strengthening of the antecedent. This blocks the second
derivation. The two other solutions introduced in Chapter 3 extend the language of dyadic de-
ontic logic. Labeled deontic logic LDL is based on the distinction between implicit and explicit
obligations, a distinction analogous to the distinction between implicit and explicit knowledge.
Contextual deontic logic CDL explicitly represents exceptions of the context of obligations.
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In this section we discussed the problem of the formalization of contrary-to-duty paradoxes
in monadic and dyadic deontic logic. In the remainder of this discussion of the philosophical
foundations of deontic logic, we discuss several other issues. In the following subsection we
discuss conflict resolution and violation diagnosis, and in the last subsection we discussthe rep-
resentation of actionsin deontic logic.

1.3.6 Defeasible obligations

In the introduction in Section 1.1 we already observed that there is no undisputed definition
of ‘defeasible deontic logic.” However, it is generaly accepted that a defeasible deontic logic
should be able to deal with conflict resolution and that it should be able to diagnose violations.

Conflict resolution. In a defeasible deontic logic, obligations can be overridden by other
obligations. Overridden defeasibility becomes relevant when thereis a (potential) conflict!’ be-
tween two obligations. For example, thereisaconflict between O(« |6;) and O (s | B2) when o
and o, are contradictory, and 3, and 3, arefactually true. There are severa different approaches
to deal with deontic conflicts. In standard deontic logic SbL adeontic conflict isinconsistent. In
minimal deontic logic MDL aconflict is consistent and called a ‘ deontic dilemma’. In a defea
sible deontic logic a conflict can be resolved, because one of the obligations overrides the other
one. For example, overridden structures can be based on a notion of specificity, likein Horty’s
well-known example that ‘you should not eat with your fingers,” but ‘if you are served aspara-
gus, then you should eat with your fingers' [Hor93]. In such cases, we say that an obligation is
cancelled when it is overridden. The obligation not to eat with your fingersis cancelled by the
exceptional circumstances that you are served asparagus. A different kind of overridden struc-
tures have been proposed by Ross [Ros30] and formalized, for example, by Morreau [Mor96].
In Ross' ethical theory, an obligation which is overridden has not become a ‘ proper’ or actual
duty, but it remainsin force as aprimafacie obligation. For example, the obligation not to break
a promise may be overridden to prevent disaster, but even when it is overridden it remainsin
force as a prima facie obligation. We say that as actual obligation the overridden obligation is
cancelled, but as primafacie obligation it isonly overshadowed. We analyze the different types
of defeasibility in defeasible deontic logic in Chapter 4.

Violation diagnosis. Deontic logic is the logic of obligations, i.e. reasoning about what
should be the case. Defeasible logic is the logic of default assumptions, i.e. reasoning about
what normally is the case. In defeasible deontic logic these two are combined. An example of
this combination is the sentence ‘normally, you should do p.” Defeasible deontic logic is com-
plex, because there are two interfering notions. Consider the sentence ‘ normally, you should do
p.” Now the problem iswhat to conclude about somebody who does not do p? Isthis an excep-
tion to the normality claim, or isit aviolation of the obligation to do p? This confusion arises
because thereis a substantial overlap between deontic and defeasibility aspects. We analyze the
distinction between violations and exceptions in Chapter 4.

There are at least two formal definitions of defeasibility. A defeasible expression can befor-
malized in anon-monotoniclogic, or in aconditional logicinwhich the conditionalsdo not have

"When we say conflicts, we mean conflicts within one normative system. Von Wright [vW71b] observed that
‘unconditional dutiesunder different lawsor systems of normsmay, of course, conflict, in the sensethat they impose
logically contradictory demandson an agent. Such cases, however, arelogically uninteresting and should better not
be regarded as genuine ‘ conflicts of duties’ at all.’
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strengthening of the antecedent. For example, consider the default expressions *birds fly’ and
‘penguins do not fly.” In anon-monotonic logic, flying (f) can be derived from bird (b), but not
from penguin (b A p). In contrast, non-flying (—f) can be derived from penguin (b A p). Ina
conditional logic the two default expressionsarerepresented by b > f and (bAp) > —f respec-
tively, where > is aconditional implication from conditional logic. The conditional expression
(b A p) > f cannot be derived from b > f, which corresponds to the non-derivability of f from
b A p in anon-monotonic logic. Hence, in a conditional logic the defeasibility is represented
by lack of strengthening of the antecedent of the conditionals. Alchourron [Alc93] dubbed such
conditionals ‘ defeasible conditionals.” In this thesis we mainly use the latter representation of
defeasibility. Strengthening of the antecedent is the most discussed derivation isthisthesis.

1.3.7 Actions

It is an open question whether the logic of statements like ‘it ought to be that « is the case’ is
analogous or different from thelogic of statementslike‘« ought to be done.” Thetwologicsare
sometimes called the logics of ought-to-be and ought-to-do obligations, or the logics of sein-
sollen and tun-sollen. Humberstone [Hum71] also makes a distinction between two kinds of
ought statements — what he calls ‘situational” and *agent-implicating’ oughts. Horty and Bel-
nap [HB95] describe the following example. Let us first imagine a case in which Albert has
competed inagymnasticsevent. Suppose Albert’s performanceisclearly superior, but thejudge
isknown to be biased, and it islikely that he will award the medal to someone else. If one then
said ‘Albert ought to win the medal,’ thisisakind of statement that Humberstone would clas-
sify as a situationa ought. It reflects ajudgment about the situation, not about Albert, and can
be paraphrased as ‘it ought to be that Albert winsthemedal.” Thereisno implicationthat Albert
will be at fault if he fails to win the medal, or that winning the medal is now within his power.
By contrast, suppose Albert has not kept up with histraining schedule. One might then say, ‘ Al-
bert ought to practice harder,” and thiswould be the kind of ought statement that Humberstone
classifies as agent-implicating. It implies that Albert is able to practice harder, and places the
blame on him if hefailsto do so.

In deontic logic literature, deontic statements of the type ‘you ought to do o’ are presumed
applicable to any proposition a.. For example, in STIT theory (see [HB95] for an overview) an
obligation O« isread as*the agent ought to seeto it that « isthe case.” Thisa can be any propo-
sitional sentence. On the other hand, decision theoretic methods treat actions as distinct, prede-
fined objects. In deontic logic literature, this is observed and investigated by Meyer [Mey88].
Asis well-known from the action logic literature, the formalization of actions induces several
typical problems. For example, one of the most notorious problems is the interpretation of the
negation or complement of an action (the omission of the action). Actionsin Meyer’s dynamic
deontic logic have the following properties.

1. Actions are deterministic. See e.g. [TH96] how nondeterministic actions can be formal-
ized.

2. Theactionsdo not interfere. The global outcome when actionsa, . . . a,, are concurrently
performed at m —that is, the state associ ated with the moment that resultswhen the actions
are performed concurrently in m — is determined by the local outcomes of the separate
actions.
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Deonticlogicliterature has mainly addressed propositional languages, because anal ogues of most
properties (for example weakening and strengthening) also occur in an action logic. Asaconse-
guence, the problems discussed in ought-to-be logics also occur in ought-to-do logics. For ex-
ample, the CTD paradoxes also occur in ought-to-do logics. To illustrate the occurrence of the
CTD paradoxes, we first give a semantic intuition and then give the syntactic counterpart. As
we discussed, the problem of standard deontic logic is that there is only a distinction between
good ideal and bad violation. The Hansson-Lewis dyadic deontic logics replace the distinction
between good ideal and bad violation worlds of the monadic deontic logics by a preference or-
dering on worlds. Anaogously, smple deontic action logics only have a distinction between
good ideal actions and bad violation actions. Dynamic dyadic deontic |ogics replace the distinc-
tion between good ideal and bad violation actions by a preference ordering on actions. For the
introduction of a preference ordering in the STIT approach, see [HB95, p.617]. We now con-
sider the occurrence of weakening and strengthening in the syntax. We discuss the occurrence
in Meyer’s dynamic deontic logic, without discussing the proof theory or the semantics of the
logic. Meyer’slogic contains an action language that has among others atomic actions and the
connectives ‘U’ for choiceand ‘&’ for concurrency. Moreover, the logic has the following the-
orems that express weakening. It illustrates that in this calculus choice and concurrency play
asimilar role as disunction and conjunction in the propositional languages. For example, the
analogy between choice and disjunction is that the introduction of choice oy — (a; U ap) and
disunction a; — (a1 V ) introduce ‘weaker’ descriptions of actions respectively states.®

Oa1 — O(Ofl U 042)
O(Ofl&ag) — Oa1

Meyer does not define dyadic deontic operators, but they can easily be introduced (at least
in the language). Given the analogy of choice and concurrency with disjunction and conjunc-
tion, we can define analogues of the theorems which we discussed when we analyzed proposi-
tional dyadic deontic logic. The following formulas express weakening of the consequent and
strengthening of the antecedent.

WCU O(Ofﬂﬂ) —>O(a1Ua2\ﬂ)
WC& O(al&&g‘ﬂ) — O(Oéﬂﬂ)
SAe  O(a|fr) = O(a|bi&ps)

SAy O(a|BiU By) = O(alpr)

The point isthat many deontic problems, liketheformalization of contrary-to-duty structures
we study inthisthesis, can be analyzed in apropositional language or in an action language. De-
ontic logic literature has therefore mainly addressed the simpler propositional languages. For
example, in adynamic dyadic deontic logic we can analyze the Forrester paradox as a problem
of combining strengthening of the antecedent and weakening of the consequent (the formulas

18This weakening has a semantic counterpart. For propositional logic, the set of models of «/; is a subset of the
models of a; V as. In dynamic logic, the set of worlds referred to by the modal operator [o;] is a subset of the
set of worlds referred to by the modal operator [a; U ap]. For concurrency &, the semantic analogy follows from
property (2), i.e. that the global outcome of actions performed concurrently is determined by the local outcomes of
the actions.



34 CHAPTER 1. DEONTICLOGIC

above). Makinson [Mak93] aso argues that deontic problems should be analyzed in a ssmple
setting. He lists some open problems of deontic logic. Besides the distinction between sein-
sollen and tun-sollen he mentions that the focus on the very best worlds satisfying « (or satis-
fying some more complex condition) may to be be relaxed somewhat, that the use of a single
ordering relation of degrees of goodness of worlds may not be enough, that the representation
of human agency by an accessibility relation between worlds may be too simplistic for some
purposes, and finally, that an analysis of what should be done does not determine which agents
should be bearers of the obligation. Makinson observes that deontic logic is thus a subtle affair
even without conditionality. Logics of conditional obligation that take into account factors such
as those listed above will tend to become quite intricate. Makinson concludes that such a sit-
uation faces the logician with a dilemma: simple structures convey very basic distinctions and
insights, but are gross oversimplifications. Complex structures may come closer to the contours
of discourse, but can be extremely cumbersome to handle, with insights disappearing in a mass
of overheads and book-keeping. At the present state of play, it would not seem advisable to try
to cover al complicating factors at once, but rather to get an initial appreciation of them few at
atime, only subsequently putting them together and investigating their interactions.

An interesting question of tun-sollen and sein-sollen which can only be analyzed in a dy-
namic deontic logic isthelogical relationship between ought-to-be and ought-to-do obligations.
For example, if v isan obligatory action and (3 isanecessary post condition of the action «, does
thisimply that there is an ought-to-be obligation for 3? Or, if an agent has the obligation to see
to it that « isthe case, does thisimply that « ought-to-be the case? This type of questions are
beyond the scope of thisthesis, seee.g. [HB95].

1.4 A personal perspective

Thusfar, asurvey of philosophical and artificial intelligence literature of deontic logic has been
given. In thissection | give my personal view on deontic logic.

1.4.1 Research vision

Deontic logic has been studied as a modal system, and it is usually presented as a syntactic-
axiomatic system. Unfortunately, in my opinion this approach has not been very successful, as
isillustrated by the many deontic paradoxes. The semantic approach has had |ess attention. The
modal logics have aKripke semantics, of course, but this semanticsisnot very useful or insight-
ful. Itisnot very clear what an ideal alternative of aworldis, and it iseven more obscure what an
ideal alternative of an ideal alternativeis. When we consider the semantics, we can distinguish
two main classes of approachessince SDL has been departed. Thefirst approachisbased onase-
mantic concept of timeand action [ Tho81, VES2, LB83, Mak93, Alc93, HB95, Hor96]. The sec-
ond approach is based on preferences, either in monadic deontic logic [Jac85, Gob90b, Han90b]
or in dyadic deontic logic [Han71, Lew74], and is related to defeasible deontic logic. Therela
tion between preference-based deontic logic and defeasible deontic logic has to be interpreted
carefully. A defeasible deontic logic hasto be able to deal with conflict resolution and the diag-
nosis of violations. However, in my opinion there is more to defeasibility. In particular, defea
sibility can be used to solve deontic paradoxes, but this does not mean that | argue that deontic
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paradoxes may be solved by interpreting them as conflicts to be resolved. Hence, | do not argue
that the deontic paradoxes may be solved with restoring consistency techniques. We haveto use
another type of defeasibility.

Thusfar, thetime- and preference-based approaches are rivalsand have not been merged suc-
cessfully. Moreover, both have made claims concerning the formalization of contrary-to-duty
reasoning. | favor the complex solution of the contrary-to-duty paradoxes based on preferences
and defeasibility because, in my opinion, the other solutions are not very satisfactory. Thisfol-
lows from the pragmatic oddity discussed by Prakken and Sergot [PS96], which was already
mentioned in theintroductionin Section 1.1. From the following three sentences of an SDL the-
ory ‘you should keep your promise’ Ok, ‘if you have not kept your promise, you should apolo-
gize -k — Oa and‘you have not kept your promise’ —k theformulasOkAOa and O(kAa) can
be derived. Prakken and Sergot remark ‘but it isabit odd to say that in all ideal versions of this
world you keep your promise and you apol ogizefor not keeping it. Thisoddity —wemight call it
the' pragmatic oddity’ — seemsto be absent from the natural language version, which means that
the SDL representation is not fully adequate.” Thisiswhat | consider a major understatement.
In my opinion, the derivation of O(k Aa) isnot only ‘abit odd’ and does not mean that thelogic
isonly ‘not fully adequate,” but it meansthat the logic is not capable of formalizing contrary-to-
duty reasoning. For example, just think of what the semantics of the obligation O(k A a) must
look like, if it is given asensible reading. In my opinion, the consequence isthat SpbL and sev-
eral other logics have to be rejected as candidates to formalize contrary-to-duty reasoning. In
particular, it remains to be shown whether the time-based approach can deal with the pragmatic
oddity.

| also followed the semantic approach when | analyzed defeasi ble deontic reasoning, i.e. de-
ontic reasoning combined with conflict resolution. The problem that faced me when | started
my research was how to compare the different defeasible deontic logics. There did not seem to
be any good toolsfor the analysis, because defeasible deontic |ogic was a new and undevel oped
(but therefore exciting) area. | developed the following two tools.

1. Thefirsttool | used was multi-preference semantics. The preferences represent the notion
of deontic choice: an obligationfor o isformalized asakind of choice between o and —a.
The semantic analysisisbased on the distinction between two preference orderings, which
reflects the distinction between violations and exceptions.

2. Second, | found inspiration in the Kraus-Lehmann-Magidor approach [KLM9Q] in arti-
ficia intelligence on meta-level analysis of non-monotonic reasoning (applied to default
reasoning). | used similar techniquesto study defeasible deontic logic, the so-called infer-
ence patterns. These patternsfocus on structural properties of thelogic such that | became
ableto get agrip on the underlying mechanisms. The two most basic mechanismsare rep-
resented in Figure 1.7 below.

(@ O(a|p) isan overriding obligation (based on specificity) of O(a; |f:) iff a A oy is
inconsistent, and 3 is more specific than 3,, and
(b) O(«|p) isacontrary-to-duty obligation of O (a1 |3;) iff 5 A o isinconsistent.
The multi preference semantics and the inference patterns work together like a tandem. The

result isageneral analysis of different types of defeasibility in defeasible deontic logics, where
the intuitions behind the various distinctions are illustrated with preference-based semantics.
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O(a1|B1) O(a1|B1)
inconsistent ;npcg:(ieﬁ c inconsistent
O(a|p) O(a|B)
a. specificity b. CTD

Figure 1.7: Specificity and CTD

Finally, I think that deontic logic only covers a small portion of the formalization of nor-
mative reasoning. | started to analyze contrary-to-duty reasoning by formalizing it in a theory
of diagnosis. This did not give any problems for contrary-to-duty paradoxes, see Section 5.3.
Later, it was shown that contrary-to-duty reasoning can be formalized in atheory of qualitative
decision, see Section 5.2. However, in the deontic logicians perspective, this formalization of
normative reasoning does not tell anything about obligations, becauseit does not tell which obli-
gationsfollow from a set of obligations. That is, | did not present adeonticlogic. This hasbeen
pointed out, in particular, by Henry Prakken and Marek Sergot. The point can be illustrated by
the following example. In the so-called Diagnostic framework for DEontic reasoning DIODE an
obligation for « is represented by the formula—V; — «, to beread as ‘if norm i is not violated
then a isthe case. A set of such obligationsis called a normative system. Consider the norma-
tive system with two norms‘ « should be done’ and ‘b should be done,” represented by —=V; — «a
and =V, — b respectively. Now, athird norm ‘a A b should be done' can be added without
changing any of the conclusions of the normative system. The only distinctionisthat V3 is part
of adiagnosisif and only if V; and V; are part of the diagnosis, but the set of diagnoses and the
related measurements remain the same (see Section 5.3 for the technical details). This means
that the norm ‘a A b should be don€' islogically implied by ‘a should be done’ and ‘b should
be done’. Thislogical relationship explains the meaning of the norms. However, the obligation
“a A b should bedone cannot be derived in DIODE. Hence, from -V, — a and -V, — b | could
not derive =V, — (a A b). So, | understood that | had to reverse the approach. | could not build
adeontic logic on top of atheory of diagnosis. Instead, | should use deontic logic in atheory of
diagnosis! A theory of diagnosis can use deontic logic to represent system rules and violations
of these system rules. Similarly, qualitative decision theory uses preference-based deontic logic
to formalize reasoning about context-sensitive goals. Qualitative decision theory can also tell
us how norms affect behavior. The behavior of agents depends on the knowledge they have of
other agents. In particular, agents behave on the degree of belief they havethat other agents have
fulfilled their obligations. For example, in the protocol of Example 1.4, the buyer will not pay
unless she has sufficient evidence that the seller has actually delivered the goods. | think that
theories that formalize reasoning with norms, like diagnosis and decision theory, deserve more
attention from researchers that study normative reasoning.

1.4.2 Research challenges

When | started my PhD research, | read a few articles on defeasible deontic logics. Unfortu-
nately, | did not find them very satisfactory. For example, the solution of the contrary-to-duty
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paradoxes based on conflict resolutionisvery ad hoc, as| aready discussed in the introduction.
My first challenge was to describe the relation between defeasibility and the contrary-to-duty
paradoxes. Later | studied Horty’s logic [Hor93], which seems to represent the paradoxes sat-
isfactorily. However, the logic had some other problems. It is based on Reiter’s default logic,
a proof-theoretic system which does not have a semantics. More seriously, Horty’s logic does
not have a possihility to represent violations. As a consequence, the logic did not solve the is-
sueof violation diagnosis, because it confuses the distinction between exceptions and viol ations.
My second challenge was to distinguish these two elements. To distinguish the two elements, |
used multi preference semantics. The representation of exceptions by preference-based seman-
ticsiswell-known from the artificial intelligence literature. My third challenge was to describe
therel ation between preferences and the contrary-to-duty paradoxes. Summarizing, my research
challenge has been the following.

Research challenge. Show the relation between obligations, preferences and de-
feasibility.
| devel oped preference-based defeasible deontic logicsto study thisrelation. Many technical
problems popped up when | started to develop deontic logics with multi-preference semantics.
Some of these problems already appear when there is a single preference ordering. The devel-

opment of preference-based deontic logic is plagued by the following three (related) problems,
which are discussed in detail in Chapter 2.

1. Strong preference problem. Strong preferences for a; and «,, conflict for a; A —a, and
—aq N o,

2. Contrary-to-duty problem. Contrary-to-duty reasoning must beformalized without run-
ning into the notorious contrary-to-duty paradoxes of deontic logic.

3. Dilemma problem. The three combined formulas Oa A O—a, O(a; A as) A O—aq and
O(aq A az| T) A O(—ay | B) represent dilemmas and should therefore be inconsistent.

Two other problems | encountered are related to deontic logics in general, and in particular to
dyadic deontic logics. They are also discussed in detail in Chapter 2.

4. Permissions. In SpL, (weak) permissions are sometimes defined by Pa =, ~O—«, but
thisvalidatesthe counterintuitivetheorem Oa VvV P—a. | thereforelooked for an alternative
notion of (strong) permission.

5. Factual detachment. Unrestricted factual detachment can be used to derive pragmatic
oddities. So | looked for other types of factual detachment.

| encountered more problems when | tried to formalize defeasible deontic logic with multi
preference semantics. These problems are related to the distinction between violations and ex-
ceptions. The idea of multi-preference semantics can beillustrated by a model of two sentences
of the Cottage Housing regulationsin Example 1.3 (the second sentence has been adapted).

1. O(—=f|T): There should be no fence,

2. O(f]s): If the cottage is by the sea, then there should be a fence.
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The typical multi preference model is represented in Figure 1.8. This model is explained in de-
tail in Chapter 4. It can beread asfollows. The circles denote equival ence classes of worldsthat
satisfy theliteralsinside the circles and the * horizontal’ arrows denote the deontic preference or-
dering. The boxes denote equivalence classes in the normality ordering and the ‘vertical’ arrow
the normality preference ordering. The two sentences construct two preference orderings on the
worlds: one ordering for ideality and one for normality. The idea of the preference ordering on
normality is that the worlds with exceptional circumstances (where the cottage is near the sea)
are semantically separated from the normal situation (where the cottage isnot near the sea). The
upper box representsthe ‘normal’ worlds, which is determined by thefact that s isfalse, i.e. the
cottage is not near the sea. Deontically, the —s worlds are ordered according to the obligation
that, usually, there should be no fence. The lower box contains the worlds where s is true and
which are therefore exceptional. These worlds are deontically ordered by the obligation that in
this situation, there should be afence. Because of the exceptional circumstances, the worlds are
not subject to the obligation that usually, there should not be afence. In the ideality ordering,
thenormal —s A —f worlds and the exceptional s A f worlds are equivalent.

ided situations sub-ideal situations

)
exceptional s, f | <e——— @

Figure 1.8: Multi-preference relation of the Fence example

Thiskind of multi preference semantic structures |leave uswith the following two problems:

6. Modé construction. How isamulti preference model constructed, given aset of obliga-
tions?

7. Entailment. Given a multi preference model, which obligations are true in the model?
For example, consider the definition O« istrueif a istruein the most normal of the best
worlds, or in the best of the most normal worlds. It isnot very satisfactory, becausein that
case we have M = O—s for themodel M in Mode 1.8. This counterintuitive derivation
represents that s isaviolation, whereas s is not a violation but an exception.

1.4.3 Research validation

Thevalidation of the research challenge is based on the devel opment of preference-based defea-
sible deontic logics. The logics are used to show the relation between obligations, preferences
and defeasibility. The logics must have the expressive power to distinguish between exceptions
and violations. The success test of any logic isthat it derivesthe ‘right’ set of sentencesfrom a
set of sentences. The problemis, of course, how to distinguish between right and wrong. There
are two waysto validate the properties of alogic.
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1. Natural language intuitions. Intuitions can be used to analyze the derivable theorems.
It isthe most often used way to analyze alogic, especially in philosophica literature. Un-
fortunately, it is also the most problematic approach, because the intuitions of people dif-
fer on the examples. Alchourron [Alc93] observes that the source of the problem laysin
the difficulties involved in the process of finding intuitive correlates of principlesin the
highly ambiguous uses of deontic and related sentences (such asimperatives) in everyday
discourse and in more sophisticated (legal and moral) contexts.

2. (Semantic) explanation. Alternatively, it can be anayzed whether the semantics give a
good representation for varying sets of premises. Kripke semanticsexplain thedistinction
between actual and ideal. In my opinion, this is a quite limited explanation. Temporal
semantics explain that obligations change in time. Preference-based semantics explain
the notion of deontic choice.

Moreover, the logics have to solve the seven problems discussed above. In genera, asimple
solutionispreferred to acomplex one, because complex solutionsare moredifficult to formalize.
Of most of the seven issues, it can be verified easily whether their solution is successful or not.
The most problematic is the formalization of contrary-to-duty reasoning. The success test of
the formalization of contrary-to-duty reasoning is a satisfactory formalization of the contrary-
to-duty paradoxes.

1.4.4 A defense of the paradoxes

| end this personal perspective with a defense of the deontic paradoxes as a success test. First,
observethat the examplesaretypical for alarge set of examplesthat are structurally similar. For
instance, Horty’s exampl e of table manners ‘you should not eat with your fingers, unlessyou are
served asparagus’ has the same structure as ‘ you should not kill, unlessthe patient is terminally
ill and in excruciating pain.’ Moreover, there are many sentences with the same structure as
the Forrester paradox ‘ Smith should not kill Jones, but if he kills him he should do it gently.’
Consider the following four examples given in deontic logic literature.

1. Smith ought not to perform in South Africa, but if he performsin South Africa he ought
to perform in Soweto [ Gob91].

2. Jones ought not to wear red to school, but if he wears red to school, then he ought to wear
scarlet to school [Gob91].

3. There must be no fence, but if there isafence it must be awhite fence [PS96].

4. The children ought not to be cycling on the street, but if they are cycling on the street they
ought to be cycling on the left hand side of the street [PS96].

| think that many examples seem trivial, but they are not. They are the result of several
decades of research on deontic logic and have to be taken seriously. The answer to the question
whether some sentence should be derivableisoften not just yes or no, but somethingin between.
That is, intuitively they are only derivable under certain circumstances or with acertaininterpre-
tation of the obligations. To seethe point of the puzzles, you have to do some puzzling yourself.
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Itislikeplaying cryptograms. Youfirst haveto try the puzzle yourself, otherwise you do not see
the fun. In the remainder of this section | give four examples of these puzzles, and a possible
solution based on the analogy between obligations and imperatives.

Chisholm paradox. Remember that the SDL theory
{Oa,0(a — t),~a = O—t,—a}
Isinconsistent whereas the SDL theory
{Oa,a — Ot,—a — O—t,—a}

is consistent. However, the second set does not derive Ot, whereas ¢ is true in the ideal
state. Even more problematic isthe lack of the derivation of O(a A t) from the second set.
The set is consistent, but it does not solve the paradox. The problem is whether there is
an obligation to tell the neighbors. Consider the case in which —a is not a premise. Ask
someone who has not been influenced by deontic logic and the odds are that she says that
the man should tell his neighbors that he will come. The logician has to explain why.

Ross paradox. Many peoplewonder why this paradox receives attention. Consider the deriva
tionof O(mailVburn) from O (mail). Thederived obligation O(mailVvburn) isof course
different from O(mail A burn)! Now try to give motivation for this derivation, and give
motivation against it. In propositional logic, we have the derivation of pV g from p. Isthis
an explanation why the derivation should bevalid? No, thiswill not do! Even the analogy
between deontic operator and operator for necessity is very questionable, as we discussed
in Section 1.3.1. On the other hand, an argument against weakening can be given based
on an analogy between obligations and imperatives. Suppose | say:

e you should buy pears,
and later | say:
e you should buy apples or pears.

Now things have changed as a consequence of my second statement. After only the first
imperative, no obligationsare | eft if they run out of apples. After the second imperative, if
they run out of apples, you should buy pears! Hence, something changed after the second
Imperative, thus the imperative was not already implied by thefirst one.

Apples-and-pears. A new exampleisintroducedinthisthesis. Thepuzzlecontainstwo premises.

e Premise 1: you should buy apples or pears,
e Premise 2: you should not buy apples.

The question of this puzzle is whether we can derive the following conclusion.
e Conclusion: you should buy pears?

The argument can be based on the analogy between obligationsand imperatives. Someone
says.
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e you should buy apples or pears,
e well, do not buy apples.
Thisleaves usin a certain deontic state. If she later says:
e you should buy pears,
has anything changed?
Dominance. Another example discussed in thisthesis contains the following two premises.

e Premise 1: yououghttodoa if b,

e Premise 2: you ought to do « if not b.

The question of this puzzle is whether we can derive the following conclusion.
e Conclusion: you ought to do a without inspecting b?

We can again look at the imperatives. Someone says:

e yououghttodoa if b, and

e you ought to do a if not b.
Thisleaves usin a certain deontic state. If she later says:
e you ought to do a,

has anything changed?

The latter two derivations — apples-and-pears and dominance — seem intuitive at first sight,
and they are validated by many deontic logics. Arguments against the last two derivations are
given in respectively Chapter 3 and 2 of thisthesis.

1.5 Research objectives

In this thesis we study the relation between obligations, preferences and defeasibility. Obliga-
tions are formalized by preference-based dyadic deontic logics, of which the obligations do not
have unrestricted strengthening of the antecedent. Hence, preferences are used in the semantics
and defeasibility is used in the proof theory of the studied deontic logics. The aims of this study
are twofold. First, we study preference-based deontic logics, and we analyze where the defea
sibility in these logics comes from. Second, we study defeasible deontic logics and we analyze
the many faces of defeasibility in these logics. Our methodology is based on an analysis of a
set of deontic puzzles. First, we introduce and discuss adeontic puzzle. Second, we introduce a
deontic logic and we test thislogic by its capacity of dealing with the puzzle. Thus, the puzzles
serve much the same purpose as experiments in physical science.
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Objective-1. Define a preference-based deontic logic that formalizes contrary-to-
duty reasoning.

Secondary objective. Explain where the defeasibility of preference-based deontic
logics comes from.

Background knowledge of Objective-1.

1. Present solutions do not suffice. The simplest (temporal) solution does not suffice, be-

cause a-temporal examples like the Cottage Regulations example cannot be represented.
Chellas-type of deontic logics do not suffice, because they cannot represent contrary-to-
duty obligations, as follows from the contrary-to-duty paradoxes, and semantically from
thelack of varying degrees of sub-ideal worlds. Finally, Hansson-L ewisdeontic logics do
not suffice, because they do not have strengthening of the antecedent.

. Usedevelopmentsin other areas of artificial intelligence. The problem of the deontic

logics based on the optimality principleis how different degrees of sub-ideality can be de-
termined. Recently, it was observed that this aspect of violations can be formalized in non-
monotonic logics [McC94a, Hor93], theories of diagnosis (see Section 5.3) or qualitative
decision theories (see [Pow67, Jen74, Pea93, Bou94b, TH96, Lan96] and Section 5.2).
Common to al these theories is preference-based semantics. The preference-based de-
ontic logics developed in this thesis are inspired by the developments in these areas of
artificial intelligence.

In Chapter 2 and 3 of thisthesis, we develop logics that can represent violationsand can deal

with contrary-to-duty reasoning. A preference ordering can be used in two waysto evaluate for-
mulas, which we call ordering and minimizing. Ordering uses al preference relations between
relevant worlds, whereas minimizing uses the most preferred worlds only. B.Hansson'slogicis
based on the concept of minimization. Our new logics are extensions of our ordering logic ORD
represented in Table 1.4. We show that ordering corresponds to strengthening of the antecedent,
and minimizing to weakening of the consequent, see respectively the logics ORD and H-L in
Table 1.4.

Objective-2. Defineapreference-based defeasi ble deonticlogic that formalizesboth
contrary-to-duty reasoning and overridden defeasibility.

Secondary objective. Find the proper distinctions between the different types of
defeasibility in defeasible deontic logic to avoid confusion between violations and
exceptions.

Background knowledge of Objective-2.

1. Present solutions do not suffice. Only a few defeasible deontic logics have been pro-

posed. Most of these logics are extensions of dyadic deontic logics with a conditional
interpretation of the antecedent [Jon93, Mak93, Pra96] and as a consequence they cannot
formalize contrary-to-duty reasoning. An extension of a dyadic deontic logic with a con-
textual interpretation [Hor93] lacks a semantics and has several other limitations, see the
discussions in [vdT94, Prag6]. Concerning the secondary objective, there are no studies
of the distinction between the defeasibility in deontic and default logic, nor of the different
types of defeasibility in defeasible deontic logic.
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2. No similar developments in other areas. Defeasible deontic logic is a complex affair
that presents us with problems not found in other areas. Makinson [Mak93] a so observes
the complexity involved in deontic logic. He compares five faces of minimality (defeasi-
ble inference, belief revision, counterfactual conditionals, updating and conditional obli-
gation) and concludes that the latter ‘face of minimality is the most complex of the five
discussed.’

In Chapter 4 we giveageneral analysisof the problemsrelated to theinteraction between de-
feasibility and violability, and we discuss different ways to extend the introduced deontic logics
based on the ordering logic with conflict resolution mechanisms. We argue that (at least) three
types of defeasibility must be distinguished in a defeasible deontic logic. First, factual defeasi-
bility formalizes overshadowing of an obligation by aviolating fact. Second, strong overridden
defeasibility formalizes cancelling of an obligation by other conditional obligations based on
specificity. Third, weak overridden defeasibility formalizes the overriding of primafacie obli-
gations.

1.6 Layout of thisthesis

Thisthesis consists of three parts. Thefirst part consists of Chapter 2 and 3 and studies the re-
lation between obligations and preferences. In Chapter 2 we introduce the two-phase deontic
logic 2DL. The preference-based semantics of 2DL is based on an explicit preference ordering
between worlds, representing different degrees of ideality. We arguethat anideality ordering can
be used in two ways to evaluate formulas, which we call ordering and minimizing. Moreover,
we show that in the contrary-to-duty paradoxes ordering and minimizing have to be combined
to obtain the desirable conclusions, and that in adyadic deontic logic this can only be donein a
so-called two-phase deontic logic. In thefirst phase the preference ordering is constructed, and
in the second phase the ordering is used for minimization. If these two phases are not distin-
guished, then counterintuitive conclusionsfollow. In Chapter 3 we introduce contextual deontic
logic CDL. A contextual obligation is written as O(« | 8\ ) and read as ‘« isthe case if 5 is
the case unlessy isthe case.” An ordering obligation ‘« isthe caseif 3 isthecase’ O(a | §) is
logically equivalent to the contextual obligation O(«|3\_L). Hence, CDL is an extension of the
dyadic ordering logic developed in Chapter 2. Moreover, the contextual obligationscombinethe
properties strengthening of the antecedent and weakening of the consequent of the dyadic order-
ing and minimizing obligations of the two-phase deontic logic 2DL developed in Chapter 2.
The second part of this thesis studies the relation between obligations and defeasibility. In
Chapter 4 we introduce extensions of contextual deontic logic CDL to formalize obligationsthat
can be overridden by other obligations. Thislogic isvery useful for the analysis, because it ex-
plicitly represents exceptions of the obligations. We give ageneral analysis of different types of
defeasibility in defeasible deontic logics. We a so show that these distinctions are essential for
an adequate analysis of notorious contrary-to-duty paradoxes in a defeasible deontic logic. In
particular, these distinctions are essential to avoid confusion between exceptions and violations.
The third part of this thesis discusses future research. This discussion illustrates the limi-
tations of deontic logic to formalize all aspects of normative reasoning. Deontic logic restricts
the analysis to reasoning about obligations. Notice that the obligations do not tell us anything
about the actual behavior of the agents. We give two examples of reasoning with obligations
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in Chapter 5, and we give desiderata for reasoning with obligations in Chapter 6. The two ap-
plications that can use deontic logic are qualitative decision theory and a theory of diagnosis.
Qualitative decision theory uses preference-based deontic logic to formalize reasoning about
context-sensitive goals. A theory of diagnosis can use deontic logic to represent system rules
and violations of these system rules. We discuss reasoning with obligations, but leave the de-
tailed study of this subject for further research. Finally, in Chapter 6 we present the conclusions.



Chapter 2

Two-Phase Deontic Logic

In this chapter we study the relation between obligations and preferences. Moreover, we intro-
duce the two-phase deontic logic 2DL. The preference-based semantics of 2DL is based on an
explicit preference ordering between worlds, representing different degrees of ideality. We argue
that an ideality ordering can be used in two ways to evaluate formulas, which we call ordering
and minimizing. Ordering uses al preference relations between relevant worlds, whereas mini-
mi zing uses the most preferred worlds only. We show that ordering correspondsto the inference
pattern strengthening of the antecedent, and minimizing to the inference pattern weakening of
the consequent. Moreover, we show that in the contrary-to-duty paradoxes ordering and min-
Imizing have to be combined to obtain the desirable conclusions, and that in a dyadic deontic
logic this can only be done in a so-called two-phase deontic logic. In the first phase the prefer-
ence ordering is constructed, and in the second phase the ordering is used for minimization. If
these two phases are not distinguished, then counterintuitive conclusions follow.

The first three sections of this chapter are modified and extended versions of [TvdT96] and
[vdTT97¢].

2.1 Obligationsand preferences

The following example is the formalization of the Forrester paradox [For84] (see Section 1.3.3
and 1.3.5) inadyadic deonticlogic. It illustratesthat combining strengthening of the antecedent
and weakening of the consequent is problematic. However, both properties are desirable for a
dyadic deontic logic. Strengthening of the antecedent is used to derive ‘you should not kill in
the morning’ O(—k | m) from the obligation ‘you should not kill" O(—k | T) and weakening of
the consequent is used to derive ‘you should not kill” O(—k| T) from the obligation ‘you should
drive on the right side of the street and not kill’ O(r A —k|T).

Example 2.1 (Forrester paradox) Assume adyadic deontic logic that has at least substitution
of logical equivalents and the following inference patterns Weakening of the Consequent (wc),
Strengthening of the Antecedent (sA), and Conjunction (AND).

O(a1() . Olalp) . O(a118), O(as|B)
Olamvez) 2 0@pnt) 0 Ol haslp)
Furthermore, assume the set of dyadic obligations S = {O(—k | T),O(k A g |k)} as premise

set, where k£ can be read as ‘ Smith kills Jones' and k£ A g as *Smith kills Jones gently.” The

WC :
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counterintuitive obligation O(_L | k) can be derived from S by sA and AND, where L stands
for any contradiction. This paradoxical derivation from the set of obligations is represented in
Figure 2.1. The derivation is blocked when sa is replaced by the following inference pattern
Restricted Strengthening of the Antecedent (RsA), in which <> isamoda operator and <> ais
true for al consistent propositional formulas «.

O(a|p), 0 (04 A By A Ba)
O(a|B1 A B2)
Unfortunately, the counterintuitive obligation O(_L | k) can still be derived from S by wc, RSA

and AND. This paradoxica derivation from the set of obligations is also represented in Fig-
ure2.1. Moreover, inmany dyadic deonticlogicstheobligation O(_L | k) isinconsistent, whereas

RSA :

the premise set S isintuitively consistent. O
OCHT)
OCHT) OC(kAgIT) "
OCklE) = O(knglk) OC(AgIR) " O(knglk)
O(=k A (kN g)|k) O(=(kng) A (kAg)lk)

Figure 2.1: The Forrester paradox

The Forrester paradox in Example 2.1 showsthat combining strengthening of the antecedent
and weakening of the consequent is problematic for any deontic logic. The underlying problem
of the counterintuitive derivation in Example 2.1 is the derivation of O(—(k A g) | k) from the
first premise O(—k | T) by wc and RsA. In this chapter we solve the Forrester paradox by a
technique, which might look odd at first sight, but which turns out to work well, namely to forbid
application of RSA after wc has been applied. We call this the two-phase approach in deontic
logic. Obviously, thisblocksthe derivation of the obligation O(—=(k A g)|k) inFigure2.1. Inthe
logic, the two phases are represented by two different types of obligations, a phase-1 obligation
0O¢ and a phase-2 obligation O5. The two phases are linked to each other with the inference

pattern REL.
0°(a|B)

O5(alB)
The blocked derivations are represented in Figure 2.2. Blocked derivation steps are represented
by dashed lines. First of al, O¢(—k | k) is not entailed by O¢(—k | T) due to the restriction in
RSA. Secondly, O5(—(k A g) | k) isnot entailed viathe obligation O¢(—(k A ¢) | T), because in
the first phase there is no weakening of the consequent. Finaly, the obligation O5(—(k A g) |k)
isnot entailed viaO$(—(k A g)| T) either, because in second-phase entailment O does not have
strengthening of the antecedent.

Such asequencing in derivationsis rather unnatural and cumbersome from a proof-theoretic
point of view. Surprisingly, the two-phase approach can be obtained very intuitively from a se-
mantic point of view. In semantic termsthe two-phase approach simply meansthat first aprefer-
ence ordering hasto be constructed by ordering worlds, and subsequently the constructed order-
ing can be used for minimization. Preference-based deontic logics are deontic logics of which

REL :
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O°(—k|T) O°(—k|T)
oo o D e
O°(—k|T kNG 05 (=(k A g)[T
- —(— |— l (RSA) O°(=(k A g)|k) :Ef —3—( —( - —g)—‘ —) (RSA)
O°(—k k) OS(=(k A g) k) O5(=(k A g) k)

Figure 2.2: Proof-theoretic solution of the Forrester paradox

the semantics contains a preference ordering (usually on worlds of aKripke style possibleworld
model). Thispreferenceordering reflectsdifferent degreesof ‘ideality’: aworldispreferred over
another world if it is, in some sense, more ideal than the other world. For example, a numeri-
cal value can be associated with each world; in such cases, the ordering istotally connected (for
all worlds w; and w, we have w; < wy or wy < w;). However, in generd the preference or-
dering can be any partia pre-ordering. Hence, only reflexivity and transitivity are assumed. In
such preference orderingsthere can beincomparable worlds. Thisrepresentsthat aworld can be
better than another world considering some obligations, but worse when considering other obli-
gations. For example, incomparable worlds can be used to represent dilemmas like Op A O—p
in a consistent way.

Inapreference-based logic, different kindsof preference rel ations between propositions(sets
of worlds) can be derived from the preferences between worlds. The preference relations be-
tween propositions are used to formalize different kinds of obligations. O« issomekind of pref-
erence of « over -, and O(« | 3) issomekind of preference of aA 5 over ~aA S. Inthischapter
we argue that a preference ordering can be used in two different waysto evaluate formulas. One
way, which we call minimizing, isto use the ordering to select the minimal elements that satisfy
aformula The other way, which we call ordering, isto use the whole ordering to evaluate afor-
mula. One could explain the intuition behind the distinction between ordering and minimizing
with the following metaphor. Ordering is what a person does when she envisions the message
of thelaw, issued by the legidlator, by determining the preference rel ations between the possible
deontic states. In this envisionment process bad states are as important as good states. Mini-
mizing is what the person does when she also tries to realize the best states. These two things
are completely separated. A person might very well know how she should act, without acting
accordingly.

Thefirst deonticlogic based on apreference ordering wasintroduced by B. Hansson [Han71].
Itisadyadiclogicandit belongstothefirst category, becauseit isbased on minimizing. B. Hans-
son’s logic has been criticized because it lacks strengthening of the antecedent. For example,
Alchourron argues [Alc93] that lack of strengthening of the antecedent is acceptable for log-
ics of defeasible reasoning or logics of defeasible obligations (see Section 1.3.6), but not for
non-defeasible obligations. Moreover, the semantic concept of minimization is unexplained:
whereas in a defeasible logic ‘normally p’° might refer to the most normal worlds only, ‘oblig-
atory p’ does not seem to refer to the most ideal worlds only. Recently, several authors [Jac85,
Gob90b, Han90b] introduced a preference ordering in amonadic deontic logic. Theselogics be-
longsto the second category of preference-based deonticlogics, becausethetruth of Oa depends
on thewhole ordering. This approach can be traced through along history of research in prefer-
encelogics, seee.q. [VW63, Res67, Jen74]. At first sight, it seemsthat an obligation O« can be
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formalizedin apreferencelogic asapreference of every o world over al -« worlds. However, it
iswell-known from preference logics (seee.g. [VW63]) that such acondition is much too strong.
For example, consider this strong definition, two unrelated obligationsOp; and Op, and amodel
with p; A —py and —p; A po worlds. The obligation Op; saysthat thefirst world is preferred over
the second one, and the obligation Op, implies the opposite. In other words, the model cannot
contain p; A —py aswell as —p; A p, worlds. Jackson [Jac85] and Goble [Gob90b] introduce a
second ordering in the semantics as a solution of this problem, and S.O. Hansson [Han90b] in-
troduces complicated ceteris paribus preferences. In this chapter we introduce another solution.
Anobligation O« istrueiff for al o and -« worlds, we have that the oo world is preferred to the
-« world, or the two worlds are incomparable. Moreover, we generalize the ordering approach
to the dyadic case. An obligation O(«|3) istrueiff for all o A § and —a A § worlds, we have
that the o A 3 world is preferred to the —a A 8 world, or the two worlds are incomparable. We
show that ordering has strengthening of the antecedent, whereas minimizing has weakening of
the consequent. Moreover, we show that in a two-phase deontic logic, ordering can be used as
aphase-1 obligation and minimizing as a phase-2 obligation. Thus, they can be used to analyze
the Forrester paradox in Example 2.1. The following example illustrates a second problem re-
lated to the formalization of O« asapreference of o over —«. Thissecond problem arisesif we
formalize the no-dilemma assumption in a dyadic deontic logic.

Example 2.2 (Cigarettes problem) Consider the three sets

{O(=¢[T), O(clk)}:{O(pr] T), Op2| T) }, {0l 1), O(=plg2) }

The first set formalizes Prakken and Sergot’s cigarettes example, when ¢ is read as ‘offering
someone a cigarette’ and k as ‘killing someone.” The problem is that we want to make the first
set inconsi stent, but we want to keep the other two sets consistent. The derivationsin Figure 2.3
show that a straightforward combination of restricted strengthening of the antecedent and the
deontic axiom

D* : — 8((11 A og A ﬂ) — _'(O(al‘ﬂ) A O(a2|ﬂ))

makes all three sets inconsistent. O
O(=c|T) e
O(—clk) O(clk)
D*
1
O(p:|T) O(p2|T)
RSA RSA
O(p1|~(p1 A p2)) O(pz2|~(p1 A p2)) D*
1
O(plq) O(—plg)
— -7 _RsA ———* _RsA
O(plg A ¢2) O(-plaAg)
T D

Figure 2.3: Cigarettes problem



2.2. THE TWO-PHASE APPROACH TO DEONTIC LOGIC 49

The derivations in Figure 2.3 show that there are two possible solutions to the problem in
Example 2.2: weakening strengthening of the antecedent or weakening the D* axiom. B. Hans-
son’s dyadic deontic logic does not have strengthening of the antecedent, and in monadic de-
ontic logics that do not have weakening [Jac85, Gob90b, Han90b] the D* axiom is weakened
to =(Oa A O—«a), hence Op A O(—p A q) isconsistent. In Section 2.3 we show how strength-
ening of the antecedent can be restricted such that this problem is solved. We call B.Hansson’s
minimizing logic to the rescue. A phase-1 obligation O p(«|3) istrueif and only if

1. foral a A g and —a A g worlds, we have that the o A 5 world is preferred to the —a A 3
world, or the two worlds are incomparable, and

2. the preferred 8 worlds satisfy a.

Hence, the formalization of the no-dilemma assumption combines ordering and minimizing in
the first phase.

We use amodal preference logic to formalize our dyadic obligations. That is, the binary ac-
cessibility relation of the Kripke models of modal logic is interpreted as a preference relation.
In modal logic the truth conditions of the modal sentence O« is relative to a world, whereas
in preference logics a preference statement «; > « is either true or falsein amodel. We use
Boutilier’s logic CT40 to represent a single preference ordering, see [Bou92a, Bou94a]. That
is, for aworld w of aKripke model M wehave M, w = «a; > ayifandonly if M = a; > as.
Boutilier only shows how minimizing conditionals can beformalized inthelogic CT40. Hedis-
criminates between what we call existential-minimizing and universa-minimizing conditionals.
We al so show how ordering conditionals can be formalized in modal logic.

The layout of this chapter is as follows. In Section 2.2 we introduce the dyadic ordering obli-
gation and the dyadic existentia-minimizing obligation, and we illustrate the combining of or-
dering and minimizing. We call the modal preference logic with the definitions of the different
typesof conditionalsour two-phase deonticlogic 2DL. Moreover, we analyzethe Forrester para-
dox in 2DL. In Section 2.3 we extend the two-phase deontic logic 2DL by introducing operators
that have the no-dilemmaassumption, and we analyze the cigarettes problem. In Section 2.4 we
introduce different types of dyadic permissions. Finaly, in Section 2.5 we discuss the issue of
factual detachment, i.e. the detachment of unconditional obligations from the dyadic ones.

2.2 Thetwo-phase approach to deontic logic

In this section we introduce the preference-based deontic logic 2DL. We formalize ordering and
minimizing obligationsin a preference logic. This preference logic is a standard modal system,
in which the accessibility relation of the Kripke modelsisinterpreted as a preference ‘ideality’
ordering on the worlds. Moreover, we analyze the Forrester paradox in 2DL.

2.2.1 ThelogicCT40

In this chapter, dyadic obligations are formalized in Boutilier’'s logic CT40, a bimodal propo-
sitional logic of inaccessible worlds. We refer to the modal logic with different types of de-
ontic conditionals as the two-phase deontic logic 2DL. The Kripke models M = (W, <, V)
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of CT40 contain a binary accessibility relation <, that is interpreted as a reflexive and transi-
tive preference relation. Asiswell-known, the standard system $4 is characterized by a partial
pre-ordering: the axiom T: Ca — « characterizes reflexivity and the axiom 4: Do — OO0«
characterizestransitivity [HC84, Che80]. Thelogic CT4 isequivalent to the standard system 4,
together with the following definition C.! Theconditional 8 = «istrueinaworldif « istruein
all the <-minimal 8 worlds (that are accessible from the actual world). Hence, the dyadic con-
ditional isformalized in terms of the monadic operator. We discuss this minimizing conditional
in more detail in Section 2.3.

C: (ﬂ = Of) —def D(ﬂ — 0(6 A D(ﬂ - a)))

Boutilier refers to CT4 rather than $4 to emphasize his interest in the conditional aspect of the
logic, though he remarksthat it should be kept in mind that it isjust S4. Boutilier’slogic CT40
extendsthe modal system S$4 by introducing amodal operator that refersto inaccessible worlds.?
The Kripke models of the bimodal logic CT40 can be writtenas M = (W, <, Ry, V'), i.e. with
two accessibility relations for the two modal operators.

M,w E O«aiff V' € Wif w < w,then M, w' = «
M,w =Qaiff Yo' € W if w'Ryw, then M, w' = o

Moreover, therelation R, isthe complement of <, which isexpressed by the condition w Row,
iff not w; < we. Asaconsequence of this condition, the truth conditions of the modal operator
for inaccessible worlds can a so be expressed in terms of the first accessibility relation.

M,w E O«aiff V' € Wif w < w,then M, w' = «
M,w =Qaiff Yo' € Wifw' £ w, then M,w' = o

Boutilier adapts Humberstone's logic [Hum83] of inaccessible worlds for partial pre-orderings
and he gives afinite axiomatization. The O of CT40 stands for ‘only knowing’, which can be
expressed in logics of inaccessible worlds. The crucial axiom of the logic CT40 is axiom H:

<<_>>(Da/\ ﬁﬂ) -0 (aV (), whichisaninstance of the more general Humber stone Schemata H *.
H* D(DaA0B) = B(aV B)
In this schema, D is any sequence of the connectives ¢ and ghaving length > 0, and B isany

such sequence of [ and E] . In CT40, the axiom H derives all instances of this schema. The
axiom H axiomatizes the condition w; Ryw, iff not w; < wy. For the details and completeness

1Boutilier usestheequivalent formulad(O-8VO(BAC(B8 — «))). Thedefinition used hereisfrom Makinson,
and was independently discovered by Lamarre [Lam91].

2We do not need the expressivity of inaccessible worlds to mode! ordering obligations (although it makes the
logic more elegant). We refer to Boutilier's logic CT40, because we also use the modal system as a preference
structure, and we also code our conditional swith monadic modal operators. However, we repeat, the ordering obli-
gationsitself are completely different from Boutilier’s minimizing conditionals. We use the expressivity of inac-
cessible worlds when we extend the logic to represent permissionsin Section 2.4.



2.2. THE TWO-PHASE APPROACH TO DEONTIC LOGIC 51

proof of Boutilier’slogic CT40 see [Bou92a, Bou94a.
Definition 2.3 (CT40) The bimodal language £ isformed from a denumerable set of proposi-
tional variables together with the connectives —, —, and the two normal modal connectives [
(_
and EI Dual ‘possibility’ connectives ¢ and ¢ are defined as usual and two additional modal
x4
connectives ﬁ and ¢ aredefined asfollows.

Oa = —0O-o Oa =g DaADa

< — > —
Qa = O« Oa = Qavda

Thelogic CT40 isthe smallest S C £ such that S contains classical logic and the following
axiom schemata, and is closed under the following rules of inference.

K O(a— ) — (Oa—0p6) Nes From a infer Ja
K’ E(a—)ﬂ)—)(ﬁa—ﬁﬂ) MP Froma — g and «infer
T Hoa—a
4 Do — Ul
e — <~
H ¢ (daAnOpB) =0(aV B) O

Definition 2.4 (CT40 Semantics) Kripkemodels M = (W, <, V) for CT40 consist of W, a
set of worlds, <, abinary transitive and reflexive accessibility relation, and V', avaluation of the
propositional atomsin the worlds. The partia pre-ordering < expresses preferences. w; < wo
iff wy isas preferable asw,. The modal connective [ refers to accessible worlds and the modal

. h . .
connective [ to inaccessible worlds.

M,w = Oaiff Yo' € Wif w' < w,then M,w' = «
M, w ):ﬁaiff Vw' € Wifw' £ w,then M,vw' = « O

The following satisfiability conditions for the modal connectives ﬁ and 8 follow immedi-
ately from the definitions.

M,w =0aiff Yo' € W wehave M, w' = a (i.e. iff M = )
M,w = aiff 3w’ € W suchthat M, w' = «

From the preferences between worlds we derive several preference relations between sets of
worlds, i.e. preference relations between propositions. Dyadic obligations are defined in terms
of these preferences between propositions. We refer to the logic CT40 extended with the new
definitions for ordering and minimizing obligations as the logic 2DL.

