AN INTRODUCTION TO MULTILINEAR ALGEBRA AND SOME APPLICATIONS

by A. BLOKHUIS *) and J. J. SEIDEL **)

*) Center of Mathematics and Computer Science, 1009 AB Amsterdam
**) Department of Mathematics, University of Technology, 5600 MB Eindhoven, The Netherlands

Abstract

The present paper intends to give a quick and easy introduction to tensors, in particular to the exterior and the symmetric algebra of a vector space and the relations between them. The entries of the k-th exterior, and the k -th symmetric power of a matrix are expressed as determinants, and permanents, respectively. The generating polynomials of these powers are related by their traces. As applications we mention MacDonald's proof of MacMahon's master theorem, Bebiano's permanent expansion ${ }^{1}$) and the permanent version of the solution of Fredholm's integral equation, observed by Kershaw ${ }^{2}$) and by de Bruijn ${ }^{3}$). Math. Rev.: 15A 69

1. Symmetric functions ${ }^{4}$)

The elementary symmetric polynomial of degree k in d variables, x_{1}, \ldots, x_{d}, is defined by

$$
e_{k}(x):=\sum_{1 \leqslant j_{1}<\ldots<j_{k} \leqslant d} x_{j_{1}} \ldots x_{j_{k}},
$$

or, equivalently, by its generating function

$$
E(t ; x):=\sum_{k \geqslant 0} e_{k}(x) t^{k}=\prod_{i=1}^{d}\left(1+x_{i} t\right)
$$

The k -th complete symmetric polynomial is defined by

$$
h_{k}(x):=\sum_{1 \leqslant j_{1} \leqslant \cdots \leqslant j_{k} \leqslant d} x_{j_{1}} \ldots x_{j_{k}}
$$

with generating function

$$
H(t ; x):=\sum_{k \geqslant 0} h_{k}(x) t^{k}=\prod_{i=1}^{d} \frac{1}{1-x_{i} t} .
$$

Theorem 1.1

$$
E(-t ; x) H(t ; x)=1
$$

Remark

$\left\{e_{1}, \ldots, e_{d}\right\}$ forms a basis for the graded ring S_{d} of symmetric polynomials

A. Blokhuis and J. J. Seidel

in d variables. Let j denote the all-one vector of size d, then

$$
e_{k}(j)=\binom{d}{k} \quad \text { and } \quad h_{k}(j)=\binom{d+k-1}{k}
$$

2. Tensors ${ }^{6-7}$)

We start with a quick definition. Let V be a (real) vector space of dimension d, with (positive definite) inner product (,) and orthonormal basis e_{1}, \ldots, e_{d}. We define tensor products by their components with respect to this basis:

$$
\begin{aligned}
& x \otimes y \text { by the } d^{2} \text { components } x_{i} y_{j} \\
& x \otimes y \otimes z \text { by the } d^{3} \text { components } x_{i} y_{j} z_{k}
\end{aligned}
$$

The tensor product $V \otimes V$ is the linear space spanned by all tensor products $x \otimes y ; x, y \in V$. The inner product $(x \otimes y, u \otimes v):=(x, u)(y, v)$ provides $V \otimes V$ with the orthonormal basis $\left\{e_{i} \otimes e_{j} \mid 1 \leqslant i, j \leqslant d\right\}$.

Similarly tensor products of k vectors, $x_{1} \otimes \ldots \otimes x_{k}$ are defined by their d^{k} components $\left(x_{1}\right)_{i}\left(x_{2}\right)_{j} \ldots\left(x_{k}\right)_{m}$, with respect to the orthonormal basis

$$
\left\{e_{i} \otimes e_{j} \otimes \ldots \otimes e_{m} \mid \quad 1 \leqslant i \leqslant j \leqslant \ldots \leqslant m \leqslant d\right\}
$$

of $T_{k}(V):=\otimes^{k} V$, with inner product

$$
\left(x_{1} \otimes \ldots \otimes x_{k}, y_{1} \otimes \ldots \otimes y_{k}\right)=\prod_{i=1}^{k}\left(x_{i}, y_{i}\right)
$$

