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Abstract

The present paper intends to give a quick and easy introduction to tensors,
in particular to the exterior and the symmetric algebra of a vector space
and the relations between them. The entries of the k-th exterior, and the
k-th symmetric power of a matrix are expressed as determinants, and per-
manents, respectively. The generating polynomials of these powers are
related by their traces. As applications we mention MacDonald’s proof of
MacMahon’s master theorem, Bebiano’s permanent expansion') and the
permanent version of the solution of Fredholm’s integral equation, ob-
served by Kershaw?) and by de Bruijn?).

Math. Rev.: 15A69

1. Symmetric functions*)

The elementary symmetric polynomial of degree k in d variables, x1,
is defined by

ex(x) 1= . b¥ ) Xjy o -« X s
I <. <jp<d

or, equivalently, by its generating function
d
E(t;x)i= L et =11 (1 +x0).
k20 i=1

The k~th complete symmetric polynomial is defined by

- p X, o v X
he(x) : th< d

with generating function
d 1
H@;x):= T ()tF =1 +——r.
(%) éo ) iI=-I11—X:t

Theorem 1.1 E(-t;x)H({t; x) = 1.

Remark

v ey Xdy

{e1, . ..,es} forms a basis for the graded ring Sq of symmetric polynomials
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in d variables. Let j denote the all-one vector of size d, then
N = d) N (d +k-1
ex(§) (k and Ae(J) k )
2. Tensors®™ ")

We start with a quick definition. Let ¥ be a (real) vector space of dimension
d, with (positive definite) inner product (, ) and orthonormal basis ey, .. ., €.
We define tensor products by their components with respect to this basis:

x®y by the d* components x;y;,
x®y ® z by the d® components x; y;z.

The tensor product ¥ ® ¥ is the linear space spanned by all tensor products
x®y; x,yeV. The inner product x®Ky,u@v):= (x, u)(y, v) provides
¥V & V with the orthonormal basis {e;® &/ |1 < i, j < d}.

Similarly tensor products of k vectors, x; & .. . ® xx are defined by their d*
components (x1); (Xz);. . . (Xx)m, With respect to the orthonormal basis

eQRe®... Qen| 1<Ki<i<...<mKLd}
of T (V) : = ®*V, with inner product

k
Q... . @x,yi®...0p) = El(Xi’yi)'

Clearly, dim Fx ¥V = d*. The tensor algebra TV is the direct sum

TV:i= TV V... =kaTkV,
>
where ToV= R, T1V= V. Its Poincaré polynomial (as a graded algebra) is
. 1
. b
Pr(t): kéo(dlm TV ¢ = 47"

Remark

We refer to the literature for details about the following coordinatefree de-
finition. The tensor product of the vector spaces U and V'is the pair of a vector
space U® V and a bilinear map ¢ : UXV— U® V such that for all bilinear f
there is a unique linear g such that the following diagram commutes

UxV UV

N, e

o
w
3. The exterior algebra AV %:¢)

Az Vis the linear subspace of T2V spanned by the skew 2-tensors:

XAy =3x@y-y®x); x,yeV.
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Clearly, x Ax = 0, XAy = —y A x and dim A2V = (g)

The inner product inherited from T, V' becomes

Az A0) = §(5) 00) - (o0) o) = et (220 (500,

An orthonormal basis for Az V' is provided by {}/2(eine)| 1 <i<j<d).
Likewise, for 0 << k << d we define
X1A .. AXgi= 1 2 (~D%1®... x5k,
k! e
where (— 1) is 1 (—1) if the permutation ¢ is even (odd), and y is the sym-
metric group on k letters, and
A V= (x; AR Axk|x;eV)R,

with inner product
1
(XiA  cAXKYIA . AYE) = P—det((x;,y_,)).

Note that dim A,V = (d) = ex(/); an orthonormal basis for A,V is pro-

vided by k
{l/ﬁeh/\.../\e;kll Kh<...<hgd}.
The exterior algebra AV is the (finite) direct sum
AV=AVEMMLVD ... DAV AV,
where AgV=A,V=R and A, V=A4.1V= V. Its Poincaré polynomial is
palt) = (1 + 1Y = E(t, J).
Remark

X1, ..., Xk are linearly dependent iff x; A. .. AXc = 0.