2.2.2 Ordering

In this subsection we only consider the ordering approach to deontic logic. In evaluating formu-
las, the whole ordering is taken into account. We first give the definitions of the ordering obli-
gationsin the modal preference logic, the semantic truth conditions and several properties of the
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ordering obligations expressed as theorems of the modal logic. Then we show some adaptations
of the definitions to block two counterintuitive theorems.

The ordering obligations are defined in two steps. First, we define a preference ordering on
propositions. Wewrite «; > o for oy ispreferred to a,. We use apreference ordering to define
obligations O(«| 3) by apreference of o A 5 over —a A 3. We say that a preference ordering >
formalizes strong preferences when a preference a; > « logically implies o} > o, when o]
implies a; and o, implies a,. We call them weak preferences otherwise. Ordering obligations
are defined by strong preferences, and minimizing obligations (like the conditional s defined by
definition C in CT40) by wesak preferences.

For the strong preferences defined in this section we write a; >, «s. In the introduction
in Section 2.1 we discussed the well-known problem from preference logic that an ordering
a1 >, ap asapreference of each «; world over every o, world is much too strong. For ex-
ample, consider this strong definition, two unrelated preferences p; >, —p; and p, >, —p, and
amodel with p; A —py and —p; A p, worlds. The preference p; >, —p; saysthat thefirst world
is preferred to the second one, and the preference p, >, —p, implies the opposite. With other
words, the model cannot contain p; A —p, aswell as —p; A p worlds. This property is highly
counterintuitive and not very useful. We therefore introduce a weaker notion of strong prefer-
ence. According to thisdefinition o ispreferred to a, if and only if for every a; world thereis
not an o, world that is as preferable. That is, for each pair of «;; and a, worlds we have either
that the o; world is preferred to the a, world, or that the two are incomparable.

Definition 2.5 (Dyadic ordering obligation) The dyadic ordering obligation ‘ « should be the
caseif fisthecase’, writtenas O(«|3), isdefined as astrong preference of A 5 over —a A .
A strong preference of a;; over as, written as a; > «, isdefined as follows.

Txs
Q1 5 Qg =gy D(Ofl — D_|Of2)

O(a|p) = et S_EY A B) =5 (ma A B)
= D(@np)—D(an)
< O(anp) =008 — a) O

The preference relation > is quite weak. For example, it is not anti-symmetric (we cannot
derive =(ay 5 aq) from a; >, as) and it is not transitive (we cannot derive a; >, a from
a1 =5 ap and as >, a3). Thelack of these propertiesis the result of the fact that we do not
have totally connected orderings. In Example 2.40 in Section 2.3.3 we show that thisrelaxation
is crucia for our preference-based deontic logic. In this section we do not further discuss the
properties of >, (see Section 2.6.4), but we focus on the properties of the dyadic ordering obli-
gations. Intuitively, an obligation O(«|3) expressesastrict preference of al a. A 3 over —a A S.
The following proposition shows that this preference is represented by the ‘ negative’ condition
that - A 3 isnot as preferableas o A 3.3

3We can also define aconditional by O(a|8) =4« O((aAB) — O(8 — «)). Thelogic hasthe same properties,

in the sense that Proposition 2.8 is till true. The distinction is that the conditional can have different values at

distinct worlds, which additional expressivity does not seem very useful. Single preference orderingsare also used
in standard model preference semantics [Sho88, KLM9Q].

Alternatively, we can take the dyadic ordering obligation asprimitive, defined by the semantic definitionin Propo-

sition 2.6, or we can take the preference ordering > as primitive. In the latter case, we can define the monadic
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Proposition 2.6 Let M = (W, <,V) bea CT40 model, | « | be the set of worlds of W that
satisfy o, and |a; | £ | e | denotethat Vuw, €| | and Yws €|as|, wehavew; € w,. For aworld
w € W,wehave M, w = O(a|f) iff (M = O(a|B) iff) |[ma A B|L|laAB|.

Proof = By contraposition. Assume a model M = (W, <, V') with worlds wq,w, € W such
that M, w; = —aAB, M,ws = aAfBandw; < w,. Wehave M, wy = (aAf) — O(8 — «)).
M, w )=E] a for aworld w € W iff for al worlds w’ € W we have M,w' = «. Hence,
M, w = O(alB).

< Assume M, w = O(«| ) for someworld w. Hence, thereisaworld wy € W such that
M, wy = (A B) = OB — «)). Itfollowsthat M, wy = a A fand M, w, = O(F — ).
Hence, thereisaworld w; € W such that M, w;, = —a A g and w; < ws.

Thefollowing exampleillustratesthe definition of ordering obligation asastrong preference.

Example 2.7 Consider the Kripke model M represented in Figure 2.4 below. Thefigure should
be read as follows. A circle represents a non-empty set of worlds, which satisfy the formulas
in the circle. The arrows represent strict preferences for all worlds in the circles (the transitive
closureisimplicit). Wehave M = O(p|T) and M # O(q| T). Notethat O(¢| T) is not true
in M, because |p A —q|<|—=p A ¢| and | —p A —¢q|<|—p A ¢|. This shows how in the ordering
approach the whole ordering is taken into account in the evaluation of a formula, and not just
the most preferred p A g worlds. O

ideal situation ordered sub-ideal situations

Figure 2.4: Preference-based model

The following proposition shows several properties of the dyadic ordering obligations.

Proposition 2.8 The logic 2DL has the following theorems of Strengthening of the Antecedent
(SA), Conjunction (AND) and Disjunction (OR), and two versions of Deontic Detachment (DD’
and DD-).

SA: O(a|B1) — O(a| B A B2)

AND:  (O(a1|B) A O(a2|B)) — O(ar A 2| B)

OR:  (O(a1|B) ANO(a2]B)) = O(u V 02| 3)
DD":  (O(alB) AO(B]7)) = O(a A Bly)

DD—: (O(a|B) A O(=B]7)) = O((aA B) V =8]7)

operator O intermsof >, by Oa =4 —a =5 T. Analogousdefinitions of unary modalitiesin termsof minimizing
conditionals 8 = a by Oa =4 ~a = «a are well-known, see e.g. [Sta81, Lew73], and an analogous grounding of
thelogic CT4 (hence $4) in aminimizing conditional can be found in [Bou92a, p.89].
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Thelogic 2bL does not have the following theorems of Weakening of the Consequent (W C and
WC"), Deontic Detachment (or deontic transitivity) (DD), Reasoning By Cases (RBC) and the
second Deontic axiom (D*).

WC: O(a1|ﬂ)—>0(a1\/a2|ﬁ
WC:  O(ag A az|B) = O(aq|8) A O(ag|B)
DD:  (O(a[B) A O(B]y)) = O(aly)

DDT: (O(a|B) AO(B|T)) = O(x|T)

RBC: (O(a|B1) AO(«|B2)) — O(c|B1V Ba)
D =(0(alB) A O(=a|B))

~— —

Proof The (non)theorems can be proven by proving (un)satisfiability in the preference-based
semantics. First, consider the validity of strengthening of the antecedent SA. The validity of
strengthening O(«a| 3;) to O(a| 81 A 3,) follows directly from the fact that a strong preference
of a A B; over —a A 31 impliesa strong preference of a A 81 A B2 over —a A 51 A (2. Secondly,
consider the non-theoremWC. O(«; |3) isnot weakened to O(a; V s | ), because O (a1 | B) ex-
presses a preference of every a; A worldsover any —«a4 A 5 world, and from such a preference
does not follow that every (a; V a) A 3 world is preferred to any —a; A —as A § world. For a
counterexample, consider the preference-based model M in Figure2.4. Wehave M = O(p|T)
and M = O(pV q| T), because | —-p A —¢|<|—=p A ¢q|. Hence, the ordering obligations do not
have weakening of the consequent. \erification of the other (non)theoremsiseft to the reader.
Alternatively, the theorems can be proven in the logic 2DL.

The ordering obligations have several remarkable properties. The most remarkable are the
non-validity of weakening of the consequent WC and reasoning by cases RBC. The follow-
ing example illustrates that the lack of RBC is very useful to analyze dominance arguments,
see [TH96]. A common sense dominance argument (1) divides possible outcomes into two or
more exhaustive, exclusive cases, (2) points out that in each of these aternativesit is better to
perform some action than not to perform it, and (3) concludes that this action is best uncondi-
tionally. Thomason and Horty observe that, although such arguments are often used, and are
convincing when they are used, they are invalid. The following example of [TH96] isaclassic
illustration of [Jef83].

Example 2.9 (Cold-war disarmament) Either there will be anuclear war or there will not. If
there will not be anuclear war, then it is better for us to disarm because armament is expensive
and pointless. If there will be a nuclear war, then we will be dead whether or not we arm, so we
are better of saving money in the short term by disarming. So, we should disarm. The falacy,
of course, depends on the assumption that the action of choosing whether to arm or disarm will
have no effect on whether there iswar or not.

Consider the contextual obligations O(d|w) and O(d|—w), which represent that we ought to
be disarmed if there will be a nuclear war, and we ought to be disarmed if there will be no war.
We cannot derive O (d|w V —w), becausefrom (d Aw) > (-dAw) and (dA—w) =5 (—dA—w)
we cannot derive (dAT) =5 (-dAT). Wemight have (=d A —w) >, (d Aw), which represents
that we ought to be armed if we have peace if and only if weare armed O(—d|d <> w). O
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Another remarkable property is the vaidity of DD’. The inference pattern deontic detach-
ment is often considered problematic, in particular as aresult of the Chisholm paradox (see Sec-
tion 1.3.3). The following exampleillustrates the intuition behind theorem DD'.

Example 2.10 Consider the set of dyadic obligations S = {O(a|T),O(t|a)}, where a can be
read as ‘a certain man going to the assistance of his neighbors and ¢ as ‘telling the neighbors
that he will come.” Hence, the two obligations can be read as ‘a certain man should go to the
assistance of his neighbors’, and ‘ he should tell them heis coming, if he goes.” The obligation
O(a A t|T) can be derived from S with DD’, which expresses that ideally, the man goes to the
assistance of his neighbors and he tells them heis coming. The validity of the inference can be
explained by the preference-based semantics. A typical model M of S isgivenin Figure 2.5
below, and we have M = O(a A t|T). Theidea situation is represented by a A ¢t. There are
two different ways to deviate from theideal. The first way is —a, where the man does not go to
the assistance (regardless whether he tellsthat he will go). The second way isa A —t, where the
man goes to the assistance but he does not tell his neighbors that he is coming. d

ideal situation ordered sub-ideal situations

Figure 2.5: Assistance of neighbors

In the remainder of this section we discuss two ways to adapt the ordering logic, with con-
sistency checks and the so-called axiom scheme L P respectively. Unfortunately, the logic 2DL
has the two counterintuitive theorems O(_L | o)) and O(« | «), see Proposition 2.12. For this
reason, we define various other types of obligations in the preference logic. In the following
definition, O¢(«|8) has an additional condition that tests whether the obligation can befulfilled,
i.e. whether o A § islogicaly possible (‘ought implies can’). The obligation O“(« | 5) aso
has another additional condition which tests whether the obligation can be violated, i.e. whether
—a A Bispossible Thetwo conditionsformalize von Wright's contingency principle (see Sec-
tion 1.3). The consistency conditions are based on the concept of choice: if it is not possible to
violate or fulfill the obligation, then there is no possibility to choose.

Definition 2.11 (Dyadic ordering obligation) Two alternative notionsof dyadic ordering obli-
gations ‘ o should be the case if 3 isthe case,” written as O¢(« | ) and O(« | 3) respectively,
are defined as a strong preference of o A § over —a. A 3 together with one or two ‘ consistency
checks.’

4The conditionsonly check logical possibility. In an agent environment, the alternatives are to consider stronger
conditions which refer to the agent’s opportunities or to her abilities. The logical conditions are already stronger

And And
than necessary to invalidate the counterintuitive theorems, because the consistency conditions ¢ « and ¢ —« would
(in principle) also do the trick.
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0alf)  =w (@NB) s (CanHAG(aAB)
= O@BAG@ny) .
0“(alf) =w (@A) >, (canBAG(@ABAG(-anf)
= O@IBAS(@ABAG(anp) O

The following proposition shows that the alternative definitions of dyadic ordering obliga-
tions O¢ and O do not have the counterintuitive theorems of O.

Proposition 2.12 Thelogic 2DL has the following theorems.

C: O(L|w)

NCe  —=0°(L|«)
NCe: —0(L|a)

ld: O(a|a)

lde: <<_>>0z—>00(04|0z)
Nid“: —0“(a|a)

Proof Follows directly from Definition 2.5 and 2.11.

The following proposition shows that the ordering obligations O¢ have weaker versions of
the theorems of O given in Proposition 2.8. We say that the corresponding inference patterns
arerestricted. For example, we call the weakened version of SA Restricted Strengthening of the
Antecedent RSA. We aready saw an example of restricted strengthening of the antecedent in
Example 2.1, where arestriction of SA was necessary to block counterintuitive derivations of
the Forrester paradox. Obviously, similar results as shown in the following proposition can be
obtained for O“c.

Proposition 2.13 Thelogic 2DL has the following theorems.

RSA:  (O%(alB)A O (aA B A o)) = O(al By A Bo)

RAND: (Oc(al |ﬂ) N OC(CYQ‘B)/\ <> (011 N oo N\ /8)) — OC(Q’l N O!Q‘ﬂ)
OR™  (0%(a]B) A O(02]B)) = O(er V a2|0)

RDD"  (O%(a|B) NO“(BIV)A O (aABA7Y)) = O(a A Bly)

Proof Follows directly from Definition 2.11 and Proposition 2.8.

Proposition 2.13 shows that we cannot derive O¢(« | 3) from O¢(« | T) by RSA, unless

we have the consistency expression 8 (o A B) as another premise. Instead of explicitly writing
down these consistency expressions in every example, we can consider only models in which
all propositionally satisfiable formulas « are truein someworld. This can be‘axiomatized’ with
Boutilier’s axiom scheme L P, see [Bou944)] for a discussion and the completeness proof of the
corresponding logic CT40*. The axiom scheme L P states that every formula o without any
occurrences of modal operators, which is propositionaly satisfiable, is true in some world.
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Definition 2.14 (CT40*) Thelogic CT40* isCT40 extended with thefollowing axiom scheme
LP.

LP: Oa for al satisfiable propositional o O

Definition 2.15 (Semantics CT40*) Let P bethe set of propositional atomsof the propositional
baselanguage £. A CT40*-model isaCT40-model M = (W, <, V) that satisfiesthefollowing
condition:

{f | fmapsP into{0,1}} C {V(w) | w e W}
We write =* for logical entailment in CT40*. O

We write 2DL* for CT40* with the definitions of our dyadic obligations. Thelogic 2DL* is
illustrated by the following example.

Example 2.16 Consider the set of ordering obligations S = {O%p; | T),0%py | T)}. Se-
mantically, the axiom L P ensures that the p; A p; worlds exist in al 2DL* models. Hence, we

have ):*8 (p1 A p2) whereas we have bég (p1 A p2). Proof-theoreticaly, in 2DL we can derive
A nd
O¢(p1 A po| T) from S and the premise ¢ (p, A p2) by RAND. In 2DL* the consistency expres-
A nd

sion { (p1 A po) can be derived from L P, and hence O¢(p; A p2| T) can be derived from S. This
shows that we do not have to write the consistency expressions explicitly in thelogic 2pL*. [

In this section we introduced a logic of ordering obligations. In Table 2.1 we compare the
new logic with Chellas-type of dyadic deontic |ogics and the Hansson-L ewis minimizing dyadic
deontic logics.

Condition | Context
Chellas H-L | OrD

WC | O(a1|B) = O(aa V a2|B) X X
SA O(alBr) = O(a|Br A B2) X
RSA | (0(alB)A & (@A BLA Bo)) = OlalBi A Ba) X
FD (O(a|B) AB) = O« X
DD | (O(«lB) AO(Bly)) = O(aly)
DDT | (O(alB) AO(BIT)) = O(e|T) X
DD’ | (O(alB) A O(B7)) = O(a A Bly) R
RBC | (O(alf1) A O(alBs)) = O(alBy V f2) X X

Table 2.1: Ordering obligations versus classical dyadic deontic logics

The table shows that the ordering logic has several intuitive properties like strengthening of
the antecedent and a version of deontic detachment. This|ogic combines a contextua interpre-
tation of the antecedent with strengthening of the antecedent. Moreover, we showed that lack
of weakening of the consequent and reasoning by cases are sometimes advantageous properties.
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Finally, we showed that the logic can easily be adapted to block two counterintuitive proper-
ties by adding the consistency checks to the operator. In the next section we discuss ‘ standard’
minimizing obligations and we compare them with the ordering obligations.

2.2.3 Minimizing

In this section we introduce a minimizing logic. We first give the definition in modal logic, the
semantic truth conditionsand several properties expressed as theorems of the modal logic. Then
we givethree rel ations between these minimizing obligations and the ordering obligationsintro-
duced in the previous section.

In the dyadic deontic logic of Bengt Hansson, an obligation O(«|3) istrueiff aistruein al
minimal (preferred) 8 worlds [Han71]. We therefore say that hislogic is based on minimizing.
In Section 2.3.2, wediscussBoutilier’ sreconstruction [ Bou94b] of B. Hansson’slogicinamodal
preference structure. In this section we give arelated but weaker logic, in which an obligation
O3(a|B) istrueif and only if « istruein an equivalence class of minimal (preferred) 5 worlds.®
To discriminate between the two types of minimizing conditionals we call the Hansson-Lewis
type universal-minimizing and the weaker typesdiscussed in this section existential -minimizing.

The existential-minimizing obligation is defined in a weak preference ordering, written as
ay >3 ao. Aswe discussed in the previous section, we say that a preference ordering > for-
malizes weak preferences when a preference a; > o, does not logically imply a preference for
o = oy whena) impliesa; and o, impliesa,. We say that o isweakly preferred to a, iff there
isan «; world such that thereis no a, world which isas preferable. That is, thereis apreferred
oy world such that for all preferred a, worlds we have either that the «; world is preferred to
the a, world, or that the two worlds are incomparable.

Definition 2.17 (Dyadic existential-minimizing obligation) Thedyadic existential-minimizing
obligation ‘o should be the case if # isthe case’, written as O3(«|3), is defined as aweak pref-
erenceof a A B over —a A 3. A weak preference of «; over aw, written asa; >3 aw, isdefined
asfollows.

o1 >3 Gy =gy <<_>>(0z1 A O=-as)V EI—'al
Os(a|B) =u <(_)a A B) =3 (ma A B) .
= 2((@/\ﬂ)/\|:|—|(ﬂa/\ﬂ))v O-(aAp)
o 0BADEB - )V E(anp)
O5(alf)  =w (@A) =3 (CanBAO(anf)
< 0BAOB — a) o .
O%(alB) =w (aAB) =3 (maAB)AO(aAB)AQ(maAb) O

Again, we do not further discuss the preference relation >3, but we focus on the properties
of the dyadic minimizing obligations. Notice that the formulathat represents the obligation O4
Is simpler than the formula of O3, because the latter has an additional digunct. We therefore

SThe definition is adapted from a modal formula of Boutilier. The minor distinction is that Boutilier defines
And
O BAOB = a)Vv E —/3. We have adapted the definition for our two-phase approach. Boutilier’s definition is
Axd <«
faseif O (8 A @) A = O-8, and therefore does not validate Proposition 2.21.
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usually focus on Of in our propositions and examples; the related properties of O5 can easily be
derived from the properties of OS. The following proposition showsthat the obligation O3 («|f5)
refersto the optimal 3 worlds, and that O5(«|T) refersto the ideal worlds.

Proposition 2.18 LetM = (W, <,V) bea 2bL model and let | « | be the set of worlds that
satisfy a. For aworld w € W, we have M, w = Os(«|p) iff thereisno a. A 3 world, or there
isaworld we €|a A 3| such that for all worldsw, €|—a A 3] itistruethat w; £ wy. Hence,
we have M, w = Os(«|p) iff thereareno « A 3 worlds, or

1. aistruein an equivalence class of most preferred g worlds of M, or

2. thereis an infinite descending chain in which thereis a 5 world w4 such that o istruein
all g worlds w; withw; < ws.

Proof Analogous to the proof of Proposition 2.6 (see also [Bou94a]). =- By contraposition.
Assumeamodd M = (W, <, V) with aworld ws € W such that M, w3 = « A 3 and for all
worldswy € W suchthat M, wy = a A §thereisaworld w, € W such that M, w, = —a A S
and w; < we. Wehave M, ws = (a A B) AO(B — ). M,w )=8afor aworldw € W iff
thereisaworld w' € W such that M, w' = «. Hence, M, w = Os(a3).

< By contraposition. Assume M, w = Os(«|3) for some world w. Hence, for all worlds
wy € W wehave M, ws = S AT(3 — «) andthereisaworld w; suchthat M, ws = aA . It
follows that for all worlds w, such that M, w, = a A 3 we have M, w, = O(8 — «). Hence,
thereisaworld w; € W suchthat M, w; = —a A g and w; < ws.

The following example illustrates the dyadic minimizing obligations as weak preferences,
and the distinction between ordering and minimizing obligations.

Example 2.19 Reconsider the Kripke model M of Example 2.7 in Figure 2.6 (repeated from
Figure 2.4). Wehave M = OS5(p| T) and M = O%(¢q| T). Since O5(¢| T) is equivalent with
A nd

¢ g itisclear that ¢ hasto be true in some most preferred world, and that 1ess preferred worlds

do not effect the truth of 8 Ogq. Hence, in the evaluation of O5(q | T) only preferred elements
are taken into account and not the whole ordering. In Example 2.7 we showed M = O°(q|T),
which illustrates the distinction between ordering and minimizing obligations. a

ideal situation ordered sub-ideal situations

O5( q\T Figure 2.6: Preference-based model

The main properties of the dyadic existential-minimizing obligations are given by the fol-
lowing proposition.
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Proposition 2.20 Thelogic 2DL has the following theorems.

WCs:  (Os(a1[B)A O (a1 A B)) = Os(an V aa|B)
WCS:  Of(au|B) = OS(an V a2|B)

RBCS:  (05(c|B1) A OS(a|Be)) = O5(| B1 V Ba)
Cs: Os(L])

NCg:  —0%(L|a)

NCE:  —-05%(L|w)

ID5: O3(a|)

IDS: Sa — O5(a| )

NIDY: 0% (o))

Thelogic 2bL does not have the following theorems.

SAS: Os(a|B1) = O3(a| B A B2)

ANDs: Os(01|8) A O3(az|B) = Oz A 2| B)
DD5:  Os(a|B) AOs(Bly) — Oa(aly)

D*s:  —(0s(a|B) A O3(—alp))

Proof The (non)theorems can be proven by proving (un)satisfiability in the preference-based se-
mantics. Consider first the validity of weakening of the consequent WC5. The logic has weak-
ening of the consequent of O5(ay | B) to O5(ay V as | 3), because the most preferred 3 worlds
that satisfy o also satisfy a; V a,. Secondly, consider strengthening of the antecedent SA 5. The
logic does not have strengthening of the antecedent of O5(«| 81) to O5(a| 81 A ), because the
preferred 5; worlds may be different fromthe preferred 5; A 5, worlds. For a counterexample,
consider the Kripke model M in Figure 2.6. Wehave M = Os(q|T) and M = Os(q|—p). We
do not have M = O5(q|—p), because the preferred —p worlds are the —p A —¢ worlds. Hence,
O3 does not have strengthening of the antecedent. \erification of the other (non)theoremsis|eft
to the reader.

In the remainder of this section we discuss three rel ations between ordering and existential-
minimizing. Thefirst relation is given by the following proposition.

Proposition 2.21 Thelogic 2DL has the following theorems.

Rels:  O(a|B) — O3(a|p)
Rels:  O%(a|f) — 05(alB)
Rel§:  O%(alB) — 0% (a|pB)

Proof The theorems can easily be proven by proving satisfiability in the preference-based se-
mantics. For example, consider the theorem Rel§. O¢(a | §) istrue in a mode iff we have
| ~a A B|Llanp|and|a A 3|isnon-empty. Then any world w €| o A (| is part of a
preferred 3 equivalence class (or infinite descending chain) or they can see one. Hence, there
Isat least one preferred 3 equivalence class (or infinite descending chain) of which the worlds
satisfy a A 3. The other theoremsfollow directly fromthisresult and the definitions of the obliga-
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tions. Alternatively, the theorems can be proven by proving validity in 2DL. For example, Rel$
IS equivalent with the following theorem of 2DL.

Rels (B1(BAa— OB = a)Ad(anB) =0BAOB = a))

Finally, the theorem is easier to read as an instance of the following formula that relates the
preference orderings (o =5 a2) — (g >3 az).

<~ A d g
Rel% (|:| (Ckl — D_|CK2)/\ <>Ozl) —)<> (Odl A |:|—|a2)

Thefollowing proposition givesanother rel ation between ordering and existential-minimizing
obligations. It shows that an ordering obligation is equivalent to a set of existential-minimizing
obligations, when we impose a constraint on the models.

Proposition 2.22 Let M be a 2DL model such that A/ does not contain duplicate worlds, i.e.
for all wy,wy € W such that w; # ws, thereis a propositional « such that M, w; = « and

M, ws = a. Wehave M,w = O(«| g) iff for all 5’ such that M, w |:E] (8" — B), we have
M,w E O3(a|f).

Proof = Followsdirectly fromSA and Rel5. <= Everyworldischaracterized by a unique propo-
sitional sentence. Let w denote this sentence that characterizes world w. Proof by contraposi-
tion. If M, w = O(a|p), then there are wy, wy suchthat M, wi = a A B, M,wy E —a A
and wy < wy. Choose f' = wy V ws. wo iSone of the preferred 3’ worlds, because there are
no duplicate worlds. (If duplicate worlds are allowed, then there could be a 8’ world w3 which
is a duplicate of w;, and which is strictly preferred to w; and wy.) We have M, wy [~ « and
therefore M, w = Os(a|3').

Thelatter result israther surprising for the following reason. When two ordering obligations
are represented by two sets of minimizing obligations, then one would expect that the ordering
obligationshave at | east the properties of theminimizing obligations. Inparticular, at first sight it
seems that the ordering obligations have weakening of the consequent. The obligation O (o |3)
is equivalent to the set of obligations {O3(a |5) | 0 (8" — B)}. Minimizing obligations have
weakening, thus the set of obligationsimplies {Os(a; V ay | ') | 0 (8" — B)}. The latter
set is equivalent to the obligation O(«; V s | §). Hence, it seems that the ordering obligation
O(a | B) impliesthe ordering obligation O(a; V s | 3). A careful analysis of the definitions
reveal s that the argument iswrong due to subtle consistency checks. For the operators O and O3
the consistency check isin WCs. Hence, the implication from {Os(ay | ) | 0 (8 — pB)}to
{O3(1 Ve |f) | 0 (8" — B)} isnot valid. For the operators O and O the consistency check
is part of RSA. Hence, the implication of O¢(a4 | 5) to {O5(a:|3') | 0 (8" — B)} isnot valid.
Thisisillustrated by the following example.

Example 2.23 Consider the ordering obligationsO(p A ¢| T) and O(q| T), and the model M
in Figure 2.4 we discussed in Example 2.7. We have M, w = O(p A ¢| T) but we also have
M, w [~ O(q|T). The obligations correspond respectively to the sets of minimizing obligations
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(for any 8) Os(p A q|8) and Os(q | 3). However, O5(p A ¢|3) does not imply Os(q | 3) when

(3 implies —p, because of the consistency check 8 (p A g A 3) of WC5. Moreover, consider the
obligationsO¢(p A ¢| T) and O¢(¢| T). The obligations correspond to minimizing obligations

Os(pAq|B)and O3(q|B'), for anyﬂsuchthatg(p/\q/\ﬂ) and for any 3’ suchthatg(q/\ﬂ'),
respectively. We have O5(p A ¢|3) implies O3(q|5). However, thefirst set of 5 is a subset of
the second set of 5. Hence O¢(p A ¢| T) doesnot imply O¢(q| T). O

In this section we introduced existential-minimizing obligations. They are weak variants
of Bengt Hansson’s universal-minimizing obligations. We showed three relations between the
existential-minimizing obligations and the ordering obligations. First, we showed that order-
ing and existential-minimizing obligations are duals when we consider the inference patterns
strengthening of the antecedent and weakening of the consequent, because the former only val-
idates the first inference pattern whereas the latter only validates the second one. Second, we
showed that an ordering obligation is stronger than existential-minimizing obligations in the
sense that the former logically impliesthe latter. Third, we showed that an ordering obligation
does not only derive aset of existential-minimizing obligations, but even corresponds to them if
we add the additional condition that there are no duplicate worlds. Finally we showed that in the
proof theory this surprising property corresponds to some consistency checks. In the next sec-
tion we show how minimizing and ordering can be combined in atwo-phase deontic logic. The
two-phase approach combines strengthening of the antecedent and weakening of the consequent.

2.24 Combining ordering and minimizing

In this section we analyze the Forrester paradox in Example 2.1. The problem of the paradox is
the combination of strengthening of the antecedent and weakening of the consequent. Thusfar,
we have discussed the ordering logic O that has strengthening of the antecedent but not weaken-
ing of the consequent, and the minimizing logic O3 that has weakening of the consequent but not
strengthening of the antecedent. The two phases in a deontic logic correspond to the two differ-
ent kindsof obligationsO¢ and O4 (or O and O3, or O and O%°). From aproof-theoretic point of
view, the first phase corresponds to applying valid inferences of O¢ like RSA, RAND etc, and the
second phase corresponds to applying valid inferences of O¢ like wc and RBC. The following
example shows how the two-phase approach solves the Forrester paradox of Example 2.1.

Example 2.24 (Forrester paradox, continued) Consider the set of premises
S ={0(=k|T), 0k Aglk)}

Thecrucia observationisthat O§(—(kAg)|k) isnot entailed by S. A typical countermodel M is
represented in Figure 2.7. We have M = O°¢(—k|T) and M = O°(k A g|k), because |k|£|—k|
and |k A —g| £k A g| respectively. We have M = O5(—(k A g)| k), because |k A g|<|k A —g].

For the proof-theoretic analysis of the non-derivability of O5(—(k A g) | k), see the possi-
ble derivations in Figure 2.8 (a copy of Figure 2.2). In thisfigure, a dashed line represents an
inference whichisno longer valid compared to the derivation in Figure 2.1. First of al, the obli-
gation O5(—(k A g) | k) isnot entailed by S via O¢(—k | k), because O¢(—k | k) is not entailed
by O¢(—k|T) dueto the restriction in RSA. Secondly, O5(—(k A g)|k) isnot entailed by S via
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ideal situation ordered sub-ideal situations
@
Figure 2.7: Semantic solution of the Forrester paradox

O(—(k Ng)|T), because O¢(—(k A g)| T) isnot entailed by S. Finaly, O5(—(k A g) | k) is
not entailed by S viaO5(—(k A g) | T) either, because O% does not have strengthening of the

antecedent at all. O
O°(~k|T) O°(-kIT)
) o e e
O°(~k|T kg 05(~(k A g)| T
I ey OCAgR B GEAINT) e
O°(~k1k) 05(-=(k A g)F) 05(-(k A g) k)

Figure 2.8: Proof-theoretic solution of the Forrester paradox

Semantically, thefirst phase corresponds to ordering (O€) and the second phase to minimiz-
ing (0O%). Anintuition behind the two-phase approach is the distinction between ‘dynamic’ and
‘static’ processes. Thefirst phase ‘dynamically’ orders all worlds, and the second phase ‘ stati-
caly’ teststhe minimal worlds. The distinction is analogous to the distinction between actions
and tests in programming languages or dynamic logic. However, the intuition behind the dis-
tinction between dynamic and static processesis not represented in the semantics. It isaconse-
guence of the way we use the two types of obligations. As can be verified in Figure 2.8 above,
we use the ordering obligations O¢ as premises and the minimizing obligations O§ as conclu-
sions. The standard entailment relation S = o means that for all models M such that M = S,
we have M = «. Hence, al models ‘dynamically’ ordered by S have the ‘static’ property .
We further discuss the distinction between the dynamic first phase and the static second phase
when we discuss the two-phase approach with the no-dilemma assumption in Section 2.3.4.

In this section we have introduced a new dyadic deontic logic 2DL. Any fully-fledged de-
ontic logic has to be able to represent the no-dilemma assumption, permissions and factual de-
tachment. We turn to these issues for our two-phase deontic logic 2DL in the remainder of this
chapter.

2.3 Theno-dilemma assumption in the two-phase approach
In this section we show how the no-dilemma assumption can be incorporated in the two-phase

deontic logic. Most deontic logics, for example standard deontic logic SDL, have ano-dilemma
assumption. For a philosophical motivation of thisassumption, see e.g. [Con82, Hor94, Prad6].
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The formalization of this assumption makes dilemmas inconsistent (see Section 1.3). The fol-
lowing example shows how the two-phase deontic logic developed in the previous section can
represent dilemmasin a consistent way.

Example 2.25 (Dilemma) Consider the set of obligations S = {O(p| T),O(-p| T)} that
represents a dilemma, because the consequents of the obligations are contradictory. The set S
is consistent, and atypica model M of S isgiveninFigure2.9. Wehave M = O(p|T) and
M = O(—p|T), because | —p|£|p| and | p|£|—p|, respectively. The model illustrates that the
dilemma.S corresponds semantically to incomparable p and —p worlds. O

sub-ided situations

Figure 2.9: Dilemma

In someapplicationsof deonticlogic, the consistency of dilemmasisnot adesirableproperty.
There are (at least) two reasons to accept the no-dilemma assumption. First, with the assump-
tion we can derive more conclusionsthan without it. For example, consider thepremiseO(p|T).
With the assumption, we can derive (the otherwise non-derivable) =O(—p| T), ~O(—p A q|T),
and probably even —=O(—p|q) for any ¢. Secondly, the assumption isnecessary if we have acon-
flict resolution mechanism that is based on the the idea of ‘restoring consistency.” A dilemma
can be considered as a kind of conflict which should be inconsistent. Conflict resolution mech-
anisms are discussed in Chapter 4.

Thus, it must be possible to add the no-dilemma assumption to a deontic logic. In particu-
lar, we have to show how the assumption can be formalized in the two-phase deontic logic, to
show it isafully-fledged deontic logic. Usualy, the no-dilemmaassumption isformalized by a
variant of the D* axiom which can be added to the logic to make dilemmas inconsistent. How-
ever, thereisaproblem (called the cigarettes problem) which shows that the addition of the D*
axiom is unsatisfactory for any dyadic deontic logic. For example, the axiom is too weak for
the existential-minimizing logic O5(«|3) and too strong for the dyadic ordering logic O(«a| 3).
Instead of adding an axiom to the logic developed in the previous section, we introduce new
ordering and minimizing obligations.

2.3.1 Thecigarettesproblem

Thefollowing example (adapted from [PS96]) illustratesthat strengthening of the antecedent sa
IS necessary to make dilemmas inconsistent. However, it aso illustrates that only a restricted
form of sA may be accepted, or counterintuitive conclusions follow.
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Example 2.26 (Cigarettes problem) Assume adyadic deontic logic that has at |east substitu-
tion of logica equivalents, no strengthening of the antecedent and the following axiom which
makes dilemmas inconsistent.

D*: - 8(041 Aag A B) = =(0(ar|B) A O(a2|B))

Consider the set of obligations S = {O(—c| T),O(c| k) }, where k can be read as ‘killing
someone (the witness)’ and ¢ can be read as ‘ offering someone a cigarette.” Prakken and Sergot
argue in [PS96] that S represents a dilemma. Hence, S should be inconsistent, even when S is
extended with the obligation O (—k|T).

“Isthis acceptable? In our opinionitis: what iscrucial isthat O(c|k) isnot aCTD
rule of O(—c| T) but of O(—k | T), for which reason O(c | k) and O(—c| T) are
unrelated obligations. Now one may ask how this conflict should be resolved and,
of course, one plausible optionisto regard O(c|k) as an exceptionto O(—¢|T) and
to formalize this with a suitable nonmonotonic defeat mechanism. However, it is
important to note that thisis a separate issue, which has nothing to do with the CTD
aspects of the example.” [PS96]

To obtain the inconsistency, we can consider the inference pattern RSA. However, assume RSA
and consider the set of obligations .S’ = {O(p1|T), O(p2| T)}. Obviously, S’ does not represent
a dilemma when p; and p, are unrelated propositions, and it should be consistent. With RsA

(and 8 (p1 A —p2) and 8 (—p1 A p2)), we can derive the obligations O(p; | =(p1 A p2)) and
O(p2|—~(p1 Ap2)) from S’. However, the two derived obligations are inconsistent with D*. This
inconsistency can be avoided when the D* axiom is replaced by the following axiom D*”.

D*: = (a1 Aaw) = —(0(a1]8) A O(as|B))

However, assume D*’ and consider the set of obligations S” = {O(p | ¢1),O0(—p | ¢)}. Itis
argued by von Wright [vVW71b] that S” does not represent a dilemmaand that it should therefore
be consistent.®

“Herewith it has been proven that, if thereisaduty to seetoit that o. under circum-
stances [, then there is no duty to see to it that not-oc under circumstances . For
example: It has been proven that, if there is a duty to see to it that a certain win-
dow is closed should it start raining, then there cannot be a duty to seeto it that the
window is open should the sun be shining. Thisis manifestly absurd. Generaly
speaking: From aduty to seeto a certain thing under certain circumstances nothing
canfollow logically concerning aduty or not-duty under entirely different, logically
unrelated, circumstances. Least of all should one be ableto provethat thereisunder
those unrelated circumstances a duty of contradictory content.” [vVW71b, p.116].

With RsA (and 8 (pAg1/A\go) and 8 (—pAg1N\g2)), wecan derivetheobligationsO(p|q1 Age)
and O(—p|gq1 A ¢2) from S”. The two derived obligations are inconsistent with D*’. O

5To beprecise, theset S”' conflictswith <<_>> (g1 A\g2). Alchourron[Alc93] arguesthat thederivation of E —(q1N\g2)
isintuitive (with the conditional interpretation of the antecedent).
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Figure 2.10: Cigarettes problem

The derivations in Figure 2.10, a copy of Figure 2.3, illustrate that there are two solutions
for the cigarettes problem above: weakening RSA and weakening D*'. The first solution of the
Cigarettes problem is that O(p; | =(p1 A p2)) cannot be derived from the obligation O(p; | T)
when there is another premise O(p, | T) (set S”), and such that O(p|¢; A g2) cannot be derived
from the obligation O(p | ¢1) when is there another premise O(—p|¢s) (set S”). However, RSA
may not be weakened too far, because the set S has to remain inconsistent. In this section we
incorporate this solution in our two-phase deontic logic. Wefirst give minimizing obligationsin
Section 2.3.2 and then ordering obligationsin Section 2.3.3, because the latter usesresultsfrom
the former.

2.3.2 Minimizing

In this section we introduce the second minimizing logic. We first give the definition in modal
logic, the semantic truth conditions and several properties expressed as theorems of the modal
logic. Thenwegivearelation between these universal-minimizing obligationsand the existential -
ordering obligationsintroduced before. Finally, weinvestigatewhether the universal-minimizing
obligations can solve the cigarettes problem by adding strengthening of the antecedent.

The following universal-minimizing obligations Oy consider al preferred worlds, not only
an equivalence class of preferred worlds like the existential-minimizing obligations O5.” Itis
similar to Boutilier’ sreconstruction [Bou94b] of Bengt Hansson'sdyadic deonticlogic[Han71].8
The distinction between the universal-minimizing obligations and the existential-minimizing
obligationsis anal ogous to the distinction between standard and minimal deontic logic, see Sec-
tion 1.3.2. In standard deontic logic an obligation O« istrueif « istruein all accessible worlds,

"Spohn [Spo75] argues that Hansson's minimizing logic is axiomatized by a standard system, extended with
—Oy(=f8|a) = (Ov(y|a A B) & Oy(B — v]|a). However, RBC cannot be derived from this theorem, see
e.g. [KLM90, Alcog].

8B.Hansson’s orderings are totally connected and Boutilier’s reconstruction is in the logic CO
instead of CT40, see Definition 2.37. Moreover, Boutilier defines minimizing conditionals by

Ov(a|B) =defE (B—=0(BA0O(B = a))). We have adapted the definition for the two-phase approach in a
similar way as we have adapted the weak minimizing obligationsin Section 2.2.3.
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and in minimal deonticlogic O« istrueif « istruein an equivalence class of accessibleworlds.
Moreover, the distinction is analogous to the distinction between sceptical and credulous infer-
ence relations in logics of defeasible reasoning. For example, in circumscription [McC80] a
sceptical inference relations considers all minimal worlds and a credulous inference relation an
equivalence class of minimal worlds. Moreover, in Reiter’s default logic [Rei80] the distinction
between sceptical and credulousis related to the distinction between truth in all extensions and
truth in at least one extension.

The universal-minimizing obligation is defined in a weak preference ordering, which we
writeas oy v ay. A preference ay >y as does not logically imply a preference for o) > o
when o impliesa; and of, implies a,. Thus >y formalizes weak preferences. We say that o
isweakly preferred to o, if and only if for al o, worldsthereisan a; world w such that for all
o Worlds we have that they are not as preferable asw. That is, for al preferred o;; worlds and
all preferred o, worlds we have either that the «; world is preferred to the a, world, or that the
two worlds are incomparable.

Definition 2.27 (Dyadic minimizing obligation) The dyadic minimizing obligation ‘. should
bethe caseif §isthe case’, written as Oy («a | 3), isdefined as aweak preference of o A 3 over
—a A 3. A weak preference of o, over ay, written as a; >y ay, isdefined as follows.

Q1 -y Q2 =u El(az — O(on Adaw))V O
Ov(a|B) =wu (aApB)>=y(-aAnpB)
= O((~arB) = O(a ) AD=(—a A B)V C-(aA b
& 0= 0BA0E = o)V O-(anp)
Oj(alB)  =w (A B) =y (caABA O (A f)
o DE=0@A0E = a)AGS
O (alf) =a (@A B) =y (Ca ABA O (A BIA G (A )
& OB = 0BATB = a))A S (~aAp) 0

The following proposition shows that the minimizing obligations Oy consider all preferred
worlds.

Proposition 2.28 Let M = (W, <, V') bea 2pL model. For aworldw € W, we have M, w =
Oy(a| B) iff thereareno o A 5 worlds or for all 5 worlds ws thereisaworld w, € W such
that ws < we and and for all 3 worldsw; € W with w; < we We have M, w; = «. Hence,
M, w = Oy(a|p) iff thereareno a A g worlds, or:

1. aistruein all most preferred 5 worlds, and

2. in every infinite descending chain that contains 4 worldsthereisa g world w4 such that
aistrueinall g worldsw, such that w; < ws,.

Proof Analogousto the proof of Proposition 2.6 and 2.18 (see also [ Bou94a] ). =- By contrapo-
sition. Assumeamodel M = (W, <, V') such that thereisaworld w, suchthat M, w, = a A 8
and there is a world w3 such that there is not a 5 world w, such that ws < w3 and « istrue
in all g worlds w; such that w; < w,. We have M,wy, = 3 AO(B — «) and therefore
M, w3 E BA-Q(BAD(B — «)). Hence, M, w £~ Oy(a|B).
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< By contraposition. Assume M, w = Oy(a | ) for some world w. Hence, there is a
world wy € W such that M, w; = 8 — (6 A0(8 — «)) and thereisa world w, such that
M, w, = anp. Itfollowsthat M, w; = gand M, ws ~= O(BAD(8 — «)). It followsthat for
all worlds wy with wy < w3 we have M, ws = (8 ADO(S — «)). Hence, for every w, such
that M, w, = a A §thereisaworld w; € W suchthat M, w; = —a A g and w; < ws. The set
of w, either contains most preferred worlds or an infinite descending chain of 3 worlds.

Thefollowing proposition shows various properties of the universal-minimizing obligations
as weak preferences.

Proposition 2.29 Thelogic 2DL has the following theorems.

WCV . O\?,(al |ﬂ) — ng((l/l V OQ‘B)

ANDy :  (O(a1|8) A OY(ae|B)) = O%(aq A a|B)
0y(a|B) = 09(8 — «|T)

DDTy: Oy(a|B) AOy(B|T) — Oy(a| T)

RBCy:  (Ov(a|B1) A Ov(a|B2)) = Oy(a|B1V Ba2)

D*y:  =(0¢(alB) A OY(—alB))

|dv Ov(Oz‘CY)
A nd
ldg Oa — Of(a|a)
NIde =0 (a|w)
Cv Ov(J_‘a)

NC¢ —0¢(L|a)
NCyF  —0F(L]a)

Thelogic 2DL does not have the following theorems.

SAv:  Oy(alBi) — Ov(alBi A Ba)
DDy : Ov(a|B) A Ou(Bly) = Ov(aly)

Proof The (non)theorems can easily be verified in the preference-based semantics. The proofs
are analogous to the proofs of Proposition 2.8, 2.12 and 2.20.

The following proposition gives arelation between the two types of minimizing obligations
03 and Ov.

Proposition 2.30 Thelogic 2DL has the following theorems.

Relys  Ov(a|B) = Os(alf)
Relys  Og(alf) — 05(alf)
Relis  OF(a|f) = 0F(alf)

Proof The theorems can easily be verified in the preference-based semantics. Truthin all worlds
impliestruth in an equival ence class of preferred worlds (if such worldsexist). Alternatively, the
theorems follow from the following relation (a; >y ae) — (a1 >3 a2), i.e. from

(B (s = Olar AD=az))V O=ar) = (6 (a1 A Omaz)V O-ar)
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In the remainder of this section we consider the cigarettes problem for universal-minimizing
obligations. The following example shows that the logic of the minimizing obligations O\ does
not solve the cigarettes problem.

Example 2.31 (Cigarettes problem, continued) Consider the set of dyadic obligations S =
{Oy(=¢|T),Oy(c|k)}. S isconsistent, asis shown by themodel M of S in Figure 2.11 below.
We have M = Oy(—c¢|T), because the minimal worlds satisfy —¢, and we have M = Oy(c|k),
because the minimal k£ worlds satisfy c. The set S is consistent, thusthe logic Oy does not solve
the cigarettes problem. a

ideal situation ordered sub-ideal situations

@ @
Figure 2.11: The cigarettes problem

In Section 2.3.1 we argued that the cigarettes problem may be solved when the obligations
have some strengthening of the antecedent. There are several well-known ways to add some
strengthening of the antecedent to the minimizing logic. The most popular is without doubt
Pearl’s so-called System Z [Pea90] which is equivalent to Lehmann’s Rational Closure [LM92]
and the so-called minimal specificity principle of possibilistic logic [BDP92]. System Z adds
strengthening of the antecedent by assumingthat ‘ worldsgravitatetowardsmost preferred.” Here
we givethe reconstruction of gravitating towards most preferred of Boutilier [Bou92a].° Theba-
sic idea of worlds gravitating towards most preferred is that worlds are more preferred in pref-
erence relation <; than in <, when they are equivalent to amore preferred world.°

Definition 2.32 (More preferred) [Bou92a, Definition 5.20] Let M, = (W, <;, V) and M, =
(W, <5, V) betwo CT40* modelswith thesame W and V. w € W ismore preferred in M,
than in My, written as N (w, My, M,), iff

1. thereissomev € W suchthat v <; w, w <; v, and notv <, w, or

2. thereisno v (with w # v) such that w <, v and v <5 w. O

Given the definition of more preferred worlds, Boutilier defines a preference ordering on
models. The ordering on models (C) should not be confused with the ordering on worlds (<).
The ordering on modelsis a technical trick to ensure that the worlds within a model are maxi-
mally preferred, whereas the ordering on worlds expresses the ideality ordering.

Definition 2.33 (Preferred to) [Bou92a, Definition 5.21] Let M, = (W, <;,V) and My =
(W, <5, V) be CT40* models. The model M, is as preferable as My, written as My T M,, iff

9Boutilier’sreconstruction of gravitatingtowardspreferred, i.e. SystemZ, isinthelogic CO, see Definition 2.37.
The reconstruction in CT40 is analogous.
10The definitions are slightly complicated because worlds can be not equivalent to any other world: condition
(2.) of Definition 2.32 and to allow that N (w, M, M») isfalsein Definition 2.33.
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foral w e W, N(w, My, Ms) isfaseonly if {v | w <y v} C{v | w <; v}. M ispreferred to
M, writtenas M, C M,, iff M, © M, and M, IZ M;. O

The preference ordering on model sisused to determinethe preferred models. Definition2.33
compares only modelsthat agree on possibleworlds (W and V' must agree). Boutilier [Bou92a]
noticesthat if we are considering only CT40* models, thismakeslittledifference (aslong aswe
‘rename’ worlds appropriately), because duplicate worlds (having the same induced val uation)
have no effect on preferentially entailed conclusions.

Definition 2.34 (Preferred model) [Bou92a, Definition 5.22] Let M be a CT40* model and
let T C L beaset of dyadic obligations Oy(«|3). M isapreferred model of 7" iff M = T and
foral M’ suchthat M’ =T, wehave M' i M. O

The preferred models are used for preferential entailment [Sho88, KLM9Q].

Definition 2.35 (Preferential entailment) [Bou92a, Definition 5.23] Let 7 C L be a set of
dyadic obligations Oy(« | 3). « is preferentially entailed by 7, writtenasT' = «, iff M E «
for al preferred models M of T'. O

The following example illustrates that System Z does not solve the cigarettes problem, al-
though it has some strengthening of the antecedent. System Z does not solve the cigarettes prob-
lem, because it maintains consistency (if S hasamodel then S hasa preferred model). Methods
that maintain consistency do no solve the cigarettes problem, because {O(—k| T),O(k|c)} is
consistent (it hasamodel), but should beinconsistent. There are many defeasiblelogicswith dif-
ferent methods to add strengthening of the antecedent. For example, amethod related to System
Z is Brewka's prioritization [Bou92a, BB95]. Another popular irrelevance principle is adding
amaximal consistent set of material counterparts of conditionals [Del88, Mor95]. However, as
far as we know all these methods maintain consistency. Obviously, these other methods do not
solve the cigarettes problem either.

Example2.36 (Cigarettesproblem, continued) Reconsider the CT40* model M inFigure2.11
of the set of dyadic obligations S = {Ov(—c¢|T), Oy(c|k)} of Example 2.31. M isamost pre-

ferred model of S. For any propositiona awithg(a/\ﬁc/\ﬁk) wehave S = Oy(—cla). Hence,
Ovy(—¢| T) isstrengthened to Oy (—c|a). However, S isconsistent and wehave S (- Oy(—clk).
Hence, Oy(—c| T) isnot strengthened to Oy (—c| k) and System Z isnot asol ution of thecigarettes
problem. O

Bengt Hansson proposed minimizing obligations for totally connected orderings, i.e. for al
worlds w; and w, we have either w; < w, or wy < wy.1 If the ordering is connected, then the
modal operator [ satisfies the $4.3 axioms instead of the $4 axioms. The additional axiom is

f the set of premises S contains only formulas of the form Oy (a | 3), then we have the well-known result
that S |=p aiff S |=r «a, where |=p is entailment based on $4 (preferential) models and =g is based on $4.3
(rational) models. Thisfollows from Lehmann's observation [LM92] about preferential and rational models, see
also [Bou92a, p.63].
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O(0(a — B)vO(8 — «)). Totally connected is axiomatized by Humberstone's axiom Sgiven
in the following definition. Boutilier calls the extension of CT40* with Sthe logic CO*.1?

Definition 2.37 (CO*) [Bou94b] Thelogic CO* isthe smalest S C L, such that S contains
the axioms of CT40* and the following axiom S, and is closed under the rules of inference of
CT40*.

S « —>EI Qa O
Definition 2.38 (CO* semantics) [Bou94b] A CO* model isaCT40* model M = (W, <, V)
of which the accessibility relation istotally connected. O

The following proposition shows that we can formalize the no-dilemma assumption for O
by demanding that the partial ordering < istotally connected. An important consequence of
this proposition is that in the minimizing logics, incomparable worlds are only used to model
dilemmas.

Proposition 2.39 Thelogic CO* has the following theorem.

Oz(a|B) < Ov(al|p)

Proof Follows directly from the semantic definitions. Truth in an equivalence class of preferred
worlds and truth in all preferred worlds has become equivalent.

In this section we discussed Bengt Hansson’ s universal-minimizing obligationsin the frame-
work of modal preference logics. We showed that the |ogic makes some dilemmas inconsi stent,
but with the cigarettes problem we showed that it does not make all dilemmasinconsistent. The
latter problem can be solved by adding some strengthening of the antecedent to the minimiz-
ing obligations. However, we also showed that existing methods to add strengthening of the
antecedent to minimizing obligations are not sufficient to solve the cigarettes problem, because
these methods maintain consistency. In the following section we consider extensions of the or-
dering obligations, which have strengthening of the antecedent, to solve the cigarettes problem.

2.3.3 Ordering

In this section we define new ordering obligationsin the modal logic, and we give severa prop-
erties of the obligations expressed as theorems of the modal logic. Moreover, we introduce a
notion of preferential entailment for the obligations, such that the obligations have restricted
strengthening of the antecedent. Finally, we analyze the cigarettes problem with the new or-
dering obligations. The following example illustrates the cigarettes problem of Example 2.26
for the ordering obligations O°.

LThepreferred System Z model in CO* given W and V' isunique. Theuniquenessis obviously not truefor more
complex sentences of the language. Consider for example Oy (p|T) V Oy (—p|T). There aretwo preferred models,
one with p preferred to —p and one vice versa. From the uniqueness of the preferred models follows that it can
be axiomatized with the concept of ‘conditional only knowing’, see [Bou92a]. This axiomatization is Boutilier's
motivation to use the logic of inaccessible worlds.
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Example 2.40 (Cigarettesproblem, continued) Assumethe extension of 2bL with thefollow-
ing axiom D*.

<~

D*: = O (a1 Az AB) = =(0(ar|B) A Oz B))

Consider the set of dyadicobligationsS = {O¢(p1|T), O¢(p2| T) }. From theproof-theoretic
analysisin Example 2.26 follows that S isinconsistent with D*.*3 Moreover, the set S iseven
inconsistent when the axiom D* is replaced by the following axiom D*’.