Clearly, $\operatorname{dim} T_{k} V=d^{k}$. The tensor algebra $T V$ is the direct sum

$$
T V:=T_{0} V \oplus T_{1} V \oplus \ldots=\sum_{k \geqslant 0}^{\oplus} T_{k} V
$$

where $T_{0} V \simeq R, T_{1} V \simeq V$. Its Poincaré polynomial (as a graded algebra) is

$$
P_{T}(t):=\sum_{k \geqslant 0}\left(\operatorname{dim} T_{k} V\right) t^{k}=\frac{1}{1-d t} .
$$

Remark

We refer to the literature for details about the following coordinatefree definition. The tensor product of the vector spaces U and V is the pair of a vector space $U \otimes V$ and a bilinear map $\alpha: U \times V \rightarrow U \otimes V$ such that for all bilinear f there is a unique linear g such that the following diagram commutes

3. The exterior algebra $\Lambda V^{5,6}$)

$\Lambda_{2} V$ is the linear subspace of $T_{2} V$ spanned by the skew 2-tensors:

$$
x \wedge y:=\frac{1}{2}(x \otimes y-y \otimes x) ; \quad x, y \in V
$$

Clearly, $x \wedge x=0, x \wedge y=-y \wedge x$ and $\operatorname{dim} A_{2} V=\binom{d}{2}$.
The inner product inherited from $T_{2} V$ becomes

$$
(x \wedge y, u \wedge v)=\frac{1}{2}((x, u)(y, v)-(x, v)(y, u))=\frac{1}{2} \operatorname{det}\binom{(x, u)(x, v)}{(y, u)(y, v)} .
$$

An orthonormal basis for $\Lambda_{2} V$ is provided by $\left\{\sqrt{2}\left(e_{i} \wedge e_{j}\right) \mid 1 \leqslant i<j \leqslant d\right\}$.
Likewise, for $0 \leqslant k \leqslant d$ we define

$$
x_{1} \wedge \ldots \wedge x_{k}:=\frac{1}{k!} \sum_{\sigma \in \mathscr{S}_{k}}(-1)^{\sigma} x_{\sigma 1} \otimes \ldots \otimes x_{\sigma k}
$$

where $(-1)^{\sigma}$ is $1(-1)$ if the permutation σ is even (odd), and γ_{k} is the symmetric group on k letters, and

$$
\Lambda_{k} V:=\left\langle x_{1} \wedge \ldots \wedge x_{k} \mid x_{i} \in V\right\rangle_{R}
$$

with inner product

$$
\left(x_{1} \wedge \ldots \wedge x_{k}, y_{1} \wedge \ldots \wedge y_{k}\right)=\frac{1}{k!} \operatorname{det}\left(\left(x_{l}, y_{j}\right)\right)
$$

Note that $\operatorname{dim} \Lambda_{k} V=\binom{d}{k}=e_{k}(j)$; an orthonormal basis for $\Lambda_{k} V$ is provided by

$$
\left\{\sqrt{k!} e_{i_{1}} \wedge \ldots \wedge e_{i_{k}} \mid 1 \leqslant i_{1}<\ldots<i_{k} \leqslant d\right\} .
$$

The exterior algebra ΛV is the (finite) direct sum

$$
\Lambda V=\Lambda_{0} V \oplus \Lambda_{1} V \oplus \ldots \oplus \Lambda_{d-1} V \oplus \Lambda_{d} V
$$

where $\Lambda_{0} V \simeq \Lambda_{d} V \simeq R$ and $\Lambda_{1} V \simeq \Lambda_{d-1} V \simeq V$. Its Poincaré polynomial is

$$
p_{A}(t)=(1+t)^{d}=E(t, j) .
$$

Remark
$\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}$ are linearly dependent iff $x_{1} \wedge \ldots \wedge \boldsymbol{x}_{k}=\mathbf{0}$.