4. The symmetric algebra XV 5°)

2’2 V'is the linear space spanned by the symmetric 2-tensors,

xvy:=ixQy+y®x); x yeV.
Clearly, x v y=yvxand dimZ: V= (d; 1).

Gev 3w 0) = §(05 ) 0r0) + (50) O} = per ({522 500,
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Likewise, for 0 < k < « we define
SVi=nv.. . VX|xieVy,
where

X1 VXI:—-TC"_ 2 xal@ . @ Xok -
G'E

Then T, V has basis {e;, v...ve,| 1 <h<...<ik<d}, and
dim 5V = (44 =1) < ni).
The inner product derives from
V. VX1V VY YE) = I:—!per((x,-,yj)).
The symmetric algebra XV = Igz (2% V) has Poincaré polynomial
px() = (1 — O™ =H(, J).

Remark

The basis for XV may be normalized using the factors (lli" >i, where

kl=ki!... ksl and |k| =ki+ ...+ ka=k, e,v...ve,=efiv. .  vek

5. Relating A to X' %)

We shall consider power series whose coefficients are vector spaces, with
addition defined as direct sum, and multiplication as tensor product.

A V)= T (AWt Z(V) = T (St
k>0 k20
Theorem 5.1
AGY W) = ALV QAWGW); 2(LEVEW) = Z(5 V) Q Z(HW).
Proof

By considering bases we prove Ax( V6<) Wy = }:@A (V) ® A (W), and the
analogous formula for Zx(V @ W).

These imply the relations of the theorem. ad

Theorem 5.2
A-5V)RQZHV) = 1.

Proof i
First observe that for dim ¥V = 1 we have

AGVY =1+ tV; ZBV)=1+tV+82V +...=( — V).

114
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For an arbitrary ¥ (which is the direct sum of one-dimensional subspaces), the
theorem follows by application of theorem 5.1. ]

6. Relating A and X to S %)

The semigroup (N, +) can be extended to the ring (Z, +, . ) by a well-known
construction. Similarly, the isomorphism classes [V'] of vector spaces V, over a
fixed field form a semigroup with respect to direct sums, which can be extended
to the Grothendieck ring X, with operations direct sum and tensor product. The
map [V] — dim V identifies the rings K and Z. For V of dimension d we have

(A V]~ (g) and [SeV]— (d“]:‘l )
More interesting is the isomorphism of the Grothendieck ring X and the
ring S of symmetric functions (in infinitely many variables). Here we have the
following correspondences: (V of dimension d, x = (x1, ..., %2,0,0,...))

AV —er(x); At V) — E(t; x),
eV —he(x); 20 V)—H(t; x).

This shows the connection between theorems 5.2 and 1.1.

Remark

The ring S of the symmetric functions is the underlying ring for the repre-
sentations of the symmetric group & in the following sense: Let 7: % — Aut(Vz)
denote an irreducible representation of &% on the #module V,. Let R(%)
denote the ring of all Such #modules. The fundamental theorem [5] says that
there is an isomorphism (of A-rings)

@:R(.?):S.

We indicate how to obtain the symmetric function ®(V,): Let X be any vector
space, consider V; ® X®* and its &%-invariant subspace 7(X). For instance,
if 7 =1 then n(X) = Zx(X), if # = +/— then n(X) = Ax(X). Any linear
T: X— X induces T(T): Tp X — Ty X (see sec. 9) and n(T): n(X)—n(X).
Now the function spec(7") — trace 7 (7") is the desired symmetric function in S
which is attached to 7. '

7. Duality )

The dual V* of the vector space ¥ consists of the linear functionals on V.
The action of ¥* on ¥ may conveniently be described by a pairing [V, V*]:
[v, w*] : = w*(v). If we identify (T V)* with Tk(V*) we may write
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k k
M. ..0v, WwER ... @ wi] = El[v;, wi] = iI;Ilw;"(v;).

Likewise we have (A )* = A(V*) and (ZkV)* = Z(V*) with the induced
pairings
1A ... AV, WEA .. AW = det (wf(vy)),

L
k!
1
[viv...vor, wiv.. . v wfl =T

per (w}(v)).

Remark

ZV* is isomorphic with the ring of polynomial functions on V¥, with
ordinary multiplication. In a certain sense A ¥* corresponds to the set of
square-free polynomials in d variables, cf. sec. 9.