<~

D*: = O (an Aas) = =(0%a1|B) A O%(az|B))

We can derive Oc(pl VAN _|(p1 N pg) | —|(p1 N pQ)) and Oc(pQ A _|(p1 AN p2) ‘ —|(p1 VAN p2)) from S

with 804 — O°(a|a) and the RAND theorem. They are logically equivalent to the obligations
O°(p1 A =p2 | =(p1 A p2)) and O%(p2 A —p1 | =(p1 A p2)), and the latter two obligations are
inconsistent with axiom D*'. O

For the two-phase approach, we define a new kind of phase-1 obligation O ;, as a combina-
tion of ordering obligation O and universal-minimizing obligation Oy. Thisnew obligation com-
bines ordering and minimizing in the same phase. In particular, it combines the strengthening
of the antecedent of the ordering obligations with the no-dilemma assumption of the universal-
minimizing obligations to solve the Cigarettes problem. The details of this solution are shown
at the end of this section.

Definition 2.41 (Dyadic ordering obligation) Dyadic ordering obligation ‘. should bethe case

if 3isthecase’, writtenas O p(a|3), isdefined as a strong and aweak preference of o A 3 over
—a A (.

Op(a|f) =w (@AB)>=s(~aAB)A(aAf) =y (—aApb)

05(alf) =w On(@lDAG@AB)
O5(alB) =w On(alHAG(@ABAS(~anp) =

The following proposition shows that the dyadic ordering obligations O, have weaker ver-
sions of the theorems of Proposition 2.8.

Proposition 2.42 Thelogic 2DL has the following theorems.

BSemantically, the inconsistency is a result of the fact that the axiom D* makes the ordering < connected. In
the previous section we observed that in the minimizing approach, incomparable worlds are only used to model
dilemmas. However, in the ordering approach (and the two-phase logic) thisis not the only usage of incomparable
worlds. Let M bea2DpL model of S. Thep; A —ps and —p; A po worldsof M areincomparable, because the first
is better than the latter with respect to obligation O¢(p;|T), but worse with respect to obligation O¢(ps|T).
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RSAp:  (Op(a|B1) A Ov(a|Br A 52(_))) — Op(a|Bi A Bs)

ANDD: (OCD(Q1|5) A OCD(&Q‘/B)/\ <> (011 N\ oo N ﬁ)) — O%(al A OfQ‘ﬂ)
ORD: (O%(Qﬂﬁ)/\O%(&Q‘ﬂ)) —)OCD(OJ1VQ2|5)

RDDp: (O (]B) AOL(B]7) AOv(a A Bl7)) = Op(a A Bly)

A nd

D* p: =0 (a1 Aag A B) = =(0% (a1 |B) A Op(az|B))

Proof The propertiesfollowdirectly fromthe propertiesof O and Oy, see Proposition 2.8 and 2.29.
RSA , and RDD’ follow from O, D* , follows from Oy, and AND ;, and OR , follow from both.

The following proposition shows the relation between the ordering and minimizing obliga-
tions.

Proposition 2.43 Thelogic 2DL has the following theorems.

Rely:  Op(a|B) = Oy(a|f)
Rely:  Of(alB) = O4(alB)
Rel:  0%(alf) = 0L (alB)

Proof Follows directly from Definition 2.41.

Intheremainder of thissection ontheordering obligations, we consider the property strength-
ening of the antecedent and we analyze the cigarettes problem in the logic. In Section 2.2.2 we
discussed the following problem of RSA. To obtain strengthening of the antecedent of O(«|51)

to O(cr| By A B2) we have to know the consistency expression & (A 51 A ). The axiom LP
and therelated logic 2DL* obtain strengthening of the antecedent without having to specify the
consistency expression for every example. A similar problem occurs for RSA p, because now
we we can only derive Op(«| 1 A B2) from Op («| B1) when we have Oy (|51 A 32) as another
premise. As asolution, we use preferential entailment (hence, we only use preferred models),
but a different one than System Z. The following preference ordering on models prefers mod-
els which are maximally connected with respect to the partial pre-ordering <. To distinguish
this new notion of preferential entailment from the definitions of preferred models and = in
Definition 2.33 and 2.35 we write c-preferred and ...

Definition 2.44 (C-preferential entailment) Let M; = (W, <, V) and M, = (W, <,, V) be
two 2DL* models. M isas c-preferable as M, writtenas M, T, M,, iff for al wy, w, € W if
wy <9 wy thenwy <y we. M, isc-preferred to M,, writtenas M, C. M,, iff My T, M, and
M, Z, M. aisc-preferentialy entailed by 7', writtenasT =, «, iff M = «for al c-preferred
models M of T'. O

In the ordering logic, c-preferred models are not unique. Consider the models of O 5 (p|q):
the ~¢ worlds can be equivalent to p A g or to —p A g worlds.** The following example compares
C with C...

14Hence, we cannot use conditional only knowing. The System Z preferred modelsof aset of ordering obligations
are not unique either.
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Example 2.45 Consider thesets S = {Op(p| T)} and S" = {Ov(p| T)}. The unique maxi-
mally connected model M of S consists of two equivalence classes, one consists of al p worlds
and one consists of —p worlds, such that all p worlds are strictly preferred over —p worlds, see
Figure 2.12.a. For any propositional ¢ with S(p A q) wehave M = Op(p|q) and therefore
S e Op(p|gq). Hence, Op with [=. has strengthening of the antecedent. The model M isthe
unique System Z model of S’ and thereforealso S’ = Oy (p|q). Finaly, M isasoamaximally
connected model of S’. However, consider amodel M’ with two equivalence classes of p A ¢
and —p V ¢ worlds such that p A —q worlds are preferred over al —p Vv ¢ worlds, see Figure 2.12.b.
The model M’ isaso amaximally connected model of S’. We have M’ i~ Oy(p|q), and thus
S" . Oy(p|q). Hence, Oy with =, does not have strengthening of the antecedent. O

idedl situation sub-ideal situation ideal situation sub-ideal situation

(—

a {Op(p|T)} b. {Ov(p|T)}
Figure 2.12: C-preferred models

A consequence of Example 2.45 isthat preferential entailment C,. cannot be used if we only
have minimizing obligations. Thisissurprising for thefollowing reason. The reasoning scheme
‘maximally connected’ can be used for thelogic O, to obtain strengthening of the antecedent,
becauseit is used to derive Op (|1 A (2) from the obligation O p(«|51). Thus, the obligation
Ov(a|B1 A B2) isderived from Op(«| 1) = O(a|B1) A Oy(a| B1). One may (wrongly) think
that thisinference can be decomposed as follows.

Ob(0lf) _ _ OWIBIAOelS)  _ Ollf) | Oals)
Op(a|BiAB2) OB AB2) NOy(ar| B A B2)  O(a| B A B2)  Ov(a|By A Ba)

The surprising result is that in the new scheme ‘maximally connected,” Ovy(« | 31 A (32) is not
derived from Oy(« | 31), like in System Z, but from O(« | £1). Hence, strengthening of the
antecedent can be decomposed as follows. The obligation Oy in Op isonly used to make some
moral dilemmas inconsistent, not for strengthening of the antecedent.

Op(a|B) _ O(a|B1) A Oy(a|B) _ O(a| 1) n O(alB)
Op(a|Bi A B2)  O(|Bi A B2) ANOy(ar| B A B2)  O(ae| B A B2)  Ov(a|Br A Ba)

The following example shows that Op solves the cigarettes problem of Example 2.26 by
weakening RSA.

Example 2.46 (Cigarettes problem, continued) Consider the set of obligations
S ={0p(=c| T),0p(clk)}

where —¢ does not entail the negation of & (8 (k A —c¢)). S isinconsistent, and we can derive
an inconsistency as follows. The premise O%(—c| T) entails the obligation O¢(—c¢| T), which
entails O°(—c|k). The premise O%,(c| k) entails O¢(c| k), which isinconsistent with O¢(—c|k).
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Moreover, consider the set of obligations S' = {O%,(p1 | T), O%(p2| T)}. S is consistent, and
theunique c-preferred model M of S’ isgiveninFigure2.13. Wehave M (= O%,(p1|—(p1Ap2)),
and thus S" . O%(p1 | —~(p1 A p2)). Hence, the problematic inconsistency in Example 2.26 is
blocked by weakening RsA.

ideal situation ordered sub-ideal situations

Figure 2.13: Semantic solution of the cigarettes problem (1)

Finally, consider the set of obligations S” = {O%(p | ¢1), O%(—p | ¢2)}. S” is consistent,
and a c-preferred model M of S” isgivenin Figure 2.14. Theideal worlds satisfy ¢; — p and
g2 — —p, and the subideal worlds either —=p A ¢; or p A qo. Wehave M = O(p| g1 A ¢2) and
thus S }=. O(p|q1 A ¢2). Hence, the problematic inconsistency in Example 2.26 is blocked by
weakening RSA. O

ideal situation sub-idea situations

< P, q1
e

Figure 2.14: Semantic solution of the cigarettes problem (2)

In this section we showed that the cigarettes problem can be solved by the ordering obliga-
tion Op, which combines ordering O and minimizing Oy obligations. Moreover, we introduced
anew notion of preferential entailment based on ‘maximally connected” models. At first sight,
it seemsthat we need preferential entailment for universal-minimizing obligations Oy like grav-
itating towards the ideal (System Z), because RSA p, isrestricted by universal-minimizing obli-
gations Oy. However, this is not the case, because our new scheme is a weaker scheme than
gravitating towards the ideal. It is weaker in the sense that ‘maximally connected’ cannot be
used with only universal-minimizing obligations Oy. In the next section we show how ordering
and minimizing are combined in the two-phase approach with the no-dilemma assumption.

2.3.4 Combining ordering and minimizing

The two-phase approach with O%,(«|3) and O¢(« | 3) works similar to the two-phase approach
with O¢(« | B) and O§(« | B). Proposition 2.43 is the counterpart of Proposition 2.21 for the
second example of the two-phase approach. In this case, we have to use preferential entailment
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. instead of =. Preferential entailment is atypical mechanism from non-monotonic reason-
ing. Thefollowing exampleillustrates why the combination of ordering and minimizingis non-
monotonic.

Example 2.47 (Cigarettes problem, continued) Consider the sets of dyadic obligations
S=0

§'={0p(mI[T)}
§" ={05(mIT), Op(p2| T)}
The three unique c-preferred models of S, S’ and S” are represented in Figure 2.15. We have
S" Ec O4(p1|—(p1 A p2)) and S" - OS(p1|—(p1 A p2)). Hence, by addition of aformulawe
loose conclusions. Moreover, it shows that the cigarettes problem in Example 2.26 is solved by
weakening RSA, because with S the obligation O¢(p; | T) is not strengthened to the obligation
OS(p1 | —(p1 A p2)). RSA isnot valid, because there is not a unique most preferred obligation
for the antecedent —(p; A p2). However, we still have S” = O5(p2 | =(p1 A p2)) aswell as
S" =c O5(=p2| —(p1 A p2)). O

S SI S/I

Figure 2.15: Dynamics of the two-phase approach

The models in Figure 2.15 illustrate the dynamics of preferential entailment. At the end of
Section 2.2.4 we aready remarked that we can distinguish two types of processes. the dynamic
ordering of worlds and the static testing of minimal worlds. The dynamics of the ordering pro-
cess are explicit in Figure 2.15. With no premises, all worlds are equally ideal. By addition of
premise Op(p1|T), the p; worlds are strictly preferred over —p; worlds. By addition of the sec-
ond premise Op(p2 | T), the p, worlds are strictly preferred over —p, worlds, and the p; A —ps
and —p; A p, worlds become incomparable.

In this section we showed that strengthening of the antecedent and weakening of the conse-
guent can be combined by combining the two usages of the preference ordering in a preference-
based semantics of adeontic logic. The combination isthe two-phase approach to deontic logic.
The first phase corresponds to ordering, and the second phase corresponds to minimizing. The
two phases are combined by the theorems O(«| 3) — Os(a|8) and Op(a|3) — Oy(a| B). The
combination of ordering and minimizing can beillustrated by Figure 2.16. The figure should be
read asfollows. The cornersrepresent different typesof deontic operators. The arrows represent
logical implication. Thefigurealsoillustratesthat the operatorswith the no-dilemmaassumption
imply theoperatorswithout it, i.e. thetheoremsOp(«|3) — O(a|B) and Oy(a| ) — O3(«|f).
In the following section we extend our study with permission operators.

+ Op(p1|T)



2.4. PERMISSIONS IN THE TWO-PHASE APPROACH 77

O_"Oa

|

OD—" Ov

Figure 2.16: Operators for combining ordering and minimizing

2.4 Permissionsin the two-phase approach

Deontic logicisthelogic of obligations, prohibitionsand permissions. Different types of prohi-
bitions can easily be formalized in 2DL by defining them in terms of obligations.

Definition 2.48 (Prohibition) The prohibition ‘« is forbidden to be the case if 3 is the case,
written as F'(«|3), is defined as follows.

F(alf) == O(-alf) =

Dyadic (strong) permissions cannot be defined satisfactorily in terms of dyadic obligations
(see Section 1.3.5). The main problem of a definition for dyadic permissions analogous to the
definition of weak monadic permissions Pa =, —O—« isthat thisdefinitionimpliestheformula
Oa VvV P—a. Hence, it impliesthat every proposition is normed in the sense that every proposi-
tion « iseither obligatory or its negation is permitted. In this section we extend the logic CT40
such that permissions can be represented satisfactorily. We show that they have two desirable
properties. Thefirst desirable property isthe standard relation between obligations and permis-
sionsOa — Pa. The second desirable property isthat we do not have that every propositionis
normed O« V P—a.

Thebasicideaisthat if obligations are strict preferences O(«|f) =4« (@ A B) = (ma A (),
then permissions are preferences defined by P(a | ) =uw (@ A B) = (—a A ). From the
definition follows directly thefirst deontic axiom O(«|3) — P(«|3). Before we can define the
permissionsin the modal preference logic, wefirst we have to extend the logic CT40 to be able
to refer to strictly preferred worlds.

24.1 Thelogic 2DL

In the logic CT40, we have [ for equivalent and strictly preferred worlds, and the operator El
for inaccessible worlds. For the permission operators in this section we need a modal operator

Elfor only the strictly preferred worlds. That is, for the preference ordering on worlds w; < wy
we define the a-symmetric reduct w; < wy by the standard definition: wy, < ws iff w; < wy and
we £ wy. Thus, we have the following truth conditions.

M,w E O«iff V' € Wif w' < w,then M, w' = «
M,w =0aiff Yo' € W if w' £ w, then M, w' = o
%
M,w EQuaiff V' e Wifw <wandw £ w',then M, w' = «

The semantics for the trimodal logics will be based on the same Kripke structures used for
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(mono-) modal logics, with additional truth conditions for ﬁ defined on these models, just like
thelogic of inaccessibleworlds CT40 isbased on Kripke model swith additional truth conditions

for E Thus, this additional operator adds no ‘ontological baggage’ to our semantic conception
of ideality (see[Bou92a, p.83]). Thefollowing axiomatization has been suggested by Wiebe van
der Hoek.

Definition 2.49 (2pDL) The trimodal language £ is formed from a denumerable set of propo-
sitional variables together with the connectives -, —, and the three normal modal connectives
0, Eand E] Dual ‘possibility’ connectives ¢, (5 and 5are defined as usual and two additional
modal connectives EI and 8 are defined as follows.

Oa = - 0o < —
N — Oo = UOaAOo
Oa = O« “

(_
— = oa = aVOa
8o = -Cina 0o = 0avo

Thelogic 2DL isthesmallest S C £ suchthat S containsclassical logic and thefollowing axiom
schemata, and is closed under the following rules of inference.

K O(«— fg) — (Oa—0p8) Nes Froma infer Ca
K' Ox— B) = (Oa —08) MP Froma — fanda infer 8

K' O(a— B) — (Oa —0p)
T Oa — «
4 Oa — OO0«

H ¢ (0ar08) =0V f)
R1 (aA ﬁﬂ) — OBV O«)
R2 Oa —=Oa

R3 « —>E](<Soz

Lar

We write 4 for derivability in 2DL. O

The modal connective refers_go accessibleworlds, the modal connective EI toinaccessible
worlds and the modal connective (] to one-way accessible worlds.

Definition 2.50 (2DL models) A 2bL model M = (W, <, V') isaCT40 model. We have:

M,w = Oaiff V' € Wif w' < w,then M,vw' = «
M,w =Qaiff Yo' € Wifw' ¢ w, then M,w' = o
M, w )=E|aiff Vw' e Wifw <wandw £ w', then M, v’ E «

We write =44 for logical entailment in 2DL. O

We can write 2DL-models as follows. A 2DL model M = (W, Ry, R, R3, V') isaKripke
model with three accessibility relations such that R, isreflexive and transitive and the following
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two additional conditionshold Ry (z,y) <» = Ri(z,y) and R3(z,y) <> (Ri(x,y) A ~R1(y,x)).
The two conditions are equivalent to the following set of conditions.

Rl(a:ay) — ﬁ]%2(1"(@)

—'Rl(xay) - RQ(I’y)

R3(l"y) - Rl(x’y)

R3(l"y) - Rg(y,f)

Ry(z,y) = (Rs(z,y) vV Ri(y, 7))

We have;

M,w = O« iff Vu' € Wif w' Ryw, then M, w' = «
M, w )zEaiff V' € W if w'Ryw, then M, v’ = «
M,w )=aaiff Yw' € W if w'Ryw, then M, w' = «

Before we prove soundness and compl eteness of thelogic, wefirst show that the axiomswith
which we extended the logic CT40 characterize the desired properties of R5. This, however, is
not enough for a completeness proof of the logic 2DL, because the axiomatization of the logic
CT40 isnot cumulative. That is, completeness of the logic CT40 is not assured when axioms
areadded to it. Wetherefore also give a (standard) compl eteness proof based on canonical mod-
els. Onfirst reading, the reader is advised to skip the remainder of thisrather complex technical
section. Itisnot used later in thisthesis.

Proposition 2.51 Theclassof frameswith R;(z,y) — Ri(z,y) ischaracterized by Do O,
that is, the set of frames F' = (W, Ry, R,, R3) With R3(z,y) — Ri(z,y) isthe set of frames

suchthat F' E O« —)Ii)a (i.e. for all models M = (W, Ry, Ry, R3, V') of the frame, we have
M = Oa —>|El>oz).

Proof = Consider a model that satisfies the frame condition R3(x,y) — Ri(z,y). Proof by
contraposition. Assume a world w such that M, w (= O« 0 a. We have M,w E O«

and M, w b&a a. From M, w b&ﬁ « follows that there is a world w’ such that Rs(w, w") and
M, w' = —a. From the condition on frames follows R, (w, w’). This contradicts M, w = Oea.
< Consider aframe F' = (W, Ry, Ry, .R3) that does not satisfy the condition R3(x,y) —
Ry (z,y). Hence, there are worlds w and w' such that R3(w,w') and —=R;(w,w'). Choose a
model M = (W, Ry, Ry, R3, V') on F such that p isfalseat w’ and true at all other worlds. e

have M, w = Op and M, w bélil)p. Hence, we have M, w %= Op —>E|p.

The following result is due to Lemmon [Seg70], which is of special significance for tense
logic (see aso [HUM83)).

Proposition 2.52 Theclassof frameswith R;3(z,y) — Ra(y, x) ischaracterized by o —>E](<;a,
that is, the set of frames F' = (W, Ry, Ry, R3) with R3(z,y) — Ra(y,x) isthe set of frames

suchthat F' = « —>E|H<§a (i.e. for all models M = (W, Ry, Rs, R3, V') of the frame, we have
(_
MEa —>|f|><>a).
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Proof Analogous to the proof of Proposition 2.51.
= Consider a model that satisfies the frame condition R3(z,y) — Ry(y, z). Proof by con-

traposition. Assume a world w such that M, w ¥~ « NG 5 a. Wehave M,w E « and
— —
M, w béa O a. From M, w %E} ¢ « follows that thereis a world w' such that Rs(w, w') and

Mw' = - Sa, i.e M w' ):E —«. Fromthe frame condition follows Ry (w’, w), and therefore
M, w = —«. Contradiction.
<« Consider aframe F' that doesnot satisfy theframecondition R3(z, y) — Ra(y,z). Hence,
there are worlds w and w’ such that R;(w, w') and =Ry (w', w). Choose a model M with in-
terpretation 1 such that p istrue at w and false at all other worlds. We have M, w = p and
M, w' %8 p. From M, w' %E p and Rs(w,w") follows M, w béﬁ 5 p. Hence, we have
—

%
M,w £ p—-0O0p.

Proposition 2.53 The class of frames R, (z,y) — (Rs(z,y) V Ri(y,z)) is characterized by
(@A O B) — O(BV Oa), that is, the set of frames F' = (W, R, Ry, Rs) with Ry (z,y) —
(Rs(z,y) V Ry (y, x)) isthe set of frames such that we have F' = (aA aﬂ) — OBV Oa) (i.e
for all models M = (W, Ry, R, R3, V') of the frame, we have M = (aA aﬁ) — OB V Oa)).

Proof Analogous to the proof of Proposition 2.51 and 2.52.
= Consider amode! that satisfiesthe condition R, (z,y) — (Rs(x,y)V Ry (y, z)). Proof by

contraposition. Assume a w such that M, w = (aA ﬁﬂ) — (8 V ¢a). Wehave M, w E «,

M, w ):Elﬁ and M,w = OB V Q). From M, w = O(5 Vv ) follows that thereisa world
w' such that R; (w,w') and M, w' ¥~  and M,w" = Qa. Fromthe condition on the frames

follows R3(w, w') or Ry(w', w). Thefirst conflicts with M, w ):ﬁﬂ and M, w' |~ 3, the latter
with M, w = aand M, w' £ Qa. Contradiction.

<« Consider a frame that does not satisfy the condition R (z,y) — (Rs(z,y) V Ri(y,)).
Hence, there are worlds w and w’ such that Ry (w, w'), =R3(w, w") and = R; (w', w). Choose a
model M with an interpretation V' such that p istrue at w and false at all other worlds, and ¢ is
falseat w’ and trueat all other worlds. Wehave M, w = p, M, w )=E]q, M,w' = —q, M,w' =

CO—p. Fromthe latter two follows M, w = —(q Vv Op). Hence, M = (pA ﬁq) — O(q V Op).
Proposition 2.54 (Soundness) If o4 o, then =o4 o

Proof Soundness from 2DL follows from the soundness of CT40 and Proposition 2.51, 2.52,
and 2.53.

Proposition 2.51, 2.52, and 2.53 are not sufficient for a compl eteness proof of 2DL, because
the compl eteness proof of Humberstone and Boutilier of thelogic of inaccessible worldsis non-
cumul ative (or nonadditive). The propositionsabove belong to correspondencetheory (they give
the class of al those frames on which every theorem of the system is valid), whereas Humber-
stone's theorem belongs to theory of completeness, see [Hum83] for a discussion. Hence, for
completeness of 2DL we have to show that the canonical model construction of CT40O can be
used for the asymmetric reduct. To show completenessit is sufficient to show that « isfalsifi-
ablefor any non-theorem «.. Let T' be some maximal 2DL-consistent set (MCS) which contains
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-, we will construct amodel M = (W, <, V') which fasifies «. This technique is employed
in [HUmM83, Bou94a).

Humberstone observes that the argument is modeled after Creswell’s adaptation to modal
logic of the method Henkin used to prove the completeness of first-order logic, rather than the
morewidely known adaptation of that method due to Scott and Makinson [Cre67]. Intheformer
case maximal consistent setsof formulas are correl ated with elements of thefalsifying model but
the correlation is not required to be one-one, so that there is more freedom in constructing the
required accessibility relation than on thel atter approach —as generally implemented —in which
the maximal consistent sets are identified with the point of the model serving to falsify any given
nontheorem. Humberstone observes that the ‘ canonical models' of the latter approach are not,
asthey stand, very helpful in delivering the completeness result.

Definition 2.55 (Canonical model) A canonical model M€ = (W, Ry, Ry, R, V') of T is con-
structed with W a set of MCSs and threerelations R, R, and R3, where R, isintended to rep-
resent the complement of R, and R3 isintended to be the asymmetric reduct of R;. The con-
struction proceeds as follows. We start at stage O by adding I' to W, sothat W = {I'} and
R, = Ry, = R3; = (). At each following stage 7, for each set A added to IV at stagei — 1 we do
the following:

1. foreachformula{ € A addaMCSA’toW where{s} U {~y | Oy € A} C A’,and add
(A, A') to Ry,

2. similarly for each formula 8 € A add aMCS A’ to W where {8} U {~ |0~ € A} C A/,
and add (A, A’) to Ry,

3. similarly for each formula<_>>ﬂ € AaddaMCSA’ toW where {5} U {y ||f|>7 €A} C A,
and add (A, A’) to Rs.

The canonical model M ¢ isthetotality of this (typicaly) infinite construction with the interpre-
tation V' such that V,, () = o € w for atomic a. O

From the construction followsthat we do not have R; (w1, ws) and R, (w;, w,) fori # j (and
therefore the correlation of MCSs and worldsis not one-one). Evaluating the truth conditions of
Eland awith respect to R, and R; (asif R, and R3 were the complement and the a-symmetric
reduct of R;) we can prove the following proposition.

Proposition 2.56 Let M be a canonical model (for T'). M, w = g iff § € w.

Proof By induction on the structure of 5. For atomic 3, this follows by the definition of V. As-
suming this for « and g, clearly it holds for both -« and o« — 3 by standard properties of
maximal consistent sets. Now suppose (15 € w. By the construction of M ¢, for all R; (w,v),
M¢ v = B, therefore M¢, w = OB. Now suppose 05 ¢ w, and therefore 0—3 € w. By the
construction of M¢, thereis some R, (w,v) such that M€ v |~ 3, therefore M¢, w £ OB, The

same arguments hold for Oand 0.

Now we have a canonical model M€ that falsifies a, as -« € T and by Proposition 2.56,
M€, T = —~a. However, M isnot a2DL-model, since R; is neither reflexive nor transitive, R,
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is not the complement of R; and R3 isnot the asymmetric reduct of R;. We now show that R,
R, and R3 can be extended such that R; does possessthe desired propertiesand R, and R3 have
the desired relation with R, while not changing the fact that M, w = g iff g € w.

Definition 2.57 (Extended model) Let M¢ = (W, RS, RS, RS, V') be acanonical model. The
extended model M¢ = (W, Ry, R», R3, V') of the canonical model M ¢ isdefined asfollows. We
add relations such that R, isthe complement of R, and R3 isthe asymmetric reduct of R;. We
use the following order:

1. For each R3(z,y), weadd R; (z,y) and Ry(y, z).

2. We add R;(z,y) and Rq(z,y) such that R, is reflexive and transitive, and for all « and
y we have either R (x,y) or Ry(z,y). Weinsist that R; is completed maximally before
we complete R,. For example, at the step where we decide to add each pair of worlds to
R, or Ry, we can consider the union of thefamily of al possiblerelations Ry on W x W
that respect on restrictions on accessibility; we take this set to be R, and let R, then be
W x W — Rl.

3. For each Ry (z,y) and not Ry (y, x), we add Rs(z, ). -

The following proposition shows that the extension of the model does not influence Propo-
sition 2.56.

Proposition 2.58 Let M€ be an extended model of a canonical model M€ (for I'). We have
Me w E Biff g € w.

Proof We have M ¢, w = < M¢ w = . Hence, the additions do not affect the set of satisfi-
able formulas.

1. Theadditionof R, (z,y) and R, (y, =) for each R;(z, y) doesnot affect the set of satisfiable

formulasas a result of the axioms Iy —>E| ~vand~y —>|f|> 57. First, supposethat there are
x and y with Rs(z, y) such that R, (z, y) affects the truth of formula. Then there must be

Opexandp & y. IfOG € x then ﬁﬁ € z (bytheaxiom) and 3 € y (because R3(x, y)).
Contradiction. Second, suppose that there are z and y with R3(z, y) such that Ry (y, )

affects the truth of a formula. Then there must be EI fgeyadp & x. If E| B € y then
by
O El B € z (by R3(z,y)) and 8 € = (by contraposition of the axiom). Contradiction.

2. We add R;(z,y) and Ry(z,y) such that R, is reflexive and transitive, and for all = and
L xd
y we have either R (z,y) or Ry(z,y). AXiomH: { (OyA Elﬂ) -0 (v V B) impliesthe

Humber stone schemata, see [ Bou92a] .

H* D(@aAO8) — B(aV f)

In thisschema, D isany sequence of the connectives ¢ and ghavi ng length > 0,and B is
any such sequence of [0 and E| . Suppose that we do not have R; (w1, we) Nor Ry (w1, ws),
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and that they cannot be added without affecting thetruth of a sentence. Then there must be
some 13 € w; such that 5 ¢ w,, and someﬁv € w, such that v & wy. Both w; and w,
must be somefinite* distance’ away fromstarting point ", say m and n ‘ steps’ respectively.
Followingthe ' path’ which lead to theadditionof w to W, wehave M, T = D, (O5A Elv)
where D; is a string of m ¢’s and 53 corresponding to how w; was added. Smilarly,
M,T = Dy(—=3 A —y) where Dy isastring of n ¢’sand 6’5 corresponding to how w, was
added. But this sentenceis equivalent to =B, (3 V ), where B, is formed by replacing
¢ and <<§vvith Oand O (respectively) in Dy. This means both D, (CI5A n v) € I" and
- By (B V ) € I, contradicting the Humber stone schema. SinceI" is consistent, (w;, ws)
can be added to either R, or R, without affecting the truth of formulasat any world in W,

and hence R; and R, can be extended to complement one another, making val uation of n
with respect to R, the same as valuation with respect to the standard truth conditions.

We can ensure that R; is reflexive, as well. Adding R;(w, w) affects the truth of some
sentence only if thereis some 3 such that 03 € w and 5 ¢ w; but this contradicts the
axiomT and the fact that w isa MCS

For trangitivity, assume R; (w1, ws) and R; (ws, w3). Adding Ry (w;, w3) can only affect
truth if thereis some 3 such that 03 € w; and 8 € ws. Snced8 € wq, by axiom 4,
00Op € w,. ThismeansOg € wy, and B € ws, contradicting the assumption.

Boutilier observesthat there may be someinteraction during these‘ steps’ whereby certain
pairsof worlds are moved fromthe set R, to R;; but clearly nothingin principle stopsone
from constructing a suitable model with the appropriate constraints being fulfilled by the
relations. He further observesthat if we insist that R, is completed maximally before we
complete R, there need not to be any interaction.

3. For each R;(z,y) and not R, (y, z), we add Rs(z,y). Given R,(z,y), the addition of
either R,(y, z) or R3(x,y) does not influence the set of sentences because of the axiom

(YA 0 B) — O(B Vv ¢)). For suppose that there are z and y with R;(z, y) such that
neither R;(y,x) nor R3(x,y) can be added. Then there must be -y € y and —y ¢ «z,

and there must be O] B € zand 8 ¢ y. This conflicts with the axiom. We cannot add
R (y, z) dueto the maximality of the construction under (2), thus we can add R3(z, y).

After thesecond step, R, isthecomplement of R, and after thethird step R3 isthea-symmetric
reduct of R;. Asaconseguence, the extended model isa 2DL-model.

Proposition 2.59 (Completeness) If o o, thenboy .

Proof By contraposition. For every non-theorem o, we can construct a canonical model M ¢ and
extend thismodedl to a 2DL model M €. Hence, we can construct a 2DL-model which falsifiesthe
non-theorem a..

Theorem 2.60 The system 2DL is characterized by the class of 2DL-models; that is, Fog o iff

|=2dl .

Proof Followsdirectly from Proposition 2.54 (soundness) and Proposition 2.59 (compl eteness).
In the following section we use the logic 2DL to model different types of permissions.
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2.4.2 Permissions

Permissions are defined as atype of non-strict preferences. The definitions are analogous to the
definitions of the different types of obligations. For readability we do not give the permission
operators with a contingency clause (i.e. with ¢ and cc conditions).

Definition 2.61 (Dyadic permission) Dyadic permission ‘« is permitted to be the caseif 5 is
the case’, written as P(«a | 3), is defined as some type of non-strict preference of o A 3 over
—a A (. Severd types of non-strict preferences of «;; over sy, writtenasa; > s, a3 =3 ao
and o; >y ay, are defined as follows.

o1 73 Gy =gy 8(0’1/\ a_'O!Q)\/ ﬁ_'al
Pi(a|B) = <(_)Oé AB) =3 (—aAp)
& OaABAD(B— )V O-(anp)
ap Zy Q=g El(ozz — O(ain aﬂaz))\/ O
Pv(aW) —def (Oé/\ﬂ) ~3 (_‘a/\ﬂ) .
& OB = 0anBADB = )V O-(aApB)
0 75 Qg =gy ﬁ(a’l _>|E|>_'a/2)
P(O“ﬁ) = def (Oé A ﬂ) ~s (_'Oé A ﬂ)
& A(anb) =08 = a)
Pp(alB) =w (@AB)=s(maAB)A(aApB) =y (maApB) O

The following proposition shows that ordering and minimizing permissions consider al re-
spectively only preferred worlds.

Proposition 2.62 Let M bea CT40 model. For aworld w € W, we have

o M,w = P(a|p) ifffor all wy,ws, € W suchthat M, w, = a A g and M, w, = —a A S,
itistruethat wy £ w;.

e M,w = P5(a|p) iff thereareno a A 3 worlds, or

1. thereisapreferred g world that satisfies «, or

2. thereisaninfinite descending chainthat doeshavea a3 world strictly belowwhich
aistrueinall g worlds.

e M,w E Py(a|B) iff thereareno a A g worlds, or

1. thereisnot an equivalence class of preferred 3 worlds which satisfy «, and

2. every infinite descending chain that contains 5 worlds has a o A  world strictly
below which o istruein all g worlds.

Proof Analogous to the proof of Proposition 2.6, 2.18 and 2.28.

The following proposition shows the relation between the different types of permission.
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Proposition 2.63 Thelogic 2DL has the following theorems.

Pp(a|B) = Py(a|B)
P(a|B) — P3(a|pB)

Pp(a|B) — P(a|B)
Py(a|B) — P5(a|p)

Proof Analogousto the proofs of the relations between the different types of obligations (Propo-
sition 2.21, 2.30 and 2.43). It follows directly from the semantics (Proposition 2.62).

The following proposition shows the relation between obligations and permissions.
Proposition 2.64 Thelogic 2DL has the following theorems.

D O(a]3) = P(alf)

Dp Op(alB) = Pp(a|p)
Ds  Os(a|B) — Ps(alB)
Dv  Ov(a|B) — Py(alB)

Proof Follows directly from axiom Oa —ﬁ .

In Section 2.2.3 we considered dilemmas, i.e. conflicts between two obligations. Obviously,
there cannot be conflicts between two permissions. The following example illustrates conflicts
between obligations and permissions.

Proposition 2.65 Thelogic 2DL has the following theorems.

§ (@A HAG(manB) = ~(Ps(a]8) A Ov(-al8)
($(anBAG(~anB) = ~(Pilals) A Os(wal )
S @A BN G (~a ) = ~(Pilalf) A Ov(-al§)

The logic 2bL does not have the following theorems.

A BN O (ma A f)) = =(Pa(alB) A Os(—alB))
B)V Oy(-a|B)
B)V O3(~a|B)
B)V O3(~a|B)

A::EA
LkLee

Proof For the latter three non-theorems, consider a model M that consists of an infinite de-
scending chain with alternating p and —p worlds, see Figure 2.17. For any world w we have

M,w = —P3(p|B) and M, w = —O3(p|B).

We defined two desirable properties for (strong) permissions. Thefirst desirable property is
that obligations derive permissions and the second desirable property isthat we do not have that
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no ideal situation ordered sub-ideal situations

@
Figure 2.17: Infinite descending chain

every proposition isnormed. The operators P introduced in this section have the two desirable
properties. The first property is shown in Proposition 2.64 and the second property is shown in
Proposition 2.65. From the latter proposition follows that we do not have for any combination
of obligations and permissions that all propositions are normed, not even in the weakest logic
P;5 and Os5. Finally, thereisasecond conclusion from Proposition 2.65. If we want to represent
a dilemma between an obligation and a permission in a consistent way, then we have to use O5
and P; operators, because Ps(a| T) A O3(—«| T) isthe only consistent obligation-permission
dilemma.

2.5 Factual detachment in the two-phase approach

No dyadic deontic logic can be introduced without a discussion on factual detachment. Mini-
mizing logics have been criticized [Che74, LB83, Alc93], because they do not have strengthen-
ing of the antecedent and factual detachment, see Section 1.3.5. In this chapter, we showed by
the ordering obligations that strengthening of the antecedent can be accepted if we do not have
weakening of the consequent. Moreover, we showed that strengthening of the antecedent can be
combined with weakening of the consequent in a two-phase deontic logic. In thisfinal section
we investigate the second lack of the minimizing obligations, the lack of factual detachment.

Factual detachment is the inference pattern that derives monadic obligations from dyadic
(conditional) obligations. We assume monadic modal obligations O« to represent the detached
obligations. No further properties of the monadic operator are assumed. The simplest definition
of factual detachment isthe following rule FD, aias deontic modes ponens.

O(a|B),

FD: — 20
O«

The following exampleillustratesthat FD detaches counterintuitive obligations. It isthe so-
called pragmatic oddity of Prakken and Sergot [PS96] in a dyadic deontic logic.

Example 2.66 (Pragmatic oddity) Consider the following three sentences:
1. O(k|T): You should keep your promise.
2. O(a|—k): If you have not kept your promise, you should apologi ze.
3. —k: You have not kept your promise.

The derivation represented in Figure 2.18 showsthat Ok A Oa can be derived, from which the
obligation O(k A a) can be derived. Prakken and Sergot remark ‘but it isabit odd to say that in
all ideal versions of thisworld you keep your promise and you apologize for not keeping it.” [J
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O(k|T) Ola|-k) —k
Ok P Ou
O(k A a)

FD

AND

Figure 2.18: Pragmatic oddity

Thefollowing exampleillustratesasimilar problem. We say that defeasible detachment only
holds as a defeasible rule, as is explained in Chapter 4 when we discuss the example in more
detail.

Example 2.67 Consider the two obligations O(t | a) and O(a | T) of Example 2.10, where a
can beread as ‘a certain man going to his neighbor’s assistance’ and ¢ as ‘telling the neighbors
that that he will come.” We can derive O(a A ¢ | T) and Os(¢ | T) but not Os(t | —a), because
the minimizing obligations do not have strengthening of the antecedent. We analyze this type
of defeasibility in Chapter 4. Theintuitionisthat if the man does not go to the assistance of his
neighbors, then he does not have an obligation to tell that he will come. Factual detachment FD
detaches the monadic obligation that the man should tell the neighborsthat hewill come Ot from
the obligation O(¢| T), even when he does not go to their assistance (facts: —a). Thisderivation
isrepresented in Figure 2.19. The derivation of Ot when the facts are —a is counterintuitive for
the same reasons as the derivation of O3(t|—a) is counterintuitive. O

O(tla) O(a|T)
O(tANalT)
Og(t/\a|—|—)
osmy "¢ —a

03t

REL

FD

Figure 2.19: Factual detachment

The following inference pattern Exact Factual Detachment EFD does not derive these coun-
terintuitive obligations. Exact factual detachment can be represented by the inference pattern

EFD : 70(038’)“45

in which O« is a new, monadic modal oparator, and A is Levesque's All-1-Know (aias only
knowing) operator A (see [Lev90]). A« istrueiff « islogicaly equivalent with al factual
premises given. The inference pattern EFD is based on the intuition that the antecedent of a
dyadic obligation restricts the focus to possible situations in which the antecedent is assumed
to be factually true, and the consequent represents what is obligatory, given that only these facts
areassumed. If thefacts are equivalent to the antecedent, then the consequent can be considered
as an absolute obligation.

A problem with EFD isthat it does not derive violated obligations. In fact, we can consider
the following definition of the monadic modal operator as an extension of the inference pattern
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EFD: we have O« if and only if we have O(«| §) and A3 (for some 3). In that case, we have
as atheorem =(a A O—«), as aresult of the theorem —O(—« | ). If EFD is accepted then the
relation between facts and absolute obligations is identical to the relation between antecedent
and consequent of the conditional obligations. To formalize a notion of factual detachment that
derives violated obligations, we introduce the following so-called retraction test (R-test). The
test saysthat if we consider whether « is obligatory, we have to consider possibilitiesin which
« istrue and possibilitiesin which o isfase.

R-test: « isobligatory (O« is an absolute obligation) iff «: ought to be the case on
the assumption that —« and « are not the case, i.e. on the assumption that « is con-
tingent.

In order to evaluate the normative force of factual sentences, we require that we first (hy-
pothetically) give up the belief in o and —« and then consider whether the optimal extensions
of the beliefs entail «. In other words, we contract the facts by « and -« and then evaluate
the obligation O(« | 3) with respect to the contracted facts. The R-test can be considered as a
version of the Kantian principle for factual detachment. In this interpretation of ‘ ought implies
can’, ought refers to the absolute obligations and can means that neither —a: nor « is factually
the case. The R-test isformalized in the following Retraction Factual Detachment RFD, where
‘—’ isaretraction operator satisfying the Gardenfors postulates[AGM85, Gar88]. For simplic-
ity we write retraction as o = § — {v;}, where o, 8 and ; are sentences of the propositional
baselanguage L. « istheresult of the retraction of the; from 3, and therefore o does not derive
any of these ;.
 Ola| 8 —A{a,-a}), A(B)

' Oa
Notice that this formalization inherits problems of retraction, i.e. that it is not unique and

computationally complex. The relation between EFD and RFD is given by the following propo-
sition.

RFD

Proposition 2.68 Let F be the conjunction of the factual premises. If « and —« are not in
Cn[F], where Cn stands for conseguence set, then O« is derived by EFD iff it is derived by
RFD.

Proof From the Géardenfors postulates follows that Cn[F — {a}] = Cn[F]| when F' A -« is
consistent.

In this section we proposed two alternativesfor unrestricted factual detachment. These alter-
natives were introduced, because unrestricted factual detachment is counterintuitive. First, we
proposed the conservative exact factual detachment. A drawback of exact factual detachment is
that it does not derive violated obligations. Second, we proposed an extension of exact factual
detachment that derives violated obligations, so-called retraction factual detachment. With this
analysis we discussed the last drawback of dyadic obligations with a contextual interpretation
of the antecedent. We showed that the two-phase deontic logic 2DL has strengthening of the an-
tecedent and that a kind of factual detachment can be accepted. As a consequence, it seems a
good candidate to formalize deontic reasoning.
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2.6 Related research

There has been a lot of research on preference-based logics and the deontic puzzles discussed
in this chapter. We discriminate between three areas: deontic logic, preference logic and default
logic.

2.6.1 Deonticlogic: the Forrester paradox

Dyadic deonticlogicslike 2DL were devel oped to solvethe Forrester paradox. Inthissectionwe
discussfour other solutionsthat have been proposed in deontic logic literature to solve the para-
dox, based on temporal distinctions, a distinction between settled and non-settled facts, scope
distinctions and rejection of weakening. The simplest solution of the Forrester problem is to
reduce the expressivity of the deontic logic such that a-temporal obligations cannot be repre-
sented. For example, some deontic logics make atempora distinction between antecedent and
conseguent (see Section 1.3.4). In such logics, the premise O(k A g | k) and the counterintu-
itive obligation O(—(k A g) | k) derived in Example 2.1 is meaningless, because both antecedent
and consequent refer to the same time point. This distinction is made explicit in deontic log-
ics (like [Mey88, Alc93)) that define two types of propositions, one for the antecedent and one
for the consequent, following Castaineda's distinction between assertions and actions [Cas81].
Hence, they do not allow that a proposition occurs in one formulain the antecedent and in an-
other formulain the consequent. The drawback of the temporal solution to the Forrester paradox
isthat the expressivity of the temporal solutionislimited (see Section 1.3.4). For example, tem-
poral deontic logicsthat make a distinction between antecedent and consequent cannot represent
the set of premises of the Forrester paradox in Example 2.1.

The second solution of the Forrester paradox is to make a distinction between settled and
non-settled facts. A fact can be settled to become true, without factually being true. Loewer
and Belzer [LB86] solve the Forrester paradox in their temporal deontic logic ‘Dyadic Deon-
tic Detachment’ (3D) [LB83]. In 3D adyadic obligation O(« | 3) isread as ‘if it is settled that
B will the case, then o ought to be the case.” Thisreading isrelated to B. Hansson's [Han71]
interpretation of circumstances, see also Spohn’s comments on B.Hansson's logic [Spo75]. In
this reading, the antecedent always refers to an earlier time point than the consequent. More-
over, there is an operator Sa in 3D that represents that a proposition « is settled. This opera-
tor isrelated to Greenspan’s operator U« for unalterable o [Gre75]. Loewer and Belzer [LB86]
also discusstherelation between their solution and Castaneda’s approach to the contrary-to-duty
paradoxes [Cas81]. The drawback of the settled-unsettled solution in 3D is that it introduces
rather complicated mechanisms (in the meta-theory).

Thethird solution of the Forrester paradox is based on scope distinctions. Scope distinctions
have been proposed (see e.g. [Cas81]) to solve the Good Samaritan paradox, the predecessor of
the Forrester paradox. Scope confusions seem to be absent from the Forrester paradox. How-
ever, Sinnot-Armstrong [ SA85] argues that also Forrester’s paradox rests on scope confusions.
He invokes Davidson’s account of the logical form of action statements [Dav67], according to
which adverbial modifiers like gently in the consequent of O(k A g|k) are represented as pred-
icates of action-events. Hence, the obligation is translated to ‘there is an event e, which is a
murdering event, and it, e, isgentle’ —Je(Me A Ge). Because of the conjunction, we can dis-
tinguish between wide scope OJe(Me A Ge) and narrow scope Je(Me A OGe). The narrow
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scope representation solves the paradox, because we cannot derive ‘ Smith ought to kill Jones
from ‘the event e ought to be gentle.” A drawback of this solution [LB86, Gob91] is that not
every adverb of action is amenable to treatment as a predicate. For example, Goble [Gob91]
givesthe example ‘ Jones ought not to wear red to school’ and ‘if Joneswearsred to school, then
Jones ought to wear scarlet to school.” Goble observes that the relation between scarlet and red
is not such that we can say scarletis‘red and ... ;" which might alow us to pull the term red
away from the deontic operator in the manner of Sinnot-Armstrong and Castaneda, leaving the
operator to apply only to whatever fillsthe blank. Scarlet isjust a determinate shade of red; that
isall we can say. Finally, as far as we know no solution based on scope distinctions has been
proposed for the paradox of the knower, see Example 1.11. In dyadic deontic logic, this paradox
can be formalized by the two obligations ‘p should not be the case’ O(—p| T), but ‘if p isthe
case then you ought to know it” O(Kp|p).

The fourth solution of the Forrester paradox is based on rejection of the property weakening.
In the remainder of this section on alternative solutions of the Forrester paradox, we discuss four
monadic logics that do not have weakening. Goble [Gob91] argues that Forrester’s paradox is
caused by weakening, following a suggestion of Forrester [For84, p.196]. His monadic deontic
logic does not have weakening and represents the paradox by {O—k, k — O(k A g), k}, which
Isconsistent. Following Jackson [Jac85], Goble defines an obligation O« as a preference of the
closest o over the closest —«. Such a second ordering of closeness can represent the notion of
best world ‘from this or that perspective.” The idea can be covered that in certain contexts the
way things are in some worlds can be ignored — perhaps they are too remote from the actual
world, or outside any agent’s control. Alternatively, we can interpret ‘closeness’ as ‘the most
normal’ asused inlogicsof defeasiblereasoning. Asaconsequence of thisdefinition, O—-kAOk
isadilemmaand inconsistent, whereas O—k A O(k A g) isnot adilemmaand consistent. This
does not justice do the fact that only in very few cases we seemto havethat O—a; A O (o A aig)
isnot adilemma. This solution seems like overkill, see aso the discussion in [LB86].

A third monadic |ogic without weakening, which can be considered to represent the Forrester
paradox, is Sven Ove Hansson's so-called Preference-based Deontic Logic (PpbL) [Han90b].
The basic idea of PDL isthat prohibitions are defined by the property of negativity. This prop-
erty states that what is worse than something wrong is itself wrong. Obligations are defined in
terms of prohibitionsin the usua way: Oa =, F—a. The properties of PDL are similar to the
properties of the logics of Jackson and Goble discussed above. Hence, the logic has the same
drawback. Compared to 2DL, PDL only has monadic obligations and the (ceteris paribus) pref-
erences are not axiomatized, they are only inthe semantics. Brown and Mantha[BM91] criticize
PDL, because Hansson has to prove the existence of representation functions. Brown and Man-
tha argue that, because their obligations (see below) are defined on preferences expressed as a
modality, they can prove axiomsof thelogic by proving the existence of models(i.e. derivability
in the modal logic), see the discussion in [BM91].

The fourth monadic logic without weakening is proposed by Humberstone [Hum83], who

observes that obligations can be defined by O« =deﬁ -, I.e. O« istrueif o istrueonly in ac-
cessible worlds, and obviously these obligations lack weakening (although they have strength-
ening, seebelow).®® Brown and Mantha[BM91] further investigate Humberstone's observation.

BHumberstone further remarksthat permissions defined by P =defE -« are so-called free-choice permissions,
characterized by thetheorem P(a; V a3) <> Pay A Pas.
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They do not accept theaxioms T and 4, so the preference ordering does not have to be reflexive
and transitive. Their logic is defined as follows.

Definition 2.69 (Obligation and admissibility) Obligation and admissibility are defined in
Humberstone's logic of inaccessible worlds as follows.

F
Oy =4 O«
PBMO{ —def _‘D_‘a

O = O-a A —O-a O
Proposition 2.70 (See[BM91]) The modal logic has the following theorems:

AND OBMOé/\OBMﬁ—)OBM(CY/\ﬂ)
RAND O%,,a A O%y B A Pey(a A B) = O% (e A )
OR OBMCM/\OBMﬂ—)OBM(OJVﬂ)

C OpuL
NC®  —0%,,L
D O%Ma — PBMQ

FCO OBM(Oé\/ﬂ) _>OBMaAOBM/3
RFCO OCBM(Oé\/ﬂ)/\PBMOZ/\PBMﬂ—)OCBMOA/\OCBMﬂ

The logic CT40 does not have the following theorems:

W OBMa—>OBM(a1Va2)
W’ OBM(a1 A 012) — OBMOél A OBMCYQ

Brown and Mantha consider O gL counterintuitive, because ‘it flies in the face of ought
impliescan.’ Furthermore, they notice that, as aresult of thistheorem, ‘there are no worldsfree
of obligations.” As a solution, they propose the new definition of obligation O%,,. The logic
has the theorem —0%,, L and solves therefore the counterintuitive theorem. Unfortunately, it
does not have AND, it only has the weaker RAND. They further notice that AND can be de-
rived again when Pgyra A Py 8 — Peu(a A 3) isaccepted. However, O gy L isnot the only
counterintuitive theorem of Brown and Mantha's logic. A more serious counterintuitive theo-
rem of thefirst definition of obligation isthe free-choice theorem FCO. Asthey remark, ‘thisis
somewhat unreasonabl e, since the premiseisweaker than the conclusion.” The second definition
of obligation has the related counterintuitive theorem RFCO. Brown and Mantha consider the
second definition of obligation to be ‘ quite satisfactorily,” but the validity of RFCO contradicts
in our opinion thisclaim. Our ordering logic does not have the counterintuitive theorems FCO
or RFCO.

2.6.2 Deonticlogic: dyadic deontic logic

In this section we consider alternative dyadic deontic logics that combine strengthening of the
antecedent and weakening of the consequent. To solvethe Forrester paradox in adyadic deontic
logic, we have to block the following two derivations.
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1. Thederivation of O(—k | k) from O(—k|T). Thisderivation is blocked when the dyadic
obligations have a consistency check on the antecedent and consequent.

2. Thederivation of O(—(k A g) | k) from O(—=k| T). This derivation is blocked when the
dyadic obligations do not have weakening of the consequent.

A dyadic deontic logic with a conditional interpretation, defined by O(a| ) =4« 3 > O«a, can
represent the Forrester paradox if strengthening of the antecedent is restricted and the monadic
obligations do not have weakening of the consequent. Asfar as we know, such logics have not
been proposed in deontic logic literature. Here we give adirection for a possible formalization,
that isbased on Proposition 2.22. Thisproposition showsfor models M without duplicateworlds
that M, w = O(«|p) iff for al ' such that M, w ):ﬁ (8 — B), wehave M,w = Oz(a|f).
Anaogously, we can define a phase-1 operator as a set of dyadic obligations with a conditional
interpretation, i.e. M,w = O(« | B) iff for al g’ such that M, w )=E (8" — ), we have
M,w = > Oa«. Thisrelaxation of our ordering logic is analogous to the relaxations of B.
Hansson's minimizing logic discussed in [Lew74], see aso [Mak93]. We leave the technical
details of thisidea (which type of monadic obligation, which type of implication ‘>, and most
importantly the formalization of the quantification) to the reader. Such alogic would be similar
to our ordering logic. Two minor distinctions between our ordering logic are represented by the
following two theorems of the ordering logic.

1. O(a|B) = O(a A B|B).

2. (O(a|B) ANO(B]y)) — O(a A Bv). The ordering obligations have deontic detachment.
We consider deontic detachment an intuitive inference, asillustrated in Example 2.10.

Prakken and Sergot [PS96] proposeto formalize CTD obligationsby 3 > Ogza, where* >’ is
aconditional implication and O« is called acontextual obligation with context 3. They define
absolute obligations Oa =, Ota and absolute permissions Pa =, —~O-«. An important
axiom isthe so-called Down axiom, which derives obligationswith a more specific context, i.e.
akind of strengthening of the context. The logic does have the no-dilemma assumption. Thus
the logic should be compared to Op and Oy,.

1. Themost important distinction between Prakken and Sergot’slogicand 2DL isrepresented
by the so-called Up axiom: P — (Oga — Oa).*® This axiom performs akind of fac-
tual detachment. Everything that refers to a permitted context may be detached from a
contextual obligation.

2. In2pL al possiblestatesare ordered inthe semantics, whereasthe semantic orderinginthe
logic of Prakken and Sergot only considers states with obligations of which the antecedent
can be derived from the facts. Thisis shown by the following example.