4. The symmetric algebra $\Sigma V^{5,6}$)

$\Sigma_{2} V$ is the linear space spanned by the symmetric 2-tensors,

$$
x \vee y:=\frac{1}{2}(x \otimes y+y \otimes x) ; \quad x, y \in V .
$$

Clearly, $x \vee y=y \vee x$ and $\operatorname{dim} \Sigma_{2} V=\binom{d+1}{2}$.

$$
(x \vee y, u \vee v)=\frac{1}{2}((x, u)(y, v)+(x, v)(y, u))=\frac{1}{2} \operatorname{per}\binom{(x, u)(x, v)}{(y, u)(y, v)} .
$$

A. Blokhuis and J. J. Seidel

Likewise, for $0 \leqslant k<\infty$ we define

$$
\Sigma_{k} V:=\left\langle x_{1} \vee \ldots \vee x_{k} \mid x_{i} \in V\right\rangle_{R}
$$

where

$$
x_{1} \vee \ldots \vee x_{k}=\frac{1}{k!} \sum_{\sigma \in g_{k}} x_{\sigma 1} \otimes \ldots \otimes x_{\sigma k}
$$

Then $\Sigma_{k} V$ has basis $\left\{e_{i_{1}} \vee \ldots \vee e_{i_{k}} \mid 1 \leqslant i_{1} \leqslant \ldots \leqslant i_{k} \leqslant d\right\}$, and

$$
\operatorname{dim} \Sigma_{k} V=\binom{d+k-1}{k}=h_{k}(j) .
$$

The inner product derives from

$$
\left(x_{1} \vee \ldots \vee x_{k}, y_{1} \vee \ldots \vee y_{k}\right)=\frac{1}{k!} \operatorname{per}\left(\left(x_{i}, y_{j}\right)\right)
$$

The symmetric algebra $\Sigma V=\sum_{k \geqslant 0}^{\oplus}\left(\Sigma_{k} V\right)$ has Poincaré polynomial

$$
p_{\Sigma}(t)=(1-t)^{-d}=H(t, j)
$$

Remark
The basis for $\Sigma_{k} V$ may be normalized using the factors $\left(\frac{k!}{k!}\right)^{\frac{1}{2}}$, where $k!=k_{1}!\ldots k_{d}!$ and $|k|=k_{1}+\ldots+k_{d}=k, e_{i_{1}} \vee \ldots \vee e_{i_{k}}=e_{1}^{k_{1}} \vee \ldots \vee e_{d}^{k_{d}}$.

5. Relating Λ to $\Sigma^{7,8}$)

We shall consider power series whose coefficients are vector spaces, with addition defined as direct sum, and multiplication as tensor product.

$$
\Lambda(t ; V):=\sum_{k \geqslant 0}\left(\Lambda_{k} V\right) t^{k} ; \quad \Sigma(t ; V):=\sum_{k \geqslant 0}\left(\Sigma_{k} V\right) t^{k} .
$$

Theorem 5.1

$$
\Lambda(t ; V \oplus W)=\Lambda(t ; V) \otimes \Lambda(t ; W) ; \Sigma(t ; V \oplus W)=\Sigma(t ; V) \otimes \Sigma(t ; W)
$$

Proof
By considering bases we prove $\Lambda_{k}(V \otimes W)=\sum_{i+j=k}^{\oplus} \Lambda_{i}(V) \otimes \Lambda_{j}(W)$, and the analogous formula for $\Sigma_{k}(V \oplus W)$.
These imply the relations of the theorem.
Theorem 5.2

$$
\Lambda(-t ; V) \otimes \Sigma(t ; V)=1
$$

Proof
First observe that for $\operatorname{dim} V=1$ we have

$$
\Lambda(t ; V)=1+t V ; \quad \Sigma(t ; V)=1+t V+t^{2} V+\ldots=(1-t V)^{-1}
$$

For an arbitrary V (which is the direct sum of one-dimensional subspaces), the theorem follows by application of theorem 5.1.