8. Metrics®)

Let V have basis e, . .., ez and let ef, ..., e} be the dual basis for V*, i.e.,
lei, e}] = diy.

In ¥ a non-degenerate inner product is defined by a non-singular map
G:V—>V* and (v,w):= [v,Gw], v, weV. For the orthogonal geometry
O(r, s) the standard matrix for G, with respect to the bases e; and ef is

6=(52,) ma o=(3,%)

for the symplectic geometry. The map G: V—V* induces TxG: Tk V' — T, V*:
X1 ®...0x— Gx1 & ...Gxi, which in Tk ¥ leads to the inner product

(t,u):=[t, T« Gu]; t,ue TV,
or

k k
R X1 Q. oY) = inl [xi, Gyi} = 11:Il(x" .
Likewise the maps Ax G: Ax V—AV* and Zx G: Zip V— Zx V* are defined and

XLA . AXEVIA . AYE) = -l—cl—!—det((Xu}’J))’

1
GV .o VX Y1V .V yr) = £ per (0, ).

9. Exterior and symmetric powers of a matrix>%%10)

Let A: V—V denote a linear map of V. The k-th tensor power TxA is de-
finedby Ty A: X1 ® ... Xxk—Ax1 Q... R Axr. Likewise the maps ArA
and ZA are defined.

116
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Notation:

For k and /, with | k| = || = k the matrix A(k, [) is the kX k matrix which is
obtained from (the dXd matrix) A by repeating k; times the i-th row, and /,
times the j-th column, for i,j=1,...,d.

Lemma 9.1

In (A x)* the coefficient of x equals —I%- per Ak, D).

Proof
d a
Ax)t =11 ( 21 aij xj)k" Arrange the terms a;;x; in a kX d matrix. Change
i=1 \j=
this into a &k matrix with columns corresponding to /. Suppress x, then we

are left with A(k, /) and the result follows. 0
In the final remark of sec. 7 we mentioned that A,V corresponds in a cer-
tain sense to the square-free polynomials, the sense being that

Xiy Xig o o o Xi = (—].)a'xi1 cee Xy
1

for o€ &%, i.e., the polynomials are skew. In this sense one has the following
skew version of lemma 9.1:

Lemma 9.1

In (A x)* the coefficient of x’ equals detA(k, [). Note that detA(k,/) + 0
implies ! = 1. By use of the orthonormal bases for AV and 2V introduced
in secs 3 and 4, we can now calculate the entries of the power matrices. O

Theorem 9.2

k,1
A(A), = det Ak, 1); Zi(Adx,r = per A(k, 1)

Vk! VI [ o
From the definition we infer:

Theorem 9.3

Let A have eigenvalues oy, . . ., a. The eigenvalues of Ax(A) are the (i)
squarefree, those of Z¥(A4) the (d+ 1/: - 1) homogeneous monomials of de-
gree kin o1, ..., Q4. |

The following expansion of the determinant is well-known:
d
det(J+tA)=1+t% au+2% "”“*/i +... + 2 det (A).
i=1 i<j | @@

Its counterpart for permanents is used less frequently:
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Theorem 9.4 ;
det(/+tA) = kzork- trace Ax(A4) = % 1%l det A(k, k);

det?'(f — t A) = X t*-trace Tu(d) = ¥ tI*l M.
kz0 k k!
Proaof
The equalities on the right hand sides follow from theorem 9.2. As for the
left hand sides, theorem 9.3 implies that trace Zx(A) is the k-th complete sym-
metric polynomial in the eigenvalues o of A4, i.e., we have

trace 2x(A4) = he(w), similarly trace Ax(A4) = ex(c).

Hence the sums of the traces are the generating functions E (¢; @) and H(¢; @)
of sec. 1. The theorem now follows from theorem 1.1. O

Corollary 9.5
det (I +t A) = trace A(t; A) = trace™ X(¢; A),
for the generating functions

At A) = T r*A(A) and Z(t; A) = X t* Ze(A).
k=0 k=0 O

10. Applications

I. G. Macdonald told us the following proof of MacMahon’s master
theorem.

Theorem 10.1

The coefficient of x* in the symmetric product (4 x)* equals the coefficient
of x*in 1/det(I — A 4(x)), where 4(x) = diag(x1, . . ., Xa).
Proof