Example 2.71 In the logic of Prakken and Sergot, the Chisholm paradox (see Exam-
ple 1.16) isrepresented by thetheory {Oa, a > O,t, —~a > O_,—t, —a}. From thistheory,

16The logic satisfies a more complicated version of the Up axiom, which performs a kind of weakening of the
context. This sentence can be derived from it. However, this simpler formula suffices here for our comparison.
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only the contextua obligations Oa and O-,—t are derived. Hence, the contextual obliga-
tion O,t is not used to build the partia ordering in the models of this theory. Moreover,
neither the absolute obligation Ot nor O—t is derived from this theory. O

3. Thelogic 2DL hasdeontic detachment DD’, but thereisno deontic detachment inthelogic
of Prakken and Sergot. It will be difficult to implement this, because the contextual obli-
gations are derived only when the antecedent isfactually true (see 2). We consider deontic
detachment an intuitive inference, asillustrated in Example 2.10.

4. The notion of absolute obligationsin 2DL (defined with RFD) is quite different from the
notion of absolute obligationsin the logic of Prakken and Sergot. In 2DL, absolute obliga-
tions al so represent deontic cues from a sub-ideal context, like the absolute obligation —t
in the Chisholm paradox. In thelogic of Prakken and Sergot, only a contextual obligation
O-,—t can be derived.

5. Thefollowing variant of the Forrester paradox causes problemsin Prakken and Sergot’s
deontic logic, as discussed in [PS96], but not in the logic 2DL. To facilitate comparison
with Example 2.1 we write O(«| ) instead of Osc.

Example2.72 (Forrester paradox, continued) Assume adyadic deontic logic with sub-
stitution of logical equivalentsand theinference patternswc, AND, and the following ver-
sion of Restricted Strengthening of the Antecedent RSA’.

, 0®@]B1), 0 (A By A Bo), & (—a A=(By A )
‘ O(alpi A o)

Consider the set of obligations S = {O(—k | T),0(k A g | k)}. The counterintuitive
derivation of O(—(k A g) |k) from O(—(k A g)| T) in Figure 2.1 is blocked, because the
And

second condition & (= A =(B1 A B2)) =6 (—(k A g) A k) of Rsa’ isfalse. Unfortunately,
the counterintuitive O(—(k A g) | k) can be derived from an extension of S. Consider the
set of obligations S" = {O(—k|T),O0(k A g|k),O(p|T)}, wherep can beread as ‘ buying
pears.’ The counterintuitive derivation of the obligation O(—(k A g)|k) isrepresented in
Figure 2.20 below. g

RSA

OCKT) e
O(=(kng)|T) O(p|T)
O(=(kAg)Ap|T)
O(=(k A g) Aplk)
O(=(k N g)lk)

AND
RSA/RSA/
wC

Figure 2.20: Forrester paradox, continued
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To solve the problemsin Example 2.72, Prakken and Sergot [PS97] propose a system which
Isvery similar to 2DL. Unfortunately, at the moment of writing we do not have afinal version
to compare the logics.

2.6.3 Deonticlogic: another two-phase problem

In this chapter, we showed that two phases are necessary to combine strengthening of the an-
tecedent and weakening of the consequent in adyadic logic. Finally, we observe arelated prob-
lem in deontic logic literature. The two-phase approach is also necessary for combining re-
stricted conjunction RAND, also called consistent aggregation, and weakening.

Oc(l/l, Ocag, 8(@1 A 012)

RAND
Oc(al A CL/Q)

Van Fraassen [VF73] discusses a problem, which we reconstruct with inference patternsin Fig-
ure2.21.

Op
— W
O(fvm) O-m O(fvp) =~ O-p
Op O-
_f__i) (RAND) O(f/\ﬁm) w RAND O(fA—!p) " RAND
O(p A-p) Of 0f

Figure 2.21: Consistent aggregation

His monadic deontic logic does not have the no-dilemma assumption, so he does not want
to derive O_L from Op and O—p. Unrestricted conjunction is too strong. However, he wants
to derive from the two premises ‘Honor thy father or thy mother!” O(f v m) and ‘Honor not
thy mother!” O—m the conclusion ‘thou shalt honor thy father’” O f. Thisderivation isalso rep-
resented in Figure 2.21. Now van Fraassen asks himself whether restricted conjunction can be
formalized.

“But can this happy circumstance be reflected in the logic of the ought-statements
alone? Or can it be expressed only in alanguage in which we can talk directly about
the imperatives as well? This is an important question because it is the question
whether the inferential structure of the ‘ought’ language game can be stated in so
simple amanner that it can be grasped in and by itself. Intuitively, we want to say:
there are simple cases, and in the simple cases the axiologist’slogic is substantially
correct evenif itisnot in general —but can we state precisely when wefind ourselves
in such a simple case? These are essentially technical questions for deontic logic,
and | shall not persue them here. In conclusion, it seemsto me that the problem of
possibly irresolvable moral conflict reveals serious flaws in the philosophical and
semantic foundations of ‘orthodox’ deontic logic, but al so suggestsarich set of new
problems and methods for such logic.” [VF73]

The third derivation of Figure 2.21 illustrates that in a monadic deontic logic we cannot ac-
cept restricted conjunction and weakening. If we accept these inference patterns, then we can
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derive O f from adeontic dilemmaOpA O—p, whichisobviously counterintuitive. We can com-
binerestricted conjunction and weakening only if there are two phases, for similar reasonsastwo
phases are necessary to combine strengthening of the antecedent and weakening of the conse-
quent in a dyadic deontic logic. The first phase does not have weakening but it has restricted
conjunction, and the second phase vice versa. Obvioudly, this blocks the counterintuitive third
derivationin Figure 2.21. The distinction between phase-1 and phase-2 obligationsis anal ogous
to van Fraassen’s distinction between ‘imperatives’ and ‘ ought-statements'. In Horty’s recon-
struction [Hor93] of van Fraassen’s theory in Reiter’s default logic [Rei80] the two phases are
not explicit. In our terminology, the distinct operators O p and Oy are represented by the same
modal operator O. Asaconsequence, itisvery difficult if not impossibleto construct asemantics
for thislogic.

2.6.4 Preferencelogic

It has been suggested [ Jen85, Jac85, Gob90b, Han90b] that aunary operator O capable of bearing
a deontic interpretation might be defined in alogic of preference by

Oa =g O -

However, we cannot definethe preference o - —a by apreference of all instancesof o over —q,
becausetwo obligations* bepolite’ Op and * be helpful’ Oh would conflict when considering ‘ be-
ing politeand unhelpful’ p A —h and being impolite and helpful’ —p Ak [VW63]. Jackson [Jac85]
and Goble [Gob90b] therefore propose to define the preference o = —a by a preference of the
closest o over theclosest —«. We already discussed theselogics when we discussed rel ated work
concerning the Forrester paradox in the previous section. The obligation ‘be polite’ Op prefers
the closest p worlds to the closest —p worlds. Hence, the problem is solved by the derivation
that ‘ polite and unhelpful’ p A —h and ‘impolite and helpful’ —p A h are not among the closest
p, —p, h or —h worlds. S.O.Hansson [Han90b] introduces complicated ceteris paribus prefer-
ences, i.e. al other things are considered to be equal (see aso [DW91b, TP94]). The obligation
‘be polite’ Op prefers ‘polite and helpful’ p A A to ‘impolite and helpful’ —p A h, and ‘polite
and unhelpful’ p A =h to ‘impolite and unhelpful’ —p A —h, but it does not say anything about
p A h and —p A —h. We propose a third solution. The preference o > —« is defined by -« is
not as preferable as a. Thetwo obligations Op and Ok do not conflict when consideringp A —h
and —p A h when the underlying preference ordering is not strongly connected. Thissolutionis
simpler than the first two solutions, because we do not need the additional semantic baggage of
the second ordering or the ceteris paribus preferences. Tan and Pearl [TP94, p.531] argue for a
ceteris paribus reading of preferences because * absolute preferences are not very useful,” given
von Wright's problem. However, we show that this motivation is not very convincing, because
our logic 2DL does not havethisproblem. On the other hand, the formalization of ceteris paribus
circumstances is problematic, because ‘similar circumstances' is difficult to formalize.
Thevariousbinary relationsa;; > «» defined in this chapter can be considered as preference
relations, and compared with preference logics as proposed in the literature. The preference re-
lation > is quite weak, because it is not anti-symmetric (we cannot derive —(ay > aq) from
a1 >, ) and not transitive (we cannot derive a;; >, a3 froma; >, as and as >, az). A
distinctionisthat therelationsa;; > an, of preference logics only compare ai; A —ap worldswith
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—aq A g Worlds. For our specific use of the preference relations, this restriction is superflu-
ous because for the dyadic obligations we compare o A 8 with —a A 3. A second distinction
is that in the classical preference logics (e.g. [VW63, Res67]) a value is associated with each
world. Hence, the orderings are totally connected. In [Han89] it is shown that connected order-
ings are problematic. If we add the condition that > is (totally) connected, then the relation is
anti-symmetric and transitive.

An interesting perspective on preference-based logicsis that they formalize the * combining
of preferencerelations.” That is, each premise represents a preference relation, and the notion of
preferential entailment combinesthem. A dyadic ordering obligation O(«|3) isbest considered
as a preference relation with wy; < wy iff w; €la A gl and wy €| —~a A 1, 0r wy €| 5] Or
wy €|—3|. Hence, the relation is not transitive. Much research in economic theory is based on
the perspective of combining preference relations, most notably Arrow’s social choice [Arr63],
but the lack of transitivity also invalidates Arrow’s famous theorem [Arr50]. Infact, our logicis
better analyzed in Andrekaet al’sframework [ARS95]. However, thisframework considerspri-
oritized mechanismsto combine preference relations. Prioritieswill be considered in Chapter 4
of thisthesis, when we consider defeasible deontic logic.

Preference logics now gain popularity as logics for qualitative decision theory to formal-
Ize reasoning about context-sensitive goals, which we discussin Chapter 5. Boutilier [Bou94b]
proposes an extension of Hansson’s minimizing logic with System Z to represent preferences.
Moreover, an idearelated to exact factual detachment EFD is proposed by Boutilier, because to
determine preferences based on certain actual facts, he considers only the most ideal worlds sat-
isfying those facts, rather than all worlds satisfying those facts. In Boutilier’slogic, this means
that the antecedent of his conditional islogically equivaent with the premises, i.e. he considers
F O(a| KB), where K B isthe set of premises. Another preference logic is introduced by Tan
and Pearl [TP94, p.533] and has a what they call ‘principle of maximal indifference’ which is
better called gravitating towards the center. A remarkable property of thelogic is that it makes
aspecificity set like {O(p| T), O(—p|q)} inconsistent [TP94, p.537]. Thusit is aso asolution
for the cigarettes problem. Boutilier’slogic aswell as Tan and Pearl’slogic do not deal satisfac-
torily with contrary-to-duty preferences. Consider Forrester like graded preferences related to
driving speed. For example, ‘you should not drive faster than 100 km an hour,’ ‘if you do drive
faster than 100 km an hour, then you should not drive faster than 110 km an hour,” *if you do
drive faster than 110 km an hour, then you should not drive faster than 120 km an hour,” etc. To
be more precise, our setting is the following.

Example 2.73 (Speed limits) Consider preferences about driving speed. The preferences aredi-
vided intwo (unrelated) groups: preferencesfor when apersonisinthe United States (u), which
are expressed in miles (m), and preferences for when she is in Europe (—u, not in the United
States), which are expressed in kilometers (k). The preferences are represented in Figure 2.22.
This figure should be read as follows. The circles are equivalence classes of worlds which sat-
isfy the propositionsin the circle, and which do not satisfy the propositionsin strictly preferred
circles. In the United States, there is a preference for less than 80 miles (m80) over more than
80 miles. In Europe, theideal islessthan 100 km an hour (£100), sub-ideal islessthan 110 km
an hour (k£110), sub-sub-ideal islessthan 120 km an hour (£120) and the worst behavior is go-
ing faster than 120 km an hour. Obviously, from the propositions £100, £110 and £120, each

logically implies al latter ones. For example, we have O] (k100 — £110), 0 (k100 — £120),
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etc. We leave thisimplicit, otherwise the figures become very difficult to read. We assume all
propositionsare controllable, in theterminology of [Bou94b], thusthe agent can control whether
she goes to the United States (u) or to Europe (—u), and she can control her speed. Notice that
we do not assume any preferences for either the United States or Europe.

ideal situations ordered sub-ideal situations

- o
o)) —)—0)

Figure 2.22: Speed limits

Now consider the situation in which we specify the United States preferences more precisely,
as represented in Figure 2.23. Instead of abinary distinction between less than 80 miles (good)
and more than 80 miles (bad) we distinguish six different categories. One expects that this re-
vised specification does not influence the derivable preferences, except for the preferences that
concern driving speeds less than 80 miles. For example, if the first specification says that it is
desired to drivelessthan 120 km an hour, then the revised specification should derive the same.
In particular, it is highly counterintuitive if the first specification implies a preference for the
United States, and the second specification a preference for Europe (or vice versa). a

ideal situations ordered sub-ideal situations
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Figure 2.23: Revised speed limits

Boutilier [Bou94b] formalizes the preferences of his logic for qualitative decision theory
QDT in hismodal preference logic CO with the defeasi bl e reasoning mechanism System Z, see
Section 2.3. Tan and Pearl [ TP94] criticizethisapproach of gravitating towardsideality, because
‘whileit isintuitive to assume that worlds gravitate towards normality because abnormality isa
monopolar scale, itisnot at all clear that worlds ought to be as preferred as possible since prefer-
enceisabipolar scale.” In apreference logic, there are good ideal and bad violation poles. The
following example illustrates that gravitating towards the ideal derives counterintuitive conse-
quences for our speed limits example.
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Example 2.74 (Speed limits, continued) The preferences of Example 2.73 are formalized by
the following two sets S and 5.

S = { Oy(m80|u),
Oy(E100| =), Oy(k110|—u A ~k100), Oy(k120|—u A ~£110)}
S" = { Oy(m40|u), Oy(mb0|u A =m40), Oy(m60|u A =m50),
Oy(mT70]u A =m60), Oy(m80|u A =m70),
Oy(K100| 1), Oy(k110| ~u A —k100), Oy(k120|~u A —k110)}

The unique System Z models of S and S’ are represented in Figure 2.24. Thisfigure should
be read asfollows. The circles are equivalence classes of worlds, that satisfy at |east one of the
rows of formulas written within them, and that do not satisfy one of the rows of formulas of a
preferred circle. For example, in the System Z model of S, the u A m80 and —u A k100 worlds
are equivalent, aswell asthe u A —=m80 and —u A k110 A k100 worlds. Notice that the System
Z model might be usable for minimization (theideal worldsare u A m80 and —u A £100) but not
for maximization (intuitively, the worst worlds are u A =m80 and —u A —k120, whereas only
the latter are worst in the System Z model).

ideal situation ordered sub-ideal situations
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Figure 2.24: Gravitating towards the ideal (System Z)

Unfortunately, we have S = Oy(u|(u A =m80) V (—u A —k110)), because the preferred
(u A =m80) V (—u A —k110) worlds are only the u A —=m80 worlds (remember that —£110
logically implies =£100). Thisis counterintuitive, because intuitively the most ideal states for
the United States are the u A =m80 worlds, and the most preferred worlds for Europe are the
—u A k120 worlds, and these worlds are incomparable. In particular, it is counterintuitive to
prefer the United States over Europe. However, gravitating towards ideality prefers the first,
becauseit containsonly oneviolation, whereasthelatter containstwo violations. Hence, System
Z works as a violation counter. Moreover, consider the revised speed limits. We have S’ =
Ovy(—u|(uA—m80) V (—uA—k110)). Hence, because we have further specified the speed limits
inthe United States, now we havethe desireto go to Europeinstead of going to the United States.
Obvioudly, thisis highly counterintuitive. d

Tan and Pearl [TP94] propose a gravitation mechanism in which there is no preference for
either end of the bipolar preference scale. Instead of a preference for theideal, thereisaprefer-
ence for the center, which they call gravitating towards indifference: ‘In the case of preferences
the principle we adopt is the principle of maximal indifference. We want to assume that there
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is no preference between two worlds unless compelled to be so by preferences that are expli-
cated by the reasoning agent. From the set of admissible preference rankings we want to select
adistinguished ranking which best captures the essence of the principle of maximal indifference.
Thisranking, the 7" ranking, will minimize the difference in the preference ranks.” To formal-
ize thisidea, we need rankings, which associate numerical valueswith worlds (thusthe ordering
is connected). Boutilier [Bou94b] defends his closure rule gravitating towards the ideal: ‘Isthe
assumption that worlds are preferred unless stated otherwise reasonable? For instance, Tan and
Pearl [TP94] argue that worlds should gravitate towards “indifference” rather than preference.
We cannot, of course, make sense of such asuggestioninour framework, since we do not havea
bipolar scale (where outcomes can be good, bad or neutral).” However, even if an “assumption
of indifference” were technically feasible, we claim that the “assumption of preference” isthe
right onein our setting.’

Boutilier [Bou94b] defends this claim as follows: ‘Recall that we wish to use preferences
to determine the set of goal states for a given context C'. These are simply the most preferred
C-worlds according to our ranking; call thisset Pref(C). If the agent brings about any of these
situations, it will have behaved correctly. A conditional preference I(A | C') constrains the set
Pref(C) tocontainonly A-worlds. Thusan agent will attempt to bring about some AAC-world
when C holds. But which A A C-world is the right one? With no further information, System
Z will set Pref(C) =] AAC|;dl AA C-worlds will be assumed to be equally acceptable.
This seems to be appropriate: with no further information, any course of action that makes A
true should be judged to be as good as any other. Any other assumption, such as gravitation of
worldstoward indifference, must maketheset Pre f(C') smalerthan | AAC'|. For example, if we
rule out worlds satisfying o from Pre f(C'), then Pref(C) =|AAC A—«|. Thisrequiresthat an
agent strivingfor Pref(C) make -« trueaswell as A. Thisimposesunnecessary and unjustified
restrictions on the agent’s goals, or on the manner in which it decides to achieve them.” The
following example illustrates Boutilier’s problem for Tan and Pearl’s compactness rule.

Example 2.75 (Speed limits, continued) We write =1 p for Tan and Pearl’s preferential entail-
ment based on the most compact models. Reconsider the set of preferences of Example2.74. Tan
and Pearl’s unique most compact model is given in Figure 2.25. We have S =1p Oy(—u| T):
thereisapreferencefor Europe. Moreover, with revised speed limitswehave S’ =7p Oy(u| T):
there is a preference for the United States. Again, thisis highly counterintuitive. O

The following example illustrates that our two phase logic 2DL can deal with the contrary-
to-duty preferences of the speed limits example.

Example 2.76 (Speed limits, continued) The driving speed preferences in Example 2.73 are
formalized by the following two sets S” and S"'.

"Note that in classical decision theory, such distinctions do not exist. An outcome cannot be good or bad, nor
can an agent be indifferent toward an outcome, in isolation; it can only be judged relative to other outcomes. An
agent can adopt an attitude towards a proposition, as we explain below.
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ideal situation ordered sub-ideal situations
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Figure 2.25: Gravitating towards the center (compactness)
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S" = { Op(m80ju),
Op (k100 ), Op(k110|~u A —k100), Op(k120]~u A ~k110)}
S" = { Op(md0|u), Op(mb0|u A =m40), Op(m60|u A =mb0),
Op(m70|u A —=m60), Op(m80|u A =m70),
Op(k100|—u), Op(k110|~u A —k100), Op(k120]—u A —k110)}

We do not derive Oy(u | ), unless 3 implies u. This property follows from the fact that u
worlds and —u worlds do not have any constraint in common, and thus for every pair of u and
—u worldsthereisac-preferred model in which they are equivalent. Asaresult, we do not have
the counterintuitive derivations of Example 2.74 or 2.75.8 O

The problem of thelogicsof Boutilier and Tan and Pear| i sthe combination of auniquemodel
and atotally connected ordering. Consider the unique preferred modelsin Figure 2.24 and 2.25.
Some v« and —u worlds are forced to be equivalent, whereas intuitively they are incomparable.
As a consequence, the contrary-to-duty paradoxes arise.

2.6.5 Default logic

Logics of defeasible reasoning formalize reasoning about default assumptions, i.e. what nor-
mally isthe case. Obviously, the distinction between preference-based default logics and deon-
tic logics is that the former introduces preferences to deal with exceptions, whereas the latter
uses preferences to deal with violations. However, the way these preference-based logics deal
with respectively exceptions and violations is quite similar. In particular, we were inspired by
thelogics of defeasi ble reasoning when we devel oped the new deontic logics. There are alot of
preference-based default logics, whereas there are only a few preference-based deontic logics.
In this section we compare the preference-based default logics and the preference-based deontic
logics developed in this chapter.

Thefirst distinction between logics of defeasible reasoning and deontic logic isthe fact that
an obligation is not cancelled when it isviolated, it isonly no longer in force as a cue for action.
We discuss this distinction in more detail in Chapter 4.

1BWe do not even have S =, Oy(u|-(u A m80)), although u worlds are the only ideal —(u A m80) worlds.
Theseinferences can be added to 2DL by adding the constraint that the equivalence class of ideal worldsisaslarge
as possible.
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The second distinction between logics of defeasible reasoning and deontic logic is repre-
sented by thecigarettesexample. It isan al phabetic variant of the famous Tweety example: birds
normally fly, but penguins normally do not fly. The Tweety example should be consistent in a
logic of defeasible reasoning, whereas the cigarettes exampl e should beinconsistent in adeontic
logic.

Thefirst similarity between deontic logic and default logic isthat both can be considered as
faces of minimality [Mak93]. In particular, the minimizing approach iscommonly taken in pref-
erential semanticsfor non-monotoniclogics, seefor example[Sho88, KLM90, Mak93, Bou94a).

The second similarity between preference-based deontic logic and preference-based default
logic is that both have an ordering and a minimizing phase. The logics based on circumscrip-
tion [McC80] have an ordering and minimizing phase. The distinction between ordering and
minimizing isespecially clear in Veltman's normally-presumably logic based on update seman-
tics[Vel96]. Veltman'slogic haslike 2DL the distinction between dynamic and static processes,
which in contrast to 2DL is represented in the semantics. ‘Normally o’ is afirst-phase default
and ‘presumably o’ is a second-phase default. The normally defaults do not have weakening
of the consequent and they do not have reasoning by cases. Thus, they are comparable to the
ordering obligations defined in this chapter. However, update semantics is sensitive for the se-
guence in which the premises are presented. In our two-phase deontic logic 2DL, we have as
premises a set of ordering obligations and as conclusion a minimizing obligation. Hence, the
presentation of premises is not important. We therefore do not incorporate the rather complex
update semantics.

The distinction between ordering and minimizing in preference-based default reasoning cor-
responds to the two-phase approach in default logic. Two phases are necessary to solve the in-
heritance problem, the derivation of ‘ penguins have wings from *birds have wings' given that
penguinsare exceptional birds. Thisisillustratedin Figure2.26. Inheritanceisbased ontheprin-
cipleof independence (seee.g. [Vel96]): the property of having wingsisindependent fromflying
(which makes penguins exceptional). Wewant to derive‘ penguinshavewings (bAp) > w from
birds havewingsb > w, but we do not want to derive‘penguinsfly’ (b Ap) > f from ‘birdsfly’
b > f. Thelatter derivation is blocked, because we have ‘penguins do not fly’ (b A p) > —f.
Hence, strengthening of the antecedent is blocked by a default with a contradictory consequent.
However, we also want to block strengthening of the antecedent for obligations derived from
‘birdsfly’ like‘birdsfly or ¢’ b > (fV ¢). Thethird derivation in Figure 2.26 isan example of a
counterintuitivederivation. Suchinferencesare blocked by not allowing strengthening of thean-
tecedent after weakening of the consequent has been used. If ‘birdsfly or ¢’ b > (f V ¢) would
have been a premise, then strengthening of the antecedent would have been allowed. Hence,
there are two phases. See [Vel96] for an example why phase-1 defaults (called normally de-
faults) do not have weakening of the consequent.

b>f &WC

b>w oy ——— —— (RSA) b>(fVy)
GAp) >w > (bAp) > f GAp) > (fVg)

Figure 2.26: Inheritance

In the proof theory of logics of defeasible reasoning, the two phases correspond to the * appli-
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cability of rules’ and ‘ consequences of rules.’” In general, conditional expressions can be repre-
sented (and analyzed) in the object language of alogic like the expression 3 > « of conditional
logic, or aternatively they can be represented in the meta-theory like 8 - o (seee.g. [KLM90]).
Makinson [ M ak93] compares different typesof reasoning and callsit ‘ part of thefolklore’ which
of these possibilitiesisused. Thefirst ismore expressive, because nested operators cannot be ex-
pressed at the meta-level. Weillustrated the two-phase approach by two conditional expressions
in the object language, for examplethe dyadic obligationsO¢ and O5. An aternative formaliza-
tion of the two-phase approach isto model the first phase in dyadic obligations and the second
phase in the meta-theory. The following definition shows thisidea.

Definition 2.77 (- y4) Assume adeontic logic that contains at least dyadic ordering obligations
O, monadic obligations and factual sentences. Consider theset S = {O(a;|5;) | i =1...n}
and the factual sentence 3. Theinference relation -, is defined as follows.

SU{B} Fa Oaiff {0%(as]B:) |i=1...n} = O%(alB) _

Theinference relation - s, does not validate a satisfactory notion of factual detachment, be-
causeif SU 3 4 o then we cannot derive O—a. Hence, violated obligations oo A O—a: cannot
be derived by -4, for similar reasons as EFD does not derive violated obligations. This can
easily be adapted when we consider retraction-based mechanism like RFD. The inference rela-
tion -, gives a proof-theoretic interpretation of the two phases as follows. The first (ordering)
phase considers whether a dyadic obligation is applicable. The second (minimizing) phase con-
siders the consequences of the applicable obligations. The inference relation |- ¢, is comparable
to Reiter’s default logic. In particular, it is similar to Horty’s reconstruction of van Fraassen's
logic [VF73] in Reiter’s default logic.

2.7 Conclusions

In this chapter we studied the rel ation between obligations and preferences. The main puzzle of
this chapter is aformalization of the Forrester paradox that has the following properties.

1. Thelanguage is dyadic deontic logic;

2. Thetime index of the consequent is not necessarily later than the time index of the an-
tecedent;

3. The obligations have strengthening of the antecedent;
4. The obligations have weakening of the consequent.

The analysis of the Forrester paradox reveals that any solution of this puzzle has to block the
following two derivations.

1. Thederivation of O(—k | k) from O(—k|T). Thisderivation is blocked when the dyadic
obligationshave aconsistency check on the antecedent and consequent. Asaconsequence,
the obligations only have restricted strengthening of the antecedent.
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2.

The derivation of O(=(k A g) | k) from O(=k| T). This derivation is blocked when RsA
cannot be used after wc has been used.

We had to introduce the new two-phase deontic logic 2DL, because other deontic logics do not
satisfy these conditions. Any deontic logic has to be able to be extended with the no-dilemma
assumption, permissionsand factual detachment. Thus, theintroduction of the new deonticlogic
2DL introduced several new problems. Summarizing, we have established the following results
in this chapter.

1

We have proposed a new ordering logic, the logic O, with two extensions (the logics O¢
and O“). The ordering logic is defined in the same preference logic as existing minimiz-
ing logic of B. Hansson Oy. Our deontic logic O gives a contextual interpretation for the
antecedent, and like the Hansson-L ewislogicsit does not have factual detachment. How-
ever, it aso differsin several respectsfromtheselogics. It does not have weakening of the
consequent, but it has strengthening of the antecedent. In the latter respect, it resembles
the Chellas-type logics with a conditional interpretation of the antecedent.

We have introduced the new two-phase approach to deontic reasoning. We have shown
that only this approach combines strengthening of the antecedent and weakening of the
consequent and thus solves the Forrester paradox.

We have given a new solution for the cigarettes problem, a problem related to dilemmas.
This solution uses the new notion of preferential entailment based on *maximally con-
nected’ models.

We have proposed new preference-based permissions. The new operators validate the
standard relation between obligations and permissions (explained by the semanticsin a
non-standard way).

We have proposed the new relation between dyadic and monadic obligations, Retraction
Factual Detachment RFD.

The preference-based deontic logic 2DL consists of twenty-four different dyadic obligation
and permission operators, which are classified in Figure 2.27. The relations between the oper-
ators are represented by arrows, which represent strict entailment. We can make a distinction
between three cubes, which represent the number of consistency checks.

pee—> psc pe— ps P — P
b b T b b T A i T
0¢ 0% 0° 05 0 05
el — TRl = T
/ / l / l ”
O%— O 05— 0 Op—> Oy

Figure 2.27: 2DL cubes

Thelogic 2DL isused to analyze the rel ation between obligationsand preferences. Themain
conclusions are the following.
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1. Bipolarity and deontic choice. The semantics of 2DL formalizes the semantic notion of
deontic choice. A crucial property of deontic choice isthat it is bipolar. The notion of
deontic choice for an obligation O(«|3) comparestwo optionsa A g and —a A 5. Many
preference-based semantics are monopolar, because they interpret the dyadic obligation
O(«a|p) asa A pistheideal or optimal of al 3. In Chapter 4 we discuss obligations that
can be overridden by other obligations, and we show that the bipolar concept is crucial.

2. Distinction between ordering and minimizing. The semantic distinction between or-
dering and minimizing corresponds to the properties strengthening of the antecedent and
weakening of the consequent of the dyadic obligations.

3. Deonticreasoning asatwo-phase process. Thetwo-phase process consists semantically
of an ordering and a minimizing phase. Two phases are necessary to combine:

(a) strengthening of the antecedent and weakening of the consequent,
(b) strengthening of the antecedent and reasoning by cases, and
(c) restricted conjunction and weakening.

Semantically, the two phases are related, because an ordering obligation O correspondsto
aset of existential-minimizing obligations O5, see Proposition 2.22.

4. Another perspective on deontic detachment. In the preference semantics, theinference
pattern deontic detachment is intuitive (for ordering obligations), as illustrated in Exam-
ple2.10. Moreover, the semantics explainsthat the inference patternsfactual detachment,
reasoning by cases and weakening of the consequent are not valid.

5. Relation between obligations and permissions. If obligations are strict preferences de-
fined by O(«|f) =w (a A B) = (- A 3), then permissions are preferences defined by
P(a|B) =« (@ A B) = (—a A ). From the definition follows directly the first deontic
axiom O(a|3) — P(«|f).

In the following chapter we further investigate the rel ation between obligations and preferences
by introducing a more expressive preference-based deontic logic. This new deontic logic ques-
tions whether deontic reasoning is a two-phase process.

Theanalysisof therelation between obligationsand preferencesin thischapter showssevera
relations between obligations and defeasibility. We introduced preference-based deontic log-
ics which are structurally quite similar to preference-based default logics. Moreover, we intro-
duced anew notion of preferential entailment, ‘ maximally connected’, which makesthe deontic
logic non-monotonic. The preferences and the notion of preferential entailment are necessary
to (1) formalize contrary-to-duty reasoning satisfactorily and (2) make theright set of dilemmas
inconsistent. However, the introduction of preferences and preferential entailment is quite re-
markabl e, because obligationsarein somerespects not defeasible. Theviolation of an obligation
does not cancel the obligation in the same sense as an exception cancels a default assumption.
The result of aviolation is that the obligation is no longer a cue for action. The defeasibility
involved in violationsisin this sense weaker than the defeasibility involved in exceptions. We
investigate the different types of defeasibility in Chapter 4. There we also show that the distinc-
tioniscrucia in logicsthat formalize obligations that can be overridden by other obligations.



Chapter 3

Contextual deontic logic

In this chapter we further study the relation between obligations and preferences. Moreover, we
introduce labeled deonticlogic L DL and contextual deonticlogic CDL, two extensionsof dyadic
deontic logic. The labeled and contextual obligations combine the properties strengthening of
the antecedent and weakening of the consequent of the dyadic ordering and minimizing obliga-
tions of the two-phase deontic logic 2DL developed in Chapter 2. Labeled deontic logicis based
on the distinction between implicit and explicit obligations, a distinction analogous to the dis-
tinction between implicit and explicit knowledge. Contextual deontic logic explicitly represents
exceptions of the context of obligations.
This chapter is amodified and extended version of [vdTT97a].

3.1 Theapples-and-pearsexample

In this section we discuss the apples-and-pears example, a new deontic example introduced in
thisthesis. This example neatly illustrates the distinction between the conditional and contex-
tual interpretations of dyadic obligations, see Section 1.3.5. We give a proof-theoretic analysis
of the apples-and-pears example in a‘classical’ dyadic deontic logic based on the conditional
interpretation, and in the two-phase deontic logic 2DL based on the contextual interpretation.

Example 3.1 (Apples-and-pears) Assume adyadic deontic logic that has at |east substitution
of logical equivalentsand thefollowing inference patterns Strengthening of the Antecedent (sA),
Weakening of the Consequent (wc) and Conjunction (AND).

O(e|B1) we . Olalf) . O(]B), O(a2| )

A 0@ A B) Oavad NPT O0mAmp)

Furthermore, assume the set of dyadic obligations S = {O(a vV p|T),O(—a|T)} as premise
set, where a can beread as ‘' buying apples,’ p as‘buying pears’, and T standsfor any tautology.
The intuitive obligation O(—a A p | T) can be derived from S by AND, and from this derived
obligation, the obligation O(—a A p | a) can be derived by sA. From the latter obligation, the
obligation O(p | a) can be derived by wc. The derivability or underivability of O(p | a) from
{O(aVp|T),O(—a|T)} illustratesthe distinction between the conditional and contextual inter-
pretation of the antecedent of dyadic obligations. If the antecedent T of O(p| T) isinterpreted
asaconditional, then it means that buying pearsis aways obligatory, alsoif a happensto bethe
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case. Ontheother hand, if the antecedent of the dyadic obligationisinterpreted asacontext, then
the obligation O(p|a) should not be derivable. In the context a, thefirst premise O(a V p| T) is
fulfilled and the second premise O(—a | T) isviolated. Sincethefirst premiseisalready fulfilled,
there isintuitively no reason why p should be obliged given the fact that a. Hence, within this
context of buying apples, thereis no reason to buy pears.

This derivation of O(p|a) can be blocked by replacing sa by the following version of Re-

stricted Strengthening of the Antecedent RSA, in which 8isamodal operator and 8@ istruefor
all consistent propositional formulas a.
RSA - O(a|B1), 0 (a A B A Ba)

O(a|Bi A B2)

The derivation of the obligation O(p | a) discussed above is blocked, because the obligation
O(—a A p | a) cannot be derived from the obligation O(—a A p | T) by RSA. However, the
obligation O(p|a) can still be derived in another way. From the obligation O(—a A p| T) the
obligation O(p| T) can be derived by wc. From this|atter obligation, the obligation O(p|a) can

be derived by RsA. The derivations are represented in Figure 3.1 below. O
O(aVvp|T) O(=a|T) O(aVp|T) O(=alT)
AND
O(-anp|T) O(-a Ap|T)
——— SA ——————— WC
O(zaApla) wcC Olp|T) SA/RSA
O(pla) O(pla)

Figure 3.1: The apples-and-pears example

Notice that the obligation O(p | a) in Example 3.1 is a contrary-to-duty obligation derived
fromits primary obligation O(—a|T). Thefollowing example showsthat the obligation O(p|a)
of the apples-and-pears example of Example 3.1 is not derived in the two-phase approach of
2DL.

Example 3.2 (Apples-and-pears, continued) Consider the set of dyadic obligations
5 ={0%aVp[T),0%~alT)}

where —a does not entail the negation of p. We have S ):8 (ma Ap),S = O(—-anp|T)and
SEO5-anp|T),SFEOp|T)and S = O5(p| T). Thecrucial observation isthat OS(p|a)
isnot entailed by S. Consider atypical countermodel M of O5(p | T) in Figure 3.2 below. We
have M = O%(aVp|T)and M = O%(—a| T) because | —a A —p|£|a V p|and |a|L|—a|.
Moreover, we have M = O4(p|a), because @l a worlds are equivalent: for al wq, wy €|a| we
ha\/ew1 < ws.

For the proof-theoretic analysis of the underivability of O%(p|a), see the derivationsin Fig-
ure 3.3. First of dl, O5(p| a) isnot entailed by S viaaderivation of O¢(—a A p | a), because
O°(—a A p|a) isnot entailed by O¢(—a A p| T) duetotherestrictionin RSA. Secondly, O4(p|a)
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sub-ided situations

ideal situation @

Figure 3.2: The apples-and-pears examplein 2DL (semantics)

isnot entailed by S viaO¢(p| T), because O¢(p| T) isnot entailed by S. Finally, O5(p|a) isnot
entailed by S viaO5(p| T) either, because Of does not have strengthening of the antecedent at

al. O
O(aVp|T) O%(—a|T) RAND O°(aVp|T) O%(—a|T) RAND
O(ma A p|T) O°(—a Ap|T)
—————— (Fs) OsCanglT) "
O¢(—a A p|a) AEL O(p[T) wcC
OiCcanple) o —————- (RSA)
O5(pla) 05(pla)

Figure 3.3: The apples-and-pears examplein 2DL (proof theory)

When we compare the derivations of the apples-and-pears example with the counterintuitive
derivationsof the Forrester paradox in adyadic deontic logic, see Example 2.1, wefind that both
areinstances of the derivation of the obligation O(«; |—ay) from the obligation O(ay A a2 |T).
Despite this similarity between our apples-and-pears example and the classic benchmark prob-
lem of deontic logic, we think that there are good reasons to i ntroduce the new appl es-and-pears
example. Most importantly, the contrary-to-duty reasoning in the Forrester paradox is already
visible in the premises, whereas the contrary-to-duty reasoning in the apples-and-pears exam-
ple only manifestsitself in the derivations. Moreover, the derived obligation O(—(g A k) |k) in
the Forrester paradox does not have any intuitive reading, whereas the derived obligation in the
apples-and-pears example still has a possible reading. Finally, the apples-and-pears exampleis
simpler than the Forrester paradox, because (proof-theoretically) it only contains premiseswith
tautol ogical antecedents and (semantically) the preference orderings of the apples-and-pears ex-
ample only has a binary distinction between ideal and sub-ideal, see Figure 3.2, whereas the
preference orderings of the Forrester paradox have varying sub-ideal worlds, see Figure 2.7.

From a semantic point of view, the two-phase approach simply means that first an ordering
has to be constructed, before it can be used for minimization. However, proof-theoretically such
sequencing of derivationsisrather complicated. This can be shown by analyzing the properties
of the inference relation, when we consider O¢(« | 3) as a premise and O5(« | 3) as a conclu-
sion (as in Figure 3.3). For example, the inference relation does not support lemma handling,
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because an intermediate conclusion cannot be used as a lemma for another proof. Obviously,
this property follows directly from the two-phase approach, because a conclusion O§(« | 3) is
simply something different than apremise O¢(«|3). According to the Kraus-Lehmann-Magidor
classification [KLM9Q], the inference relation is not cumulative.

In this chapter, we discuss two one-phase logics that give a contextual interpretation to the
antecedent. We illustrate the two new logics by showing that the obligation to buy pears when
buying apples is not derivable in the apples-and-pears example. Thefirst logic (Section 3.2) is
based on alabel of an obligation. Thelabel isused to discriminate between implicit and explicit
obligations, a distinction analogous to the distinction between implicit and explicit knowledge.
The second logic (Section 3.3) extends the notion of a context of an obligation. Contextual de-
ontic logic combines the intuitive preferential semantics of 2DL with a one-phase proof theory.
Thisis accomplished by making the obligations more complex: we use aternary instead of the
dyadic representation in Example 3.1. It might seem that derivability of O(p| T) and underiv-
ability of O(p|a) are in conflict with each other. However, in contextual deontic logic it smply
means that pears should be bought unless apples are bought. The unless clause is formalized
with contextual obligationsO(«|5\7), to beread as* « should be the caseif 3 isthe case unless
v isthe case’. We say that the obligation to buy pears isonly valid in the context in which no
apples are bought.

3.2 Labeled obligations

Inthissectionweintroducelabeled deonticlogicLDL. Labeled obligationsO(«| 3) , canroughly
beread as ‘o ought to bethe caseif 3 isthe case, against the background of L.” They are based
on the distinction of what we call implicit and explicit obligations.

To illustrate the distinction between implicit and explicit obligations, we recall the well-
known distinction between implicit and explicit knowledge. The latter distinction originatesin
the logical omniscience problem: in principle, an agent cannot know all logical consequences
of hisknowledge. The benchmark exampleis that knowledge of the laws of mathematics does
not imply knowledge of the theorem of Fermat. That is, an agent does not explicitly know the
theorem of Fermat, she only implicitly knowsit. Analogously, explicit obligations are not de-
ductively closed, in contrast to implicit obligations. The two-phase deontic logic 2DL can be
understood asfollows: the ordering obligationsare explicit obligationsand the minimizing obli-
gations are implicit obligations. The idea behind labeled obligationsis to represent the explicit
obligation, of which the implicit obligation is derived, in the label. The label is the reason for
the obligation. This explains our reading of the label obligation O(«a | 8)1: ‘« ought to be the
case if 3 isthe case, against the background of L.” We can use labeled deontic logic to solve
the contrary-to-duty paradoxes, if we use the label to check that a derived obligation is not a
contrary-to-duty obligation of its premises. An obligation O(« | 3) is a contrary-to-duty obli-
gation of the primary obligation O(«; | 4;) if and only if 3 A «; isinconsistent, as represented
in Figure 3.4. Thelabel of an obligation represents the consequents of the premises from which
the obligation is derived. In labeled deontic logic we use a consistency check of the label of the
obligation with its antecedent. If the label and the antecedent are consistent, then the derived
obligation is not a contrary-to-duty of its premises.

In this section we introduce a deontic version of a labeled deductive system as it was in-
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O(a1|p1)
inconsistent
O(a[B)
Figure 3.4: O(«| ) isacontrary-to-duty obligation of O (a1 |6)

troduced by Gabbay in [Gab91]. The language of dyadic deontic logic is enriched by allowing
labelsin the dyadic obligations. Roughly speaking, thelabel L isarecord of the consequents of
all the premises that are used in the derivation of O(«|3).

Definition 3.3 (Language of LDL) Thelanguage of labeled deontic logicisapropositional base
logic £ and labeled dyadic conditional obligations O(«|3) 1, with o and § sentences of £, and
L aset of sentencesof L. O

Each formulaoccurring as a premise hasits own consequent initslabel. Theintuitionisthat
the premises are explicit obligations.

Definition 3.4 (Premisesof LbL) A formulawhich hasitsown consequent asitslabel iscalled
apremise. O

We assumethat the antecedent and the label of an obligation are always consistent. Thelabel
of an obligation derived by an inference rule is the union of the labels of the premises used in

thisinference rule. Below are some labeled versions of inference schemes. We write 8 Lfora
consistency check of a set of formulas.

O | B, O (LU {B1 A Bo})
O(a| B A Ba)L

Ola1 | B)c
O(Ckl V (67) | ﬂ)L

<~

! O(a‘ﬂ)LUO(ﬁh/)L‘z’O(Ll ULy U {7})

RSAy :

WCy :

DDV : O(a A ﬁ | V)LlULz
Aoy - Q01 [ 81,002 | 8)1,. 6 (Ly ULy U {8))

O(ar Aoy | B)r,uL,

Informally, the premisesused in the derivation tree using hese V' -rules are not violated by the
antecedent of the derived obligation, or, alternatively, the derived obligationisnot aCTD obliga-
tion of these premises. If the label and the antecedent are consistent, then the derived obligation
is not a contrary-to-duty of its premises, see Figure 3.4. We say that the labels formalize the as-
sumptions from which an obligation is derived, and the consistency check <<§checks whether the
assumptions are violated. The following example illustrates that the labeled deductive system
givesthe same reading to the appl es-and-pears example in Example 3.1 as the two-phase deontic
logic 2DL.
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Example 3.5 (Apples-and-pears, continued) Assume LDL that has at |east the inference pat-
terns RSA -, RANDy and wWcy,. Consider the set

S={0(aV p|[T){avp}, O(ma|T){=a} }

as premise set, where a can be read as ‘buying apples’ and p as ‘buying pears.’” In Figure 3.5

below it is shown how the derivations of Example 3.1 in Figure 3.1 are blocked. d
O(aVp|T)a O(—a|T){-a O(aVp|T)a O(—a|T){-a
@Vp Moy OCal g @Vp vy OGNy |
O(—|a, A p| T){an,—'a} O(ﬂa A p|—|—){an,—|a}
————————— (sa/RsA) 0P| T) (avp-a)
O(-aApla)ap~a . (SA/RSA)
wcC
O(pla){avp,~a} O(p|a){avp,a}

Figure 3.5: The apples-and-pears examplein LDL

The apples-and-pearsexamplein | abel ed deontic logic showsan important property of dyadic
deontic logics with a contextual interpretation of the antecedent, namely that the context is re-
stricted to non-violations of premises. If the antecedent isaviolation, i.e. if the derived obliga-
tionwould beaCTD, then the derivation is blocked. Obviously, asalogic thelabeled deductive
system is quite limited, if only because it lacks a semantics. In the following section, we con-
sider contextual deontic logic, which combines the advantage of |abeled deontic logic (only one
phase) with the intuitive preference-based semantics of 2DL.

3.3 Contextual obligations

In this section, we introduce contextual obligations and discuss the relation between contex-
tual, ordering and minimizing obligations. In contextual deonticlogic CDL theobligation ‘ pears
should be bought unless apples are bought’ can be derived in the apples-and-pears example.

We start with a semantic intuition for the contextual obligations. Recall the relation between
ordering and minimizing obligationsin Proposition 2.22. We showed that amodel M (without
duplicate worlds) satisfies an ordering obligation O(« | 3) iff for al propositional 3’ such that
M ):E] (8 — pB),wehave M = Os(a| ). Contextua obligations are in a sense wesaker,
because only for some propositions 3’ such that A/ ):ﬁ (8" — B),wehave M = Os(a| ).
We say that the lower bound of 8" is 3, i.e. M ):E] (8" — ), and the upper bound is given by
the context -y of the contextual obligation O(«|5\Y),i.e. M béﬁ (8" — ), see Proposition 3.12.
Contextual obligations are defined as follows.

Definition 3.6 (Contextual obligation) The contextual obligation ‘. should be the caseif G is
thecaseunless+y isthecase', writtenas O («| 8\y), isdefined asastrong preference of aA SA—7y
over —a A .
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O(a|B\7) et ((_f)l/\ﬂ/\ =) =5 (ma A B)
= B@npr—) > OB a)
O0IB\Y) = (@ABA) = (CahfAL@ATA)
O“(alB\7) =w (@ABA=Y) = (maABAO(@ABAY)AO(maApB) O

Wewrite CbL for thelogic CT40 extended with the definition of contextual obligations. The
following proposition showsthat contextual obligationsarein some respects similar to ordering
obligations.

Proposition 3.7 LetM = (W, <, V) bea CbL model and let |« bethe set of worldsthat satisfy
the formula . For aworldw € W, wehave M, w = O(«a|g\ ) iff for all w; €|laA B A —|
and all wy €|-a A 3| we have wy £ w;.

Proof Analogous to the proof of Proposition 2.6, because both are defined in the preference re-
lation ;.

The following example illustrates contextual obligations.

Example 3.8 Consider theKripkemodel M representedin Figure 3.6 (repeated from Figure 2.4).
Wehave M = O(q| T\—p), because |—¢q|£|gAp|. Theconditionisstronger than M = O(q|p),
because the latter means | ~¢g A p|£|q A p|. The condition isweaker than M = O(g A p|T),
because the latter means |—(q¢ A p) |£|q A p|. O

ideal situation ordered sub-ideal situations

Figure 3.6: Preferential model

The following proposition shows several propositions of contextual obligations.

Proposition 3.9 Thelogic CbL has the following theorems.

SA: O(a|B1\7) = O(|Bi A B2\ )

WC: O(aq A ag|B\7y) = O(aq|B\ 7 V —as)

WT: O(a|B\71) = O(a|B\71V 72)

AND: (O(en|B\7) A O(a2] 8\7)) = Oas A 02| B\7)

RSA:  (O%(alB\ M)A Q@A By A Br A=) = OB A B2 \7)

RAND:  (O%(cu|B\7) A O%(az| B\V)A O (a1 Aaz A BA—Y)) = Oar A as|B\7)

Proof The theorems can easily be proven in the preference-based semantics. Consider WC. Let
W, :|CU1 N Qg /\ﬂ/\ _|”)’| and W, :|_|(041 /\042) /\ﬂ| M ): O(Oq /\062|ﬂ\’7) ImpIIeSw2 f w1
for all w; € W, and wy € Wy, Let Wll :|Oél /\/8/\ _|(’}/\/ _|O£2)| and W2, :|_|(l/1 /\ﬂ| We have
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wy £ wy for all wy, € W] and wy € W3, because W{ = W, and W, C W,. Hence we have
M = O(ay1| B\ V nay). Verification of the other theoremsis I eft to the reader.

The following example illustrates the notion of weakening of the consequent.

Example 3.10 Reconsider the model M in Example 3.6. Wehave M = O(p A q| T\ 1),
M B O(g|T\L)and M = O(q| T\ —p). Hence, the context records when the consequent is
weakened. O

The following proposition shows several properties of the relation between ordering, mini-
mizing and contextual obligations. In particular, it shows that ordering and minimizing obliga-
tions are, in asense, specific types of contextual obligations. Moreover, from the non-theorems
follows that the logic is a non-trivial extension of 2DL, it increases its expressiveness signifi-
cantly.!

Proposition 3.11 Thelogic CbL has the following theorems.

O(alf\1) < O(alp)
O(a|f\7) — O5(alfA—)

Thelogic CbL does not have the following theorems.

O(alB\7) < O(aA—|p)
O(a|p\y) < Oal]BA—)

Proof The theorems follow directly from the semantic definitions. Counterexamples of the non-
theorems have been given in Example 3.8.

The following proposition shows the relation between contextual and minimizing obliga-
tions, just like Proposition 2.22 shows the rel ation between ordering obligationsand minimizing
obligations.

Proposition 3.12 Let M = (W, <, V) beaKripkemode!, such that there are no worldsthat sat-
isfy the same propositional sentences. Hence, we identify the set of worldswith a set of proposi-
tional inter pretations, such that there are no duplicateworlds. We have M, w = O°(a| B\7y) iff
thereareaABA—y and —aA S worlds, and for all propositional 4’ suchthat M, w ):E (8" — pB)
and M, w 0 (8 — 7), we have M, w = O%(a|3').

Proof (Analogous to the proof of Proposition 2.22.) = Follows directly from the semantic def-
initions. <= Every world is characterized by a unique propositional sentence. Let w denote this
sentencethat characterizesworld w. Proof by contraposition. If M, w %= O(«|A\y), thenthere
arews, wy suchthat M, w; E aABA—y, M,wy E —~aAfandws < w;. Choose ' = wy Vws.

LAn inspection of the definitions reveals that we can define contextual obligationsin terms of ordering obliga-
tionsby O(a|B\7) =4 Ola ABAY[(@ ABA=Y)V (ma A B)).
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wo 1San element of the preferred 3’ worlds, because there are no duplicateworlds. (If duplicate
worlds are allowed, then there could be a 3’ world w; which is a duplicate of w,, and which is
strictly preferred to w;, and w,.) We have M, w, = « and therefore M, w = O(«|5'),

The following example illustrates that contextual deontic logic has the same reading of the
apples-and-pears problem as our two-phase deontic logic 2DL. In particular, it illustrates that
the semantic representation is similar to the representation in 2DL, but the proof-theoretic rep-
resentation does not depend on two distinct phases.

Example 3.13 (Apples-and-Pears, continued) Consider the set of contextual obligations S =
{O%(aVvp|T\1),0%(—a|T\L)}. Wehave S = O¢(p| T \a), asisshown in Figure 3.7, which
expresses that our little sister should buy pears, unless she buys apples. The crucial observation
isthat we do not have O(p|a\ y) for any +, and atypical countermodel is again the model in
Figure 3.2. O

O(aVp|T\L) O%-a|T\L)
O°(maAp|T\L)
O°(p| T \a)

AND

Figure 3.7: Apples-and-pears in contextua deontic logic

In this section we introduced contextual obligations and showed that they combine strength-
ening of the antecedent and weakening of the consequent. A drawback of two-phase logicsis
that they do not support lemmahandling. Compared to the two-phase deonticlogic 2DL, in CbL
the combining of strengthening of the antecedent and weakening of the consequent is established
in one phase. Thus, the logic CbL supports lemma-handling.

3.4 Related research

The apples-and-pear s exampleisanew exampleintroduced in thisthesis, although there are ex-
amples of sentences with the samelogical structure as the apples-and-pears example. Examples
are given by Van Fraassen [VF73] (quoting Stalnaker): (1) you should obey your father or your
mother, and (2) you should not obey your mother, and by Horty [Hor93]: (1) you should serve
in the army or attend aternative service, and (2) you should not serve in the army. The distinc-
tion is that they give the examples in a monadic modal logic to illustrate intuitions behind the
restricted conjunction rule RAND, see the discussion in Section 2.6.3.

There are severa similarities between our deontic logics and logics of defeasible reasoning.
Most importantly, the contextual obligations O(a| 3\ 7), read as‘ « ought to be the case if 3 is
the case unless y is the case,’” can be compared with Reiter default rules % where — isthe
justification of the default rule [Rei80]. The main distinction between CbL and Reiter’s default
logicisthat contextual obligationsare not used asinferencerules. In CbL, we derive contextual
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obligations from contextual obligations, which can be compared to the derivation of defaults
from defaults. In Reiter’s default logic, defaults are used to generate extensions. A similarity
between CbL and default logic is that contextual obligations as well as defaults express prefer-
ences. Reiter’s defaults express preferences on assumptions. In the default ﬂ% we have that
a A [ arepreferred to —a A 3, and this preference is cancelled when v is the case.

3.5 Conclusions

In this chapter, we further studied the relation between obligations and preferences. We have
established the following results.

1. We have identified a new deontic example, the apples-and pears example (Example 3.1).
We have shown two interpretations of this example.

2. Wehave proposed the new |abeled deontic logic LDL. We have shown that |abeled obliga-
tions give the same interpretation of the apples-and-pears exampl e as the two-phase deon-
ticlogic 2DL. Labeled deontic logic explains that the blocked derivations are derivations
of contrary-to-duty obligations from their primary obligations.