6. Relating Λ and Σ to $S^{4,8}$)

The semigroup $(N,+)$ can be extended to the ring $(Z,+,$.$) by a well-known$ construction. Similarly, the isomorphism classes [V] of vector spaces V, over a fixed field form a semigroup with respect to direct sums, which can be extended to the Grothendieck ring K, with operations direct sum and tensor product. The map $[V] \rightarrow \operatorname{dim} V$ identifies the rings K and Z. For V of dimension d we have

$$
\left[\Lambda_{k} V\right] \rightarrow\binom{d}{k} \text { and }\left[\Sigma_{k} V\right] \rightarrow\binom{d+k-1}{k}
$$

More interesting is the isomorphism of the Grothendieck ring K and the ring S of symmetric functions (in infinitely many variables). Here we have the following correspondences: (V of dimension $d, x=\left(x_{1}, \ldots, x_{d}, 0,0, \ldots\right)$)

$$
\begin{array}{ll}
\Lambda_{k} V \rightarrow e_{k}(x) ; & \Lambda(t ; V) \rightarrow E(t ; x), \\
\Sigma_{k} V \rightarrow h_{k}(x) ; & \Sigma(t ; V) \rightarrow H(t ; x) .
\end{array}
$$

This shows the connection between theorems 5.2 and 1.1.

Remark

The ring S of the symmetric functions is the underlying ring for the representations of the symmetric group $\mathscr{P}_{\text {in }}$ the following sense: Let π : $\mathscr{S}_{k} \rightarrow \operatorname{Aut}\left(V_{\pi}\right)$ denote an irreducible representation of \mathscr{S}_{k} on the \mathscr{S}-module V_{π}. Let $R(\mathscr{S})$ denote the ring of all such \mathscr{S}-modules. The fundamental theorem [5] says that there is an isomorphism (of λ-rings)

$$
\Theta: R(\mathscr{S}) \simeq S
$$

We indicate how to obtain the symmetric function $\Theta\left(V_{\pi}\right)$: Let X be any vector space, consider $V_{\pi} \otimes X^{\bar{y} k}$ and its \mathscr{S}_{k}-invariant subspace $\pi(X)$. For instance, if $\pi=1$ then $\pi(X)=\Sigma_{k}(X)$, if $\pi=+/-$ then $\pi(X)=\Lambda_{k}(X)$. Any linear $T: X \rightarrow X$ induces $T_{k}(T): T_{k} X \rightarrow T_{k} X$ (see sec. 9) and $\pi(T): \pi(X) \rightarrow \pi(X)$. Now the function $\operatorname{spec}(T) \rightarrow \operatorname{trace} \pi(T)$ is the desired symmetric function in S which is attached to π.

7. Duality ${ }^{6}$)

The dual V^{*} of the vector space V consists of the linear functionals on V. The action of V^{*} on V may conveniently be described by a pairing [V, V^{*}]: $\left[v, w^{*}\right]:=w^{*}(v)$. If we identify $\left(T_{k} V\right)^{*}$ with $T_{k}\left(V^{*}\right)$ we may write

$$
\left[v_{1} \otimes \ldots \otimes v_{k}, w_{1}^{*} \otimes \ldots \otimes w_{k}^{*}\right]=\prod_{i=1}^{k}\left[v_{i}, w_{i}^{*}\right]=\prod_{i=1}^{k} w_{i}^{*}\left(v_{i}\right) .
$$

Likewise we have $\left(\Lambda_{k} V\right)^{*}=\Lambda_{k}\left(V^{*}\right)$ and $\left(\Sigma_{k} V\right)^{*} \simeq \Sigma_{k}\left(V^{*}\right)$ with the induced pairings

$$
\begin{aligned}
& {\left[v_{1} \wedge \ldots \wedge v_{k}, w_{1}^{*} \wedge \ldots \wedge w_{k}^{*}\right]=\frac{1}{k!} \operatorname{det}\left(w_{j}^{*}\left(v_{i}\right)\right),} \\
& {\left[v_{1} \vee \ldots \vee v_{k}, w_{1}^{*} \vee \ldots \vee w_{k}^{*}\right]=\frac{1}{k!} \operatorname{per}\left(w_{j}^{*}\left(v_{i}\right)\right) .}
\end{aligned}
$$