By 9.1 and 9.2 the coefficient of x* in (4 x)* equals the (k, k) entry of Zx(4)
where k= | k|. Hence it is the coefficient of x* in trace Zi(4 4(x)). However,
kf‘;otrace Z(A A(x)) = 1/det(I — A A(x)), according to theorem 9.4. O

Theorem 10.2%)

(x, Ay) x*y!
A Z > T per Ak, ).

n
k| =1lj=k
Proof
Write x=Xx1e1 + ... + xz€q4, and take the inner products of the symmetric
1
tensors -,;—'-xv ... Vvxand %—Ayv ...V Ay, using
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1—xv vx=z -)ie"‘v v ek
X e ey ves 0
lk|=k
Corrolary 10.3 (N. G. de Bruijn)
For any rectangular matrix 4 = (a;;) we have
1 o Z per A(k, ])
T & e = T
|kl =1l=k
Proof
Make A into a square matrix by supplying zeros, and apply theorem 10.2.
|

11. Fredholm’s integral equation ®*'!)

From the theory of integral equations it follows that

1
ulx) = f(x) + A K, t) u(?) dt
0
has the solution

u) = 1) + [ ZEED 1),
[

provided D(4) #+ 0. To explain the notation, we divide the interval [0, 1] into
d equal parts .by 0< %< < g—;——l— < 1. Let f be the d-vector with CmePo—
nents f; =f( 2‘1-) , and let M be the dxd matrix with entries M, = %K(é, {i) :
Then the integral equation is approximated by the following set of matrix
equations of increasing size d =1,2,3,...

-1 Mu-=f

These equations may be solved using Cramer’s rule. Fredholm’s determinant
D(2) is defined by

1 1 1
_ ﬁ//.mmmmm
1 lO/K(t, fdt+ 5 lK(tz,rl)K(zz,tz)
0o 0

It is the limit, for d— =, of

113
dtldtz—3—,/f/+... .

L A2 My Mi; d1d
4Q) =1 A,\:‘;Mu-l- Z!Z MI’MIJ’ + oo+ (=1 A%det M.
iJ

Fredholm’s first minor D(x, y; A) is defined by
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1

AK(x,p) — /12/
0

K(x, y) K(x, 1)

Ky K| &

p [ | K&K ) KD
—2—|—// K(s,y) K(s,s) K(s, )| dsdt + ..
50 K(t, y) K(t,5) K, 1)
It is the limit for d— o, of
Mxy Mxl
A(x!y’l) "A'MX}'—)' Z .MyMii
113 Mxnylij
i My, My My | + ...
) [ M;y M;: My,

By replacing determinants by permanents we get expressions which we denote
by P(=A), II(~1), —P(x,y; —A), —II(x,y; —A), respectively. Now in ref. 2
it is proved that

D@yPQ) =1, D(x,y;4) P(A) = P(x,y;4) D). *)

As a consequence the solution of Fredholm’s equation may also be written in

terms of permanents: .
= 1) + | PEID 1) 0y
o

Now the first equality in (*) is implied by
A4AR) = det( — A M) = (IT(A)).

One can verify that 4(x, y; A) IT{A) = IT(x, y; A) A(A) also holds, but we lack
an elegant proof of this fact.

REFERENCES

1) N. Bebiano, Pacific J. Math. 101, 1 (1982).

?) D. Kershaw, J. Integral Equ. 1, 281 (1979).

3) N. G. de Bruijn, J. Math. Anal. Appl. 92, 397 (1983).

4) 1. G. MacDonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford
1979.

8) W. H. Greub, Multilinear algebra, 2nd edition, Springer, New York 1978.

%) R, Shaw, Linear algebra and group representations 11, Academic Press, New York 1982.

") S. Lang, Algebra, Addison-Wesley, Reading Mass. 1965.

%) D. Knutson, A-rings and the representation theory of the symmetric group, Lecture Notes
308, Springer, New York 1973.

%) C. C. MacDuffee, The theory of matrices, Chelsea, London 1946.

1%y H. Minc, Permanents, Addison-Wesley, Reading Mass. 1978.

'y 'W. V. Lovitt, Linear integral equations, Dover, New York 1950,

12) H. Minc, Lin. Multilin. Alg. 12, 227 (1983).

120 Philips Journai of Rescarch  Vol.39 No.3 1984