3. We have proposed the new contextual deontic logic CbL. We have shown that contextual
obligations give the sameinterpretation of the apples-and-pears exampl e as the two-phase
deontic logic 2DL. Contextual deontic logic combines the preference-based semantics of
2DL with a one-phase proof theory.

CbL has been used to further analyze the rel ation between obligations and preferences. The
contextual obligations O («| 3\ y) are ageneralization of the ordering obligations developed in
Chapter 2, because an ordering obligation O(« | ) islogically equivalent to a contextual obli-
gation O(«|B\ L). Like 2DL, the contextual obligations can be extended with the no-dilemma
assumption, permission operators and factual detachment. The main conclusions of this chapter
concerning the relation between obligations and preferences are the following.

1. Deontic reasoning is a two-phase process? In the previous chapter we argued that the
preference-based semantics indicate that deontic reasoning is a two-phase process of or-
dering and minimizing. Two phases are necessary in a dyadic deontic logic to combine
several inference patterns, for example strengthening of the antecedent and weakening of
the consequent. However, in this chapter we showed that they can also be combined in a
one-phase proof theory, if the language is made more expressive.

2. Weakening of the consequent introduces exceptions. The explicit exceptions of CDL
reveal that weakening of the conseguent corresponds to introducing exceptions.

The latter relation is surprising, because exceptions are an issue normally formalized in default
logic. In the next chapter we use (extensions of) the logic CDL to analyze the relation between
obligations and defeasibility.



Chapter 4

Defeasible deontic logic

In this chapter we study the relation between obligations and defeasibility. We give a general
analysis of different types of defeasibility in defeasible deontic logics. We argue that (at |east)
three types of defeasibility must be distinguished in a defeasible deontic logic. First, we make
adistinction between factual defeasibility, that formalizes overshadowing of an obligation by a
violating fact, and overridden defeasibility, that formalizes cancelling of an obligation by other
conditional obligations. Second, we show that overridden defeasibility can be further divided
into strong overridden defeasibility, that formalizes specificity, and weak overridden defeasibil-
ity, that formalizes the overriding of primafacie obligations. Our general analysis can be ap-
plied to any defeasible deontic logic, because we use inference patterns to analyze the different
types of defeasibility. Moreover, we illustrate the intuitions behind the various distinctionswith
preference-based semantics. We also show that these distinctions are essential for an adequate
analysis of notorious contrary-to-duty paradoxes such as the Chisholm and Forrester paradox in
adefeasible deontic logic. In particular, they are essentia to distinguish between violations and
exceptions.

Theinterference between violability and specificity wasfirst discussed from aproof-theoretic
perspectivein [vdT94] and from a semantic perspectivein [TvdT94b, TvdT95]. This chapter is
amodified and extended version of [vdTT95a, vdTT97b].

4.1 Obligationsand defeasibility

Dyadic modal |ogicswereintroduced to formalize deonti c reasoning about contrary-to-duty obli-
gationsin, for example, the Chisholm paradox that we will discuss later. An example of a con-
ditional obligation in a dyadic modal logic is O(h | ), which expresses that “you ought to be
helped (k) when you are robbed (r).” Similarly, O(—r| T) expresses that “you ought not to be
robbed,” where T standsfor any tautology. If both O(—r|T) and r are true, then we say that the
obligation is violated by the fact . In recent years it was argued by several authors that these
dyadic obligations can be formalized in non-monotonic logics [McC94a, Hor93, RL93].

In this chapter we argue that contrary-to-duty obligations do have a defeasible aspect, but
a different one than is usually thought. The first part of this claim follows directly from Al-
chourron’s[Alc93] definition of adefeasible conditional asaconditional that lacks strengthening
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of the antecedent, represented by the inference pattern

. O(alp)

S O(a|B A By)

Alchourron’sdefinition is based on the ideathat lack of strengthening of the antecedent isakind
of implicit non-monotonicity. The relation between strengthening of the antecedent and non-
monotonicity can be made explicit with the following inference pattern Exact Factual Detach-
ment EFD, see Section 2.5. Exact factual detachment can be represented by theinference pattern

. O(alB), AB

EFD : o)

inwhich Oa isanew, monadic modal operator, and A isan all-that-is-known operator [Lev90]:
A¢ istrueif and only if ¢ islogicaly equivalent with all factual premises given. The infer-
ence pattern EFD is based on the intuition that the antecedent of a dyadic obligation restricts the
focusto possible situationsin which the antecedent is assumed to be factually true, and the con-
sequent represent what is obligatory, given that only these facts are assumed. If the facts are
equivalent to the antecedent, then the consequent can be considered as an absolute obligation.
From the properties of A followsimmediately that EFD is monotonic iff the dyadic obligations
have strengthening of the antecedent. Dyadic deontic logics that can represent contrary-to-duty
reasoning are defeasible deontic logics, because the dyadic obligations typically lack strength-
ening of the antecedent, see Section 1.3.5. In this sense, contrary-to-duty obligations do have a
defeasible aspect.

However, we argue that this defeasible aspect of contrary-to-duty obligationsis a different
onethan isusually proposed. In this chapter we analyze defeasibility in defeasible deontic logic
by anayzing different conditions on strengthening of the antecedent. In particular, we analyze
the inference relation of defeasible deontic logics with inference patterns, in a similar way as
Kraus et al [KLM90] analyze logics of defeasible reasoning. Moreover, we give preference-
based semantic intuitionsfor the inference patterns. The advantage of our approach isthat (1) it
is applicableto any defeasible deontic logic, because of the generality of the inference patterns,
and (2) it gives aso an explanation of the intuitions behind the inference patterns by the prefer-
ence semantics.

SA

4.1.1 Canceling and overshadowing

The main claim of this chapter isthat the defeasi ble aspect of contrary-to-duty obligationsisdif-
ferent from the defeasible aspect of, for example, Reiter’s default rules[Rei80]. Different types
of defeasibility in alogic of defeasible reasoning formalize a single notion, whereas defeasible
deontic logics formalize two different notions. Consider first the logics of defeasible reasoning
and the famous Tweety example. In the case of factual defeasibility, we say that the *birds fly’
default is cancelled by the fact —f, and in the case of overridden defeasibility by the ‘ penguins
do not fly’ default. By cancellation we mean, for example, that if —f is true, then the default
assumption that f istrueisnull and void. The truth of —f implies that the default assumption
about f iscompletely falsified.

Thefundamental difference between deontic logic and logicsfor defeasible reasoning isthat
O(—r|T) Arisnotinconsistent. That isthe reason why the deontic operator O had to be repre-
sented asamodal operator with apossibleworl ds semantics, to make surethat both the obligation



4.1. OBLIGATIONSAND DEFEASIBILITY 117

and its violation could be true at the same time. Although the obligation O(—r | T) is violated
by thefact r, the obligation still hasitsforce, so to say. Thisstill being in force of an obligation
is reflected, for example, by the fact that someone has to pay afine even if she doesr. Even if
you are robbed, you should not have been robbed. But if penguins cannot fly, it makes no sense
to state that normally they can fly. We will refer to this relation between the obligation and its
violation as overshadowing to distinguish it from cancellation in the case of defeasible logics.
By the overshadowing of an obligation we mean that it is still in force, but it is no longer to be
acted upon.

The conceptual difference between cancelling and overshadowing is analogous to the dis-
tinction between * defeasibility’ and ‘violability’ made by Smith in [Smi93] and by Prakken and
Sergot in[PS96]. An essential difference between those papers and this oneisthat in this chap-
ter we argue that violability has to be considered as a type of defeasibility too, because it also
induces a constraint on strengthening of the antecedent. The main advantage of the violability-
as-defeasibility perspective is that it explains the distinctions and the similarities between can-
celling and overshadowing. Moreover, it can be used to analyze complicated phenomena like
prima facie obligations, which have cancelling as well as overriding aspects.

4.1.2 Different types of defeasibility

In defeasible reasoning one can distinguish at |east three types of defeasibility, based on differ-
ent semantic intuitions. To illustrate the difference between the different types we discuss the
penguin example in Geffner and Pearl’ s assumption-based default theories[GP92]. In such the-
ories, the‘birdsfly’ default ruleisexpressed by afactual sentence§; — f and adefault sentence
T = §;, and the ‘penguins do not fly’ default by p A 6o — —f andp = §,. Here, '—’ isthe
classical material implicationand ‘=" somekind of default implication. Thed; constantsarethe
so-called assumptions; for each default in the set of premises a distinct constant is introduced.
Geffner and Pearl’s so-called conditional entailment maximizes these assumptions, given cer-
tain constraints. In conditional entailment, the ‘birdsfly’ default can be defeated by the fact — f,
or it can be overridden by the more specific ‘ penguins do not fly’ default. The first follows di-
rectly from —f — —d1, i.e. the contraposition of the factual sentence §; — f, and the second
follows from the fact that p — —d; can be derived from the constraints of conditiona entail-
ment (we do not give the complicated proof; see [GP92] for these details). We call thefirst case
factual defeasibility and the last case overridden defeasibility. The distinction between factual
and overridden defeasibility isonly the start of a classification of different types of defeasibility.
To illustrate the distinction between different types of overridden defeasibility, we consider the
adapted ‘ penguins do not fly and live on the Southern Hemisphere’ default p A §o — (—f A s).
In some logics of defeasible reasoning, the ‘birds fly’ default is overridden whenever p is true.
In other logicsit is overridden when p istrue but only aslong as s isnot false. If s isfase, then
the penguin default is no longer applicable. In the first logics the ‘birds fly’ default is not rein-
stated, whereas in the second logicsit is, because it was only suspended. In other words, in the
latter case the penguin default overridesthe bird default only when it isapplicableitself. We call
the first case strong overridden defeasibility and the second case weak overridden defeasibility.
Thedifferent types of overridden defeasibility are based on different semantic intuitions. Strong
overridden defeasibility is usually based on a probabilistic interpretation of defaults (most birds
fly, but penguinsare exceptional), likein Pearl’s e-semantics [ Pea88]. Weak overridden defeasi-
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bility isusually based on an argument-based conflict resolution interpretation (there is aconflict
between the two rules, and the second one has highest priority), for example in conditional en-
tailment and Brewka's prioritized default logic [Bre94].

The distinction between different types of defeasibility iscrucial inlogicsthat formalizerea-
soning about obligations which can be overridden by other obligations. Overridden defeasibil-
ity becomes relevant when there is a (potential) conflict between two obligations. For example,
thereisaconflict between O(« | 51) and O(as | 32) when o and «, are contradictory, and 3; and
(2 are factually true. There are several different approaches to deal with deontic conflicts, see
Section 1.3.6. In von Wright's so-called standard deontic logic SDL [vW51] a deontic conflict
isinconsistent. In weaker deontic logics, like Chellas minimal deontic logic MDL [Che74], a
conflict isconsistent and called a* deontic dilemma.” In a defeasible deontic logic a conflict can
be resolved, because one of the obligations overrides the other one. For example, overridden
structures can be based on a notion of specificity, likein Horty’s well-known example that ‘you
should not eat with your fingers,” but *if you are served asparagus, then you should eat with your
fingers’ [Hor93]. In such cases, we say that an obligation is cancelled when it is overridden, be-
cause it is analogous to cancelling in logics of defeasible reasoning. The obligation not to eat
with your fingers is cancelled by the exceptional circumstances that you are served asparagus.
A different kind of overridden structures have been proposed by Ross [Ros30] and formalized,
for example, by Morreau in [Mor96]. In Ross' ethical theory, an obligation which is overrid-
den has not become a‘proper’ or actual duty, but it remainsin force as a primafacie obligation.
For example, the obligation not to break a promise may be overridden to prevent a disaster, but
even when it is overridden it remainsin force as a prima facie obligation. As actual obligation
the overridden obligation is cancelled, but as prima facie obligation it is only overshadowed.
Because of this difference between cancellation and overshadowing, it becomes essential not to
confuse the types of defeasibility in analyzing the deontic paradoxes. We show that if they are
confused, counterintuitive conclusions follow for the Chisholm and Forrester paradoxes.

In the figure below the three different faces of defeasibility in defeasible deontic logic are
represented with their corresponding character (cancelling or overshadowing). In non-deontic
defeasible logic the different types of defeasibility al have a cancelling character.

| | overshadowing | cancelling |

Factual defeasibility X

Strong overridden defeasibility X

Wesak overridden defeasibility X X
Table4.1: Matrix

This chapter isorganized asfollows. In Section 4.2 we give adetailed comparison of factual and
overridden defeasibility in deontic reasoning, and we show that the Chisholm paradox can be an-
alyzed as a case of factua defeasibility rather than overridden defeasibility. In Section 4.3 we
focus on the overshadowing aspect of factual defeasibility and the cancellation aspect of over-
ridden defeasibility by analyzing specificity, and we show that in an adequate analysis of an ex-
tension of the Forrester paradox both these aspects have to be combined. 1n Section 4.4 wefocus
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on the cancelling aspect and the overshadowing aspect of overridden defeasibility by analyzing
primafacie obligations.

4.2 Overridden versusfactual defeasibility

In this section we analyze the fundamental difference between overridden and factual defeasi-
bility in a defeasible deontic logic by formalizing contrary-to-duty reasoning as akind of over-
ridden defeasibility as well as akind of factual defeasibility. Moreover, we show that contrary-
to-duty reasoning is best formalized by the latter one.

4.2.1 Chisholm paradox

The following exampl e describes the notorious Chisholm paradox [Chi63], also called the CTD

paradox, or the paradox of deontic detachment. The original paradox was given in a monadic
modal logic, see Section 1.3.3. Herewegivethe obviousformalizationinanon-defeasibledyadic
logic. See [Tom81] for a discussion of the Chisholm paradox in several dyadic deontic logics.

To make our analysis as genera as possible, we assume as little as possible about the deontic
logic we use. The analyses given in this chapter in terms of inference patterns are, in principle,

applicable to any deontic logic.

Example 4.1 (Chisholm paradox) Assume adyadic deontic logic that has at least substitution
of logical equivaents and the inference patterns (unrestricted) Strengthening of the Antecedent
SA, Weakening of the Consegquent wc and a version of Deontic Detachment bD’.

 0(al8)  O(B) . 0(al8),0(8])
OB i Omvalp) 0 OBl

Notice that the following inference pattern Deontic Detachment (or transitivity) DD can be
derived from wc and pDD'.
. 0(a|B), 0(8]7)

P T 0

Furthermore, assumethe premises O(a| T), O(t|a) and O(—t|—a), where T stands for any
tautology, a can be read as the fact that a certain man goes to the assistance of his neighbors and
t asthe fact that he tells them he is coming. Notice that the third premise O(—t|—a) isaCTD
obligation of the (primary) obligation O(a | T), because its antecedent is inconsistent with the
consequent of the latter.

The paradoxical derivation of O(t | —a) from the Chisholm paradox is represented in Fig-
ure4.1. Theintuitiveobligation O(aAt| T) can bederived by DD’ from thefirst two obligations.
It seemsintuitive, because in the ideal situation the man goesto the assistance of his neighbors
and he tells them he is coming. The obligation O(¢| T) can be derived from O(a A | T) by wc
(or from the premises by DD). The derived obligation O(t | T) expresses that if the man does
not tell his neighbors, then the ideal situation is no longer reachable. However, from O(¢ | T)
the counterintuitive O(t | —a) can be derived by Sa. Thisis counterintuitive, because there is
no reason to tell the neighbors he is coming when the man does not go. In contrast, in this vi-
olation context the man should do the opposite! Moreover, in several deontic logics the set of
obligations {O(—t|—a), O(t|—a)} isinconsistent. O

SA
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O(tla) O(a|T)
O(aNt|T)
oun) !
O(t|—a)

!

Figure 4.1: Chisholm paradox

In this example the Chisholm paradox is presented in anormal dyadic deontic logic, to show
its paradoxical character. In the next section, we analyze the paradox in a defeasible deontic
logic that has only overridden defeasibility. This analysis solvesthe paradox, but for the wrong
reasons. Finally, in Section 4.2.2 we give an analysis of the Chisholm paradox in termsof factual
defeasibility, which is more satisfactory. In Section 4.2.3 we analyze factual defeasibility with
apreference semantics.

4.2.2 Overridden defeasibility

In recent years several authors proposed to solve the Chisholm paradox by analyzing its prob-
lematic CTD obligation as a type of overridden defeasibility (see e.g. [McC94a, RL93]).! The
underlying ideaisthat a CTD obligation can be considered as a conflicting obligation that over-
rides a primary obligation. Although thisidea seemsto be very intuitive at first sight, we claim
that the perspective of CTD obligations as akind of overridden defeasibility ismisleading. Itis
misleading, because athough this perspective yields most (but not all') of the correct conclu-
sions for the Chisholm paradox, it does so for the wrong reasons. We show that it is more ap-
propriate to consider the CTD obligation as akind of factual defeasibility. This does not mean
that there is no place for overridden defeasibility in deontic logic. By a careful analysis of an
extended version of another notorious paradox of deontic logic, the Forrester paradox, we show
that sometimes combinations of factual and overridden defeasibility are needed to represent de-
feasible deontic reasoning. But first we give our analysis of the Chisholm paradox. The fol-
lowing exampl e shows that the counterintuitive obligation of Example 4.1 cannot be derived in
a defeasible deontic logic with overridden defeasibility. For our argument we use a notion of
overridden based on specificity.

Example4.2 (Chisholm paradox, continued) Assumethat sA isreplaced by thefollowing Re-
stricted Strengthening of the Antecedent rule RSA ;. RSA; containsthe so-called non-overridden
condition Cp, which reguiresthat O(«|3;) isnot overridden for 5; A 32 by some more specific
O[3

O(a|B1),Co

O(a|Bi A B2)

McCarty [McC94a] does not analyze the Chisholm paradox but the so-called Reykjavic paradox, which he
considersto contain ‘two instances of the Chisholm paradox, each one interacting with the other.’

2The overridden condition Cy, is based on a simplified notion of specificity, because background knowledgeis
not taken into account and an obligation cannot be overridden by more than one obligation. A more sophisticated
definition of overridden can befound in theliterature of logics of defeasiblereasoning. For our purposesthissimple
definitionisenough, becauseit isaweak definition (most definitions of specificity are extensionsof thisdefinition).
For a discussion on the distinction between background and factual knowledge, see [vdT94].

RSAp :
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where condition Cy, is defined as follows:

Co: thereisno premise O(o/|3') suchthat 8; A 5, logically implies 5/, 5’ logically
implies 3; and not vice versaand o and o’ are contradictory.

The ‘solution’ for the paradox is represented in Figure 4.2. This figure should be read as fol-
lows. The horizontal lines represent possible derivation steps. Blocked derivation steps are rep-
resented by dashed lines. For example, the last derivation step is blocked, and the cause of the
blocking is represented by the obligation O(—t|—a) above the blocked inference rule. We com-
pare the blocked derivation in Figure 4.2 with the derivation in Figure 4.1. Theintuitive obliga-
tion O(¢| T) can till be derived by DD (hence, by b’ and wc) from the first two obligations.
From O(¢ | T) the counterintuitive O(t | ~a) cannot be derived by RSA(, because O(t | T) is
overridden for —a by the CTD obligation O(—t|—a), i.e. Cp isfase. Hence, the counterintu-
itive obligation is cancelled by the exceptional circumstances that the man does not go to the
assistance. O

O(tla) O(a|T)

O(a At|T) O(~t[-a)
Ot/ T) v

———————— (RSA)
O(t|—a)

Figure 4.2: Chisholm paradox solved by overridden defeasibility

Overridden defeasibility yieldsintuitiveresultsfrom the Chisholm paradox, but for thewrong
reasons. A simple counterargument against the solution of the paradox in Example 4.2 is that
overriding based on specificity does not solve the paradox anymore when the premise O(a|T)
is replaced by a premise with a non-tautological antecedent. For example, if it is replaced by
O(ali), where i can be read as the fact that the man is personally invited to assist. Another
counterargument against the solution of the paradox for any definition of overridden is that the
derivation of O(t|—a) isaso counterintuitive when the set of premises contains only the first
two obligations, asis the case in the following example.

Example 4.3 (Chisholm paradox, continued) Assume only the premisesO(a|T) and O(t|a).
Again the intuitive obligation O(¢| T) can be derived by DD. From this derived obligation the
counterintuitive O(¢ | ~a) can be derived by RSA, because there isno CTD obligation which
cancels the counterintuitive obligation. d

If the obligation O(¢ | T) can be derived but not the obligation O(¢ | —a), then we say that
‘deontic detachment holds as a defeasible rule.’” Unrestricted strengthening of the antecedent
cannot be applied to the obligation O(¢| T), derived by deontic detachment DD. Thisrestriction
isthe characteristic property of defeasible conditionals[Alc93]. The underlying intuitionisthat
the inference of the obligation of the man to tell his neighborsthat he is coming is made on the
assumption that he goes to their assistance. If he does not go, then this assumption is violated
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O(tla) O(a|T)
O(aNt|T)

o(t|T)

O(t|—a)

!

RSAo

Figure 4.3: Chisholm paradox, continued

and the obligation based on this assumption is factually defeated. We say that the man should
tell his neighbors, unless he does not go to their assistance.

The problematic character of DD iswell-known from the Chisholm paradox. A popular ‘ so-
lution’ of the paradox is not to accept DD’ for a deontic logic. However, this rgection of DD’
causes serious semantic problems for these logics. For example, Tomberlin [Tom81] showed
that there are semantic problemsrel ated to therejection of DD’ for Mott’ s solution of the Chisholm
paradox [Mot73], which does not accept DD’. Moreover, the apples-and-pears example of Sec-
tion 3.1 shows that similar problems occur when RSA o, wc and the conjunction rule AND are
accepted. Thislast ruleis accepted by many deontic logics.

Example 4.4 (Apples-and-Pears) Assume a dyadic deontic logic that has at |east substitution
of logica equivalents and the inference patterns RSA o, wc and the following conjunction rule
AND.
ang: 2(1l6), Olaz|6)
O(O!l A (62) ‘ﬂ)
Notice that the following inference pattern Consequential Closure (CC) can be derived from

wcC and AND.
c: O(alw)aO(&l — 042|ﬂ)

O(az|B)

Furthermore, assume as premise sets
S={0(aVvp|T),0(=a|T)} and & ={0(aVp|T),0(-a|T),O(-pla)}

where ¢ can be read as ‘buying apples and p as ‘buying pears.” A derivation of the obligation
O(p|a) from S isrepresented In Figure4.4. Theintuitiveobligation O(—aAp|T) can bederived
by AND. From thisobligation, the obligation O(p| T) isderived by wc (hence, from the premise
set by cc). From this derived obligation, the obligation O(p | a) can be derived by RSA. The
obligation is not derivable from S’ by RSA, because the CTD obligation O(—p | a) overrides
the obligation O(p| T) for a. However, this blocking for S’ does not suffice for S, just like the
blocking in Example 4.2 does not suffice for Example 4.3. 0

An aphabetic variant of Example 4.4 is the following version of the Chisholm paradox, in
which the conditional obligation is represented as an absol ute obligation. However, it isusually
argued that the premise O(a — t| T) does not represent the conditional obligation correctly.

Example 4.5 (Chisholm paradox, continued) Consider O(a | T) and O(a — t| T). The
intuitiveobligation O(¢| T) isderived from the two premisesby cc. However, from thisderived
obligation the counterintuitive O(t|—a) can be derived by SA or RSA (. O
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O(aVp|T) O(=al|T)
O(-a A p|T)
O(p|T)

O(pla)

AND
wc
RSAo

Figure 4.4: Apples-and-pears example with overridden defeasibility

The examples show that CTD reasoning (i.e., reasoning about sub-ideal behavior) cannot be
formalized satisfactorily in a defeasible deontic logic with only overridden defeasibility.

4.2.3 Factual defeasibility

Asanillustrative example of aformalization of factual defeasibility, we formalize the Chisholm
paradox in contextual deontic logic, see Section 3.3. The contextual obligation O“(« | 3\ )
areread as ‘o should be the case if 3 isthe case unless vy isthe case’ and can be compared with
the Reiter default rule ‘%’1 where — is the justification of the default rule [Rei80]. The un-
less clause formalizes akind of factual defeasibility, because it blocks strengthening of the an-
tecedent (thusit is defeasibility) and it does not refer to any other obligation for this blocking
(thusitisfactual). The crucial observation of the Chisholm paradox below isthat if the premises
arevalid in al cases (have a context ‘unless L', where L is a contradiction), then the derived
obligationsmay still be only valid in arestricted context. The context encodesin such acasethe
assumptions on which an obligation is derived (i.e. when the obligation is factually defeated).
We subscript the inference patterns with a V', to emphasi ze the factual defeasibility (in contrast
to the overridden defeasibility used in the previous section). Factual defeasibility is represented
in theinference patternsby aconsistency check. For example, thederivation of O(a| 31 AB2\Y)

from O“(«| 41\ 7y) has a consistency check 8 (a A By A B2 A —y). We cdll these consistency
checks the restriction Cy,, where V' stands for violability. They emphasize the distinction with
Co, Where O stands for overridden.

O(a|Bi\7),Cyv  Cy: aABiA By A—yisconsistent, and
O(alf A B\7)’ -y A By A By iSconsistent

The following example illustrates that now the Chisholm paradox can be analyzed in con-
textual deontic logic. The example shows that factual defeasibility of the Chisholm paradox is
caused by contextual reasoning, because the premises do not have exceptions, only derived obli-
gations have exceptions. Thus, this aspect of factual defeasibility is quite different from defea-
sibility related to exceptional circumstances or abnormality formalized in logics of defeasible
reasoning, because in that case the premises are subject to exceptions. For example, factual de-
feasibility can be used in alogic for defeasible reasoning to formalize ‘ birds normally fly, unless
they are penguins by N(f|b\p) asa premise.

RSAy :

Example 4.6 (Chisholm paradox, continued) Consider the set of obligations

S ={0%a|T\ L), 0%(tla\ 1)}
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The solution of the counterintuitive derivation of the Chisholm paradox in Example 4.3 is rep-
resented in Figure 4.5. The contextual obligation O(¢| T \ —a) represents that the man should
tell his neighbors, unless he does not go to their assistance. O

O*(tla\Ll) O*(a|T\L)
O®(a At|T\L) we, v
O“(t|T\—a)

Figure 4.5: Chisholm paradox solved by factual defeasibility

It can easily be checked that the counterintuitive derivation of O(p|a) by RSA, in Exam-
ple 4.4 isblocked by RSAy too. The examples show that CTD structures sometimes look like
overridden defeasible reasoning structures, but a careful analysis shows that they are actually
cases of factual defeasibility.

The reader might wonder why we consider condition C'y to be atype of factual defeasibility.
In this chapter we only discuss conditional obligations, and how these can be derived from each
other. Facts do not seem to come into the picture here. However, a closer analysis reveal s that
factual defeasibility isindeed the underlying mechanism. The antecedent of adyadic obligation
restrictsthe focusto possibilitiesin which the antecedent is assumed to be factually true, and the
consequent represent what is obligatory, given that these facts are assumed. Hence, the conse-
quent refers to ‘the best of the bad lot.” Aswe discussed in the introduction, these facts can be
made explicit with akind of factual detachment, for example with EFD. From the Chisholm set
{O(a|T),0(t|a),O(—t|—-a)} and AT, we can derive Ot by EFD, and from .A—a we can derive
O—t, but not Ot. Hence, by adding afact (—a) we loose a deontic conclusion (Ot).

Moreover, acomparison with, for example, Brewka's prioritized default logic [Bred4] illus-
tratesthat C'y isakind of factual defeasibility. Consider the classical example of non-transitivity
of default rules, which consists of the default rules that ‘usually, students are adults' (**) and
that ‘usually, adults are employed’ (%¢). Given that we know that somebody is a student, we
can defeat the default conclusion that this person is employed in two ways. Either, it isdefeated
by the more specific default rule that students are usually unemployed (*2¢), which is a case of
overridden defeasibility, or it is defeated by the defeating fact (—a) that the particular student is
known to be no adult. Thislatter case of defeasibility isthe type of factual defeasibility that is
analogous to the defeasibility in the Chisholm paradox.

This analogy with default logic also illustrates what we mean by deontic detachment as a
defeasible rule. The transitivity of the two default rules above can be blocked either by over-
ridden or factual defeasibility. If neither of the two are the case, then the transitivity holds. In
this sense one could say that in default logic transitivity holds as adefeasible rule. Analogously,
we say that deontic detachment holds as a defeasible rule. If we only know O“(t |a\ 1) and
O(a| T\ L), then we can apply deontic detachment, which resultsin O(¢| T \ —a). But this
detachment is defeated if we assumein the antecedent of this conclusion that —a istrue.
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4.2.4 Preference semantics

The formalization of the Chisholm paradox in contextual deontic logic CDL gives an intuitive
semantic interpretation of factual defeasibility. The following definition repeats the semantic
definition from Section 3.3. The preference semantics represent the notion of deontic choice:
a preference of a; over a, means that if an agent can choose between «; and a», she should
choose a;;. An obligation for « is formalized by a preference of o over —«.. Thus, if the agent
can choose between « and —«, then she should choose «. Similarly, a conditional obligation
for o if B isformalized by a preference of a A 3 over —a A 3. This preferenceisformalized by
condition (3) of Definition 4.7 below. Theother conditions(1) and (2) of Definition 4.7 formalize
the condition that in order to choose between o and —a, these opportunities must be logically
possible.

Definition 4.7 (Contextual obligation) Let M = (W, <, V') be aKripke model that consists
of W, aset of worlds, <, abinary reflexive and transitive relation on W, and V', avaluation of
the propositionsin the worlds. Moreover, let «, 5 and v be propositional sentences. The model
M satisfies the obligation ‘. should be the case if 3 isthe case unless v isthe case,” written as

M £ 0%(aB\7), iff
L Wi={weW|M,wkE=aAfA-—y}isnonempty, and
2. Wo={we W | M,wkE= -aA [} isnonempty, and

3. foral w; € W; and w, € Wy, we have wy £ wy. -

The following example explains the factual defeasibility of the Chisholm paradox by pref-
erence semantics.

Example 4.8 (Chisholm paradox, continued) Consider the set of obligations
S ={0%(a| T\ L), 0%(t[a\ L), 0%(~t|=a\ L)}

A typical® model M of SisgiveninFigure4.6. Thisfigure should beread asfollows. Thecircles
represent non-empty setsof worlds, that satisfy the propositionswritten contained in them. Each
circle represents an equivalence class of the partia pre-ordering < of the model (the ordering
partitions the worlds of the model into a set of equivalence classes). The arrows represent strict
preferencesfor al worldsintheequivalenceclasses. Wehave M = O°¢(—t|—a\ L), for example,
because for al w; €| =t A —a | and wy €|t A —a | we have wy, £ w;. The condition —a
corresponds to the semantic concept of zooming in on the ordering. In the figure, thiszooming
in on the ordering is represented by a dashed box. For the evaluation of M = O%(—t|—-a\ 1),
only the ordering within the dashed box is considered. As we observed in earlier analyses of
the Chisholm paradox, the most important thing isthat O(¢ | —a \ y) does not follow from the
premises for any . Thisistrue for contextual deontic logic CbL. The crucial observation is
that we have M = O(t|—a\y) for any -y, becausefor al w, €|t A —a A —y| for any +, and for
al wy €|=t A —al, we have wy < w; (and even wy < wy). O

3The model M in Figure 4.6 is the unique most connected model of .S, see Section 2.3.
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ideal situation ordered sub—ldeal situations F ={-a}

N

Figure 4.6: Preference relation of the Chisholm paradox

Our discussion of the Chisholm paradox showed the fundamental distinction between over-
ridden and factual defeasibility. Contrary-to-duty reasoning can beformalized asakind of over-
ridden defeasibility as well as akind of factual defeasibility, and we showed that it is best for-
malized by the latter. The preference-based semantics illustrates where this type of factual de-
feasibility comes from. Semantically, the antecedent zooms in on the context of the preference
ordering. The inference pattern wc corresponds semantically to introducing exceptions of this
context. In the Chisholm paradox, the derivation of O(¢| T \ —a) from O“(a A t| T\ L) says
that the preference for ¢ is not valid in the context —a. As shown in Figure 4.6, in thisviolation
context the preferences can be the other way around.

4.3 Overridden and factual defeasibility

In this section, we focus on the cancelling aspect of overridden defeasibility and the overshad-
owing aspect of factual defeasibility. Overridden defeasibility becomesrelevant when thereisa
(potential) conflict between two obligations, i.e. when there are two contradictory obligations.
For example, thereisaconflict between O (a1 |6;) and O(as|32) when a4 and o, are contradic-
tory, and 8; and 3, are factually true. In a defeasible deontic logic, such a conflict is resolved
when one of the obligations overrides the other one. In the language of dyadic deontic logic, the
overriding of O(a | 1) by O(az | 32) isformalized by the non-derivability of O(ay |31 A (2).
An unresolvable conflict is usualy caled a‘deontic dilemma,” in this case represented by the
formulaO(ay |51 A B2) A O(az| B A Bs).

In particular, we analyze violated obligations in a deontic logic that formalizes reasoning
about obligations which can be overridden by other obligations. In the language of dyadic de-
ontic logic, an obligation with a contradictory antecedent and consequent like O(—«| ) repre-
sents ‘if o isthe case, then it isaviolation of the obligation that ~« should be the case.’* This
representation of violationsis related to the more standard representation a A O—« as follows.
The standard representation of violations is a combination of monadic obligations and factual
detachment, see Section 2.5. With the inference pattern EFD discussed in the introduction we
can derive the obligation O—«a from A« and O(—« | ). Hence, O(—« | ) can be read as ‘if
only « isknown, then O—« can be derived’ and o A O—« represents aviolation. The contextual
obligationswe defined in Section 4.2.4 do not represent violated obligations, but in Section 4.3.4
we show how the definition of O“(«|3\y) can be adapted to O" («| 3\ y) to derive violated (i.e.
overshadowed) contextual obligations. To keep our analysis as general as possible, in this sec-
tion we only accept the inference pattern RSA . Because RSA isthe only inference pattern we

4Alternatively, such an obligation could represent the obligation to update the present state of affairs. For ex-
ample, the obligation ‘if you smokein a no-smoking car, then you should not smokein ano-smoking car’ [Han71]
can be read as the obligation to quit smoking, see Section 5.1.
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assume, we do not have to formalize contrary-to-duty reasoning and its related problems which
we discussed in the previous section. Thus, theanalysesin this section are independent from our
analysis and our solution of the Chisholm paradox.

4.3.1 TheFenceexample

Thefollowing so-called Fence examplewasintroduced in [PS96] to illustrate the distinction be-
tween contrary-to-duty reasoning and defeasi bl e reasoning (based on exceptional circumstances).
It isan extended version of the Forrester (or gentle murderer) paradox: you should not kill, but
if you kill, then you should do it gently [For84]. The following exampleis an a phabetic variant
of the original Fence example, see Example 1.3, because we replaced s, to be read as ‘the cot-
tageisby thesea,’ by d, to beread as‘thereisadog.” The distinction between ‘the cottageis by
the sea and ‘thereisadog’ isthat the latter proposition is controllable, whereas the former is
not. Thisimportant distinction between controllable and uncontrollable propositions has to be
formalized in adeontic (or action) logic, if only because for any uncontrollable o the obligation
O(a| T) does not make sense, see Section 5.2 and [Bou94b] for a discussion. For example, it
does not make sense to oblige someone to make the sun rise. In this chapter we abstract from
this problem and we assume that all propositions are controllable.

Example 4.9 (Fence) Assume a dyadic deontic logic that has at least substitution of logical
equivalents and the inference pattern RSA . Furthermore, assume the premise set of obligations

S={0f[T),0wA f|f),O(wA fld)}

where f can be read as ‘there is a fence around your house,” w A f as ‘there is a white fence
around your house’ and d as ‘you have adog.” Noticethat O(w A f | f) isaCTD obligation
of O(—f|T)and O(w A f]|d)isnot. If thereisafence and adog (A(f A d)), then the first
premise of S isintuitively overridden, and therefore it cannot be violated. Hence, the obligation
O(—f | f A d) should not be derivable. However, if there is a fence without a dog (A f), then
thefirst premiseisintuitively not overridden, and therefore it is violated. Hence, the obligation
O(—f|f) should be derivable. Moreover, thisis exactly the difference between cancellation and
overshadowing that we discussed in the introduction of this chapter. Overriding of O(—f | T)
by f Adand O(w A f|d) means that the obligation to have no fence is cancelled and has no
force anymore, hence O(—f| f A d) should not be derivable. Violation of O(—f|T) by f means
that the obligation to have no fence has still itsforce, it is only overshadowed and not cancelled,
hence O(—f| f) should be derivable. The possiblederivationsof O(—f|fAd) andO(—f|f) are
represented in Figure 4.7. In thefirst derivation, the counterintuitive obligation O(—f|f A d) is
not derived from O(—f|T) by RSA(, because the latter obligation is overridden by O(w A f|d)
for f A d. However, in the second derivation the intuitive obligation O(—f | f) is not derived
either from O(—f | T) by RSA(, because it is overridden by O(w A f | f) for f, according to
condition Cp. O

The problem in this exampleisthat both O(w A f|f) and O(w A f|d) are treated as more
specific obligationsthat override the obligation O(—f|T), i.e. both are treated as cases of over-
ridden defeasibility. However, thisis not correct for O(w A f | f). Thislast obligation should
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O(w A f|d) O(w A fIf)

Figure 4.7: Fence examplewith Cp

be treated asa CTD obligation, i.e. asacase of factual defeasibility. Thisinterference of speci-
ficity and CTD isrepresented in Figure 4.8. Thisfigure should beread asfollows. Each arrow is
acondition: atwo-headed arrow is a consistency check, and a single-headed arrow is alogical
implication. For example, the condition C, formalizesthat an obligation O («|3) isoverridden
by O(o/| ") if the conclusionsare contradictory (aconsistency check, the double-headed arrow)
and the condition of the overriding obligation is more specific (5’ logicaly implies 5). Case (a)
represents criteriafor overridden defeasibility, and case (b) represents criteriafor CTD. Case (c)
shows that the pair of obligations O(—f | T) and O(w A f | f) can be viewed as overridden
defeasibility aswell as CTD.

O(a|p) O(a|B) O(=fT)
inconsistent gqp(é::?ﬁ c inconsistent inconsistent gqp(é::?ﬁ c
O('[ ') O(c'|B) O(wA flf)

a. overriding (Cop) b. CTD c. interference

Figure 4.8: Specificity and CTD

What is most striking about the Fence example is the observation that when the premise
O(—f | T) isviolated by f, then the obligation for —f should be derivable, but not when the
premise O(—f | T) isoverridden by f A d. This means that the CTD or overriding interpreta-
tionsof O(—f | T) are quite different in the sense that they have different consequences. This
overriding can be viewed as atype of overridden defeasibility and the violationinthe CTD asa
type of factual defeasibility. Hence, aso the Fence example shows that factual and overridden
defeasibility lead to different conclusions. Thisis akind of factua defeasibility which differs
from its counterpart in default logic in the sense that it is overshadowing factual defeasibility
rather than cancelling factual defeasibility.

4.3.2 Overridden defeasibility

One obvious analysis of the problem mentioned in Example 4.9 isto observe that condition C
istoo strong. Consider thefollowing ad hoc solution of the problem by weakening the definition
of specificity in C to C with an additional condition which represents that a CTD obligation
cannot override its primary obligations. The specificity condition C, has three conditions: the
two conditions of C; and the additional condition that the overriding obligation O(«’|3") isnot
aCTD of O(a | B), i.e. ' A a must be consistent. Due to this extra condition the overriding
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interpretation in case (¢) in Figure 4.8 isno longer valid. The following example shows that the
definition of specificity C, givesthe intuitive conclusions and avoids the counterintuitive ones.

Example 4.10 (Fence, continued) Assumethat RSA, isreplaced by the following RSAY,.

.. O(a|p),Co
"SA0 Olal By A )

C}: thereisno premise O(o/|f') suchthat 8, A 3, logically implies 3, 5’ logically
implies #; and not vice versa, o and o' are contradictory and « A 3’ is consistent.

The derivations from S with RSAY, are represented in Figure 4.9. RSAY, does not derive the
counterintuitive O(—f | f A d), just like RSA, in Figure 4.7. However, RSA}, does derive the
intuitive O(—f | f) from O(—f| T), in contrast to RSAp. RSA}, solves the problem of Exam-
ple 4.9, because it does not derive the counterintuitive obligation, but it does derive the intuitive

obligation. O
O(w A f|d)
O(-fT) ( + | Ot )
——————— RSA[ B x
Oflfnd) o(-fIf) 30

Figure 4.9: Fence example with C7,

This solution of the Fence example is ad hoc, because there isno a priori reason to prefer
C§ and RsSAY, (the violability interpretation) to Cp and RSA (the overridden interpretation).
Informally, the reason to prefer the former inference pattern is that with RSA o, the obligation
O(—f|T) can never beviolated, which isahighly counterintuitive property of an obligation. In
the following subsection, we give aformal analysis of the Fence example, based on the essential
property of obligations that they can be violated.

4.3.3 Factual defeasibility

Instead of analyzing the problem of Example 4.9 by examining specificity condition C', (over-
ridden defeasibility), we can aso look at properties of violability (factual defeasibility). The
following inference patterns Contrary-to-Duty (CD) and According-to-Duty (AD) formalize the
intuitions that an obligation cannot be defeated by only violating or fulfilling it. The cD rule
models the intuition that after violation the obligation to do « is still in force (i.e. overshadow-
ing). Even if you drive too fast, you are still obliged to obey the speed limit.>

0(a]B)  0(alp)
P 0Wfr-a)  "PTO@BA)

5The inference patterns cb and AD should not be confused with the following inverses of cb and AD, which
seem to say that violations or fulfilled obligations do not come out of the blue.
O(alB A —a) ap-: 2@BAe)
O(alB) - O(alf)

CD :
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We reconsider the Fence example and we show that cD with RSA derives exactly the intu-
itive conclusions, just like RSAY,.

Example 4.11 (Fence, continued) Assume the inference patterns RSA, and cD. Figure 4.10
representsthe sametwo situationsas Figure4.7. First consider the situation when thereisafence
and adog (f A d). The counterintuitive O(—f| f A d) cannot be derived, because the derivation
viaO(—f|d) fromO(—f|T) isblocked by Cn. Now consider the situation when thereisafence
but not adog (f). Theintuitive obligation O(—f | f) can be derived from O(—f|T) by cp. O

O(w A f|d)
O(=f|T) +
——————— (RSA)
O(=f|d) O(=f]T)
O(~ffnd) <° o-f17) °

Figure 4.10: Fence example with cD

Example 4.10 and 4.11 illustrate that the problem of RSA, isthat it does not imply cb (be-
cause its specificity condition C is too strong). In other words, the problem of RSA is that
there can be obligations, like O(—f | T), that can never be violated. In Example 4.11, cp and
RSA( Yield exactly the same intuitive conclusions as RSAj, in Example 4.10. An advantage of
CD isthat theinference patternisvery intuitive and not an ad hoc like solution of the problem like
the adaptation of C'n. Moreover, AD also formalizes an intuitive notion of fulfilled obligations,
because it deals with fulfilled obligations in exactly the same way as cD with violated obliga-
tions. Weillustrate the applicability of our approach by the analysis of the following Reykjavic
Scenario, introduced by Belzer [Bel86].

Example 4.12 (Reykjavic Scenario) Consider the premise set of dyadic obligations
S ={0(=r|T),0(=g|T),0(r|g),0(g|r)}

wherer can beread as ' the agent tellsthe secret to Reagan’ and g as‘the agent tellsthe secret to
Gorbatgov.” Figure4.11illustratesthat the Reykjavic Scenario isamore complex instance of the
Fence example, illustrated in Figure 4.8. In the Fence example, O(w A f| f) can be interpreted
as a more specific overriding obligation, and it can be interpreted as a CTD obligation. In the
Reykjavic Scenario, thelatter two obligationsof S can be considered as more specific obligations
overriding the former two, and they can aso be considered as CTD obligations. O

Although these inference patterns seem intuitive at first sight, they are highly counterintuitive on further inspection.
Reconsider the Fence example. There should be awhite fence, if thereisafence O(w A f|f). Hence, by AD, there
ought to be awhite fence, if thereisawhitefence O(w A flw A f) (afulfilled obligation). However, this does not
mean that there is a unconditional obligation that there ought to beawhitefence O(w A f|T). Hence, theinference
pattern AD~ isnot valid. A similar argument can be givenfor cb—.
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O(=r[T) O(—g|T) O(=r|T) O(—g|T)
inc. I Tg]poe{??ﬁ c inc. I T g]poe{:?ﬁ c inc\ inc\’
O(rlg) O(g]r) O(g]r) O(rlg)
a. overriding (Cp) b. CTD

Figure 4.11: Specificity and CTD in the Reykjavic Scenario

The Reykjavic Scenario is a highly ambiguous paradox, as a result of the fact that the lat-
ter two obligations can be considered as overriding as well as CTD obligations. Consider the
following two interpretations of this paradox.

1. Overridden interpretation. Inthisinterpretation, the third sentence of S isan exception
to the first sentence, and the fourth sentence is an exception to the second sentence (see
Figure 4.11.8). The agent’s primary obligation is not to tell Reagan or Gorbatgov. When
he tells Reagan, he should not tell Reagan but he should tell Gorbatgov. It is a case of
overridden defeasibility, because O(—g|r) cannot be derived from O(—g¢g| T) dueto the
premise Og |r). When he tells both, he does not violate any obligations because » and ¢
are considered as exceptions.®

2. Violability interpretation. In this interpretation the two obligations O(—r|r A g) and
O(—g|r A g) areboth derivablefrom S. Hence, when the agent tells both, he should have
told neither of them, O(—r|r A g) and O(—g|r A g), acase of violability. The third sen-
tence of S isa CTD obligation of the second sentence and the fourth sentenceisa CTD
obligation of the first sentence (see Figure 4.11.b).

In our view the violability interpretation is to be preferred to the overridden interpretation,
The following example illustrates that the overridden interpretation conflicts with CD.

Example4.13 (Reykjavic Scenario, continued) Assumeadyadic deonticlogicthat hasat |east
substitution of logical equivalents and the inference patterns AND, RSA o, CD and the following

digunction rule OR.
OR: O(a1/8),0(a2|B)
"~ O(a1VaaB)

Moreover, assume the set of obligations S of Example 4.12. According to the defeasibility in-
terpretation, there is no violation when the agent tells both Reagan and Gorbatsjov. We cannot
use RSA( to derive aviolation for » A g from S, because the premises are overridden as repre-
sented in Figure 4.11.b. However, we can use CD to derive the violation O(—r V =g |r A g),
as represented in Figure 4.12. Hence, if we accept cD then we have to reject the defeasibility
interpretation. Since we gave a general motivation for cD that is independent from particular
examples, we reject the overridden interpretation. d

6According to the overridden interpretation, it might be argued that the paradox is not modeled correctly by the
set of obligations.S. When the last two conditional obligations should be interpreted as CTD obligations when the
agent tells both, the first two obligations should be represented by one conditional obligation O(—r A —g|T). In
that case, the last two sentences are interpreted as CTD obligationsby C.
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O(—r|T) O(~g|T) O(—r|T) O(~g|T)
O(rv—gT) X O(=r A —g|T) C;\ND
O(=r V ~glr A g) O(—r A—glrV g)

Figure 4.12: Reykjavic Scenario with cD

The examples show that the inference patterns cb and AD are adequate tools to analyze
conflicts between overridden and contrary-to-duty interpretations. However, they cannot dis-
criminate between the following two violability interpretations of the Reykjavic Scenario. Mc-
Carty [McC944] argues for thefirst violability interpretation.

1. Violability-1interpretation. When he tells only Reagan, then one could interpret this as
an overridden case, i.e. acase of defeasibility. O(—g||T) isin thisinterpretation overrid-
den by O(g|r) and the fact . Hence, in thisinterpretation O(—g/|r) is not derivable from
the premises. The remarkable thing about this interpretation isthat r A g istreated as a
violability case, whereas r in isolation is treated as an overridden case.

2. Violability-2 inter pretation. If we accept the reasonable principlethat if an obligationis
overridden for some situation, that it is then also overridden for a more specific situation,
then the obligation O(—g|T) cannot be overridden by r only, becauseit isin the violabil-
ity interpretation not overridden by the more specific situation » A g.” According to this
interpretation, when the agent tells only Reagan, then he still hasthe obligationto tell Gor-
batsov O(g|r), but aso he has the derivable obligation not to tell Gorbatsiov O(—g|r).
The remarkable thing about this interpretation is that if we accept a reasonable principle,
then the Reykjavic Scenario becomes a deontic dilemma.

Thisagainillustratesthefact that this scenario ishighly ambiguous, and additional principles
have to be accepted if we want to decide between these two interpretations.

4.3.4 Preferential semantics: ¢cb and AD

Before we can examine the conflicts between specificity and contrary-to-duty in the semantics,
there are two ways in which we have to adapt the definition of contextual obligations. First, in
this section we adapt the definition of O““(a| 5\ y) to O"(a| B\ 7). Thelogic of O" (| 3\ %)
represents fulfilled and violated obligations, because it has cD and AD. Second, we haveto in-
troduce a semantic notion to model specificity, which isdonein Section 4.3.5when weintroduce
obligations O"¢(« |5\ 7).

The contextual obligations O“(« | 3\ y) do not represent violated and fulfilled obligations,
because thefirst two conditions of Definition 4.7 say that O(« | 5\y) isfaseif either a A GA—y
or ~a A fisinconsistent. Obviously, we have to relax these two conditions. We allow the set
of worlds W and W of O"¢(« |5\ y) to be supersets of W, and W, from O“(a| 3\ ). If W
and W, of Definition 4.7 are nonempty, then the definition of O is equivalent to the definition

"This principle certainly holds for defeasible logics. For example, if the ‘birds fly’ default is overridden by
the more specific ‘ penguins do not fly default, then this latter default also holds for the subset super-penguins of
penguins, unlessit is explicitly stated that by default ‘ super-penguinsdo fly’.
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of O". However, if the set W, or W is empty, then we have M = O%(«a | 5\ 7), whereas
M | O (a]| p\y)if thereisany M = O“(«a | 5"\ ) where 3 logically implies ' (see
Proposition 4.15 and 4.17).

Definition 4.14 (Contextual obligation, with violations) Let M = (W, <, V) be a Kripke
model that consists of 1, a set of worlds, <, abinary reflexive and transitive relation on W,
and V, avauation of the propositionsin the worlds. The model M satisfies the obligation ‘o
should be the caseif 5 isthe case unlessy isthe case,” writtenas M = O™ («|5\ ), iff

1. thereisanonempty W; C W such that

e foral w e Wy, wehave M,w = a A -, and
e foral wsuchthat M, w E a A B A —y, wehavew € W7, and

2. thereisanonempty W, C W such that

e foral w € Wy, wehave M, w | —a, and
e foral wsuchthat M, w = —a A 3, wehavew € Wy, and

3. foral w; € W; andw, € Wy, we have wy £ wy. -

The distinction between contextual obligations O%(« | 3\ ) and O"(«| 5\ 7) isillustrated
by the following metaphor, based on an analogy with belief revision. Let the two sets of worlds
Wy ={w| MwEaANBA—}and Wy, ={w | M,w | -aA [} bethechoiceaternatives of
O(«|B\y). Definition 4.7 in Section 4.2.4 saysthat W, and W, are non-empty, and w, £ w, for
every w, € Wy andw, € Wy, Thus, weevaluated O (| 3) by achoice between aAf and —aA 3,
which can be considered asthe AGM expansions of 5 by « and —«.. Now, we evaluate O™ («| )
by a choice between the AGM-stylerevisions of 3 by « or —«, which explains our notation O
Condition (1) and (2) formalize that revision must be possible. Thefollowing proposition shows
that contextual obligations have strengthening of the antecedent. Hence, the logic also has cD
and AD, because cD and AD follow from sA.

Proposition 4.15 The logic has unrestricted strengthening of the antecedent.

A - O (a|Bi\7)
SO (af BL A B2\ )

Proof Assume M = O"(«| f1\ 7). There are W, and W, such that the conditions of Defini-
tion4.14 arefulfilled. The same W, and W, also fulfill the conditionsfor M = O (a| 1 A B2\Y).

The following exampl e illustrates the consequences of unrestricted strengthening of the an-
tecedent of contextual obligations.

Example 4.16 (Chisholm paradox, continued) We can derive O" (¢| —a\—a) from O (t|a\ L)
and O"(a | T\ L) in the Chisholm paradox (see Figure 4.5). There are two ways to view this
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derived obligation. Thefirst isto say it is meaningless, because the antecedent —a implies the
unless clause —a. The second way isto say that it is counterintuitive, because it looks like the
counterintuitive dyadic obligation O(t¢ | ~a). We can add a fourth condition to Definition 4.14
if we consider sA too strong, which states that there are 5 A —y worlds. In that case, thereisa
condition Cy on sA and O" (t|—a\ —a) is not derivable from the Chisholm paradox. O

The following proposition shows the relation between expansion-based contextual obliga-
tions O(« | 3\ 7y) (Definition 4.7) and the revision-based contextua obligations O (a| 5\ 7)
(Definition 4.14).

Proposition 4.17 The logic has the following inference pattern.

O*(a|B\7)
O (| B\7)

Proof Let M be a model suchthat M = O%“(«a| S\ ), and Wi and W, the two sets of worlds
suchthat Wy = {w | M,w EaABA-y}and Wy = {w | M, w = —a A 3} of Definition 4.7.
Then M = O™ («|B\ ), because W, and W, fulfill the conditions of Definition 4.14.