Remark

ΣV^{*} is isomorphic with the ring of polynomial functions on V, with ordinary multiplication. In a certain sense ΛV^{*} corresponds to the set of square-free polynomials in d variables, of. sec. 9 .

8. Metrics ${ }^{6}$)

Let V have basis e_{1}, \ldots, e_{d} and let $e_{1}^{*}, \ldots, e_{d}^{*}$ be the dual basis for V^{*}, i.e., $\left[\boldsymbol{e}_{i}, e_{j}^{*}\right]=\delta_{i j}$.

In V a non-degenerate inner product is defined by a non-singular map $G: V \rightarrow V^{*}$ and $(v, w):=[v, G w], v, w \in V$. For the orthogonal geometry $O(r, s)$ the standard matrix for G, with respect to the bases e_{i} and e_{j}^{*} is

$$
G=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & -I_{s}
\end{array}\right), \quad \text { and } \quad G=\left(\begin{array}{cc}
0 & I_{m} \\
-I_{m} & 0
\end{array}\right)
$$

for the symplectic geometry. The map $G: V \rightarrow V^{*}$ induces $T_{k} G: T_{k} V \rightarrow T_{k} V^{*}$: $x_{1} \otimes \ldots \otimes x_{k} \rightarrow G x_{1} \otimes \ldots G x_{k}$, which in $T_{k} V$ leads to the inner product

$$
(t, u):=\left[t, T_{k} G u\right] ; t, u \in T_{k} V
$$

or

$$
\left(x_{1} \otimes \ldots x_{k}, y_{1} \otimes \ldots y_{k}\right)=\prod_{i=1}^{k}\left[x_{i}, G y_{i}\right]=\prod_{i=1}^{k}\left(x_{i}, y_{i}\right)
$$

Likewise the maps $\Lambda_{k} G: \Lambda_{k} V \rightarrow \Lambda_{k} V^{*}$ and $\Sigma_{k} G: \Sigma_{k} V \rightarrow \Sigma_{k} V^{*}$ are defined and

$$
\begin{aligned}
& \left(x_{1} \wedge \ldots \wedge x_{k}, y_{1} \wedge \ldots \wedge y_{k}\right)=\frac{1}{k!} \operatorname{det}\left(\left(x_{l}, y_{j}\right)\right) \\
& \left(x_{1} \vee \ldots \vee x_{k}, y_{1} \vee \ldots \vee y_{k}\right)=\frac{1}{k!} \operatorname{per}\left(\left(x_{i}, y_{j}\right)\right)
\end{aligned}
$$

9. Exterior and symmetric powers of a matrix ${ }^{5,6,9,10}$)

Let $A: V \rightarrow V$ denote a linear map of V. The k-th tensor power $T_{k} A$ is defined by $T_{k} A: x_{1} \otimes \ldots \otimes x_{k} \rightarrow A x_{1} \otimes \ldots \otimes A x_{k}$. Likewise the maps $\Lambda_{k} A$ and $\Sigma_{k} A$ are defined.

Notation:

For k and l, with $|k|=|l|=k$ the matrix $A(k, l)$ is the $k \times k$ matrix which is obtained from (the $d \times d$ matrix) A by repeating k_{i} times the i-th row, and l_{j} times the j-th column, for $i, j=1, \ldots, d$.

Lemma 9.1

In $(A \boldsymbol{x})^{\boldsymbol{k}}$ the coefficient of x^{l} equals $\frac{1}{l!}$ per $A(k, l)$.

Proof

$(A x)^{k}=\prod_{i=1}^{d}\left(\sum_{j=1}^{d} a_{i j} x_{j}\right)^{k_{l}}$. Arrange the terms $a_{i j} x_{j}$ in a $k \times d$ matrix. Change this into a $k \times k$ matrix with columns corresponding to l. Suppress x^{l}, then we are left with $A(k, l)$ and the result follows.

In the final remark of sec. 7 we mentioned that $\Lambda_{k} V$ corresponds in a certain sense to the square-free polynomials, the sense being that

$$
x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}=(-1)^{\sigma} x_{i_{1}} \ldots x_{i_{k}}
$$

for $\sigma \in \mathscr{S}_{k}$, i.e., the polynomials are skew. In this sense one has the following skew version of lemma 9.1:

Lemma 9.1 ${ }^{\prime}$

In $(A x)^{k}$ the coefficient of x^{l} equals $\operatorname{det} A(k, l)$. Note that $\operatorname{det} A(k, l) \neq 0$ implies $l!=1$. By use of the orthonormal bases for $\Lambda_{k} V$ and $\Sigma_{k} V$ introduced in secs 3 and 4 , we can now calculate the entries of the power matrices.

Theorem 9.2

$$
\Lambda_{k}(A)_{k, l}=\operatorname{det} A(k, l) ; \quad \Sigma_{k}(A)_{k, l}=\frac{\operatorname{per} A(k, l)}{\sqrt{ } k!V l!} .
$$

From the definition we infer:

Theorem 9.3

Let A have eigenvalues $\alpha_{1}, \ldots, \alpha_{d}$. The eigenvalues of $\Lambda_{k}(A)$ are the $\binom{d}{k}$ squarefree, those of $\Sigma_{k}(A)$ the $\left(\begin{array}{c}d+\underset{k}{k}-1\end{array}\right)$ homogeneous monomials of degree k in $\alpha_{1}, \ldots, \alpha_{d}$.

The following expansion of the determinant is well-known:

$$
\operatorname{det}(I+t A)=1+t \sum_{i=1}^{d} a_{i i}+t^{2} \sum_{i<j}\left|\begin{array}{ll}
a_{1 i} & a_{i j} \\
a_{j i} & a_{j j}
\end{array}\right|+\ldots+t^{d} \operatorname{det}(A)
$$

Its counterpart for permanents is used less frequently:

Theorem 9.4

$$
\begin{aligned}
\operatorname{det}(I+t A) & =\sum_{k=0}^{d} t^{k} \cdot \operatorname{trace} \Lambda_{k}(A)=\sum_{k} t^{|k|} \operatorname{det} A(k, k) ; \\
\operatorname{det}^{-1}(I-t A) & =\sum_{k \geqslant 0} t^{k} \cdot \operatorname{trace} \sum_{k}(A)=\sum_{k} t^{|k|} \frac{\operatorname{per} A(k, k)}{k!} .
\end{aligned}
$$

Proof

The equalities on the right hand sides follow from theorem 9.2. As for the left hand sides, theorem 9.3 implies that trace $\Sigma_{k}(A)$ is the k-th complete symmetric polynomial in the eigenvalues α of A, i.e., we have

$$
\operatorname{trace} \Sigma_{k}(A)=h_{k}(\alpha), \quad \text { similarly trace } \Lambda_{k}(A)=e_{k}(\alpha)
$$

Hence the sums of the traces are the generating functions $E(t ; \alpha)$ and $H(t ; \boldsymbol{\alpha})$ of sec. 1. The theorem now follows from theorem 1.1.

Corollary 9.5

$$
\operatorname{det}(I+t A)=\operatorname{trace} \Lambda(t ; A)=\operatorname{trace}^{-1} \Sigma(t ; A)
$$

for the generating functions

$$
\Lambda(t ; A)=\sum_{k \geqslant 0} t^{k} \Lambda_{k}(A) \text { and } \Sigma(t ; A)=\sum_{k \geqslant 0} t^{k} \Sigma_{k}(A) .
$$

10. Applications

I. G. Macdonald told us the following proof of MacMahon's master theorem.

Theorem 10.1

The coefficient of x^{k} in the symmetric product $(A x)^{k}$ equals the coefficient of x^{k} in $1 / \operatorname{det}(I-A \Delta(x))$, where $\Delta(x)=\operatorname{diag}\left(x_{1}, \ldots, x_{d}\right)$.