4.3.5 Multi preference semantics

In this section we adapt the definition of contextual obligationsto model specificity, i.e. over-
ridden defeasibility. Overridden defeasibility can be formalized by introducing a normality or-
dering in the semantics. Hence, the logic has amulti preference semantics: an ideality ordering
(<7) to model contrary-to-duty structures (factual defeasibility) and a normality ordering (< )
tomodel exceptional circumstances (overridden defeasibility). To facilitate the comparisonwith
the definitions of O(a| B\ ) and O"(« | 5\ 7v), we assume that the preferential orderings are
bounded.®

Definition 4.18 (Contextual obligation, with violationsand overriding) Letthemode M =
(W, <1, <n, V) beaKripke model that consists of W, aset of worlds, <; and <y, two binary
reflexiveand transitiverelationson W, and V', ava uation of the propositionsin theworlds, such
that there are no infinite descending chains. We write M, w =<, o when w isa <y-minimal
a world. Themodel M satisfies the obligation ‘ « should be the case if 5 isthe case unlessy is
the case,” writtenas M = O™ («| 3\ ), iff

1. thereisanonempty W; C W such that

e foral w e Wy, wehave M,w | a A -, and
e foral wsuchthat M, w =<, a A B A -y, wehavew € W;, and

2. thereisanonempty W, C W such that

8Thefact that < isbounded, ensuresthat the set of w such that w € Wy and M, w =<, a A B A —yiswell-
defined. The more general definition for unbounded orderingsis: for all w suchthat M, w = a A 8 A =, thereis
aworldw' <y w suchthat M,w' E a A B A —~yandforal w” suchthat M,w" =aABA—-yandw" <y ',
we havew' € Wj.
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e foral w € Wy, wehave M, w E —a, and
e forall wsuchthat M,w =<, —a A 3, wehavew € W,, and

3. fordl w; € Wy and wy € Wy, we have wy £ w;.

The following example illustrates the multi preference semantics of the Fence example.
Example 4.19 (Fence, continued) Consider the set of contextual obligations

S ={0"(fIT\L), 0" (w A fld\ 1)}

The typical® multi preference model of S is given in Figure 4.13 and can be read as follows.
The circles denote equivalence classes of worlds that satisfy the literals inside the circles and
the “horizontal’ arrows denote the deontic preference ordering. The boxes denote equivalence
classesin the normality ordering and the ‘vertical’ arrow the normality preference ordering. The
set S constructs two preference orderings on the worlds: one ordering for ideality (like before)
and one for normality. The idea of the preference ordering on normality is that the worlds with
exceptional circumstances (where you have a dog) are semantically separated from the normal
situation (where you do not have a dog). The upper box represents the ‘normal’ worlds, which
is determined by the fact that d isfalse, i.e. you do not have adog. Deontically, the —d worlds
are ordered according to the obligation that, usualy, there should be no fence. The lower box
contains the worlds where d is true and which are therefore exceptional. These worlds are de-
ontically ordered by the obligation that in this situation, there should be awhite fence. Because
of the exceptional circumstances, the worlds are not subject to the obligation that usualy, there
should not be afence. In theideality ordering, the norma —d A —f worlds and the exceptiona
dAw A f worldsare equivalent.

ided situations sub-ideal situations

3
exceptional @ -—

Figure 4.13: Multi-preference relation of the Fence example

For example, wehave M = O™ (—f|T\L), becausefor al w; €|-f A —d| (themost normal
—f worlds) and for al wy €| f A —d| (themost norma f worlds) we havew, £; w. Moreover,
wehave M = O™(w A f|d\ L), because we zoom in on the d worlds, and w A f A d worlds
are preferred over —(w A f) A d worlds. O

9Computing these typical modelsin general is difficult, see[TvdT95]. For example, it ssems more difficult than
defeasible reasoning schemesto complete asingle ordering like maximally connected or System Z, see Section 2.3.
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Notice that we first minimize in the normality ordering when we evaluate the obligation
Ome(=f | T\ L) in Example 4.19, because we first determine the sets W, =| -f A —=d | and
Wy =| f A —=d |, and subsequently we compare the sets 17, and W, in the ideality ordering.
We compare the best most normal worlds and we do not compare the most normal best sets
W] =|=f AN-d|and W3 =|w A f Ad|. Thisisbased on the heuristic rule that if an option
(like f) can be aviolation (like 173) or an exception (like W5), then it is assumed to be aviola-
tion. The motivation of thisruleisthat acriminal should have aslittle opportunities as possible
to excuse herself by claiming that her behavior was exceptional rather than criminal. If an agent
has afence, then it isassumed to be a violation and she cannot excuse herself by claiming that it
is an exceptional case (unless, of course, thereisadog). The following proposition shows that
the obligations have cD and AD.

Proposition 4.20 The logic of the obligations O™ does not have sA, but it has cD and AD.

Proof First, consider the invalidity of sa. The contextual obligation O™ («|3; A B2\ L) cannot
be derived from O"¢(« | 4; \ L), because the most normal worlds 8; A 3, can contain worlds
not among the most normal ; worlds. Thus the logic does not have sa. Secondly, consider
cD and AD. Assume M = O™(a | B\ ). Hence, there are sets W, and 1, such that the
conditions of Definition 4.18 are fulfilled. The same sets W, and W/, also satisfy the conditions
for M = O™ (a|f A —-a\y)and M = O™ (a|B A a\7y).

The following example illustrates the conflict between overridden and CTD.

Example 4.21 (Fence, continued) Consider the set of contextual obligations
S'={0"(=f[T\L), 0™(w A fld\L1),0™(w A fIf\L1)}

The typical multi preference model M’ of S’ isgiven in Figure 4.14. The normal worlds have
deontically been specified more precisely, compared to the model M in Figure 4.13 of the set of
obligations S in Example 4.19. We have M’ = O™(—f| T\ L), for similar reasons as given in
Example4.19 for M = O™(—f| T\ Ll). Wedsohave M’ = O™(—~f | f\ L), which can be
shown as follows. Semantically, the sets W, and W, must contain the most normal —f A f and
f A f worlds, respectively. Hence, 17/, can be any subset of |- f |, and W, isasubset of | f| that
containsat least | f A —d|. We can choose W; and W5, as |- f A —d| and | f A —d|, and we have
wy £ wy foral w; € Wy and wy € Wy. However, we do not have M’ |= O™ (—f | f A d\ L),
as can be verified as follows. The sets W, and W, must contain the most normal —=f A f A d
and f A f A d worlds, respectively. Hence, W; can be any subset of |- f |, and W5 is a subset of
| f| that contains at least | f A d|. Any world wy €|w A f A d| is deontically preferred, hence
there cannot be aworld w; € W; such that w, £ w1, thusthe first condition cannot be fulfilled.
Thisillustrates that the logic does not have sA, because it does not strengthen O™¢(—f | T\ 1)
to O™(—~f | f Ad\ L) (athough it does strengthen to O™(—f | f\ L)). These are precisely
the intuitive conclusions that one would draw from S’. If one only knows that there is a fence,
then one concludesthat thefirst obligation from S’ still holds, hence one derives O™ (= f | f\L).
However, if oneknowsthat thereisadog aswell asafence, thenthefirst obligationisoverridden
by the second one, and hence one does not derive O (—f| f A d\ L). O
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ideal situations ordered sub-ideal situations

normal ® -— —
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exceptional m
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Figure 4.14: Extended multi-preference relation of the Fence example

In this section, we focussed on the cancelling aspect of overridden defeasibility and the over-
shadowing aspect of factual defeasibility. We argued that the distinction should be reflected by
two distinct preference orderingsin the semantics. one normality ordering for the cancelling as-
pect of overridden defeasibility, and one ideality ordering for the overshadowing aspect of fac-
tual defeasibility. Thisis a magor distinction between defeasible deontic logics and logics of
defeasible reasoning, because in the latter both kinds of defeasibility are cancelling, and they
can be modeled by a single preference ordering (see e.g. [Mak93, GP92, Bou944]).

4.4 Strong versusweak overridden defeasibility

In this section we focus on the cancelling aspect and the overriding aspect of overridden defea
sibility by formalizing primafacie obligations. First, we show that the overridden defeasibility
related to multi preference semantics cannot be used for primafacie obligations. Secondly, we
introduce a new kind of preference semantics, based on priorities, to model prima facie obliga-
tions.

We call the overridden defeasibility related to multi-preference semantics strong overridden
defeasibility, and the overridden defeasibility based on priorities weak overridden defeasibility.
The distinction between the different types of overridden defeasibility is shown by three infer-
ence patterns which are not valid for the first type, but which are valid for the second type: for-
bidden conflict and two versions of reinstatement. One of the inferential differences between
weak and strong overridden defeasibility is the inference pattern

OCf1T),0wAf[d)
O(=d|T)

whichis not valid in strong overridden defeasibility, whereas

Ops (k| T),Opr(p Ak | d)
Opf(_‘d ‘ T)

isvalid in weak overridden defeasibility. This might look strange, because the premisesin both
inference schemes have the same syntactic form (obviously the substitution of =k for f does
not make any difference). However, it smply means that the O that represents obligations like
‘there should be no fence’ is different from the O, that represents primafacie obligations.
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4.4.1 Primafacie obligations

Ross [Ros30] introduced the notion of so-called prima facie obligations. In his own words: ‘I
suggest ‘prima facie duty’ or ‘conditional duty’ as a brief way of referring to the characteristic
(quite distinct from that of being a duty proper) which an act has, in virtue of being of acertain
kind (e.g. thekeeping of apromise), of being an act which would be aduty proper if it were not at
the sametime of another kind whichismorally significant’ [Ros30, p.19]. A primafacieduty isa
duty proper whenit isnot overridden by another primafacie duty. When aprimafacie obligation
isoverridden, it is not a proper duty but it is still in force: *When we think ourselves justified
in breaking, and indeed morally obliged to break, a promise| ... ] we do not for the moment
cease to recognize a prima facie duty to keep our promise’ [Ros30, p.28]. See [Mor96] for a
formalization of Ross' theory in a deontic logic. The following example describes the typical
kind of defeasibility involved in reasoning about primafacie obligations.

Example 4.22 (Promises) Assume the inference pattern RSA, and the set of premises
S = {0y (k| T), Oy (p A k) }

where k can beread as ‘keeping apromise,” p as‘preventing adisaster’ and d as ‘ a disaster will
occur if nothingisdoneto prevent it.” Thereisapotential conflict between the two obligations,
because when the facts imply d then thefirst obligation says that you should keep your promise
and the second one impliesthat you should not. Assuming that the second obligation is stronger
than the first one, thefirst obligation is overridden by the second one. Hence, the inference

Opt (k| T),0p(p Ak | d)
Opf(k | d)

isnot valid. Important here is that this priority does not depend on specificity. In this example
the priority iscompatiblewith specificity, but the converse priority could also have been chosen.
You do not have an absolute (alias proper) obligation to keep your promise, but you still have the
primafacie obligation. The situation is not ideal anymore. All situations where & isfalse, i.e.
where the primafacie obligation for & isviolated, are sub-ideal. Thiscan be verified asfollows.
Consider aperson having the obligation to keep a promise to show up at abirthday party, but she
does not want to. So, she does something which might result in a disaster later on (leaving the
coffee machine on, for instance) and at the moment of the party, she rushes home to turn off the
coffee machine. She has the actual obligation to go home and turn off the machine, but leaving
the machine on (on purpose) was a violation aready. Hence, the inference

Op (k| ), Opy(p A=k | d)
Opy(=d | T)

isvalid. It saysthat it isnot permitted to do something that might result in adisaster (remember
that al propositionsare assumed to be controllable). Finally, assumethat there may be adisaster
but you do not prevent it. Hence, the second obligation has been violated. In this situation, the
proper obligation isnot fulfilled, but we can still fulfill the primafacie obligation. Violating one
obligation is better than violating both. Hence, the inference

Oy (k| T),Opt(pA—k | d)
Opf(k | d A —|p)
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isvalid. O

Thefollowing inference patternis called Forbidden Conflict (FC). If the inference patternis
accepted, then it is not alowed to establish a conflict, because a conflict is sub-ideal, even when

it can be resolved.
O(a1]51), O(mau A az|B1 A Bo)
O(_‘ﬂ2|ﬂ1)

The situation considered in the following inference pattern Reinstatement (R1) iswhether an
obligation can be overridden by an overriding obligation that itself is factually defeated. The
obligation O (a4 | 31) isoverridden by O(—ay A aa| 81 A Bo) fOr 51 A B2, but isit also overridden
for 51 A By A —ap? If theinference pattern is accepted, then thefirst obligationisin force again.
Hence, the derivation of the obligation for «;; saysthat the original obligation is reinstated.

O(a1|B1), O(—a1 A az| B A Bs)
O(Oél ‘ﬁl A ﬂg A _|O£2)

Thefollowing inference pattern R10 isavariant of the previousinference pattern Ri, inwhich
the overriding obligation is not factually defeated but overridden. The obligation O(a | £1) is
overriddenby O(—ay Aay | 51 AB2) for 31 A B2, and thelatter isoverridden by O(—aq |51 A B2 ABs)
for 51 A B2 A B5. Theinference pattern RIO says that an obligation cannot be overridden by an
obligation that is itself overridden. Hence, an overridden obligation becomes reinstated when
itsoverriding obligation isitself overridden.

O(a1|B1), O(—a1 A az|Br A B2), O(—az| B1 A B2 A B3)
O(ay|BL A B2 A B3)

Example 4.22 illustrates that the kind of overridden defeasibility related to Ross' notion of
‘primafacie’ obligationshavetheinference patternsrc, RI and RIO. Inthenext section, we show
that the type of overridden defeasibility we used to model specificity in the Fence example does
not have the inference patterns. Hence, there are two different types of overridden defeasibility;
we call the kind related to prima facie obligations weak overridden defeasibility in contrast to
strong overridden defeasibility. In Section 4.4.3, we illustrate this new type of defeasibility by
a preference ordering with priorities, instead of the multi preference semantics of strong over-
ridden defeasibility in Section 4.3.5.

FC .

RI :

RIO :

4.4.2 Strongoverridden defeasibility

In the following example, we reconsider the Fence example and we illustrate that it should not
have the inference patterns FC, Rl and RIO.

Example 4.23 (Fence, continued) Reconsider the obligations O(—f | T) and O(w A f|d) of
Example 4.9. Thereisapotentia conflict between the two obligations. When the factsimply d,
then thereis a conflict, because thefirst obligation saysthat there should not be afence, and the
second obligation implies that there should be afence. However, thefirst obligation is overrid-
den by the second one, because the second one is more specific. Hence, the conflict is resolved
and there should be awhite fence. The inference
Of1T),0wAf]|d)
O(=f | d)
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isnot valid. Thefirst sentence can beread as. ‘usually, there should not be a fence around your
house.” Hence, in most situationsthere should not be afence, but in exceptional circumstancesa
fenceisalowed. Similarly, the second sentence can be read as ‘ usually there should be awhite
fence, when you haveadog.” Hence, the situation when you have adog is one of the exceptional
situationsin which thefirst obligationisnot inforce. The situationisnot sub-ideal yet, it isonly
exceptional. Hence, the inference

Of1T),0wAf[d)
O(~d|T)

is not valid. Finally, assume that there is a dog but there cannot be a white fence (e.g. there
might be a black fence or no fence at al). Hence, the second obligation has been violated. In
this situation, which is even more specific than the situation where thereis adog (d), nothingis
said whether no fence is preferred over a non-white fence. Hence, the inference

OCf1T),0wAf|d)
O(=f | dA-w)

isnot valid. O

Thefollowing exampleillustrates that the invalidity of the inference patterns Fc, Rl and RIO
can be explained by the multi preference semanticsin Section 4.3.5.

Example 4.24 (Fence, continued) Reconsider the multi preference model M in Figure 4.13 of
the defeasible obligations O™ (—f | T\ L) and O™ (w A f|d\ L) in Example 4.19. Figure 4.13
shows why the two inference patterns FC and RI are not valid. First of al, the obligation not to
establish aconflict isnot valid, we have M (= O™ (—d| T\ L), because the ~d worlds (the most
normal —d worlds) are no better than thed A w A f worlds (the optima most normal d worlds).
Secondly, reinstatement isnot valid, M (= O™ (—f|d A —w\ L), because al d A —w worlds are
equivalent. Hence, if we zoom in on these worlds, there is no preference for f or —f. O

The invalidity of the inference patterns FC, RI and RI0 shows that strong overridden defea-
sibility is not sufficient to model reasoning about prima facie obligations. In other words, the
obligationsthat model the Fence example are adifferent type of obligationsthan the obligations
that mode!l primafacie obligations. To emphasize this point, we write O, for primafacie obli-
gations.

4.4.3 Weak overridden defeasibility

The notion of weak overridden defeasibility can beformalized in aprioritized system. We do not
givetheformal definitions of a prioritized system, because they can be found in many paperson
defeasible reasoning (see e.g. [Bred4, GP92)]), but we illustrate the idea of a prioritized system
by our promises example.

Example4.25 (Promises, continued) Reconsider the obligationsin Example4.22. In apriori-
tized system, asingle preference ordering (an ideality ordering) is constructed for the two prima
facieobligations O, (k| T) and O, (p A —k|d). To construct the ordering, a naming mechanism
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isused, similar to the one in conditional entailment [GP92]. When the ordering is constructed,
the prioritization of (the violations of) the obligationsistaken into account. A typical prioritized
preference ordering of Example4.22isgivenin Figure4.15. Theimportant relationsin thispref-
erencemodel arew;, < ws foral w, €|—kApAd| U |-kA—d| andw, €|kA—pAd|, which state
that violating the second obligation is worse than violating the first obligation. Without the pri-
oritization, these worlds would be incomparable. Figure 4.15 shows why the inference patterns
FC and RI are valid. First of al, forbidden conflict FC isvalid, because M (= O, (—d| T\ L).
This follows from the fact that all d worlds are sub-ideal. Secondly, reinstatement is valid be-
cause M = Oys(k|d A—p\L). Thed A —p worlds are not equivaent. Hence, if we zoominon
these worlds, as represented by a dashed box, there is an obligation for &. O

ided situation ordered sub-ideal situations

FACTS = {-p /\Jd}
Figure 4.15: Prioritized preference relation

Weak overridden defeasibility isquite closeto overshadowing, but these notionsarenot iden-
tical. Thetypical case of overshadowing isthat an obligation O(p| T) isviolated by the fact —p.
We can introduce the notion of absolute obligation Op to express that, in spite of the factual
violation, the obligation was still in force. In the typical case of weak overridden defeasibil-
ity there are two conflicting obligations, say O,¢(p | T) and O, (—p | ¢) and the fact ¢, with a
priority ordering. To illustrate the difference with overshadowing, |et us assume that the second
obligation hasahigher priority than thefirst one. We could generalize the logic of absolute obli-
gations to take priority orderings into account, and then these two obligations would imply the
actual obligation O,—p, but not O,p. This obligation expresses the duty proper, the obligation
that should be acted upon. But these obligations would a so imply both primafacie obligations
Ops—p and Oprp, Which express that both obligations are still in force. These prima facie obli-
gations resembl e the absol ute obligations of overshadowing. Hence, overshadowing and weak
overridden defeasibility are equivalent from the point of view of ‘cue for action’: once an obli-
gation isviolated, it is still fully in force, but no longer a cue for action. Once an obligation is
weakly overridden, itisnolonger fully inforce, butitisstill inforce asaprimafacie obligation.

45 Related research

The different types of defeasibility have not been studied yet in deontic logic literature. In this
section we compare our analysis of the Chisholm paradox with other solutions, and we compare
the defeasible deontic logic with dyadic deontic logic and other defeasible deontic logics.
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4.5.1 Chisholm paradox

Our analysis of the Chisholm paradox is non-standard. Deontic detachment has traditionally
been analyzed as transitivity bDD. We split DD in two inferences: weak deontic detachment DD’
and weakening of the consequent wc. Thisisthe basis of our solution of the Chisholm para-
dox. Loewer and Belzer [LB83] argued in atemporal framework that deontic detachment should
sometimes hold and sometimes not. We argued that deontic detachment should sometimes hold
and sometimes not, depending on whether certain assumptions are not violated. Smith [Smi93]
also gives an analysis of deontic detachment in the Chisholm paradox in terms of assumptions,
and she also notices that in the logical form, such assumptions should not be left implicit. For
thisreason, sherejects deontic detachment in SbL. In CbL, these assumptionsare made explicit
and we can accept arestricted form of deontic detachment.

A popular solution of the Chisholm paradox isbased ontemporal distinctions, seee.g. [VES2,
Smi94], analogous to the temporal solution of the Forrester paradox discussed in Section 2.6.
This solution demands that the antecedent occurs before the consequent. In Example 4.1 the
proposition ¢ is interpreted as telling the neighbors that the man goes to the assistance, and a
as going to the assistance. Notice that ¢ occurs before a in the interpretation of the proposi-
tional atoms. Hence, the example cannot be represented in a temporal deontic logic that has
the antecedent-before-the-consequent assumption.

4.5.2 Deonticlogic

We compare our contextual deontic logic with dyadic deontic logics. First, Hansson-Lewismin-
imizing obligations [Han71, Lew74] have too much factual defeasibility, because they do not
have any strengthening of the antecedent. Thisis aresult of the fact that every obligation can
itself be derived by weakening of the consequent. It is never safe to apply strengthening of the
antecedent, because any strengthening can result in an exceptional context. Alchourrén [Alc93]
criticizes B. Hansson's logic [Han71] for being alogic of primafacie obligations instead of a
logic of CTD obligations. Hansson’slogic has FC when the antecedent is atautol ogy (establish-
ing aconflict is sub-ideal) but not RI (reinstatement). Second, dyadic obligations with a condi-
tional interpretation (like O(«|8) =4 B > O« [CheB80, Alc93]) have too little factual defeasi-
bility, because they have unrestricted strengthening of the antecedent (and factual detachment).
Thusthey cannot represent contrary-to-duty obligations, because they suffer from the paradoxes.

4.5.3 Defeasible deontic logic

Horty [Hor94, Hor93] introduced a deontic logic which is based on non-monotonic logic.'® In
his logic Oa and O—« are modeled in two different extensions. In Horty’s approach, deon-
tic rules can be viewed as (normal) default rules like %2, The default rules, together with a
set of facts, yield extensions. These extensions correspond roughly to equivalence classes of

OHorty formalizes ideas proposed by Van Fraassen [VF73] in Reiter’s default logic. The main difference be-
tween the logic of Horty and other deontic logics, isthat in Horty’s logic deontic dilemmas can be represented in a
consistent way. Horty observes that this requiresthat O(a A —a) is not derivable from Oa and O—« in hislogic,
see the discussion on consistent aggregation in Section 2.6.3.
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preferred models in 2DL and CbL. Horty gives a preferred models semantics which is simi-
lar to our semantics only for unconditional obligations. For conditional obligations, Horty de-
fines a notion of deontic consequence, written +- ¢, that derives dyadic obligations from a set
of dyadic obligations. Horty’s notion of deontic consequencet ¢ has some serious drawbacks,
see [vdT94, Pra96]. Horty also argues for transitivity (i.e. deontic detachment) as a defeasible
rule, but he does not implement it in hislogic. Finally, Horty extends hislogict-.; with anotion
of overridden that deals with specificity. It is aweak notion of overridden, because it is based
on conflict resolution comparable to priorities. Thus, Horty uses weak overridden defeasibility
to formalize specificity. It has reinstatement RI but not overridden reinstatement RO (although
Horty argues for the latter inference too). However, it does not have forbidden conflict Fc.

An idea similar to revision-based obligations can be found in a recent proposal of Tan and
Pear| [TP94], where a conditional desire D(l | n A —l) isinterpreted as D(I | n), representing
that ‘1 desirethelight to be oniif it is night and the light is off’ compares night-worldsin which
thelight is on with those in which the light is off. However, their formalization is problematic,
asis shown in [Bou94b]. Moreover, in our case it is violation detection and revision (it refers
to deontic alternativesin the past), in their case it is world improvement and update (it refers to
alternativesin the future). For afurther discussion, see Section 5.1.

Revision can be considered as acombination of retraction and expansion, known asthe L evi
identity. In[vdTT95a], we interpreted the essential mechanism to represent violationsin terms
of a so-called retraction test, see also Section 2.5. Boutilier and Becher [BB95] use a similar
kind of retraction to model predictive explanations: ‘In order to evaluate the predictive force of
factual explanations, we require that the agent (hypothetically) give up its belief in 8 and then
find some « that would (in this new belief state) restore 3. In other words, we contract K by
8 and evaluate the conditional o = 3 with respect to this contracted belief state: 3 € (Kj);,.
Thus, when we hypothetically suspend belief in g, if « is sufficient to restore this belief then o
countsas avalid explanation. The contracted belief set K ;- might fruitfully be thought of asthe
belief set held by the agent before it came to accept the observation 3.’

4.6 Conclusions

In this chapter we studied the rel ation between obligationsand defeasibility. We analyzed differ-
ent types of defeasibility in defeasible deontic logics. We discriminated between two concepts,
i.e. overshadowing and cancelling, and three types of defeasibility, i.e. factual defeasibility,
strong overridden defeasibility and weak overridden defeasibility. The results we established
in this chapter are summarized by Table 4.2.

| | Overshadowing | Cancelling |

Factual defeasibility X
Strong overridden defeasibility X
Wesak overridden defeasibility X X

Table 4.2;: Matrix
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1. We observe the distinction between factual and overridden defeasibility in defeasible log-
ics, and we argue that the first should be used to model overshadowing of an obligation by
aviolating fact, and the second to model cancelling by another obligation.

2. We observe the distinction between weak and strong overridden defeasibility in defeasible
logics, and we argue that thefirst should be used to model overshadowing of aprimafacie
obligation by astronger obligation, and the second to model cancelling by amore specific
obligation.

There is one relation between obligations and defeasi bility which has not been discussed in
this chapter. The formalization of the no-dilemma assumption introduces defeasibility, because
in Chapter 2 we used non-monotonicity (preferential entailment) to formalize the no-dilemma
assumptionin 2DL. For example, we can derive Op(ay | —(aq A o)) from Op(ay | T), but not
from the two obligations O p (a1 | T) and Op(a2| T). Moreover, we can derive Op(a |51 A (2))
from Op(a | B1), but not from the two obligations Op(« | £1) and Op(—a | B2). This seems
like a kind of overridden defeasibility of the overshadowing type, because it is caused by the
introduction of an obligation (thusit is overridden defeasibility) and there is no reason why the
obligation should no longer be in force (thus it is not cancelling). However, the intuitions on
these two examples seem to be less clear than the examples we discussed in this chapter. We
therefore did not include this relation between obligations and defeasibility in Table 4.2.

Moreover, in this chapter we further studied the relation between obligations and prefer-
ences. Thelogic O™ with its multi preference semantics illustrates that our bipolar concept of
deontic choice is fundamentally different from the classical monopolar interpretation. Thisdis-
tinctionisnot visiblein asingle preference ordering. For example, consider the Hansson-Lewis
semantics. In the monopolar reading, an obligation Ov(«/|f) istrueiff « istruein al preferred
B worlds. In the bipolar reading, an obligation Oy («| 8) istrueiff the preferred oo A 8 worlds
are preferred to the preferred —a. A 3 worlds. These two readings are equivalent when we do not
consider infinite descending chains. Now consider the multi preference logics. The monopo-
lar reading of a conditional obligation isbased on lexicographic minimizing (minimizefirst <y
and then <;) likein [Mak93]. In the bipolar reading, an obligation Oy(«|3) istrueiff the < -
preferred oA 3 worldsare < ;-preferred to the < y-preferred —~a A 3 worlds.** Thedistinction can
beillustrated by the model in Figure 4.13. For minimizing, the best most normal worlds and the
most normal best worldsare both—~dA—f. Thus, inthe monopolar reading the model satisfiesthe
highly counterintuitive obligation O(—d|T).'? Inthe bipolar reading, we have M % O(—d|T),
because the —d A —f worlds are not <;-preferred tothed A w A f worlds.

20ur approach to multi preferencein Definition 4.18 is different, because our second step is not minimizing.
2In fact, under certain assumptionslexicographic minimizing is equivalent to minimizing in asingle preference
ordering (the lexicographic ordering of <y and <j).



Chapter 5

Applications

In this chapter we consider topics for further research. We discuss two applications that can
use deontic logic: qualitative decision theory and atheory of diagnosis. These applications are
extensions of deontic logic, because deontic logic only tells us which obligations follow from
aset of obligations, but it does not tell us how obligations affect behavior. Qualitative decision
theory uses preference-based deontic |ogic to formalize reasoning about context-sensitive goal s.
A theory of diagnosis uses deontic logic to represent system rules and violations of these system
rules. We discuss reasoning with obligations, but we leave the detailed study of this subject for
further research.

The diagnostic framework for deontic reasoning wasfirst presented in [ TvdT94c, TvdT944].
This chapter isamodified and extended version of [VdTRFT97].

5.1 Reasoningwith obligations

In this chapter we argue that normative reasoning is more than deontic logic. Deontic logic tells
uswhich obligations can be derived from a set of other obligations. In particular, it characterizes
the logical relations between obligations. For example, in most logics the conjunctionp A ¢ is
obliged, if both p and ¢ are obliged. However, it does not explain how obligations affect the
behavior of rational agents. From Op you cannot infer whether somebody will actually perform
p. Thisisno critique on deonticlogic, it isjust an observation. Deontic logic was never intended
to explain thiseffect of obligations on behavior. However, if wewant to explain all the different
aspects of normative reasoning, then we need more formalisms than just deontic logic. In this
chapter we discuss two formalisms that can be used to analyze two different types of aspects of
how obligations effect behavior, namely the theory of diagnosis and qualitative decision theory.

Two theories that are able to formalize reasoning with obligations are represented in Fig-
ure 5.1. A theory of diagnosis reasons about violations. In particular, it reasons about the past
with incomplete knowledge (if everything is known than adiagnosisis completely known). Di-
agnostic theories have amodest purpose, because they do not support the decision-making pro-
cess of the user. They do not derive decisions, they only check systems against given principles.
A more expressive framework is qualitative decision theory, that describes how obligationsin-
fluence behavior. It is based on the concept of agent rationality. For example, in a normative
system usually sanctions and rewards correspond with obligations, and arational agent triesto
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evade penalties and achieve rewards. In contrast to diagnostic theories, a (qualitative) decision
theory reasons about the future. The main characteristic of qualitative decisiontheory isthat itis
goal oriented reasoning, usualy for planning problems. Moreover, it combines reasoning about
goals with uncertainty. This reasoning is based on the application of strategies, which can be
considered as qualitative versions of the ‘maximum utility’ criterion.

(qualitative)

decision theory theory of diagnosis
g %
rational agent judge
—_—

time

Figure 5.1: Reasoning with obligations

Moreover, scenario analysis uses deontic logic to represent the deontic status of agents. Sce-
nario analysis performs simulations of (for example normative) systems, and does not seem to
be confined to only the past or the future. Scenario analysis can be based on so-called dead-line
obligations. Consider the obligation ‘if the obligation to deliver the goods is violated, then a
penalty hasto be paid.” In Figure 5.2.a, adead-line obligation can be considered to be a combi-
nation of diagnosis (violation of the obligation to deliver the goods —d A Od), and decision theory
(the deontic cue to pay the penalty Op). However, not all contrary-to-duty obligationscan bein-
terpreted as dead-line obligations. Consider the obligation ‘if the man violates the obligation to
go to his neighbors assistance, then the neighbors should not be told that he will come' of the
Chisholm paradox, see Example 1.16. The diagnosis (violation of the obligation to go to the as-
sistance) islater than the decision moment (telling or not telling), as represented in Figure 5.2.b.
Hence, there is no dead-line, and thus no dead-line interpretation of the sentence (it leadsto the
‘split personality’). Thediagnosticand decision-theoretic perspectivescan givean interpretation
to the sentence. For exampl e, the decision-theoretic perspective make a plan, which containsthe
intention to goto the assistance. From thisplan the obligationisderived totell the neighborsthat
he will come.

<— (o o) — o —_— - o
goods pay tell gotothe
delivered 4 % penalty % assistanceé
] ] ]
[ . > [ ‘I =
deadline time time
a if the goods are delivered too late, b. if the man does not go to the assistance,

then apenalty hasto be paid then he should not tell his neighbors

Figure 5.2: Deadline obligations

Logical relations between obligations are an essential component of any formalism that ex-
plains the effect of obligations on behavior. Hence, in this chapter we also argue that deontic



5.1. REASONING WITH OBLIGATIONS 147

logic can be used as a component in the theory of diagnosis as well as qualitative decision the-
ory. Actually, we even argue for the stronger claim that the theory of diagnosisaswell as quali-
tative decision theory can be viewed as extensions of deontic logic. In both cases the formalism
contains extra principles that are added to a deontic logic basis. For example, in the case of the
theory of diagnosis one of the principles that can be added to deontic logic is the parsimony
principle, i.e. the assumption that as few as possible obligations are violated. There is nothing
contradictory inthe claim that on the one hand these formalisms explain aspects of normative be-
havior that deontic logic does not, whereas deontic logic is still an essential component of these
theories. In the same sense physics can explain phenomena that mathematics cannot, whereas
mathematicsis still an essential component of physics. There are severa structural similarities
between preference-based deontic logic and the logics developed for diagnosis and qualitative
decision theory, see e.g. [Bou94b, Lan96]. The distinction between the different perspectives
and deontic logic raises several important questions.

1. Obligationsand dedicated theories. The diagnosis of a normative system can use afor-
malism to represent obligations and additional assumptions or principles to do the diag-
nosis. For example, Reiter’s diagnosis is basically a minimization principle (called the
principle of parsimony). Similarly, qualitative decision theory has a formalism for rep-
resenting obligations (or goals) and additional assumptions or principles to reason with
them. Is such a specia purpose formalism a deontic logic? How do they stand the test
against the Chisholm paradox, the paradox of the gentle murderer, the problem of how
to represent permissions, the problem of conflicting obligations? What are the structural
similarities and distinctions between the different formalisms?

2. Obligationsand preferences[Lan96]. Qualitative decisiontheory isbased upon the con-
cept of preference. This preferenceisakind of desire, i.e. it is an endogenously motivat-
ing mechanism (coming from the agent itself). Therefore, it isnot anatural candidate for
dealing with normative decision-making, since a norm is by definition exogenous, in the
sense that it is something the agent would not spontaneously want. How do agents work
out normsin terms of gains and losses? What are the gains of observing norms? How do
they learn the effects of norms and how do they reason about these effects? Which rules
areimplied, which ingredients enabl e agents to make normative decisions? In which way
does a normative decider differ from an ordinary decider, if any?

3. Obligationsand norms. A deonticlogicdoesnot deriveactual but ideal behaviors. Should
we distinguish the obligations derivable from a set of norms and a set of facts, from the
normsitself? What isthe role of so-called factua detachment in deontic logic?

The distinction between the perspective of arational agent (qualitative decision theory) and
ajudge (theory of diagnosis) correspondsto Thomason's distinction between the context of de-
liberation and the context of justification [Tho81], see Section 1.3.4. Thomason distinguishes
between two waysin which the truth values of deontic sentences are time-dependent. First, these
values are time-dependent in the same, familiar way that the truth values of all tensed sentences
aretime-dependent. Second, their truth values are dependent of a set of choices or future options
that varies as a function of time. If you think of deontic operators as analogous to quantifiers
ranging over options, this dependency on context is afamiliar phenomenon. Thus, the context
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of deliberation isthe set of choiceswhen you are looking for practical advice, whereas the con-
text of justification isthe set of choicesfor someonewho isjudging you. Thefollowing example
illustratesthat it isimportant to discriminate between these two contexts, because a sentence can
sometimesbeinterpreted differently in each of them. Theoriginal examplediscussedin[Han71]
concerns the obligation ‘you should not smoke, if you smoke.’

Example 5.1 Consider the sentence ‘you should not smoke and you smoke.” In the context of
justification the obligation isinterpreted as the identification of the fact that you are violating a
rule, whereas in the context of deliberation, it is interpreted as the obligation to stop smoking.
When the context is not known, it is also not known which of these two interpretations (or prob-
ably both) is meant. The two perspectives are represented in Figure 5.3. At the present moment
intime, s istrue. The context of justification considers the moment before the truth value of
s was settled, and considers whether at that moment in the past, —s was preferred over s. The
context of deliberation considers the moment the truth value of s can be changed, and considers
whether at that moment in the future, —s will be preferred over s. d

— Context
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deliberation

Stop smoking!

Context -
of
justification
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Smoking isaviolation. /
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Figure 5.3: Contexts of decl)ﬁic logic
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The distinction between the two interpretations of the obligation is as important as the dis-
tinction between Alchourrén-Gardenfors-Makinson belief revision (or theory revision) [AGM85]
and Katsuno-Mendel zon belief update [KM92] in the area of logics of belief. Thereisastrong
analogy, because belief revision is reasoning about a non-changing world and update is reason-
ing about achanging world. It followsdirectly from Figure 5.3 that asimilar distinctionis made
between respectively the context of justification and the context of deliberation, because the past
isfixed, whereas the future is wide open.

In this chapter, we discusstwo applications of (preference-based) deontic logic. Thefirst ap-
plication of deonticlogicis(robot) planning with qualitative decisiontheory. Boutilier [Bou94b]
observes that ‘in the usua approaches to planning in Al, a planning agent is provided with a
description of some state of affairs, a goal state, and charged with the task of discovering (or
performing) some sequence of actions to achieve that goal. This notion of goal can be found
in the earlier work on planning and persists in more recent work on intention and commitment
[CL90]. In most realistic settings, however, an agent will frequently encounter goalsthat it can-
not achieve. As pointed out by Doyle and Wellman [DW91b] an agent possessing only simple
goal descriptions has no guidance for choosing an aternative goal state toward which it should
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strive. [ ... ] A recent trend in planning has been the incorporation of decision-theoretic meth-
odsfor constructing optimal plans[DW91a]. Decision theory providesfor most of the basic con-
cepts we need for rational decision making, in particular, the ability to specify arbitrary prefer-
encesover circumstancesor goal's (and hence appropriate behaviors) to vary with context.” Such
context-sensitive goals can be represented by dyadic obligations O(« | 5), toberead as‘« isa
god if 5.

The second application of deontic logic we discuss in this chapter is Ramos and Fiadeiro's
Deontic framework for Diagnosis of (organizational) process Design DDD. Reiter formalized
in [Rei87] the model based reasoning approach to diagnosis. In Reiter’s theory of diagnosis, a
violation is represented by a predicate expression Ab(c), where c is acomponent of a system to
be diagnosed and Ab an abnormality predicate. For example, this violation can be derived from
the system description that p isthe correct behavior of acomponent —Ab(c) — p and the obser-
vation —p. In amodal deontic logic, aviolation can be represented by the sentence —p A Op. In
Section 5.3, we discuss a theory of diagnosis based on deontic logic. An important advantage
of the modal deontic language is that the concept of obligation is an intuitive and natural way
to represent the kind of principles that arises in process design. The typical diagnostic reason-
ing with normative systems is performed by a judge, who has to determine whether a suspect
Is guilty or not. Diagnostic reasoning has to deal with incomplete knowledge, not formalized
in adeontic logic. For example, a popular additional assumption of theories of diagnosisisthe
so-called principle of parsimony: ‘you are innocent until proven guilty.” Such a principle about
incompl ete knowledge is not made in deontic logic; it is an extra-logical assumption about the
legal domain.

5.2 Qualitative decision theory

A qualitative decision theory formalizes reasoning about goals and can be used for planning
problems. It combines reasoning about goals with reasoning about uncertainty. In this section,
we discusstwo different perspectives on the rel ation between qualitative decision theory and de-
onticlogic. First wediscuss Pearl’slogic of pragmatic obligation, that arises out of acriticism of
standard deontic logics (like the logics developed in thisthesis). Second, we discuss Boutilier’s
logic of qualitative decision theory, that incorporates a deontic logic.

5.2.1 Pearl’slogic of pragmatic obligation

Pear| [Pea93] observes that ‘ obligation statements, also called deontic statements, comein two
varieties. obligationsto act in accordance with peers’ expectations or commitments to oneself,
and obligationsto act in theinterest of one’ssurvival, namely, to avoid danger and persue safety.’
Moreover, Pearl [Pead93] develops alogic of pragmatic obligation, a decision-theoretic account
of obligation statements of the second variety, using qualitative abstractions of probabilitiesand
utilities. ‘Theideaissimple. A conditional obligation sentence of the form “You ought to do «
if 3" isinterpreted as shorthand for amore el aborate sentence: “If you observe, believe, or know
3, then the expected utility resulting from doing « is much higher than that resulting from not
doing o..” Pearl observesthat ‘ this decision-theoretic agenda, although conceptually straightfor-
ward, encounters some subtle difficulties in practice.
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1. First, when we deal with actions and consequences, we must resort to causal knowledge
of the domain and we must decide how such knowledge isto be encoded, organized, and
utilized.

2. Second, whiletheories of action are normally formulated as theories of temporal changes
[Sho88, DK 89], deontic statementsinvariably suppressexplicit referencestotime, strongly
suggesting that temporal information is redundant, namely, it can be reconstructed if re-
quired, but glossed over otherwise.

3. Third, decision theoretic methods treat actions as distinct, predefined objects, while de-
ontic statements of the type “You ought to do «” are presumed applicable to any proposi-
tion ot

4. Finally, decision theoretic methods, especially those based on static influence diagrams,
treat both the informational relationships between observations and actions and conse-
guences as instantaneous [Sha86, Pea38]. In redlity, the effect of our next action might
be to invalidate currently observed properties, hence any non-temporal criterion for obli-
gation must carefully distinguish properties that are influenced by the action from those
that will persist despite the action.’

Instead of discussing the details of the logic, we discuss two examples from Pearl [Pea93].
The first example considers the assertability of “If it is cloudy you ought to take an umbrella.”
A k vaue represents the degree of normality and a i value represents a degree of preference.

Example5.2 (Umbrella) [Pea93] We assumethree atomic propositions, c- “Cloudy”, r- “Rain”,
and u - “Having an umbrella’, which form eight worlds, each corresponding to ¢, » and u. To
express our belief that the rain does not normally occur in aclear day, we assign a x value of 1
(indicating one unit of surprise) to any world satisfying » A —¢ and a x vaue of 0 to all other
worlds (indicating a serious possibility that any such world may be realized). To express the
fear of finding ourselves in the rain without an umbrella, we assign a i value of -1 to worlds
satisfying r A —u and a p value of 0 to all other worlds. Thus, W = false, W° = —(r A —u),
andW  =rA-u. O

The following example is al'so from Pearl [Pea93]. It demonstrates the interplay between
action and observations.

Example 5.3 (Switch) We will test the assertability of the following dialogue:

Robot 1: It istoo dark here.

Robot 2: Then you ought to push the switch up.
Robot 1: The switch is aready up.

Robot 2: Then you ought to push the switch down.

The challenge would be to explain the reversal of the “ought” statement in response to the
new observation “The switch isaready up.” The inferences involved in this example revolve

1This has been an overriding assumption in both the deontic logic and the preference logic literatures.
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around identifying the type of switch Robot 1 isfacing, that iswhether it isnormal (n) or abnor-
mal (—n) (anormal switch isone that should be pushed up (u) to turn the light on (7)). O

Tan and Pearl [TP94] observe that the treatment in [Pea93] assumes that a compl ete spec-
ification of a utility ranking is available and that the scale of the abstraction of preferencesis
the same as the scale of the abstraction of belief. They propose a specification language which
accepts conditional preferences of the form “if § then « is preferred to —a”, a > —a | 3. A
conditional preference of thisform will be referred to as a conditional desire, written D(«| ),
which representsthe sentence“if 3 then o isdesirable.” The output isthe evaluation of aprefer-
ence query of theform (¢, v, > 1) where ¢ isany general formulawhile; and 1), may either
be formulas or action sequences. The intended meaning of such query is“is ), preferred over
19 given ¢"? Each conditional desire is given ceteris paribus (CP) semantics; “« is preferred
to -« other things being equal in any 3 world.”” The following example of [TP94] shows that
Tan and Pearl formalize the Switch example with the obligation D(/|n A —=1). Thisformulais
interpreted as an update of the situation (context of deliberation) instead of the identification of
aviolation (context of justification), see the discussion in Section 5.1.

Example 5.4 (Switch, continued) Consider the sentence, “I desirethelight to beonif itisnight
and the light is off,” D(l | n A —l). Clearly such a sentence compares night-worlds in which
the light is on to those in which the light is off. The former worlds do not satisfy the condition
B = —l. Tan and Pearl argue that ‘ such a reasonable sentence would be deemed meaningless
inarestricted interpretation such as[DSW91]" (and Hansson-Lewis minimizing logics). 5 does
not act as afilter for selecting worlds to which the desired constraints apply, instead it identifies
worlds in which the desires are satisfied. d

Pear| [Pea93] further remarks when he compares his notion of pragmatic obligation with de-
ontic logicsthat ‘ exploratory reading of theliterature revealsthat philosophers hoped to devel op
deontic logic as abranch of conditional logic, not as a synthetic amalgam of logic of belief, ac-
tion, and causation.? In other words, they have attempted to capture the meaning of “ought”
using asingle modal operator O(«|f3), instead of exploring the couplings between “ought” and
other modalities, such as belief, action, causation, and desire.” Pearl argues that ‘such an isola
tionistic strategy has little chance of succeeding. Whereas one can perhaps get by without ex-
plicit reference to desire, it is absolutely necessary to have both probabilistic knowledge about
the effect of observations on the likelihood of events and causal knowledge about actions and
their consequences.’

Pearl finally concludes that ‘the decision-theoretic account can be used to generate coun-
terexamples to most of the principles suggested in the literature, simply by selecting acombina-
tion of x (normality), u (preferences) and I' (causal network) that defies the proposed principle.
Since any such principle must be valid in all epistemic states and since we have enormous free-
dom in choosing these three components, it is not surprising that only weak principles such as

2The reluctance to connect obligations to causation can perhaps be attributed to a general disappointment with
attemptsto devel op satisfactory accountsfor actionsand causation. For exampl e, the Stalnaker-L ewislogic of coun-
terfactual s, which promised to capture some aspects of causation (causal relationshipsinvariably invite counterfac-
tuations), ended up as a faint version of the logic of indicative conditionals [Gib80], hiding rather than revealing
therich structure of causation.
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O(a|B) = —O(—«a| B), survive the test. Among the few that survive, we find the sure-thing
principle: O(«|3) A O(a|=8) — O(«|T), read as‘if you ought to do « given /3 and you ought
todo a given -3, then you ought to do o without examining 3. But one beginsto wonder about
the value of assembling alogic from a sparse collection of such impoverished survivors when,
in practice, afull specification of «, 1 and I would be required.’

5.2.2 Boutilier’slogic of qualitative decision theory

Boutilier [Bou94b] develops alogic of qualitative decision theory in which the basic concept of
interest is the notion of conditional preference. Boutilier writes I(« | 3), read “idealy « given
B, toindicatethat thetruth of « is preferred, given 5. This holds exactly when « istrue a each
of the most preferred of those worlds satisfying 5. Boutilier remarks that from a practical point
of view, I(«| ) meansthat if the agent (only) knows «, and the truth of 3 isfixed (beyond his
contral), then the agent ought to ensure «e. Otherwise, should =« come to pass, the agent will
end up in aless than desirable 5-world. Boutilier mentions that the statement can be roughly
interpreted as”if 3, do«.” Moreover, Boutilier observesthat the conditional logic of preferences
he proposed is similar to the (purely semantic) proposa put forth by B.Hansson [Han71]. He
concludesthat ‘one may simply think of I(«/| /) as expressing a conditional obligation to seeto
it that o holdsif § does.” Thomason and Horty [TH96] a so observe the link with deontic logic
when they develop the foundations for qualitative decision theory. They consider the problem
how to extend the point utilities to utilities on sets, assuming that the utilities of histories are
known. They observethat classical decision theory provides away to do this, but they follow a
radically qualitative approach, which assumesthat only alinear preference ordering on histories
Is given, which must be extended to a partial ordering over sets of histories. They observe that
this‘utilitieslifting’ problem is discussed or alluded to, for instance, in the literature on deontic
logic [VF72, Jen74, Jen85, Wel 88, Hor96].’

Boutilier [Bou94b] introduces asimplemodel of action and ability. The atomic propositions
are partitioned into controllable propositions, atoms over which the agent has direct influence,
and uncontrollable propositions. He ignores the complexities required to deal with effects, pre-
conditions and such, in order to focus attention on the structure and interaction of ability and
goal determination. The consequence of this lack of an action model is that ‘we should think
of arule asan evidential rule rather than a causal rule’ Moreover, Boutilier observes that ‘the
implicit temporal aspect here; propositions should be thought of as fluents. We can avoid an
explicit temporal representation by assuming that preference is solely a function of the truth
values of fluents.” Lang [Lan96] calls controllable and uncontrollable propositions respectively
decision variables and parameters. Moreover, he argues that it is necessary to distinguish not
only between desires (goals) and knowledge as in [Bou94b] but also between background fac-
tual knowledge (which tellswhich worlds are physically impossible) and contingent knowledge
(which tellswhich of the physically possible worlds can be the actual states of affairs).

The simplest definition of goalsisin accord with the general maxim *do the best thing possi-
ble consistent with your knowledge.” Boutilier [Bou94b] dubbed such goals CK goals because
they seem correct when an agent has Compl ete Knowledge of theworld (or at least of uncontrol -
lable atoms). But Boutilier also shows that CK-goals do not always determine the best course
of action if an agent’s knowledge isincomplete.

Example 5.5 (Umbreélla, continued)[Bou94b] Consider preferences in the umbrella example,
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where ‘no umbrellaand no rain’ —u A —r isthe most ideal, and ‘no umbrellaand rain’ —u A r
Is the worst situation (because the agent gets wet). Moreover, assume that all the agent knows
it could rain or not (it has no indication either way). Using CK-goals, the agent ought to do —u,
for the best situation is —r A —u. Leaving its umbrellais the best choice should it turn out not
to rain; but should it rain, the agent has ensured the wor st possible outcome. It is not clear that
—u should beagoal. Indeed, one might expect « to be agoal, for no matter how « turns out, the
agent has avoided the worst outcome. O

The pessimistic perspective of Example 5.5 coincides with Wald's criterion of decision the-
ory, see aso [DP95, Lan96].

5.2.3 Discussion

Neither Pearl nor Boutilier emphasize the fundamental distinction between deontic logic and
decision theory, that decision theory in contrast to deontic logic describes how norms affect be-
havior. The distinction is observed by McCarty [McC94b], who introduces an assumption to
establish the link between deontic logic and planning. In particular, he observes that ‘for pur-
poses of planning, it is often useful to assume that actors do obey the law.” He calls this the
causal assumption, sinceit enables us to ‘ predict the actions that will occur by reasoning about
the actions that ought to occur.” McCarty concludes that ‘if we adopt the causal assumption,
we can use the machinery of deontic logic to reason about the physical world.” Lang [Lan96]
uses many examplesfrom the deontic logic literature to illustrate his qualitative decision theory.
He comments on the distinction between deontic logic and decision theory, and he observes that
the two are complementary. The main purpose of a deontic logic is deriving new obligations
(and permissions) from an initial specification, while QDT focuses on the search for optimal
acts and decisions. Lang concludes that ‘ deontic logics may be viewed as ‘upstream’ and QDT
‘downstream’, since the former provides representations of ideal states, or of a whole prefer-
ence relation between states, and the latter uses this preference relation (‘goalness') to find the
best possibleactions.” Finally, Lang [Lan96] observesthat his methodol ogy containstwo phases
(generate the preference relation from a set of desires, and then find the optimal feasible worlds,
and thusthe optimal decision) which, asLang observes, isin accordance with our argumentation
about the two-phase treatment of violated obligationsin 2pL .2

To consider Pearl’s criticism of deontic logics, first observe that hislogic of pragmatic obli-
gation alows for exceptions, because it refers to expected utilities. Thus, the concept that Pearl
intended to reconstruct is completely different from the one which deontic logicians were inter-
ested in. In Carnap’sterminology, Pearl has different explicata, because he has set out to clarify
different explicanda.* For example, we can compare Pearl’slogic with our logic O™ devel oped
in Chapter 4. First, we observe that in our logic O™ only weak principles survive (like cb and
AD). Thus, Pearl’s criticismis nothing but an unsurprising property of defeasible deontic logics.

3Moreover, Lang uses our digtinction between background knowledge and factual contingent knowl-
edge [vdT94], which we introduced to represent specificity.

4Alchourron [Alc93] criticized B.Hansson [Han71] for thisreason. Thus, accordingto Alchourron, Pearl’slogic
of pragmatic obligation can be compared to Hansson's deontic logic. However, from the semantics follows that
B.Hansson does not consider defeasible deontic logics, because this semantics does not have a normality ordering.
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Second, his logic has the sure-thing principle. This principle is not valid in our logics, and its
invalidity can be used to analyze dominance arguments, see Example 2.9.

Thelogics of Boutilier [Bou94b] and Tan and Pearl [TP94] we discussed in this section suf-
fer from CTD paradoxes, as we showed in Section 2.6.4 with the speed limits example. The
logic of Lang [Lan96] does not suffer from it. Thelogic is comparableto apreference logic ex-
tended with priorities. Asdiscussed in Section 4.4, such preferences are useful to model prima
facie obligations, but it is less obvious that they model an intuitive notion of specificity. Tan
and Pearl’s logic makes the cigarettes example inconsistent, which they find counterintuitive.
They therefore add priorities to their logic in [TP95] in a system analogous to Lang's system
(and many other logics, for example the logic of Geffner and Pearl [GP92)).

5.3 Diagnosisof organizational process designs

In this section, we discuss Ramos and Fiadeiro’s beontic framework for biagnosis of process
Design DDD [RF96b]. Thisframework isan extension of our DIagnostic framework for DEontic
reasoning DIODE. Moreover, we discuss Ramos and Fiadeiro’s diagnosis[RF96a] based on de-
ontic logic and comparetheir deontic logic L DD with the preference-based deontic logics devel -
oped in thisthesis.

5.3.1 Organizational processdesign

Thework of Ramos and Fiadeiro should be understood as a contribution to the more general pur-
pose to build aformal framework to support organizational process design diagnosis according
to predefined process design principles. By principles they mean general rules that character-
ize the ideal behavior of an organization. They are interested in forms of diagnoses that report
violationsof such principles. Thearchitecture of their intended framework isrepresented in Fig-
ure 5.4 (taken from [RF96b]).
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Figure 5.4: Architecture of Ramos and Fiadeiro’s framework

The user in Figure 5.4 represents both the designer and the person responsible for defining
general principles. As represented in Figure 5.4, the user (supported by a diagrammatic lan-
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guage) can describe the structure of the organization and design the process (process descrip-
tion). Thediagnosisprocedure usesthat information, together with general organizational knowl-
edge, to detect violations of the principlesindicated by the organization (user). The translation
from a diagrammatic language to a declarative formal language is necessary, because Ramos
and Fiadeiro want to use logical deduction in the diagnosis procedure. The components of the
process model are the following ones:

1. Organizational structure. The set of structural concepts that characterize an organiza
tion, e.g. agents, tasks, hierarchies. These concepts are independent of the processes.
They describe the fixed components over which the processes should ‘flow’. The struc-
tural concepts represent what is fixed in the organization in the sense that it cannot be
changed as a consequence of a process (re)design.