Proof
By 9.1 and 9.2 the coefficient of x^{k} in $(A x)^{k}$ equals the (k, k) entry of $\Sigma_{k}(A)$ where $k=|k|$. Hence it is the coefficient of x^{k} in trace $\Sigma_{k}(A \Delta(x))$. However, $\sum_{k \geqslant 0} \operatorname{trace} \Sigma_{k}(A \Delta(x))=1 / \operatorname{det}(I-A \Delta(x))$, according to theorem 9.4.

Theorem 10.2^{1})

Proof

$$
\frac{(x, A y)^{k}}{k!}=\sum_{|k|=|l|=k} \frac{x^{k} y^{I}}{k!l!} \operatorname{per} A(k, l)
$$

Write $\boldsymbol{x}=x_{1} \boldsymbol{e}_{1}+\ldots+x_{d} \boldsymbol{e}_{d}$, and take the inner products of the symmetric tensors $\frac{1}{k!} x \vee \ldots \vee x$ and $\frac{1}{k!} A y \vee \ldots \vee A y$, using

$$
\frac{1}{k!} x \vee \ldots \vee x=\sum_{|k|=k} \frac{x^{k}}{k!} e_{1}^{k_{1}} \vee \ldots \vee e_{d}^{k_{d}}
$$

Corrolary 10.3 (N. G. de Bruijn)
For any rectangular matrix $A=\left(a_{i j}\right)$ we have

$$
\frac{1}{k!}\left(\sum_{i, j} a_{i j}\right)^{k}=\sum_{|k|=|l|=k} \frac{\operatorname{per} A(k, l)}{k!l!} .
$$

Proof
Make A into a square matrix by supplying zeros, and apply theorem 10.2.

11. Fredholm's integral equation ${ }^{2,3,11}$)

From the theory of integral equations it follows that

$$
u(x)=f(x)+\lambda \int_{0}^{1} K(x, t) u(t) \mathrm{d} t
$$

has the solution

$$
u(x)=f(x)+\int_{0}^{1} \frac{D(x, y ; \lambda)}{D(\lambda)} f(y) \mathrm{d} y
$$

provided $D(\lambda) \neq 0$. To explain the notation, we divide the interval $[0,1]$ into d equal parts by $0<\frac{1}{d}<\ldots<\frac{d-1}{d}<1$. Let f be the d-vector with components $f_{t}=f\left(\frac{i}{d}\right)$, and let M be the $d \times d$ matrix with entries $M_{i j}=\frac{1}{d} K\left(\frac{i}{d}, \frac{j}{\mathrm{~d}}\right)$. Then the integral equation is approximated by the following set of matrix equations of increasing size $d=1,2,3, \ldots$

$$
(I-\lambda M) u=f
$$

These equations may be solved using Cramer's rule. Fredholm's determinant $D(\lambda)$ is defined by

$$
1-\lambda \int_{0}^{1} K(t, t) \mathrm{d} t+\frac{\lambda^{2}}{2!} \int_{0}^{1} \int_{0}^{1}\left|\begin{array}{l}
K\left(t_{1}, t_{1}\right) K\left(t_{1}, t_{2}\right) \\
K\left(t_{2}, t_{1}\right) K\left(t_{2}, t_{2}\right)
\end{array}\right| \mathrm{d} t_{1} \mathrm{~d} t_{2}-\frac{\lambda^{3}}{3!} \iiint+\ldots
$$

It is the limit, for $d \rightarrow \infty$, of

$$
\Delta(\lambda):=1-\lambda \sum_{i} M_{i t}+\frac{\lambda^{2}}{2!} \sum_{i, j}\left|\begin{array}{l}
M_{i i} M_{i j} \\
M_{j l} M_{j j}
\end{array}\right|+\ldots+(-1)^{d} \lambda^{d} \operatorname{det} M .
$$

Fredholm's first minor $D(x, y ; \lambda)$ is defined by

$$
\left.\begin{aligned}
\lambda K(x, y)-\lambda^{2} \int_{0}^{1} \left\lvert\, \begin{array}{l}
K(x, y) K(x, t) \\
K(t, y)
\end{array} K(t, t)\right.
\end{aligned}\left|\mathrm{d} t+, \quad . \quad \begin{array}{l}
\lambda^{3} \\
2!
\end{array} \int_{0}^{1} \int_{0}^{1}\right| \begin{aligned}
& K(x, y) K(x, s) K(x, t) \\
& K(s, y) K(s, s) K(s, t) \\
& K(t, y) K(t, s) K(t, t)
\end{aligned} \right\rvert\, \mathrm{d} s \mathrm{~d} t+\ldots . .
$$

It is the limit for $d \rightarrow \infty$, of
$\Delta(x, y ; \lambda):=\lambda M_{x y}-\lambda^{2} \sum_{1}\left|\begin{array}{l}M_{x y} M_{x i} \\ M_{i y} M_{i l}\end{array}\right|+$

$$
\frac{\lambda^{3}}{2!} \sum_{i, j}\left|\begin{array}{l}
M_{x y} M_{x i} M_{x j} \\
M_{i y} M_{i i} M_{i j} \\
M_{j y} M_{j i} M_{j j}
\end{array}\right|+\ldots
$$

By replacing determinants by permanents we get expressions which we denote by $P(-\lambda), \Pi(-\lambda),-P(x, y ;-\lambda),-\Pi(x, y ;-\lambda)$, respectively. Now in ref. 2 it is proved that

$$
\begin{equation*}
D(\lambda) P(\lambda)=1, \quad D(x, y ; \lambda) P(\lambda)=P(x, y ; \lambda) D(\lambda) . \tag{*}
\end{equation*}
$$

As a consequence the solution of Fredholm's equation may also be written in terms of permanents:

$$
u(x)=f(x)+\int_{0}^{1} \frac{P(x, y ; \lambda)}{P(\lambda)} f(y) \mathrm{d} y
$$

Now the first equality in (*) is implied by

$$
\Delta(\lambda)=\operatorname{det}(I-\lambda M)=(\Pi(\lambda))^{-1}
$$

One can verify that $\Delta(x, y ; \lambda) \Pi(\lambda)=\Pi(x, y ; \lambda) \Delta(\lambda)$ also holds, but we lack an elegant proof of this fact.

REFERENCES

${ }^{1}$) N. Bebiano, Pacific J. Math. 101, 1 (1982).
${ }^{2}$) D. Kershaw, J. Integral Equ. 1, 281 (1979).
${ }^{3}$) N. G. de Bruijn, J. Math. Anal. Appl. 92, 397 (1983).
4) I. G. MacDonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford 1979.
${ }^{5}$) W. H. Greub, Multilinear algebra, 2nd edition, Springer, New York 1978.
${ }^{6}$) R. Shaw, Linear algebra and group representations II, Academic Press, New York 1982.
${ }^{7}$) S. Lang, Algebra, Addison-Wesley, Reading Mass. 1965.
${ }^{8}$) D. Knutson, λ-rings and the representation theory of the symmetric group, Lecture Notes 308, Springer, New York 1973.
${ }^{8}$) C. C. MacDuffee, The theory of matrices, Chelsea, London 1946.
${ }^{10}$) H. Minc, Permanents, Addison-Wesley, Reading Mass. 1978.
${ }^{11}$) W. V. Lovitt, Linear integral equations, Dover, New York 1950.
${ }^{12}$) H. Minc, Lin. Multilin. Alg. 12, 227 (1983).