2. Processdescription. The description of the process design, made with typical primitives
used in organizational process like assign, output-to-task etc. Variable concepts are con-
cepts that can be manipulated by the person that designs the process. They can be under-
stood as ‘design actions'.

3. General organizational knowledge. Definitions(e.g. available, informed) and rulescom-
mon to all organizations (e.g. if a task is assigned to a collective agent, all the members
of the collective agent are assigned to that task).

The following example of [RFO6D] illustrates the design of an order delivering process, and
Is adapted from [CL92]. In Chen and Lee's framework for the evaluation of internal account-
ing control procedures, theidea of having general principles guiding organizational diagnosisis
already present. However, Ramos and Fiadeiro [RF96b] observe that thisframework is not sup-
ported by atheory of diagnosis. For instance, it does not deal with either alternative or minimal
diagnoses.

Example5.6 (Delivering order) To avoid fraudsin organi zational accounting procedures, some
control rules are often used. In Figure 5.5, the process is designed in order to (partialy) fulfill
those rules (principles). The processisasfollows. The stock manager receives an order (from a
salesman, for example), fills up an interna delivery order (IDO) and sendsthe IDO to agent 1,
assigned to the task of verifying the IDO. After receiving the same order the accounting depart-
ment fills up the invoice and also sends it to agent 1. Agent 1 checks if the values of the IDO
and the invoice are the same, stores the invoice in the invoice file and sends the IDO to agent 2,
assigned to the task of filling up the outgoing delivery order (ODO). After filling up the ODO
agent 2 sends it to the client together with the goods.

Agent 1isinvolvedin the processin order to avoid apotential fraud between the stock man-
ager and the client, because agent 1 checks if the goods in the IDO matches the values in the
invoice. In the process design in Figure 5.5 one general rule, to ensure that the document is not
mani pulated by other agentsisfulfilled: ‘all documents must go straight to the control agent af-
ter they arecreated.” Two other rulesthat apply to the processare *an agent should not control a
superior in the hierarchy' and ‘ socially-close agents should not control each other.” For exam-
ple, the stock manager should not be asuperior of agent 1 and agent 2 should not be socially-close
to the stock manager.
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Figure 5.5: Idea order delivering process

We give a simple formalization of this example in a propositiona language, which suffices
for our purposes of illustrating DDD. Instead of formalizing the three generic rules asfirst-order
obligations, we formalize several consequences (instances) of these generic rules as proposi-
tional obligations. Let us assume the following organization structure: John, Ann and Phil are
agents of the organization, Phil is socially-close to John and that the stock manager is hierar-
chical superior than John. The obligations are (a) the output of the task fill-up-invoice must go
to the task verify-1DO. (b) the output of the task verify-IDO must go to the task fill-up-ODO,
(c) we must not assign Phil to the task fill-up-ODO, because socially close agents should not be
involved in this process, and (d) we must not assign John to the task verify-1DO, because one
agent should not control a superior in the hierarchy. We represent the four obligations by Oa,
Ob, Oc and Od, respectively. An instance of the general organizational knowledgeisthat if the
output of task verify-IDO goesto fill-up-ODO and Phil is not assigned to fill-up-ODO, then Phil
doesnot receivethe ODO, whichisrepresented by bA ¢ — e. Finally, facts(design) arethat Ann
iIsagent 1, Phil isagent 2, John is not assigned to the task verify-IDO and that Phil receives the
ODQO, i.e, dA—e. Noticethat one of thefirst or second obligationisviolated, thethird obligation
isfulfilled, and nothing is know about the fourth obligation. d

In the following section we show how this delivering order exampleisrepresented in the di-
agnostic framework for deontic reasoning DI1ODE, based on Reiter’stheory of diagnosis. Ramos
and Fiadeiro [RF96a] show that contrary-to-duty scenarios occur in process design. This hints
at apossible use of deontic logic, see the discussionin Section 1.2.1.

Example5.7 Consider thefollowing rule: ‘1t should not be the case that the agent that performs
an operational task isa direct superior of the agent that controlsthe operational task’ O(—s| T)
and ‘if that isneverthel essthe case, then instead of storing the control report in the control report
file, then the control report should be send to an agent higher (in the hierarchy) than the agent
that performs the operational task’ O(h | s). The latter is a contrary-to-duty obligation of the
former, because the antecedent of O(h|s) is contradictory with the consequent of O(—s|T). O
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5.3.2 Diagnostic framework for deontic reasoning

The model -based reasoning approach has been studied for several years (for asurvey of thetopic
see [DW88]). Numerous applications have been built, most of al for diagnosis of physical de-
vices. The basic paradigm is the interaction of prediction and observation. Predictions are ex-
pected outputs given the assumption that all the componentsare working properly (i.e. arework-
ing according to themodel of the structure and behavior of the system). If adiscrepancy between
the output of the system (given aparticular input) and the prediction is found, then the diagnosis
procedure will search for defects in the components of the system.

Reiter’stheory of diagnosisfrom first principles

The contribution of Reiter to the theory of diagnosisiswidely accepted. His consistency based
approach [Rei87] isthefirst oneto model the model-based reasoning approach to diagnosis. The
main goal isto eliminate system inconsistency, identifying the minimal set of abnormal compo-
nentsthat isresponsiblefor theinconsistency. That is, reasoning about diagnosisis based on the
following assumption.

Principle of parsimony Diagnostic reasoning is based on the conjecturethat the set
of faulty componentsis minimal (with respect to set inclusion).

Related to adiagnosisis a set of measurements. Finally, a conflict set isaminimal set of com-
ponents of which at least oneis broken (such sets are used in efficient diagnostic algorithms). In
the following definition of diagnosis, a broken component is represented by Ab(c), wherecisa
component and Ab is short for Abnormal.

Definition 5.8 (Diagnosis) A systemisapair (COMP, SD) where COMP, the system components,
isafiniteset of constants denoting the components of the system, and sD, the systemdescription,
isaset of first-order sentences. An observation of asystemisafinite set of first-order sentences.
A system to be diagnosed, written as (COMP, SD, OBS), isa system (COMP, SD) with observa-
tion oBsS. A diagnosisfor (ComP, SD, 0BS) isaminimal (with respect to set inclusion) set of
components A C COMP such that

CONTEXTA = SD U OBSU{Ab(c) | c € A} U {=Ab(c) | c € comP — A}
isconsistent. A diagnosis A for (COMP, SD, 0BS) predicts a measurement IT iff
CONTEXTA 1T

A conflict set for (compP, SD, OBS) isaminimal (with respect to set inclusion) set A C compP
such that CONTEXT A iSinconsistent. O

Reiter givesthefollowing example of an electronic circuit, whichillustrates the diagnosis of
afull-adder. In particular, it illustrates that diagnoses are not necessarily unique and that mini-
mality is only with respect to set inclusion.

Example5.9 (Full-adder) Consider theelectronic circuit represented in Figure 5.6. The system
consists of a set of components comp = {A;, As, X1, X5, 01} and the system description sD
with the following rules:
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ANDG (z) N = Ab(z) — out(z) = and(inl(z),in2(x))
XORG(z) N —~Ab(z) — out(x) = zor(inl(zx),in2(x))
ORG (z) A —Ab(z) — out(z) = or(inl(x), in2(z );

ANDG(A:), ANDG(A3), XORG(X1), XORG(X2), ORG(O)
out(X1) = in2(Ag), out(X;) = inl(Xy)

out(As) = inl(0,),inl(Az) = in2(X;)

inl(Xy) = inl(4;),in2(X;) = in2(A4,)

out(A;) = in2(0y)

together with axioms specifying that the circuit inputs and outputs are binary valued (like for
exampleinl(z) = 0V inl(z) = 1) and axiomsfor a Boolean algebraover {0,1}:

and(inl(z),in2(z)) =1 iff inl(z) =in2(z) =1
zor(inl(z),in2(x)) = 1 iff inl(z) # in2(x)
or(inl(x ,m2( ) = iff inl(z) =1orin2(z)=1

Suppose the circuit in Figure 5.6 is given the inputs (1, 0, 1) and yields the output (1,0) in
response. This observation can be represented by the following set of first-order sentences.

inl(X7) =1,in2(X;) = 0,inl(A2) = 1, 0ut(Xs) = 1, 0ut(0O1) =0

Notice that this observation indicates that the physical circuit is faulty. Both circuit outputs are
wrong for thegiveninputs. For theelectronic circuit, therearethreediagnoses: { X}, { X»2, 01},
{ Xy, A>2}. Minimality is only with respect to set inclusion, because { X», O, } isadiagnosis al-
though the diagnosis { X; } hasless elements. For the electronic circuit, the diagnosis { X ; } pre-
dicts the measurement out(A4,) = 0. O

inl(X7) . \ .
222§X13 o X1 ;E—» out(X2)
nl(A

(A2) M4,

Figure 5.6: Electronic circuit of afull-adder

For the purpose of process design diagnosis, it is not sufficient to capture cases of unfulfilled
obligations. This particularity of process design leads Ramos and Fiadeiro in [RF96b] to pro-
pose amore general diagnosis, one that distinguishes between potential, benevolent and exigent
diagnosis. In order to deal with diagnoses that are not minimal, they extend the representation
of obligations by assuming that norms are completely described. With this new approach, more
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useful information can be obtained for process design, keeping at the sametime all the result of
model based reasoning. Thefollowing example of [RF96D] criticizes the principle of parsimony
for organizational process design.

Example5.10 (Delivering order, continued) Reconsider thefirst obligation: ‘the invoice must
go straight from the task fill-up-invoice to the task verify-IDO.’ If it isimportant that the invoice
goes straight to the task verify-IDO, then a design that does not commit itself with the output of
the invoice must be avoided. If the principleis not enforced, then it is possible that the invoice
goes straight to the invoice file during the implementation of the process in the organization.
To avoid this undesired situation, the diagnosis should alert the ‘incompleteness’ of the design.
Whenitisimportant to ensurethat all obligationsarefulfilled, and not only to detect viol ations of
obligations, the principle of parsimony is much too benevolent, becauseit islike the assumption
of the fulfillment of obligations in the absence of information. In that case an approach based
only on minimal diagnosisis not adequate and an exigent diagnosis is more suitable, where un-
fulfilled obligations are detected. O

To summarize, when Ramos and Fiadeiro interpret the system as a system of normsin DDD,
there are two main problems with Reiter’s theory of diagnosis.

1. Focus on the minimal sets of violations. The underlying assumption of ‘innocent until
proven guilty’ isnot awaystheright one; sometimes’ guilty until proven innocent’ ispre-
ferred.

2. Lack of fault knowledge. So-called fault knowledge (see e.g. [dKMR90]) describes the
conseguences of broken components, ingeneral 5A Ab(c) — «. Hence, with fault knowl-
edge from the abnormality of a component new information can be derived. If the rules
from the system description SD are represented by A —Ab(c) — «, likein Example 5.9,
then there is no fault knowledge. In that case, the maximal diagnosisis simply the set of
all components. Obviously, for any reasonable definition of a maximal diagnosis, fault
knowledge has to be added.®

The definitions of diagnosis can easily be adapted such that these two problems are solved,
as we show in the next section.

The diagnostic framework for deontic reasoning DIODE

In this section we discuss the D1agnostic framework for DEontic reasoning bDIODE in which de-
ontic reasoning isformalized as akind of diagnostic reasoning. The framework treats norms as
componentsof asystem to be diagnosed; hence the system description becomes anorms descrip-
tion. When a set of normsistransated to DIODE, the following two assumptions (see [RF96h])
are made to incorporate fault knowledge.

e Assumption 1 Asarule, each (conditional) obligation of a premise set corresponds to a
separate norm. Thus, a set of obligationsis translated to a set of norms.

5As remarked in [dK MR90], with the representation of fault knowledgeit is no longer possible to compute all
consistent sets of normal and abnormal components based on minimal diagnosis, because not all supersets of min-
imal sets are consistent. In Reiter’s minimal diagnosisthat property holds.
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e Assumption 2 Every norm description completely describes an obligation. Thus, a con-
ditional obligation ‘« should be the case if 3 isthe case’ is represented in DIODE by the
norm description =V (n;) <> (6 — «). The conditional obligation can beread in DIODE
as 'if the norm n; is not violated, then and only then if (3 is the case then « is the case.’
The sentenceislogicaly equivalent with V' (n;) < (8 A =), which explainswhy we call
V' (n;) aviolation constant (although, strictly spesking, it is not a constant).

We discriminate between minimal and maximal violated-norm sets. The definition of mini-
mal violated-norm set isana ogousto the definition of diagnosis. Just aswe can have multipledi-
agnoseswith respect to the same (Sb, COMP, OBS), we can have multipleminimal violated-norm
sets A with respect to (NORMS, ND, FACTS). The fact that we can have more than one minimal
violation state reflects that we can have different situationsthat are optimal, i.e. asideal as pos-
sible. A contextual obligation of aminimal violated-norm set corresponds to a measurement of
adiagnosis and the implicit violated-norm set corresponds to Reiter’s conflict set, see [RF96b].

Definition 5.11 (DIODE) Let £y be the base logic of DIODE and the fragment of £ without
violation constants £. We write = for entailment in £y,. A normative systemis atuple NS =
(NORMS, ND) with:

1. NORMS, afinite set of constants denoting norms {n., ... ,ng},

2. ND, the norms description, a set of first-order £y sentences denoting conditional obliga-
tions—=V(n;) < (8 — «).
A normative systemto be diagnosed isatuple NSD = (NORMS, ND, FACTS) with:

1. NS=(NORMS, ND), a normative system, and

2. FACTS, aset of first-order £ sentences that describe the facts.

Let NSD = (NORMS, ND, FACTS) be anormative system to be diagnosed. A potential diagnosis
A of NSD isasubset of NORMS such that

CONTEXTa = NDUFACTSU {V(n;) | n; € A} U{=V(n;) | n; € NORMS — A}

Is consistent. A benevolent (exigent) diagnosis A isaminimal (maximal) subset (with respect
to set inclusion) of NORMS such that CONTEXT A isconsistent. The set of contextual obligations
of abenevolent diagnosis A of NSD is

coap ={a | a € L,CONTEXTA = a}

The implicit violated-norm set A of NSD isaminimal subset (with respect to set inclusion) of
NORMS such that CONTEXT A ISinconsistent. [l

The set of potential diagnoses can be ordered by set inclusion, of which the benevolent and
exigent diagnosis are respectively the lower and upper bounds. Diagnostic reasoning is not re-
stricted to the minimal elements of the graph, but to all elements. Moreover, for the benevolent
diagnosis we have the additional information supplied by the implicit violated-norm sets and
the contextual obligations. Thisisillustrated by the example of the delivering order in DIODE,
see [RF96Db] for afull discussion of this examplein DIODE.

Example 5.12 (Delivering order, continued) Consider the following normative system:
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1. NORMS = {nq,ns, n3, n4}, and
2. ND ={=V(n1) <> a,7V(ng) <> b,V (n3) > ¢,V (n4) < d},

The potential diagnoses of FACTS={b A ¢ — e,—e} and FACTS = {b A ¢ — e,d A —e} are
represented in Figure 5.7. We have FACTS = —b V —c and FACTS U ND = V(n2) V V(n3).
Moreover, we have FACTS' U ND = =V (ny). Inthelatter case, thereis one exigent diagnosis,
{V(n1),V(n2),V(ns)}, and two benevolent diagnosis, {V'(n2)} and {V'(n3)}. Theimplicit vi-
olation set is {V (n3), V(n3) }, which means that either the second or the third norm has to be

violated. O
{(V1V2V3Vv4)
{vivavs} {vavava {V1y2va) (VLV3V4) VLV2V3}
g {vz‘,—v:;) (V2y3) (vava (vV1V3) (V1VZ  (v2v3  (V1V3)
|
\L\/\/ \/\/ |mpI|C|t violation set
vz} v3} vz} va} {v2Vv3}

Figure 5.7: Consistent sets of violations

Thefollowing exampleof [RF964] illustratesthat thelack of conditional obligationisaprob-
lem of DIODE.

Example 5.13 Consider that a designer has to follow the rule: ‘if an order formis send to a
supplier, then a copy of the order form must be send to the department store’ O(c|o). If neither
o and ¢ nor their negations can be derived, then an exigent diagnosis contains the violation of
the conditional obligation O(c|o). Ramos and Fiadeiro argue that it is not an useful diagnosis,
becauseitisnot very intuitiveto say that a conditional obligation isviolated when the condition
is not achieved. O

The diagnosisin Example 5.13 can be avoided if we only consider violations of actual obli-
gationsin adiagnosis. If *an order form is send to asupplier’ cannot be derived, then the viola-
tion will not appear in adiagnosis. In DIODE, there is no distinction between fulfilling adyadic
obligation, and inapplicability of a dyadic obligation. For example, for an obligation O(« | §)
we have =V (n) «+ (8 = «),i.e. =V (n) + (=6 V (8 A —a)). Thus, fulfilling an obligation
O(«a|B) by B A« and inapplicability -5 are both represented by -V (n). We can add applicabil -
ity information for an obligation O(«| ) with =V (n) <> (8 — a) A A(n) + (. The additional
information can be used to determine the applicable obligations by minimizing the A(n). For
applicable obligations we can have minimal or maximal violated-norm sets, as before.

Definition 5.14 (D1ODEwWiIth applicable norms) A normative systemisatuple NS = (NORMS,
ND) with:

1. NORMS, afinite set of constants denoting norms {n., ... ,ng},
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2. ND, the norms description, a set of first-order £, sentences denoting conditional obliga-
tions—V (n;) < (8 — a) A A(n;) + .

Let NSD = (NORMS, ND, FACTS) be anormative system to be diagnosed. The activenorms A,
of NSD isaminimal subset of NORMS such that

CONTEXT, = NDUFACTSU {A(n;) | n; € A} U{=A(n;) | n; € NORMS — A, }
Isconsistent. A potential diagnosis A of NSD isasubset of some A, of NSD such that
CONTEXTA = CONTEXT, U{V(n;) | n; € A} U{=V(n;) | n; € A, — A}
IS consistent. O

The following example illustrates the adaptation of DIODE.
Example5.15 Consider the normative system of the obligation O(c¢|o) of Example 5.13.

1. NORMS = {n4},
2. ND={(=V(n1) > (0 = ¢)) A (A(n1) <> 0)}.

The set of active norms A, is empty for FACTS = {3, thus there is no potential diagnosis which
containsthe norm n;. In particular, the only exigent diagnosisisthe empty set. Moreover, con-
sider the following normative system of the two obligations O(p: |¢) and O(p2|—q).

1. NORMS = {nq,ns},
2. ND={(=V (1) <> (¢ = p1))A(A(n1) ¢ @), (2V(n2) <> (g = p2))A(A(n2) > —g)}.

Given the tautology ¢ V —¢, we have for FACTS = () two minimal active sets A, = {n;} and
A, = {ny}. Findly, consider the following normative system of the two obligations O(p | ¢)
and O(q|T).

1. NORMS = {nq,ns},
2. ND={(=V(n1) < (¢ = p)) A (A(n1) + q), (=V(n2) < q) A (A(ne) < T)}.

Theminimal active set for FACTS = {—p} isA, = {ny}. O

The following definition shows a different solution to formalize conditional norms based
on the concept of fulfilled obligations. A theory of diagnosis like DIODE is based on the dis-
tinction between violated and non-violated, and a (qualitative) decision theory is based on the
distinction between fulfilled and unfulfilled goals. DIO(DE)? is the piagnostic and DECision-
theoretic framework for DEontic reasoning. It combines reasoning about violated and fulfilled
norms. Hence, it combines reasoning about the past (violated versus non-violated) with reason-
ing about the future (fulfilled versus not yet fulfilled). Asillustrated in Figure 5.1, DIO(DE)?
combines reasoning of a judge with reasoning of arational agent. It isthe extension of DIODE
with the elements we discussed in Section 5.2: goal oriented reasoning, the distinction between
parameters and decision variables, and uncertainty and strategies. Here we restrict ourselves
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to thefirst extension. Goal-oriented reasoning isintroduced by fulfilled-norm constants. For an
obligation O («|5) wehave—=V (n) < (8 — o) AF(n) < (BAa). Weminimizethe applicable
norms by minimizing therelation (A, A,) < (A}, A).

Definition 5.16 (DIO(DE)?) A normative systemisatuple NS = (NORMS, ND) with:
1. NORMS, afinite set of constants denoting norms {n, ... ,ng},

2. ND, the norms description, a set of first-order £y sentences denoting conditional obliga-
tions—V (n;) <> (f — a) A F(n) < (B A a).

Let NSD = (NORMS, ND, FACTS) be a normative system to be diagnosed. A fulfilled-violated
set (Ay, A,) of NsD isapair of subsets of norms such that

CONTEXTa = NDUFACTS U{V(n;) | ni € A, } U{=V(n;) | n; € NORMS — A, }
U{F(n;) | ni € A} U{=F(n;) | n; € NORMS — Ay}

isconsistent. Consider the ordering onfulfilled-violated sets (A s, A,) < (A%, AY) iff Ay C A
and A, C Al. A potential diagnosis (As, A,) of NSD is a pair of subsets of NORMS that is
minimal in the ordering. g

The following example illustrates the adaptation of DIO(DE)? and comparesit with bIODE
with applicable norms,

Example 5.17 Consider the following normative system of the obligation O(c¢ | 0) of Exam-
ple5.13.

1. NORMS = {n },
2. ND={(=V(n1) & (0 = ¢)) A (F(n1) & (cAo))}

The unique potential diagnosisfor FACTS =0 is(Ay, A,) = (0,0). In DIODE, the set of active
norms A, isempty for FACTS = (). Hence, thetwo systemsbehave similarly. Moreover, consider
the following normative system of the two obligations O(p1 |¢) and O(p2|—q).

1. NORMS = {nq,ns},

(=V(m) < (g = p1)) A (F(n1) < (p1 A g)),

2 NO = (G (ng) 5 (g = pa)) A (F(na) < (p2 A=)}

Thepotential diagnoses (A, A,) for FacTs =0 are({n1},0), ({na}, 0), (0, {n1}) and (0, {n2}).
In DIODE, we have for FACTS = () two minimal activesets A, = {n;} and A, = {n,}. Hence,
thetwo systems behave again similarly. Finaly, consider the following normative system of the
two obligations O(p|q) and O(q|T).

1. NORMS = {nq,ns},

2. ND ={(=V(n1) & (¢ = p)) A (F(m) < (PAQ), (=V(n2) < ¢) A (F(n2) < =g)}.
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Thepotential diagnosesfor FACTS={-p}are(A¢, A,) = (0, {n2})and (A, A,) = ({n2}, {m1}).
In DIODE, theminimal active set for FACTS = —pisA, = {ny}. Thetwo systemsdo not behave
similarly, because in bIO(DE)? it is possible that the first obligation is violated. O

There is an interesting connection between the latter set of obligations of Example 5.17 and
deontic detachment. With deontic detachment we can derive the obligation O(p | T) from the
two premises O(p | ¢) and O(q | T). Thus, if deontic detachment is valid, then the fact —p is
aviolation. In DIODE, there is only one active set, that contains the second obligation. It is
possiblethat this obligation isfulfilled, and there are therefore no violations. On the other hand,
in DIO(DE)? every potential diagnosis contains violations.

5.3.3 Deonticlogic asthe basis of diagnosis

In [RF96a] Ramos and Fiadeiro show how deontic logic can be used in atheory of diagnosis.
Before we discuss their logic, we mention a well-known relation between DIODE and deontic
logic. Anderson [And58] showed that Standard Deontic Logic (SDL), see Definition 1.6, can
be expressed in aethic modal logic by Oa =4 O(=V — «), inwhich V' isthe so-called viola-
tion constant (not apropositiona variable!), together with theaxiom D: =V (asusual, Qo =4
—[-¢). In SDL, a conditional obligation can be represented by 5 — O« or by O(8 — «).
The latter is according to the Anderson schema O (5 — «a) =4 O(-V — (8 — «)). The
similarity of Anderson’s reduction with Reiter’s theory of diagnosis is obvious, but there are
also two important distinctions. First, in Anderson’s reduction every deontic formulais pre-
ceded by a box . Semantically, in the theory of diagnosis distinct models represent distinct
situations, whereas in a modal system distinct worlds within a model represent distinct situa-
tions. Second, in Anderson’s reduction there is only one violation constant. This means that
conflicting obligations are inconsistent with axiom ¢—V'. For example, Op A O—p isequivalent
tod(-V — p) AO(=V — —p), from which OV can be derived. However, in design there
often are conflicting principles. Ramos and Fiadeiro [RF964] criticize normal modal logicslike
SpL and Anderson’s reduction of SpL with the following example.

Example 5.18 Consider axiom K: O(8 — a) — (08 — O«). Assume the two following
rules: (i) ‘thetask prepare-budget must be assigned to Annor to John,” and (ii) ‘ thetask prepare-
budget must not be assigned to Ann.” Moreover, assumethat the designer assignsthetask to Ann
(and not to John). A diagnosis should only report the violation of the obligation (ii). However,
due to axiom K the violation of the obligation ‘ assign the task to John’ will beinferred.® O

Ramos and Fiadeiro follow Chellas [Che74, Che80] to weaken the modal logic O to non-
normal models. In normal Kripke models, the accessibility relation relates a world to one set
of worlds (the ideal alternatives). In non-normal (or minimal) models, the accessibility relation
relatesaworld to aset of sets of worlds, where each set of worlds represents adistinct norm. For
example, consider the two modelsof {Oa, Ob} in Figure 5.8. The normal model only seesa A b
worlds, whereas the non-normal model sees a cluster of o worlds, and a cluster of b worlds.

6The exampleis an instance of the apples-and-pears example, see Section 3.1.
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Figure 5.8: Models of {Oa, Ob}

Chellas’ minimal deonticlogic MDL doesnot haveaxiomK , but it still hasweakening. Hence,
we have Op — O(p V q) for any ¢: from an obligation an infinite set of obligations can be de-
rived. Ramos and Fiadeiro argue against weakening with the following example.

Example 5.19 Consider the rule of inference ‘if - 3 — «a then O — O«.” Assume the
following rule: if one agent sends a document to other, then the second receives the document.’
Furthermore, assume the obligation * Ann is obliged to send a budget to John’ and the fact * Ann
does not send the budget’ (thus John doesnot receiveit). Giventherule, thediagnosiswill report
two violations. However only one violation really occurs. O

A simple logic without weakening can be defined as follows.

Definition 5.20 (Minimal logic) Consider abimodal logicwith[dand I. Thelogicisthe small-
est set of formulas that contains the propositional tautologies and the following axioms and is
closed under the following rules of inference.

MP: a=fa Nes &  RE:;22%- o — la
[e" ar o las
KiOB—a)— (O0—=0a) T:Oa—a -IL -IT O

Definition 5.21 (Semantics minimal logic) Kripkemodels M = (W, Ry, Ry, V) with W aset
of worlds, R, (w, w") abinary reflexive accessibility relation, R, (w, W) an accessibility relation
that gives a non-empty set of set of worlds (# W) for each world (we write either R (w, w’)
and Ry(w, W'), or w' € Ry(w) and W' € Ry(w)), such that for al W' € R,(w) we have
W' C Ry(w),and V avaluation function for the propositionsin the worlds. We have:

M,w =Opiff Vu' € Ry (w) wehave M, w' =p
M,w = Ipiff IW' € Ry(w) suchthat W' = {w' € Ry (w) | M,w" |= p}. O

In Definition 5.26 we use the minimal logic to define Ramosand Fiadeiro’'slogic, just likewe
used the modal preference logic CT40 to define our dyadic deontic logicsin Chapter 2. Ramos
and Fiadeiro use dyadic deontic logic. They read a dyadic obligation O(« | 3) as ‘« is oblig-
atory in the context 3.” They consider two components of a conditional obligation. First, the
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design action that indicates what the designer should do. Second, the context (condition) that
describes the situation in which the design action should be done. The distinction is anal ogous
to the distinction between decision variables and parametersin a qualitative decision theory, see
Section 5.2. The two components must be explicitly represented, because the distinction is cru-
cia intheir approach. Moreover, they restrict the scope of the deontic operator to design actions.
They assume that it makes no sense to have obligations that oblige a process designer to act in
the structure of the organization. It followsfrom that assumption that, whatever the context, any
obligation where the action is represented by a structural concept isnot valid. Thisisillustrated
by the following example.

Example 5.22 Therule ‘if the task approve-budget is assigned to John, then John must be the
Head of Department (HD)’ isnot valid, because John being or not being the HD is not an design
action (it is a part of the structure of the organization). The rule should be: ‘if John is not the
HD, then he cannot be assigned to the task approve-budget.’ d

Ramos and Fiadeiro make a formal distinction between structural and design action vari-
ables. The basic idea is the following, inspired by Castaneda’s distinction between assertions
and actions [Cas81]. The modal language of deontic logic gives the opportunity — not present
in Reiter’sfirst order theory of diagnosis—to distinguish between structural variables which are
fixed within a model, and design action variables which are allowed to vary within the model.
For a structural variable p, we have CIp v O—p and therefore p — Op: if the structura vari-
able istrue in the actua world, it is true in al worlds see from the actual world (because the
accessibility relation related to [ isreflexive). Notice that (Ip should be read asp isa structural
concept, not as p isnecessarily true (asin Anderson’s proposal). Thedistinctionisillustrated by
the following logic for diagnosisLD.

Definition 5.23 (LD) Thelogic LD isaminimal logic as defined in Definition 5.20, extended
with the following definitions.

struct(a) =4 OaVO-a
Oa|B) =w I(B— a)A-struct(a)
O, =w I(a|T) O

The following proposition shows some typical theorems of thelogic LD. The two theorems
Oa — Qa and Oa — O—a show that the restriction of the consequent to design actions (the
clause —struct(«)) isaformalization of von Wright's contingency clause.

Proposition 5.24 Thelogic LD hasthe following theorems.

Oa — O«

Oa — O«

—O(T|B)

~0(L|8)

(B A struct(B) A O(a|B)) — Oqcx
(struct(asg) A O(ar A ag|B)) = O(aq|B)

Proof Thetheorem g A struct(8) A O(a|B) — O, followsfroma A struct(a) — Oe.
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Ramos and Fiadeiro [RF96a] argue that the logic LD istoo weak, which they illustrate with
the following example. According to their desiderata, also the systems DIODE with applicable
norms in Definition 5.14 and DIO(DE)? are too weak.

Example 5.25 Reconsider the rule ‘if the task approve-budget is assigned to the HD, then he
cannot be assigned to the task prepare-budget.’” If in the design the tasks approve-budget and
prepare-budget are not assigned to anyone yet, then an exigent diagnosis should not report the
unfulfillment of that obligation, because it will be an extremely exigent diagnosis. However, if
the task prepare-budget is assigned to the HD and the designer has not committed himself about
the task approve-budget, then an exigent diagnosis should report that situation. a

A conditional obligation should only be considered in an exigent diagnosisif (i) thecondition
istrue or (ii) the action is not performed and the condition is not fixed. For the second case, we
add theaxiom O(«|f) — O(—F|—-«). Asaconsequence only situation (i) has to be considered.
In [RF96a] the following logic LDD is proposed.

Definition 5.26 (LbD) Thelogic LDD isaminimal deontic logic as defined in Definition 5.20,
extended with the following definitions.

struct(a) =4 OaVO-a
O(alf) =w I(a+ B)A-I(—aAp)A—struct(a) 0O

We think the logic LDD is best analyzed interms of F' and V' predicates. The definitions of
L DD can be decomposed with the following definitions.

F(a|B) =w I(a<+ B)
V(a|B) = —I-(8— a)
O(a|B) =w F(a|f) ANV (a|B) A -struct(a)
We can analyze properties of thelogic LDD by analyzing the properties of the definitions F'
and V. The definition of fulfilled norm is different in LoD than in bIO(DE)?. In LDD anorm
O(«|B) isfulfilled iff (o <> ), which isequivalent to (o A 3) V (—a A =3). Hence, in LDD

not only « A 8 but also —a A = counts as fulfillment of the norm O(« | 3). The following
proposition showsthat LDD has the properties Ramos and Fiadeiro desire.

Proposition 5.27 Thelogic LbD has the following theorem.
(mstruct(8) A O(a|B)) = O(=8]-a)
The logic LDD does not have the following theorem.

(mstruct(8 — a) ANO(a|B)) = O(8 — «|T)

Proof The definitions of fulfilled norms F/(«|8) =« I(a <> 3) and violated normsV («|8) =g«
—I—=(8 — «) have the following properties.
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F(al|f) < F(—f|-a)
F(a|f) < F(fla)
Fal|f) < F(-al-6)
F(a|f) ¢ F(B < afT)
V(al|f) < V(=6]-a)
Vialf) < V(B —alT)

Thetheoremfollowsfrom F'(«| 3) <+ F(—3|—-«a) and V(«|3) <> V(—5|—«a). The non-theorem
followsfromlack of F'(«|3) <» F(8 — «|T).

Thelogic LDD is used for deontics-based diagnosis.

Definition 5.28 (Deontics-based diagnosis) An obligation system to be diagnosed is a tuple
0SD = (OBL, FACTS, STRUCT) with:

1. oBL, afinite set of modal sentences denoting conditional obligations O(«|3),
2. FACTS, afinite set of propositional sentences, and
3. STRUCT, aset of expressions denoting which variables are structural Clp v O-p.

The actual obligation set is the set of obligations (without logical equivalents):
A0 = {O,a | OBL U FACTSU STRUCT = O(«|5) A 5}
A potential diagnosis A isasubset of Ao such that
CONTEXTA = OBL UFACTSU STRUCT U {—a | Oy € A} U{a | O € AO — A}

iS consistent. O

5.3.4 Discussion

The system DIO(DE)? is the extension of DIODE with elements of qualitative decision theory
(QDT). We think that the extension of the diagnostic framework DDD proposed by Ramos and
Fiadeiro can be considered as aqualitative decision theory too. Thefirst similarity between bDD
and logics proposed for QDT is that design actions can be understood as decision variables.
Moreover, the exigent diagnosis considers the future, because it reports violations not yet ful-
filled. Hence, it has a perspective that considers the future. Aswe argued in Section 5.1, the
view on the future is exactly the distinction between a theory of diagnosis and qualitative de-
cision theory. This can aso be seen in the architecture of Ramos and Fiadeiro’s framework in
Figure5.4. Thisparticular theory of diagnosiscan be considered as atheory of decision support,
becauseit is used in afeed back loop.

DIO(DE)? corresponds to deontics-based diagnosis based on the modal logic 2DL. That is,
DIO(DE)? corresponds to deontics-based diagnosisin Definition 5.28, where the logic LDD is
replaced by 2DL. The correspondence follows directly from the semantics. A dyadic obligation
O(a|B) inDIO(DE)? isapreference of oA 3 (afulfilled norm) over —a A 3 (aviolated norm). In
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DIO(DE)? this preference is defined in two steps: in the base language the fulfilled and violated
norm constantsare defined, and in the definition of potential diagnosisthe set of applicablenorms
iIsminimized. In 2DL, the preferenceis not represented by fulfilled and violated norm constants,
but they are defined directly in the semantics. With other words, DIO(DE)? is the deontic logic
2DL in which certain aspects (fulfillments and violations) are made explicit with the use of a
naming convention, i.e. to use names n; to denote norms.

There are two important similarities between the logic LDD and the ordering logic of 2DL.
The most important property is the lack of weakening of the consequent. This property is es-
sential for diagnosis, asillustrated in example 5.19. The desirability of this property aso shows
that most deontic logics cannot be used for diagnosis, because most |ogics have weakening (see
the discussion in Section 1.3.2). The second property of 2DL isO(« | 8) — O(a A 3) and
O(a| B) — O(—a A B). Thus LDD as well as 2DL have consistency checks to model the
contingency clause. A distinction is that the contingency clause in LDD only checks the con-

sequent, e.g. 8 «, Whereas the contingency clause of 2DL considers antecedent and consequent,

e.g. 5’ (o A B). Finally, we observe a similarity between the two-phase deontic logic 2DL and
logics proposed for diagnosis, see e.g. [BB95]. The latter logics are aso preference-based.

54 Conclusions

In this chapter we considered topics for further research. We have established the following re-
sults.

1. We discussed the relation between qualitative decision theory and deontic logic by dis-
cussing two logics of qualitative decision theory. Pearl’s logic of pragmatic obligation,
a decision-theoretic account of deontic logics, is written as a criticism of deontic logic.
However, we showed that thislogic of pragmatic obligation is a defeasible deontic logic
and should not be compared to the traditional deontic logics. Secondly, Boutilier incorpo-
rates deontic logic in his approach to qualitative decision theory.

2. We discussed the relation between diagnosis and deontic logic by examing Ramos and
Fiadeiro’s approach to diagnosis for organizational process design bDD. This framework
isbuilt on top of our Diagnostic framework for DEontic reasoning bIODE. We argued that
their extension of the diagnostic theory isbest understood as a qualitative decision theory.

Moreover, these two applications show why deontic logic is a useful knowledge represen-
tation language. In Section 1.2 we argued that knowledge concerning for example legal code,
library regulations and trade procedures can be represented in deontic logic. In this chapter we
showed that such aformalization can be used for diagnosis and planning. However, not every
deontic logic can be used for these applications. For example, Ramos and Fiadeiro argue that the
deontic logic used for diagnosis should not have weakening (and they therefore developed the
deontic logic LDD). The preference-based deontic logics developed in this thesis can be used,
because the preferences of for example 2DL coincide with bIO(DE)?.

The discussion in this chapter illustrates several interesting issues for further research. The
rel ation between deontic logic and qualitative decision theory (QDT) isdescribed by astructural
similarity with different perspectives.
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1. Structural similarity There is a structural similarity between deontic logic and logics
for QDT [Bou94b, Lan96, TH96], because both are based on preferences. The use of
preferences is introduced in deontic logic by B. Hansson [Han71] and Lewis [Lew74] to
deal with contrary-to-duty paradoxes. In QDT, preferences are used for context-sensitive
goals[DW91b, Bou94b].

2. Different perspectives The main purpose of adeontic logic is deriving new obligations
(and permissions) from an initial specification, while QDT focuses on the search for opti-
mal acts and decisions[Lan96]. Deonticlogic and alogicfor QDT have different perspec-
tives. Obligationsare exogenous (they areimposed by alegal or moral code) whiledesires
inlogicsfor QDT are endogenous (coming from the agent) [Lan96]. It isthisdistinction
which we call the gap between deontic logic and qualitative decision theory.

The structural similarity suggeststhat deontic logic can be used in a qualitative decision the-
ory. However, as a consequence of the two different perspectives we first have to bridge the
gap between deontic logic and QDT. One of the main features of deontic logic is the fact that
actors do not always obey the law. Indeed, it is precisely when a forbidden act occurs, or an
obligatory action does not occur, that we need the machinery of deontic logic, to detect a vio-
lation and to take appropriate action. For purposes of planning, it is often useful to assume that
actors do obey the law. McCarty [McC94b] calls this the causal assumption, since it enables
us to ‘predict the actions that will occur by reasoning about the actions that ought to occur.” 1f
we adopt the causal assumption, we can use the machinery of deontic logic to reason about the
physical world [McC94b]. Moreover, preferences can be used to express the gains and losses
conseguent to normative decisions. Once agents know the losses and gains of their decisions,
the normative decision is no longer a problem. Interesting questions are: how do agents work
out norms in terms of gains and losses? What are the gains of observing norms? How do they
learn the effects of norms and how do they reason about these effects? In which way does a
normative decider differ from an ordinary decider, if any?



Chapter 6

Conclusions

The main objective of thisthesisisthe devel opment of deontic logicsthat formalize contrary-to-
duty reasoning and overridden structures. Moreover, the secondary objectives are the explana-
tion of defeasibility in preference-based deontic logics and a classification of the different types
of defeasibility in defeasible deontic logic. The classification is necessary to avoid confusion
between violations and exceptions. The success test that these objectives are fulfilled is the ca-
pacity of the developed logics of dealing with different types of problems, the deontic puzzles
usually referred to as deontic paradoxes. In this chapter, we summarize the results established
in thisthesis. We review the developed | ogics, we discuss the relation between obligations and
defeasibility, and we discuss the different types of problems and their solutions. Finally, we re-
consider the applications that motivated our research.

6.1 Obligationsand preferences

The main objective of thisthesisis the development of deontic logics that formalize contrary-
to-duty reasoning. In this section we review the logics developed in thisthesis. A deontic logic
formalizes either obligationsthat cannot be overridden, or obligationsthat can be overridden by
other obligations. The latter category is sometimes loosely called ‘ defeasible deontic logic’ or
the ‘logic of primafacie obligations.” In thisthesis, we devel oped several preference-based de-
ontic logics of thefirst and the second category. Of thefirst category, we devel oped the ordering
logic, two-phase deontic logic 2DL, and contextual deontic logic CDL. Moreover, we devel-
oped labeled deontic logic LDL, asimple logic that lacks a semantics. Of the second category
we developed contextual deontic logic with overridden defeasibility based on multi preference
semantics and we discussed how a prioritized contextual deontic logic can be developed.

We first discuss the two different interpretations of circumstances, based on the distinction
between the contextual and the conditional interpretation of the antecedent of dyadic obligations.
Thenwereview thelogicsdeveloped inthisthesis. Finally, we discusstherelation between pref-
erences, actionsand time. During our review, we a so mention someissues for further research.
In particular, we discuss how the preference-based deontic logics can be extended with a tem-
poral notion in update semantics.
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6.1.1 Circumstances

To place the logics developed in this thesis in deontic logic literature, we started in Chapter 1
with aclassification of deontic logics. The most important classification property of dyadic de-
ontic logic isthe interpretation of circumstances. There are two types of dyadic deontic logics,
dependent on how the antecedent of the obligations is interpreted. The contextua interpreta-
tion of the antecedent assumes that the antecedent are circumstances which are considered to be
fixed, and the consequent refers to the optimal states given these circumstances. Circumstances
can be fixed due to external circumstances, or because agents regard them as being settled in
determining what to do. The Hansson-L ewis dyadic deontic logics give a contextual interpreta-
tion of the antecedent of a dyadic obligation, in contrast to the conditional interpretation of the
Chellas-type of dyadic deontic logics. In the semanticsthis distinctionis clear. The contextual
interpretation corresponds with the optimality principle, whereas the conditional interpretation
corresponds with the ideality principle. The optimality principle corresponds with the semantic
concept of zooming in on the ordering. To evaluate adyadic obligation O(«a|3), only 3 worlds
are considered. Hence, we zoom in on the 8 worlds, and - worlds are outside the scope. In
the proof theory, the distinction is much less clear. Usually, the dyadic deontic logics with a
contextual interpretation have -O(—a | «) as atheorem, whereas dyadic deontic logics with a
conditional interpretation do not. This follows from the distinction between the optimality and
theideality principle: the optimal a. cannot be —«, whereastheideal alternatives of o can be —a.
However, we also showed in Section 4.3.4 that the definitions of a dyadic deontic logic with a
contextual interpretation can be adapted such that O (—«a|«) represents aviolation.

The distinction between the two types of dyadic deontic logics aso manifestsitself in theo-
riesthat can formalizereasoningwith obligations. In Chapter 5, wediscuss (qualitative) decision
theory and diagnosis. Qualitative decision theory describes how obligationsinfluence behavior
and a theory of diagnosis reasons about violations. The two different perspectives of these ap-
plications are represented in Figure 6.1, acopy of Figure 5.1. Thefigureillustrates that a (quali-
tative) decision theory reasons about the future, whereas atheory of diagnosis reasons about the
past with incomplete knowledge (if everything is known than adiagnosisis completely known).
A qualitative decision theory is based on the optimality principle, whereas the theory of diag-
nosis is based on the ideality principle. The typical application of qualitative decision theory
Is robot planning. Robot planning is based on the optimality principle, because a robot is not
bothered by missed opportunitiesin the past.

(qualitative)
decision theory theory of diagnosis

= = C)

n n

rational agent judge
—=
time

Figure 6.1: Reasoning with norms

Finally, thedistinction between contextual and conditional interpretation al so appearsintem-
poral deontic logics. The distinction between the perspective of arational agent (qualitative de-
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cision theory) and ajudge (theory of diagnosis) corresponds to Thomason’s distinction between
the context of deliberation and the context of justification [ Tho81], see Section 1.3.4. Thomason
observesthat truth values of deontic sentences are dependent of a set of choices or future options
that varies as a function of time. The context of deliberation isthe set of choices when you are
looking for practical advice, whereas the context of justification is the set of choices for some-
one who isjudging you. It isimportant to discriminate between these two contexts, because a
sentence can sometimes be interpreted differently in each of them. The consequence of the fact
that there are two interpretations of the same deontic formulaisthat there are two distinct types
of obligations. Let uscall theobligations O ; and O, respectively. The sentence ‘you smoke and
you should not smoke' s A O;—s meanstheidentification of thefact that you are violating arule,
whereas s A O;—s means that you should stop smoking. The two perspectives are represented
in Figure 6.2. acopy of Figure 5.3. At the present moment in time, s is true. The context of
justification considers the moment before the truth value of s was settled, and considers whether
at that moment in the past, —s was preferred over s. The context of deliberation considers the
moment the truth value of s can be changed, and considers whether at that moment in the fu-
ture, —s will be preferred over s. The two types of obligations are independent: we can have
s AN Oj=s AN =04—s aswell ass A ~O;—s A Og—s.

— Context
of

deliberation

Stop smoking!

Context e
: )

justification

Smoking isaviolation. ; ;

|

t
Figure 6.2: Contexts of decl)rﬁetic logic

The distinction between s A O;—s and s A Oq—s IS asimportant as the distinction between
Alchourron-Gardenfors-Makinson belief revision (or theory revision) [AGM85] and Katsuno-
Mendelzon belief update [KM92] in the area of logics of belief. Thereis a strong analogy, be-
cause belief revision is reasoning about a non-changing world and update is reasoning about a
changing world. It follows directly from Figure 6.2 that a similar distinction is made between
respectively the context of justification and the context of deliberation, because the past isfixed,
whereas the future is wide open.

6.1.2 Preference-based deonticlogic

In this section we reconsider the main properties of the preference based deontic logics devel -
oped in thisthesis. The two most remarkabl e rel ations between obligations and preferences are
the dynamic interpretation of obligationsand the bipolarity related to deontic choice. Moreover,
we mention several possibleextensionsof our logics, likeafirst-order base language and the rep-
resentation of ‘o ought to be (done) if 3 is(done) and it isaviolation.’
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We discussthe properties of our deonticlogic O p, see section 2.3. It isbased on acontextual
interpretation of the antecedent of the dyadic obligations, like all other logics developed in this
thesis, because logics with a conditional interpretation cannot formalize all types of contrary-to-
duty reasoning, see Chapter 2. For example, consider our deontic logic O p, See Section 2.3.3.
Thelogic Op(a|B) =4« O(a|B) A Oy(a| B) with preferential entailment is quite complicated,
because it consists of the following three el ements.

1. Ordering logic. The ordering logic O is the basic mechanism underlying the logic. An
obligation O(« | ) distinguishes between o A 3 and —a: A § worlds. Thisdistinction is
represented by the constraint ‘w, £ w; for all w; and w, such that M, w; = a A § and
M, ws = —a A B. Proposition 2.22 shows that an ordering obligation can be understood
as a set of existential-minimizing obligations Os.

2. Minimizing logic. The universal-minimizing logic Oy is only used to make dilemmas
(conflicts between obligations) inconsistent. The maximally connected models of an or-
dering obligation O («|3) are the same as the maximally connected models of O p (| (),
if such orderings exist.

3. ‘Maximally connected’. Preferential entailment based on ‘ maximally connected” models
has several advantages over other popular schemes like * gravitating towards ideality’ or
‘towards the center,” as shown by the speed limits example in Section 2.6.4.

We axiomatized the preference-based obligations in a modal preference logic. This tech-
nique wasintroduced by Boutilier [Bou92a] and Lamarre [Lam91] for minimizing conditionals.
Advantages of thisapproach are that it facilitates comparison with other systems, it givesasim-
ple axiomatization, and it enables easy extensions like for example the ¢ and cc conditions. In
contrast to Boutilier we defined the operatorsin two steps. First we defined preference relations
between sets of worlds, i.e. between propositionsa; > as, and secondly we used the preference
ordering to define obligations and permissions with O(« | 5) =4« (@ A B) > (—a A ). This
makes some propositions easier to read, for example Propositions 2.6 and 2.21.

Thelogic Op solves the first three problems mentioned in Section 1.4.2, which we studied
in Chapter 2. Thisis discussed in detail in Section 6.3. Von Wright's strong preference prob-
lem is solved by the ordering logic, which uses negative preferences (—« is not preferred to «)
instead of positive preferences (« is preferred to —«), the contrary-to-duty problem is solved
by the dyadic representation and the dilemma problem is solved by the combination of the or-
dering and the minimizing logic. The obligations O, do not have factua detachment, like the
Hansson-Lewislogicsthat are based on a contextual interpretation of the antecedent. However,
it also differsin severa respects from these logics. The obligations O p do not have weakening
of the consequent, but they have (restricted) strengthening of the antecedent. In the latter re-
spect, it resemblesthe Chellas-typelogicsthat giveaconditional interpretation of the antecedent.
Asfar asweknow, Op isthefirst dyadic deontic logic with a contextual interpretation that has
strengthening of the antecedent (and the first dyadic deontic logic that lacks weakening of the
consequent).

The logic Op has been used to analyze the relation between obligations and preferences.
Below, we discuss two of these properties: the dynamic interpretation of obligations and the
bipolarity related to deontic choice.
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Dynamics. The logic is best understood from the dynamics of the logic, as illustrated by
Figure 6.3 (acopy of Figure 2.15). The figure represents the unique preferred modelsfor S = (),
={Op(p:|T)}andS" = {Op(p1|T),Op(p2| T)}. Theleftmost figure showsthat all worlds
are equally ideal when there are no premises. By addition of premise Op(p:|T), the p; worlds
are strictly preferred over —p; worlds. Finally, the rightmost figure showsthat by addition of the
second premise Op(p2| T), thep, worldsare strictly preferred over —p, worlds, and thep; A —ps
and —p; A p, worlds become incomparable. An important consequence of the figure is that an
obligation O(«| T) cannot be represented by a preference of all « worlds over -« worlds. For
example, we havethat al p,; worldsare preferred over —p; worldsfor S’, but thisis not the case
for S”. The dynamic interpretation also relates our logic to update semantics, see Section 6.1.5.

S SI SII

@ + - @ @

Figure 6.3: Dynamics of the ordering logic
Bipolarity. The preference-based deontic logics are based on the concept of deontic choice.
An obligation O(«/|f) isinterpreted as follows.

+ Op(p1|T

Deontic choice O(« | ): *If an agent has the choice between o A fand —a A 3,
then she should choose o A 3.

The crucial property of the ‘deontic choice' interpretation is that the notion of deontic choice
Is bipolar in contrast to the monopolar interpretation of, for example, the Hansson-Lewis and
Chellasinterpretationsof dyadic obligations. The bipolar interpretation of an obligation O («|3)
considersitsgood ideal pole a A g aswell asitsbad violation pole =« A 3. The distinction can
beillustrated by the following inference pattern Reasoning-By-Cases RBC, sometimescalled the

sure-thing principle.
O(a|B1),0(alBs)
O(a|B1V Ba)

In monopolar logics RBC is accepted, because it implies ‘if you ought to do « given § and you
ought to do « given =3, then you ought to do o without examining 3. For example, thismotiva-
tionisgiven by Pearl [Pea93], see also Section 5.2. Bipolar logics do not necessarily have RBC,
asisshowninExample2.9. Itillustratesthat the non-validity of RBC can be used to analyze dom-
inancearguments. A common sense dominance argument (1) divides possibleoutcomesintotwo
or more exhaustive, exclusive cases, (2) points out that in each of these alternativesit is better to
perform some action than not to performit, and (3) concludesthat this action is best uncondition-
ally. Thomason and Horty [ TH96] observethat, although such arguments are often used, and are
convincing when they are used, they areinvalid. Example 2.9 isaclassic illustration of the in-
vaidity of the dominance argument [Jef83]. From ‘we ought to be disarmed if O(d|w) and ‘we

RBC :
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ought to be disarmed if there will benowar’ O(d|—w) we cannot derive O(d|w V —w), because
from (d Aw) >, (md Aw) and (d A —w) > (—d A —w) we cannot derive (dAT) =5 (mdAT).
In fact, for the model M in Figure 6.4 we have M = (—d A —w) >, (d A w), which represents
that we ought to be armed if we have peace if and only if wearearmed M = O(—d|w < d).

ideal situation ordered sub-ideal situations

Figure 6.4: Preferential model of cold-war disarmament

There are several interpretations— besides deontic choice— of the preference ordering in the
semantics of a preference-based deontic logic like the ordering logic O p and its extensions 2DL
and CpL. Indeonticlogic literature the distinction between an ideality ordering and a betterness
relation has been investigated, see e.g. [Han90a]. A typical property of a betternessrelation is
that it isnot transitive. Another simpleinterpretation of the preference relation of adeonticlogic
follows from the diagnostic framework for deontic reasoning DIODE, see Section 5.3. It con-
structs a preference orderings by ordering sets of violations of norms of a so-called normative
system. Thus, aworld is more ideal than another when the set of violations of the former is a
strict subset of the violation set of the latter. Obviously, such arelation is transitive.?

Finally we mention severa waysinwhich the ordering logic has been extended inthisthesis,
and can be further extended in further research. The logic Op, is the basis of a fully-fledged
deontic logic. In Chapter 2 and 3 we have shown how the ordering logic can be extended with
weakening of the consequent (in 2DL and CbL), two types of factual detachment EFD and RFD
(to deal with thelack of factual detachment FD in deontic logicswith a contextual interpretation
of the antecedent), and permissions. Moreover, in Chapter 4 we have shown how violations
can be represented in the dyadic operator by O(—«|«). Finaly, we mention that the extension
to afirst-order logic is straightforward.? A first-order logic can be used to represent act-types
in the von Wright tradition. For example, consider the similar extension to first-order logic of
Veltman’s normally-presumably logic [Vel96].

“So far, we have been thinking of the language as a propositional language, but we
can also give a predicate logical interpretation to it. Think of p, ¢ etc. as monadic
predicates rather than atomic sentences. Each such predicate specifies a property
and each well-formed expressi on specifies abool ean combination of properties. Think
of W asthe set of possible objects rather than the set of possibleworlds. A possible
object i € W has the property expressed by the atom p if and only if p € i. Note
that different possible objects have different properties. Therefore it would be more
precise to call the elements of W possible types of objects: in redlity there can be
more than one or no object fitting the description of a given possible object in W.”

LAnother interpretation of the preference ordering can be found when we consider the diagnostic and decision-
theoretic framework for deontic reasoning b1O(DE)2. In DIO(DE)?, the preference ordering reflects different types
of rationality. Compared to DIODE, the ordering is not only determined by violations (the associated rationality is
based on penalties), but also on fulfilled norms (where the associated rationality is based on rewards).

2The extensionis straightforward, but it introducesinteresting new problems. For example, such a problem has
been discussed by Edelberg [Ede91].
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Thereare severa waysinwhich dyadic deonticlogic should befurther generalized. Themost
important extension is aformalization of contrary-to-duty formulas with the following structure
in monadic deontic logic.

(BAO-B) > Oa

Theformulaexpresses* o should be (done), if g is(done) anditisaviolation.” Obvioudly, thisis
different from g > O«, which can be represented by the dyadic formulaO(«|3). For example,
consider the set of two formulas{O—3, (BAO—-3) > Oa}. Itisequivaentto {O—-3, > Oa},
which can be represented in dyadic deontic logic by {O(—=4|T), O(«|3)}. However, suppose
wereplace O—3 by v > O—p intheformer set. To keep theanaogy, wehavetoreplace 3 > O«
by (v A B) > O« inthelatter set. This, however, isnot possibleif « isitself amodal formula
like O+'. The point is that this kind of derivations should be done by the logic.

An essentia property of our preference-based deonticlogicsisthat the underlying preference
ordering on worlds is not (totally) connected. Thisis illustrated by the models represented in
Figure 6.3, because the p; A —p, and —p; A p, worlds are incomparable. In the logics, we still
accept the trangitivity axiom 4: Oa — O« (see Section 2.2.1) for the underlying preference
logic (themodal logic 2DL). Thus, our modal preferencelogicisan extension of Boutilier’slogic
CT40. However, there are some drawbacks of transitivity. In the ordering logic, c-preferred
models are not unique. For example, consider the models of O (p | ¢). The —¢ worlds can be
equivalent to the p A ¢ or to the —=p A ¢ worlds. That is, for wy €| —q |, wa €| p A ¢ | and
w3 €|—p A q| we have either w; < wy and wy < wq, OF wy < ws and wy < w;. If wedrop
transitivity axiom 4, then the —¢ worlds of the c-preferred model of Op(p|g) are equivalent to
thepA g worldsand also to the —p A ¢ worlds. However, thepA ¢ worldsand the —-pAg worldsare
not equivalent. The c-preferred model of a set of obligations can be constructed by combining
the models of the individual obligations. If we drop axiom 4, then the preferred models of a
set of ordering obligations are unique. For example, the combining of O(p | ¢) and O(q | T)
isillustrated in Figure 6.5. The uniqueness is a similarity with the deontic minimizing logic
Oy combined with System Z. The first advantage of this uniqueness is that the computational
complexity is less, because the unique models can be computed in a similar way as System Z
models can be computed explicitly [Pea90]. The second advantage is that an ‘ axiomatization’
based on the use of conditiona only knowing becomes possible, in asimilar way as System Z
Is axiomatized in [Bou92a]. Finally, the representation is in accordance with the *combining
preference relations’ perspective of [ARS95], see also Section 2.6.4.

O(plg) O(q|T) c-preferred model

pass

Figure 6.5: Combining preference relations: O(p|q) + O(q|T)



178 CHAPTER 6. CONCLUSIONS

6.1.3 Defeasible deontic logic

Defeasible deontic logic formalizes reasoning about obligations that can be overridden by other
obligations. The second objective of this thesis is the development of a preference-based de-
feasible deontic logic that formalizes contrary-to-duty reasoning and overridden defeasibility.
We introduced a defeasible deontic logic in Chapter 4. It is an extension of contextual deon-
ticlogic CpL that formalizes contextual obligationsthat can be overridden by other contextual
obligations. The deontic logic O™ combines the preference-based reasoning of 2bL and CbDL
with the preference-based reasoning of logics of defeasible reasoning. If the two sets of worlds
Wi =|laABA—y| and Wy =|-a A B8] of amodel M are non-empty, then the contextual obliga-
tion O(a| B\y) istruein M iff the W, worlds are not asideal asthe 17, worlds. The contextual
obligation O™ («| \y) istruein the mode iff the most normal W, worlds are not asideal asthe
most normal W; worlds. Thisis our solution of the last two problemsin Section 1.4.2, model
construction and entailment. The following three properties of the relation between obligations
and preferences are discussed below: the heuristic of first minimizing in the normality ordering,
and subsequently comparing in the deontic ordering, the bipolarity of deontic choiceinamulti
preference semantics, and the distinction between multi preference semantics and priorities.

When weevaluate an obligation O (« | £\y), wefirst minimizein the normality ordering and
subsequently we compare the sets W; and 1, in the ideality ordering. We deontically compare
the most normal worldsinstead of comparing the best worlds in the normality ordering. Thisis
based on the heuristic rule that if an option can be aviolation or an exception, then it is assumed
to beaviolation. The motivationfor thisruleisthat acriminal should have aslittle opportunities
as possibleto excuse herself by claiming that her behavior was exceptional rather than criminal.
For example, consider the obligation that normally, there should not be a fence. If an agent has
afence, then it is assumed to be a violation and she cannot excuse herself by claiming that it is
an exceptional case.

Thelogic O™ with its multi preference semanticsillustrates that our bipolar concept of de-
ontic choice is fundamentally different from the classical monopolar interpretation of, for ex-
ample, Hansson-Lewis logics. This distinction is not visible in a preference semantics with a
single ordering. For example, consider the Hansson-L ewis semantics with a single totally con-
nected ordering <. In the monopolar reading, an obligation Oy (« | 3) istrueiff « istruein all
preferred 5 worlds. In the bipolar reading, an obligation Oy («| 3) istrueiff the preferred o A 3
worlds are preferred to the preferred —a: A 3 worlds. These two readings are equivalent (except
for infinite descending chains). Now consider the multi preference semantics with two totally
connected orderings <; and <y. The monopolar reading of a conditional obligation is based
on lexicographic minimizing (minimize first <, and then <;) likein [Mak93]. Thus, an obli-
gation Oy(« | B) istrueiff o istruein al the <;-preferred of the <y-preferred g worlds. In
the bipolar reading, an obligation Oy(« | 3) is true iff the <y-preferred o A 5 worlds are <;-
preferred to the <y -preferred —a A § worlds. The distinction can beillustrated by the model in
Figure 6.6, acopy of Figure 4.13. It isthetypical model of thetwo dyadic obligationsO(—f|T)
and O(w A f|d) and expresses that normally (—d) no fence (—f) is preferred over afence (f),
but in exceptional circumstances (d) a white fence (w A f) is preferred over the absence of a
white fence (—(w A f)). Thebest most normal worlds and the most normal best worlds are both
the =d A —f worlds. Thus, in the monopolar reading the model satisfies the highly counterin-
tuitive obligation O(—d| T). In the bipolar reading, the sets of most normal worlds W, and W,
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correspond to |—d A —f | and |d A w A f| respectively. These sets are equivalent in the ideal -
ity ordering, thus the model does not satisfy O(—d | T). The bipolar reading does not validate
the counterintuitive obligation, because d is only an exception, not a violation. The monopolar
reading cannot discriminate between these two concepts.

ideal situations sub-ideal situations

normal @ -~ @
)
exceptional @ ~—

Figure 6.6: Multi-preference relation of the Fence example

Themulti-preference deonticlogic O™ must be distinguished from prioritized deonticlogics.
The latter can formalize specificity by giving more specific obligations a higher priority than
more general ones. However, prioritized deontic logics have weak overridden defeasibility, and
weak overridden defeasibility has the following Forbidden Conflict FC.

O(a|B1), O(—a|Bi A Bs)
O(—5:|p1)

As aconsequence, prioritized deontic logics with their weak overridden defeasibility derive the
counterintuitive obligation O(—d| T) from the two obligations O(—f | T) and O(w A f|d) dis-
cussed in the previous paragraph. In the multi-preference logic, 51 A 3, isnot aviolation but it
iseither aviolation or an exception. For example, in Figure 6.6 we cannot derive O(—d| T), be-
cause having adog d is an exception and not aviolation.®> Summarizing, we do not want FC. As
aconsequence, we do not use prioritized deontic logics with their weak overridden defeasibility
to model specificity. In Chapter 4 we argue that weak defeasibility can be used for primafacie
obligations.

Specificity can be formalized by a priority ordering in the semantics that is not in the lan-
guage, see e.g. [GP92, Bred4, Lan96, Bou92b, TP95]. That is, the implicit priority ordering in
the semanticsis determined by constraints derived from specificity. In the artificial intelligence
literature, specificity has got a lot of attention, because it is a rule founded in probabilistic in-
ference. We argued that specificity in a deontic logic should not be formalized with priorities,
because prioritized deontic logics have forbidden conflict (FC) and reinstatement (RI and RIO).
In our opinion, we can extend the argument to other logics that formalize specificity structures,
likelogics of defeasible reasoning and logics for qualitative decision theory. Many of theselog-
icslogics are based on priorities. Priorities are introduced to solve the inheritance problem, the
derivation of ‘ penguins have wings' from *birds have wings' although penguins are exceptional

FC =

3We can call the model in Figure 6.6 the exception model. Moreover, for any set of dyadic obligations we can
say that the exception modelsare the preferred models, and define anotion of preferential entailment. However, the
formalization of thisideais still an open problem. It seems to be much more complex than preferential entailment
of one preference ordering like System Z or maximally connected.
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birds, see Section 2.6.5. Moreover, ‘it is generally accepted that priorities provide a more un-
derstandabl e mechanism for resolving conflicts [BB95, p.67]. However, it should be observed
that the naive use of priorities assumes that one rule is always stronger than another, whereas
in general this seems to depend on circumstances (on context). Moreover, we think that prior-
ities are not a good way to model specificity, because they aso validate inference patterns like
forbidden conflict and reinstatement. The only preference-based logic of defeasible reasoning
we know of that deals correctly with inheritance and which does not validate these inference
patterns (and thus is not based on priorities) is Veltman’'s normally-presumably logic in update
semantics [Vel96].

6.1.4 Obligations, actions, time and preferences

In deontic logic literature, the o of O« isinterpreted as either a state, an action occurrence (or
event), an act-type or a fluent (an action having a duration). In thisthesis, we follow this con-
vention. For example, in the Fence example we write O— f for the obligation that there should
be no fence (a state), in the Forrester paradox we write O—k for the obligation of Smith not to
kill Jones (an action occurrence) or the obligation not to kill (an act type), and in Example5.1 we
write O—s for the obligation not to smoke (afluent). Obviously, thisisarather crude approach,
and a further investigation is needed to study the distinctions between the different logics. An
example of afurther complexity introduced when the deontic operator has actions or fluentsin
its scope is that we have to discriminate between the context of justification and the context of
deliberation, asillustrated in Example5.1. Moreover, therelation between the different types of
obligations can beinvestigated. For example, does an ought-to-do obligation for action . imply
an ought-to-be obligation for the necessary post-conditions of the action a?

Thisunified approach in deontic logic literature can be explained by the observation that the
logicsof obligationson states, actionsand fluentshave similarities. Thisfollowsfrom asemantic
analysis. Standard deontic |ogic makesadistinction between thegoodideal and bad violation. In
thismodel, there are good and bad states, good and bad actions, and good and bad fluents. This
approach can be generalized by taking timeinto account. At each moment of atempora model,
there are good and bad states, good and bad actions, and good and bad fluents. Alternatively,
the semantic distinction between good and bad can be generalized by introducing preferences.
The latter generalization is studied in this thesis. We discussed in Section 1.3.7 that we can re-
place the sentences of the propositional language within the scope of the deontic operators by
sentences of an action calculus, asin [Mey88]. There are atomic actions, and connectives like
‘&’ for concurrency, ‘U’ for choice and ‘;’ for sequencing. In this action language, analogues
of the inference patterns studied in this thesis can be identified. For example, weakening can
be weskening of a description of the state O(p A q) — Op and weakening of the description
of a complex action O(a&b) — Oa. In a sufficiently expressive language (that contains, for
example, dyadic obligations), all problems discussed in thisthesiswill also appear in thisaction
language, and the solutions do apply.

We illustrate the occurrence of the contrary-to-duty problem in a deontic action logic. Mod-
els of action can be found in, for example, qualitative decision theories as discussed in Sec-
tion 5.2. Such models can be used to analyze the interaction between the different types of obli-
gations, and probably give rise to new puzzles. As an example, we consider a logic recently
proposed by Horty [HB95, Hor96]. First, Horty introducesamodel of time. Thetheory isbased



6.1. OBLIGATIONS AND PREFERENCES 181

on a picture of moments ordered into a tree-like structure, with forward branching representing
the openness or indeterminacy of thefuture, and the absence of backward branching representing
the determinacy of the past. An exampleis represented in Figure 6.7, where the upward direc-
tion represents the forward direction of time. This figure depicts a branching temporal frame
containing five histories, h, through hs. Horty writes H,, for the set of histories through mo-
ment m. The momentsm, through m, are highlighted; and we have, for example, m, € hs and
H(m4) = {h4, h5}.

hi h2 h3 h4 h5
e M3
a \ / \ /
e m2 e m4
/a
e Ml

Figure 6.7: Branching time: moments and histories

Second, Horty introduces agents, actions and choices. At any moment in time, an agent can
choose between severa setsof histories. Wewrite Choice; for the partition of the histories H,,,)
through m. For example, consider the single agent temporal model in Figure 6.8. The choice
set of the agent at moment m, is a partition in the three sets {h1, ho}, {hs}, and {ha, hs, he }.
Two histories are indistinguishable at moment m if they are in the same equivalence class of the
partition. There are different ways to define truth of an action at a certain moment of a history.
For example, the agent seesto it that (stit) o at moment m on history A iff al historiesindistin-
guishable from h a m make « true, and there is a history at m that does not make « true.

h{ ;2 h3 h4 h5\ /hB
\ / \ /
N7/ ///

Figure 6.8: An agent’s choices

Third, Horty discriminates between good and bad histories, and he generalizes this model
by a preference ordering on histories. An exampleisthe Chisholm paradox in Figure 6.9. First,



182 CHAPTER 6. CONCLUSIONS

the agent has to choose between ‘telling’ ¢ and ‘not-telling’ —¢, and secondly the agent has to
choose between ‘ going to the assistance’ a and ‘ not-going to the assistance’ —a. The obligation
‘go to the assistance’ deontically prefers history h; and h3, and the obligation ‘tell that you go
if and only if you go’ prefers history h; and hs. Summarizing, history h; is preferred over all
other histories.

hi h2 h3 h4
Ta a a

0 1)
"N S A

"
77

ml

Figure 6.9: The Chisholm paradox

We use the model in Figure 6.9 to illustrate the distinction between the tempora and the
preference-based solution of the contrary-to-duty paradoxes. First, the model does not satisfy
the sentences of the Chisholm paradox O(t|a), if we take the simple notion of stit defined above.
Once the man can seeto it that a (moment m, or m3) he can no longer seeto it that ¢, because he
can only seetoit that ¢ at moment m;. At my and m3 the truth value of ¢ is aready fixed. This
illustratesthat we can represent the Chisholm paradox by atemporal model, although the tempo-
ral solution — antecedent before the consequent — does not apply. Second, there is no obligation
at moment m; to tell ¢, because history h, isnot at least as good as history h3. Horty observes
that complex temporal reasoning can be further analyzed if sequences of actions and strategies
are taken into account. If we take two moments together in consideration, then we can say that
the agent first ought to seetoit that ¢ and thereafter ought to seetoit that a, because history b is
preferred to al other histories. Thisis the preference-based solution of the paradox. The point
Isthat this solution of the paradox does not rely on the temporal representation, but it relies on
the fact that the possible strategies can be compared in a preference ordering.

Finally, the model in Figure 6.9 can be used to illustrate the representation of the Chisholm
paradox in adynamic logic. Assumethat a and ¢ in Figure 6.9 are atomic actions of an action
calculus, and that —a isthe complement of a. Insuch alogic, we could derive O(t; a) but not Ot.
This expresses that it isideal to tell and thereafter go to the assistance, but it is not necessarily
ideal to tell. Thus, theinference O(a1; as) — O« isnot valid.

In this section we showed that the contrary-to-duty problem occurs in temporal and action
deontic logics, and that a solution of the Chisholm paradox has to compare different strategies
in a preference ordering. In Section 1.4.1 we aready mentioned the split of deontic logic into
two different approaches. The first approach is based on time and actions[Tho81, vE82, LB83,
Mak93, Alc93]. The second approach is based on preferences, either in monadic deontic logic
[Jac85, Gob90b, Han90b] or in dyadic deontic logic [Han90b, Lew74]. Reasoning about strate-
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gies combines the two approaches. In the following section we discuss an alternative way to
combine time and preferences. update semantics.

6.1.5 Obligationsin update semantics

In this section we illustrate how obligations can be formalized with update semantics [Vel 96].
In the standard definition of logical validity, an argument is valid if its premises cannot al be
true without its conclusion being true as well. In update semantics, the slogan ‘you know the
meaning of a sentence if you know the conditions under which it is true’ is replaced by ‘you
know the meaning of a sentence if you know the change it brings about in the information state
of anyone who accepts the news conveyed by it.” Thus meaning becomes a dynamic notion:
the meaning of a sentence is an operation on information states. To define an update semantics
for alanguage L, one has to specify aset 3 of relevant information states, and a function [] that
assignsto each sentence ¢ an operation [¢] on X. Theresultingtriple(L, ¥, []) iscalled an update
system. If o isastate and ¢ a sentence, then we write ‘o[¢]’ to denote the result of updating o
with ¢. We canwrite‘o[¢1] . .. [1,] for theresult of updating o with the sequence of sentences
1, ..., Py Findly, ¢ isaccepted in o, writtenaso + ¢, if and only if o[¢] = o. Thisnotion
of acceptance plays the samerole as the notion of truth in standard semantics.

We do not discuss the formal definitions of update semantics, but we give an example that
illustrates the idea. The formalization of obligationsin update semanticsis a hatural extension
of the deontic logics proposed in thisthesis. Theideais based on the dynamic interpretation of
the preference logics discussed in Section 6.1.2. In our preference-based logics, every model
represents asingle preference ordering. Theinformation states of update semantics are the pref-
erence orderings, but not necessarily transitive. The update [oblige « if 5] isthe deletion of the
relationsw, < wy suchthat M, w;, = a A pand M, w, = —a A 3. Thisdynamic interpretation
of obligations seems related to Alchourron’s box metaphor we discussed in Section 1.3.1. Al-
chourrén compares a (monadic) obligation with the action of putting something in abox, and in
our case an obligation is compared with an action of creating a partial ordering. It remainsto be
shown in future research whether the dynamic approach has something to offer over the static
approach.

Example6.1 (Updates) Consider thesix information statesin Figure 6.10. Thisfigure should be
read asfollows. Thesix information states are preference orderingslikethe preference orderings
of 2DL. For each equivalenceclass of worlds, we only writethe positiveatomsbelow. Thefigure
also representsfive updates: three updates by obligations [obligep], [obligeq] and [obliger]|, and
two updates by facts p and —q. O

A disadvantage of the representation of the three obligationsin Example 6.1 is that we did
not represent any temporal information in thethree obligations. For example, we did not specify
which obligation has to be fulfilled first. The following example illustrates that this temporal
information can be represented by conditional obligations.

Example 6.2 (Updates, continued) Reconsider the three obligations [oblige p], [oblige ¢] and
[obliger] of Example6.1. Moreover, assumethat thefirst obligation hasto be fulfilled first, then
the second one and finally the third one. We can express the temporal sequence with conditional
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[oblige p] [oblige ] O [obliger] <O
¥ q FOAU X L X
O=0-0=0""0= 00 -0
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Figure 6.10: Obligations as updates

obligations. That is, we havethethreeobligations[obligep], [obligeq if p] and [obliger if pand ¢].
Figure 6.11 represents the updates of Example 6.1. g

[oblige p] [oblige qif p] [obligerif pand g]

O > O*O = O*OO > O*O*O*O

p.a.r

W [pisdong]
[gisnot done]

O = 00O
p p.q.r
Figure 6.11: Conditional obligations as updates

There are two phases in the example above: the construction of the preference ordering and
the zooming in on the ordering. Thisisin accordance with the occurrence of two phasesin sev-
eral applications. For example, in atheory of diagnosisthere isthe distinction between phase-1
reasoning about sets of broken components and phase-2 reasoning about minimal sets of broken
components. In decision theory, thereisadistinction between phase-1 reasoning about goalsand
phase-2 reasoning about reaching goals. Moreover, in thelifetime of atrade procedure discussed
in Section 1.2.2, we can distinguish the following two phases. In the first phase, the agents ne-
gotiate theterms of the contract. At the end of thisnegotiation phase, thereisaset of agreements
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which can be understood as a set of norms or (conditional) obligations. In the second phase, the
contract is executed. That is, absolute obligations are detached from the conditional ones, and
these absolute obligations are either fulfilled or violated. At the end of the execution, if al ends
well, then the set of obligationsis empty. These two phases are represented in Figure 6.12 be-
low. Asrepresented in thisfigure, it is assumed that there are no more obligations at the end of
the contractual period. In the first phase of update semantics, the set of equivalence classesin-
creases together with the increased set of obligations. In the second phase of update semantics,
the set of equivalence classes decreases with the zooming in on the ordering.

set of
conditiona

obligations

execution phase

negotiation phase

—_—
, o time
Figure 6.12: Lifetime of a contract

There are severa issuesfor further research. Thelogic can be further extended by introduc-
ing agents, and by introducing different kinds of updates. In that case, we can formalize who
(which authority) obliges us to do something. The update [oblige ] can beinterpreted as a so-
called speech act. Another kind of update can be used to formalize the phenomenon of ‘laying
guilt’” on someone. For example, assume your wife saysto you ‘you did not bring me flowers.’
You are guilty of violating an obligation you did not know it existed. The distinction isthat the
speech act does not create adeontic cue, but aviolation. The set of equivalence classesincreases
and at the same time we zoom in on the ordering.

6.2 Obligationsand defeasibility

The secondary objectivesof thisthesisare an explanation of thedefeasibility in preference-based
deontic logic and aclassification of the different typesof defeasibility in defeasibledeonticlogic.
In this section wereview the rel ations between obligations and defeasibility. First we reconsider
the definition of defeasible deontic logic. Then we discuss the three sources of defeasibility we
showed in Chapter 2 and 4: overriding (related to specificity or primafacie obligations), thefor-
malization of the no-dilemma assumption, and violability. The latter originates from the infer-
ence pattern weakening of the consequent, because thisinference pattern introduces exceptions
of the context. Moreover, in Chapter 4 we distinguished three types of defeasibility in defeasible
deonticlogic. First, factual defeasibility that should be used to formalize the violation of an obli-
gation. Second, strong overridden defeasibility that should be used to formalize the cancelling
of an obligation by a more specific obligation. Third, weak overridden defeasibility that should
be used to formalize the cancelling of a primafacie obligation by a more important obligation.
Finally, we discuss the techniques to distinguish different types of defeasibility.
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6.2.1 What isdefeasible deontic logic?

There does not seem to be an agreement in deontic logic literature on the definition of ‘ defeasi-
ble deontic logic.” It seems related to the logic of prima facie obligations and it seems related
to default logics studied in artificial intelligence. It is generally accepted that a defeasible de-
ontic logic has to formalize reasoning about conflict resolution. Defeasibility becomes relevant
when thereis a (potential) conflict between two obligations. For example, there isaconflict be-
tween O(a; | 1) and O(a | B2) when «; and aw, are contradictory, and 3, and 3, are factually
true. There are several different approaches to deal with deontic conflicts, see Section 1.3.6. In
von Wright's so-called standard deontic logic SbL [VW51] adeontic conflict isinconsistent. In
weaker deontic logics, like Chellas minimal deontic logic MDL [Che74], aconflict is consistent
and called a‘deontic dilemma.’ In defeasible deontic logic a conflict can be resolved, because
one of the obligations overrides the other one. However, defeasibility in deontic logic is not
defined as conflict resolution. This definition is much too restricted, because there is more to
defeasibility than conflict resolution.

We argued that violability hasto be considered as atype of defeasibility too. The defeasible
aspect of contrary-to-duty obligations is different from the defeasible aspect of, for example,
Reiter’s default rules [Rei80]. Different types of defeasibility in alogic of defeasible reason-
ing formalize asingle notion, whereas defeasible deontic logics formalize two different notions.
Consider again the logics of defeasible reasoning and the famous Tweety example. In the case
of factual defeasibility, we say that the ‘birds fly’ default is cancelled by the fact — f, and in the
case of overridden defeasibility by the ‘ penguins do not fly’ default. By cancellation we mean,
for example, that if —f istrue, then the default assumption that f istrueis null and void. The
truth of —f impliesthat the default assumption about f is completely falsified. The fundamen-
tal difference between deontic logic and logics for defeasible reasoning isthat O(—r|T) A ris
not inconsistent. That isthe reason why the deontic operator O had to be represented as a modal
operator with apossible worlds semantics, to make sure that both the obligation and itsviolation
could be true at the same time. Although the obligation O(—r| T) is violated by the fact r, the
obligationstill hasitsforce, soto say. Thisstill beinginforceof an obligationisreflected, for ex-
ample, by thefact that someone hasto pay afine even if shedoesr. Evenif you are robbed, you
should not have been robbed. But if penguins cannot fly, it makes no sense to state that normally
they can fly. We refer to this relation between the obligation and its violation as over shadowing
to distinguish it from cancellation in the case of defeasible logics. By the overshadowing of an
obligation we mean that it is still in force, but it is no longer to be acted upon. The conceptual
difference between cancelling and overshadowing is analogous to the distinction between ‘ de-
feasibility’ and ‘violability’ made by Smith in [Smi93] and by Prakken and Sergot in [PS96].
Our definition of ‘defeasibility’ is much more liberal. It does not mean that a defeated obliga-
tionisout of forcein al respects (it is not necessarily cancelled), but it only meansthat it is out
of force in some respects.

The main advantage of the violability-as-defeasibility perspectiveisthat it explainsthe dis-
tinctions and the similarities between cancelling and overshadowing. Moreover, it can be used
to analyze complicated phenomena like primafacie obligations, which have cancelling as well
as overriding aspects. This perspective has been very useful in the analyses of the puzzles, see
Section 6.3 below. In the contrary-to-duty paradoxes, we showed that weakening of the conse-
guent corresponds to introducing exceptions of the context, i.e. to defeasibility. Inthe cigarettes
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example, we showed that we cannot accept unrestricted strengthening of the antecedent (hence
we had to use defeasibility), because otherwise several intuitively consistent setswould become
inconsistent. Finaly, in defeasible deontic logic we showed that the conflicts between speci-
ficity and contrary-to-duty can be analyzed if both violability and cancelling are interpreted as
different faces of defeasibility.

6.2.2 Why isdeontic logic defeasible?

There are several sources of defeasibility in deontic logic. In thisthesis, we have discussed the
following three.

1. Overriding. Overriding defeasibility occursin logics of primafacie obligations and log-
ics based on specificity. For example, O(—f | d) can be derived from O(—f| T), but not
fromO(—f|T) and O(f|d).

2. Conflicts. The formalization of the no-dilemma assumption introduces defeasibility. For
example, we can derive Op (o | =(oq A ag)) from Op(ey | T), but not from the two
obligations Op(c; | T) and Op (a2 | T). Moreover, we can derive Op(«| 31 A B2)) from
Op(«| ), but not from the two obligations Op («|51) and Op (—a|Bs).

3. Violability. Theformalization of contrary-to-duty reasoning introduces a kind of defeasi-
bility. For example, Hansson-L ewis minimizing deontic logics do not have strengthening
of the antecedent.

The latter source is the most surprising. Even deontic logics of obligations that cannot be
overridden and that do not have the no-dilemma assumption are defeasible. This can be ex-
plained from a analogy between deontic logic and default logic. There is a similarity between
these logics, because both can be preference-based logics. In particular, there is an analogy be-
tween the treatment of violationsin preference-based deontic logics and the treatment of excep-
tionsin preference-based default logics. This analogy is not a very satisfactory explanation of
the defeasibility. A violation makes the ideal unreachable, but a violated obligation is still in
force. The obligation is not cancelled. It isonly no longer a cue for action.

The source of the defeasibility can be found when the exceptions are represented explicitly.
In our contextual deontic logic we showed that weakening of the consequent corresponds to in-
troducing exceptions. A contextual obligationiswritten as O(«|3\y) and read as‘ « ought to be
the caseif 3 isthe case unless+y isthecase.” Thus, the unless clause v formalizes exceptions of
the obligation for «.. In contextual deontic logic, the inference pattern weakening of the conse-
quent only derives O (a1 | T\—a) from O(a; A ao| T\ L). For example, in the apples-and-pears
examplein Figure 6.16 we only derive O(p| T \ a) from O(p A —a| T\ L). Thisformalizes that
from ‘you should buy pears and not apples’ we can derive ‘you should buy pears unlessyou buy
apples.” The obligation ‘you should buy pears cannot be derived. Summarizing, defeasibility
in deontic logic is caused by weakening of the consequent.

6.2.3 Typesof defeasibility

In defeasible reasoning one can distinguish at least three types of defeasibility, based on differ-
ent semantic intuitions. Consider the famous Tweety example. The *birds fly’ default can be
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defeated by the fact — f, or it can be overridden by the more specific ‘ penguins do not fly’ de-
fault. We call the first case factual defeasibility and the last case overridden defeasibility. The
distinction between factual and overridden defeasibility isonly the start of aclassification of dif-
ferent types of defeasibility. To illustrate the distinction between different types of overridden
defeasibility, we consider the adapted ‘ penguins do not fly and live on the Southern Hemisphere’
default. Assume that there is a penguin that does not live on the Southern Hemisphere. In the
first logics the *birds fly’ default is not reinstated, whereas in the second logics it is, because
it was only suspended. In other words, in the latter case the penguin default overrides the bird
default only when it is applicable itself. We call the first case strong overridden defeasibility
and the second case weak overridden defeasibility. The different types of overridden defeasibil-
ity are based on different semantic intuitions. Strong overridden defeasibility is usually based
on a probabilistic interpretation of defaults (most birds fly, but penguins are exceptional), like
in Pearl’s e-semantics [ Pea88]. Weak overridden defeasibility is usually based on an argument-
based conflict resolution interpretation (there is a conflict between the two rules, and the second
one has highest priority), for examplein conditional entailment [GP92] and Brewka's prioritized
default logic [Bre94]. In Table 6.1 below the three different faces of defeasibility in defeasible
deontic logic are represented with their corresponding character.

| | overshadowing | cancelling |

Factual defeasibility X

Strong overridden defeasibility X

Weak overridden defeasibility X X
Table 6.1: Matrix

Thedistinction between different types of defeasibility iscrucial in logicsthat formalizerea-
soning about obligations which can be overridden by other obligations. In a defeasible deontic
logic a conflict can be resolved, because one of the obligations overrides the other one. For ex-
ample, overridden structures can be based on anotion of specificity, likein Horty’swell-known
example that ‘you should not eat with your fingers,” but ‘if you are served asparagus, then you
should eat with your fingers' [Hor93]. In such cases, we say that an obligation is cancelled when
itisoverridden, becauseit isanalogousto cancelling in logics of defeasible reasoning. The obli-
gation not to eat with your fingers is cancelled by the exceptiona circumstances that you are
served asparagus. A different kind of overridden structures have been proposed by Ross [Ros30]
and formalized, for example, by Morreau in [Mor96]. In Ross' ethical theory, an obligation
which is overridden has not become a‘ proper’ or actual duty, but it remainsin force asaprima
facie obligation. For example, the obligation not to break a promise may be overridden to pre-
vent adisaster, but even when it isoverridden it remainsin force as aprimafacie obligation. As
actual obligation the overridden obligation is cancelled, but as primafacie obligation it is only
overshadowed. Because of this difference between cancellation and overshadowing, it becomes
essential not to confuse the types of defeasibility in analyzing the deontic paradoxes.

The no-dilemmaassumption isalso asource of defeasibility, asdiscussed in Section 6.2.2. It
seems like a kind of overridden defeasibility of the overshadowing type, becauseit is caused by
the introduction of an obligation (thusit is overridden defeasibility) and there is no reason why
the obligation should no longer be in force (thusit is not cancelling). However, the intuitions
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on the two examples mentioned in Section 6.2.2 seem to vary. We therefore did not include this
relation between obligations and defeasibility in Table 6.1.

6.2.4 Distinguishing different types of defeasibility

We used two techniques to analyze the defeasibility in defeasible deontic logic. First, we used
inference patterns and derivations, see for example Figure 6.14. The distinction between infer-
ence patterns and logical inferencesisthat theinference patterns are much more general. For ex-
ample, the conditions C, and C'y, we used in the analyses of the defeasibility paradoxes contain
conditionslike‘thereisno overriding obligation’ and ‘ the union of thelabel and theantecedent is
consistent.” Moreover, theinference patterns only consider ssmpleformula, and thusare similar
to theKraus, Lehmann and Magidor type of analysis of logics of defeasible reasoning [KLM90].
The derivations emphasize sequences of derivation steps instead of single derivation steps. For
example, we analyze the combination of SA and wc in our analysis of the contrary-to-duty para-
doxesin Figure 6.14. Second, we used (multi-)preference semantics. The semantic anaysisis
based on the distinction between violations and exceptions. The result is the general analysis
of different types of defeasibility in defeasible deontic logics, where the intuitions behind the
various distinctions are illustrated with preference-based semantics. The general analysis can
be applied to any defeasible deontic logic, because we use inference patterns to analyze the dif-
ferent types of defeasibility.

We interpreted CTD structures as arelation between dyadic obligations. Traditionally, CTD
obligations are considered as obligationsthat refer to asubideal situation, i.e. aconditional obli-
gation O(«|B) isacontrary-to-duty obligation if thereisan absolute obligation O—3. However,
this runs into the problematic issue of absolute obligations and factual detachment. Moreover,
we also interpreted specificity as arelation between dyadic obligations. Thisis more standard,
because in logics of defeasible reasoning it is common practice to analyze conditionals (either
at thelevel of inference relations [KLM90] or in the object language [Bou94a]). This structural
analysisreveal sthat solutionsof the contrary-to-duty problem based on specificity reasoning can
be rg ected. They are two different things.

An exampleof aninference pattern to analyze defeasible deontic logicsisthefollowinginfer-
ence pattern FC. Theinference patternisused to discriminate between different types of overrid-
den defeasibility, becauseitisvalid in weak overridden defeasibility but not in strong overridden
defeasibility.

O(alpr), O(=a|Bi A Bo)
O(=B2|61)
There are two different interpretations of 3; A B, in O(«a|31) and O(—a| 81 A Bo): it can be an
exception or a violation. The second interpretation is given by a prioritized system, whereas a
multi-preference semantics does not commit to one of these interpretations, see Section 6.1.3.
The acceptance of the inference pattern FC corresponds to the second interpretation. In genera
we do not want the inference pattern, thus we do not want weak overridden defeasibility.

A second example of an inference pattern to analyze logics is the inference pattern cp, for
which we have to assume that the dyadic deontic logic can represent dyadic obligations with
contradictory antecedent and consequent like O («|—a).

_ 0(alf)
= OlfA )

FC =
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Logics that do not derive the obligation O(« | 8 A —«) from O(« | §) are counterintuitive, see
Section 6.3.3. The choice between the two interpretationsin the defeasibility puzzlesismadein
favor of the interpretation that validates cD.

6.3 Thepuzzles

In thisthesis, we analyzed three different types of deontic puzzles, and the preference-based de-
onticlogicsweintroduced were tested by their capacity for dealing with these puzzles. The most
important deontic puzzles are the contrary-to-duty paradoxes. Besides the notorious Forrester
and Chisholm paradoxes, we introduced the new Apples-and-Pears example. The second type
of puzzle we discussed isthe Cigarettes example, apuzzlerelated to the representation of dilem-
mas. Finally, we discussed the Fence example and the Reykjavic Scenario, two deontic puzzles
typical for defeasible deontic reasoning. They are related to the interaction between specificity
and contrary-to-duty structures.

6.3.1 Contrary-to-duty puzzles

We analyzed the contrary-to-duty (CTD) paradoxes as a problem of combining strengthening of
the antecedent with weakening of the consequent. An obligation O(«|3) isa CTD obligation
of the primary obligation O(«|6) iff oy A B isinconsistent.

O(a1| 1)

inconsistent
O(a[p)
Figure 6.13: O(«|3) isacontrary-to-duty obligation of O(a; |51)

The following example illustrates that the derivation of the obligation O (a1 | —as) from the
obligation O(«a; A as | T) isafundamental problem underlying several contrary-to-duty para-
doxes. Hence, the underlying problem of the contrary-to-duty paradoxes is that a contrary-to-
duty obligation can be derived from its primary obligation.

Example 6.3 (Contrary-to-duty paradoxes) Assume a dyadic deontic logic that validates at
least substitution of logical equivalents and the (intuitively valid) inference patterns WWeakening
of the Consequent (wc), Restricted Srengthening of the Antecedent (RsA), Conjunction (AND)

and the following version of Deontic Detachment DD, in which <> isamodal operator and <> «
istruefor al consistent propositional formulas a.

<~

) O(aq|B) O(a|B1), O (a A B A Ba)
N O vad) T O(alBiA B
0(]f),0(]f) ., 0(alf),00])
M 0 nap) . 0 T O@A Bl

Furthermore, consider the premise sets of obligations

S ={O0(=k[T),0(g Ak[k)}
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S" = {0(a|T),O(t|a), O(—t|-a)}
5" = {O0(=a|T),0(aV p|T),O(-pla)}
S" ={O(=r A—g|T),0(r Ag|r)}

S formalizes the Forrester paradox [For84] when £ is read as ‘killing someone’ and g A k as
‘killing someone gently.” S’ formalizes the Chisholm paradox [Chi63] when a isread as ‘acer-
tain man going to the assistance of his neighbors’ and ¢ as ‘the man telling his neighbors that
hewill come.” S” formalizes an extension of the apples-and-pears example introduced in Sec-
tion 3.1, when a isread as ‘buying apples and p as‘buying pears.” Finaly, S"" formalizesapart
of the Reykjavic Scenario, when r isread as ‘telling the secret to Reagan’ and g as ‘telling the
secret to Gorbatsov.” The last obligation of each premise set is a contrary-to-duty obligation of
the first obligation of the set, because its antecedent is contradictory with the consequent of the
latter. The paradoxical consequences of the sets of obligations are represented in Figure 6.14.
The underlying problem of the counterintuitive derivations is the derivation of the obligation
O(aq|—ag) from O(a; A as|T) by we and RsA: respectively the derivation of O(—(g A k)| k)
from O(—k|T), O(t|—a) fromO(a At|T), O(p|a) fromO(—a A p|T),and O(—(r A g) |r)
fromO(—r A —g|T). O

OCkT)
O AR)T) Con
O(=(g NK)|k) O(g N k|k)
O(=(gNk)A(gNEK)|E)

Otla) OfalT) O(-a|T) O(aVp|T)

O(aNt|T) we O(—aAp|T)

OT) cn O(p|T)

O(t|—a) O(=t|~a) o Olpla) O(zpla) , o

O(t A —t|-a) O(p A —pla)

O(=r A—g|T)

Ol Ag)T) o

O(=(rAg)lr) O(r A gr)
O(=(rAg) A(rAg)lr)

c

AND

Figure 6.14: Four contrary-to-duty paradoxes

The following exampleillustrates the formalization of the contrary-to-duty paradoxesin the
two-phase deontic logic 2DL, contextual deontic logic CbL and labeled deontic logic LDL. We
only discuss the appl es-and-pears exampl e, the formalization of the other contrary-to-duty para-
doxesis analogous.

Example 6.4 (Apples-and-Pears, continued) Consider the sets of obligations
5 ={0%aVp[T),0%-aT)}
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S'={0%aVp|T\L),0%alT\L)}
S" ={0(aV p|T){avpy O(—a|T){-a} }

where —a does not entail the negation of p and where a can be read as ‘buying apples’ and p
as ‘buying pears’ Wehave S =6 (—a A p), S = O(—a A p|T)and S = O%(-a A p| T),
S ¥ O(p|T)and S = O5(p| T). The crucial observation isthat O5(p | @) is not entailed
by S. Consider atypical 2pDL countermodel M of O(p | T) in Figure 6.15 below. We have
M = 0% aVvp|T)and M = O%(—a|T), because |—a A =p|£|a Vv p| and |a|£|—a|. Moreover,
we have M = O%(p | a), because al a worlds are equivalent. The semantic representation
of CbL issimilar to the representation in 2DL. The crucial observation is that we do not have
O“(p|a\~y) for any v, and atypical countermodel is again the model in Figure 6.15.

sub-ideal situations

ideal situation @

Figure 6.15: The apples-and-pears examplein 2DL (semantics)

For the proof-theoretic analysis of the underivability of O5(p|a) from S, see the derivations
inFigure6.16. First of al, O5(p|a) isnot second-phase entailed by .S viaafirst-phase derivation
of O%(—a Ap|a), because O¢(—a Ap|a) isnot entailed by O¢(—a A p| T) dueto therestrictionin
RSA. Secondly, O5(p|a) is not first-phase entailed by S viaO4(p| T), because O5(p| T) is not
first-phase entailed by S. Finally, O5(p|a) isnot second-phase entailed by .S viaO5(p| T) either,
because in second-phase entailment O¢ does not have strengthening of the antecedent at all. The
proof-theoretic representation of contextual deontic logic CbL does not depend on two distinct
phases like 2DL. We have S’ = O¢(p| T \ a), asis shown in Figure 6.16, which expresses that
our little sister should buy pears, unless she buys apples. Finally, in Figure 6.16 it is also shown
how the derivation in labeled deontic logic LDL is blocked. The representation in LDL shows
that the context isrestricted to non-violations of premises. If the antecedent isaviolation, i.e. if
the derived obligation would be a CTD obligation, then the derivation is blocked. d

6.3.2 Dilemma puzzles

L ogics with the no-dilemma assumption make deontic dilemmas inconsistent. However, it has
turned out that it is difficult to make exactly the right set of formulasinconsistent. We analyzed
the dilemma puzzles as a problem of strengthening of the antecedent. Hence, we anayzed the
problems as defeasibility problems. The following cigarettes problem, adapted from Prakken
and Sergot [PS96], illustrates the defeasibility in the no-dilemma assumption.
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O%(aVp|T) O—alT) RAND O%(aVp|T) O—a|T) RAND
O(ma A p|T) O°(ma Ap|T)
—————— () OsCan ) ©
O¢(—a A pla) AEL 0| T) wC
OiCcanple) o —————- (RSA)

O5(p|a) O5(p|a)

O(aVp|T\L) O%(-a|T\1L)
O°Ca Ap[T\ L)
O°(p[ T\a)

AND

O(aVp|T)ia O(—a|T)ig O(aVp|T), O(—a|T)ia
(@VplT)iavpy O(—a|T)y } AND (@Vp|Tavpy O(—alT)y b AND
O("CL A p| T){an,ﬂa} O(_‘a A p‘ T){a\/p,—'a}

————————— (SA/RsSA) O®|T) {avp,~a}
O(—a A p|a){avp,-—a} we 000000 —————— (SA/RSA)

O(p|a){avp,-a O(pla){avp,ay

Figure 6.16: The apples-and-pears example (proof theory)

Example 6.5 (Cigarettes problem) Assume a dyadic deontic logic that validates at |east sub-
stitution of logical equivalents, no inference pattern for strengthening of the antecedent and one
of the following axioms which make dilemmas inconsistent.*

D*: - §(a1 Nag A B) = =(O0(au|B) A O(az|B))
D*: = 0 (an Aag) = =(O(eu|B) A O(a2|B))

Consider the obligations S = {O(p1| T),0(p2| T)}, S = {O(p|¢1),0(—p|¢2)} and S" =
{O(—=¢| T),O(c|k)}. Thelatter set formalizes Prakken and Sergot’s [PS96] cigarettes example,
when k isread as ‘killing someone (the witness)’ and ¢ as ‘ offering someone a cigarette.” The
cigarettes example is a dilemma, whereas the other two sets are not dilemmeas. Thus, in alogic
with the no-dilemma assumption, S and S’ should be consistent and S” should be inconsistent.
Total lack of strengthening of the antecedent is too weak, because then S” is consistent. The
inference pattern RSA (see 6.3) is too strong, because it makes S (for D*) and S’ (for D* and
D*') inconsistent. O

A solution of the cigarettes problem in Example 6.5 above is to weaken RsSA such that the
obligation O(p1|—(p1 A p2)) cannot be derived from the obligation O(p,| T) when O(p2| T) is
another premise(set S), and such that O(p|¢; Ag2) cannot bederived fromtheobligation O(p|q1)
when O(—p|q,) isanother premise (set S’). However, RSA may not be weakened too far, because
the set S” has to remain inconsistent. Hence, O(—c|k) hasto be derivable from O(—c¢|T), even

“4In a dyadic deontic logic with a contextual interpretation of the antecedent, the two axioms are equivalent.
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O(p:|T) O(p2|T)
RSA RSA
O(p1|—=(p1 A p2)) O(p2|~(p1 Ap2))
T D
O(plq) RSA O(—plg2) RSA
O(plq1 A q2) O(-plas Ng) ., .,
T D* /D
O(=e|T) e
O(—clk) O(clk) :
n D* / D*

Figure 6.17: Cigarettes problem

when O(c | k) is another premise. This solution is incorporated in the ordering logic O p with
preferential entailment. The solution in our logic uses preferential entailment for the defeasible
reasoning scheme maximally connected. Preferential entailment is a typical mechanism from
non-monotonic reasoning. The following exampleillustrates why the solution of the cigarettes
problem leads to non-monotonicity.

Example 6.6 (Cigarettes problem, continued) Consider the three sets of obligations S = 0,
S'={0%(p1| T)}and S" = {O%(p1| T),0%(p2| T)}. The three unique c-preferred models
of the sets S, S" and S” are represented in Figure 6.3. We have S’ = O%(p1|—~(p1 A p2)) and
S" - O%(p1|—(p1 A p2)). Hence, by addition of aformulawe loose conclusions. Moreover,
it showsthat the cigarettes problem is solved by weakening RSA, because with S the obligation
O%(p1|T) isnot strengthened to the obligation OF,(p1 | —(p1 A p2)). O

6.3.3 Defeasibility puzzles

We analyzed two defeasibility problems, the Fence Example and the Reykjavic Scenario, as
specificity versus CTD problems. We analyzed specificity as akind of restricted strengthening
of the antecedent.

. O(a|/81)7 C(O

S O(a|BL A Br)

RSAo

where condition Cy is defined as follows:
Co: thereisno premise O(o/|8') suchthat 8, A 3, logically implies 5', 5’ logically
implies 3, and not vice versaand « and o' are contradictory.

Example 6.7 (Defeasibility paradoxes) Consider the sets of dyadic obligations
S={0f[T),0(wA f|f),O(wA fld)}

S'={0(=r|T),0(=g|T),0(rlg),O(g|r)}

Inadefeasibledeonticlogic, thereare (at |east) twointerpretationsof S and S’. Intheoverridden
interpretation of S, both O(w A f|f) and O(w A f|d) are treated as more specific obligations
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that override the obligation O(—f|T), i.e. both are treated as cases of overridden defeasibility.
In the violability interpretation, O(w A f | f) istreated as a CTD obligation, i.e. as a case of
factual defeasibility. This interference of specificity and CTD is represented in Figure 6.18, a
copy of Figure 4.8. This figure should be read as follows. Each arrow is a condition: a two-
headed arrow is a consistency check, and a single-headed arrow is a logica implication. For
example, thecondition Cp formalizesthat an obligation O(«|3) isoverriddenby O (o' |3') if the
conclusions are contradictory (aconsistency check, the double-headed arrow) and the condition
of the overriding obligation is more specific (5’ logicaly implies 5). Case (a) represents criteria
for overridden defeasibility, and case (b) representscriteriafor CTD. Case (c) showsthat the pair
of obligationsO(—f| T) and O(w A f| f) can be viewed as overridden defeasibility as well as
CTD.

O(a|p) O(a|B) O(=fT)
inconsistent gqp(é::?ﬁ c inconsistent inconsistent gqp(é::?ﬁ c
O('[ ') O(c'|B) O(wA f|f)

a. overriding (Cop) b. CTD c. interference

Figure 6.18: Specificity and CTD

Figure 6.19 illustrates that the Reykjavic Scenario is a more complex instance of the Fence
example. In the Reykjavic Scenario, thelatter two obligationsof S’, O(r|g) and O(g|r), can be
considered as more specific obligations overriding the former two O(—r|g) and O(—g| T ), and

they can be considered as CTD obligations. O
O(=r|T) O(~g|T) O(=r|T) O(~g|T)
inc. I T;np(()erc?ﬁ c inc. I T gnp(ércrieﬁ c inc\’ inc‘\
O(r|g) O(g|r) O(g|r) O(rlg)
a. overriding (Cop) b. CTD

Figure 6.19: Specificity and CTD in the Reykjavic Scenario

Both defeasibility puzzleshave at |east two interpretations, and the problem of the puzzlesis
to decide between the different interpretations. We proposed that any solution hasto validate the
inference pattern cD. The inference pattern assumes that it is possible to represent a violation
by O(—a|a).

O(alB)
CD=———>"—
O(a|B A ~a)
Therationality of thisinference pattern isthat obligations can be violated. They cannot be over-
ridden by only violating it. For example, according to the overridden interpretation in the Fence
Example, the obligation O(—f | T) is never violated. According to our argument, we have to
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reject the overridden defeasibility and choose the violability interpretation. If we know the in-
terpretation, then we can formalize the solution of the defeasibility paradoxes by adapting the
definition of specificity Co.

6.4 Applications

The formalization of the trade scenario we discussed in Section 1.2.2 involvesthe formalization
of normative reasoning with contractual obligations. In Chapter 5 we discussed two theoriesthat
can formalize reasoning with obligations, atheory of diagnosis and qualitative decision theory.
Scenario anaysis extends the applications of diagnosis and decision theory. This become obvi-
ousif onetriesto use theselogicsto model the legal risks of the numerous agents (buyer, seller,
transporter, forwarder, bank, custom offices etc.) in an international trade scenario. For an ade-
quate logical framework for modeling legal risk analysis one needs the following elements:

e model obligations, and in particular violations of obligations. Thiscan be done by deontic
logics. In particular, we argue that the deontic logics introduced in this thesis are useful,
because they can deal with contrary-to-duty paradoxes and discriminate between excep-
tionsand violations.

e model how obligations affect actions and vice versa. In particular, analyze how behavior
of an agent is influenced by her obligations. This can be done with qualitative decision
theory, as discussed in Section 5.2.

e model how an agent argues that she has sufficient evidence, obtained via documents, to
be convinced that the other agent has fulfilled her obligations. This reasoning is usually
a precondition for the fulfillment of her own obligation. For example, a buyer in New
York will only fulfill her obligation to pay, if she has sufficient evidence that the seller in
Rotterdam has indeed shipped the goods to her. This reasoning about the other agent’s
strategy will involve game theory, but a so deontic, non-monotonic and epistemic logic to
model the inference based on incomplete but sufficient evidence.

e model reasoning about the other agent’s behavior, in particul ar with respect to her obliga-
tionstowards you. This can be modeled with multi-agent logics. In particular, the formal
framework that was developed by the group of Rosenschein [RZ94] is suitable for this
purpose.

The last three points can be summarized as the dynamic aspects of obligations in a multi-
agent environment. Basically, the problem is to analyze how the fulfillment of an obligation of
agent A by doing a certain action leads to another agent B fulfilling her obligation by doing an-
other action. And what kind of documents are required to give the agents enough confidence that
they are not deceived. What are the reasoning processes that drive these dynamics? Additional
expressiveness can be found in decision theory, becauserisk isthe core of it. Decisiontheory can
be used to determine the optimal strategy of agents. For example, a decision-theoretic analysis
of an EDI-based trade procedure checks that an agent has enough evidence of her legal status,
such that she will be able to prove her rightsin court. In thisanalysis, the critical factor is that
additional controlsare more expensivethan detecting fraud. For example, any bill-of-lading can
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be aforgery; however, in everyday practice it is assumed that a piece of paper that looks like a
bill-of-lading is a bill-of-lading, unless there is evidence of the contrary.

The dynamics of obligations are a novel extension of deontic logic. We can distinguish two
phasesin the lifespan of a contract: the creation of obligations and the execution of the contract
(in which obligations are either fulfilled or violated). The creation of contractual obligations
is subject to rationality, because an agent will only accept an obligation if she gets something
in return (a right, money etc). Contractual obligations differ in this respect from other speech
acts like promises, because in general a promise does not have to be profitable. This example
illustrates that the introduction of decision-theoretic notions is aso important for the dynamic
modeling of the EDI-procedures. Another important ingredient to describe the dynamics of obli-
gationsis defeasibility. In practice, obligations are valid ‘ given normal circumstances’ and can
be overridden in exceptiona circumstances.

The dynamic analysis of procedures is related to protocols being investigated by, for ex-
ample, Rosenschein [RZ94] and in agent-oriented frameworks [vL96, FHMV 95, ch.5]. Rosen-
schein’s approach shows how analytical techniquesfrom the world of game theory and decision
analysis can be applied to the dynamic organization of autonomous intelligent agents. The for-
mal analysisof rules governing the high-level behavior of interacting computer systems can also
be used to analyze the procedures based on EDI messages. Theresult of thisanalysisisthat cryp-
tography is not enough, we need an additional agent, the notary (a so-called trusted third party).
The Rosenschein-style analysis of protocolsis very useful for a classification of protocols, and
anormative analysis of EDI procedures.
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