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Abstract 

The present paper intends to give a quick and easy introduction to tensors, 
in particular to the exterior and the symmetric algebra of a vector space 
and the relations between them. The entries of the k-th exterior, and the 
k-th symmetric power of a matrix are expressed as determinants, and per­
manents, respectively. The generating polynomials of these powers are 
related by their traces. As applications we mention MacDonald's proof of 
MacMahon's master theorem, Bebiano's permanent expansion 1) and the 
permanent version of the solution of Fredholm's integral equation, ob­
served by Kershaw 2) and by de Bruijn '). 

Math. Rev.: 15A69 

1. Symmetric functions 4 ) 

The elementary symmetric polynomial of degree kind variables, Xi. •. ., xd, 

is defined by 

or, equivalently, by its generating function 

d 

E(t; x): = 1: ek(x)tk = II (1 + x, t). 
k~O I= 1 

The k-th complete symmetric polynomial is defined by 

hk(X) : = . L Xfi ••• Xjk' 
1~11 ~ ... ~A~d 

with generating function 

Theorem 1.1 

Remark 

d 
H(t; x) : = .L hk(x)tk = II 

k~O i-1 -X1t 

E( - t; x) H(t; x) = 1. 

(e1, .. ., ed} forms a basis for the graded ring sd of symmetric polynomials 
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in d variables. Letj denote the all-one vector of size d, then 

2. Tensors 5- 7) 

We start with a quick definition. Let Vbe a (real) vector space of dimension 
d, with (positive definite) inner product (,)and orthonormal basis ei, ... , ea. 
We define tensor products by their components with respect to this basis: 

x ® y by the d 2 components x; YJ. 
x ®y ® z by the d 3 components x1 Yi zk. 

The tensor product V ® Vis the linear space spanned by all tensor products 
x®y; x,yeV. The inner product (x®y, u ©v): = (x, u)(y, v) provides 
V ® V with the orthonormal basis { e; ® e1 ] 1 ::::;;; i, j ~ d). 

Similarly tensor products of k vectors, x1 © ... © Xt are defined by their d" 
components (x1)1(x2)1 .•• (Xt)m, with respect to the orthonormal basis 

(e1®e1®···®eml l~i~j=:;;; .•. =:;;;m=:;;;d) 

of Tk(V) : = 18l V, with inner product 

k 
(x1 © ... @x1c,Y1 ® ... ®Yt) =II (x1,y;). 

i=I 

Clearly, dim 'l'" V = d". The tensor algebra TV is the direct sum 

TV:= To VEB Ti VEB ... = :EeT" V, 
k;;>O 

where To V == R, T1 V = V. Its Poincare polynomial (as a graded algebra) is 

Pr(t) : = ~ (dim Tt V) t" = l l d t · 
k-;;,D -

Remark 
We refer to the literature for details about the following coordinatefree de­

finition. The tensor product of the vector spaces U and Vis the pair of a vector 
space U ® V and a bilinear map a : Ux V-+ U © V such that for all bilinear f 
there is a unique linear g such that the following diagram commutes 

UxV~ a U®V 

f "" /, w . 
3. The exterior algebra AV 5•6 ) 

A 2 Vis the linear subspace of T2 V ~panned by the skew 2-tensors: 

x "y: = icx @y - y ® x); x, ye v. 

112 Phlllpa Journal of Reseoroh Yo!. 39 Not 415 1984 



An introduction to multilinear algebra and some applications 

Clearly, x Ax= 0, XAY = -y AX and dimA2 V= (~ ). 

The inner product inherited from T2 V becomes 

(XAY,Ul\11) = wx,u)(y,v) - (x,v)(y,u)) = !det(~~:~ ~-;;,~)). 

An orthonormal basis for A2 Vis provided by lV2(e;A ei) I 1 ~ i <j ~ dj. 
Likewise, for 0 ~ k ~ d we define 

I 
X1 A • • . /\ Xk : = -k I :E ( - l)U Xcr 1 @ ..• @ Xcr k , 

• cref/k 

where (- l)cr is 1 ( - 1) if the permutation a is even (odd), and Yk is the sym­
metric group on k letters, and 

Ak V: = (x1 A .•• AXtlX1EV)R, 

with inner product 

1 
(X1 /\ ... A Xk, Y1 A ••. A Yk) = kT det ((x1, Y1)). 

Note that dim A kV= ( ~) = e"U); an orthonormal basis for A" V is prsi- . 
vided by 

[ VkT e,, A ••• A e;tl 1 ~ i1 < ... < ik ~ d}. 

The exterior algebra AV is the (finite) direct sum 

AV=AoVffiA1Vffi ... ffiAd-1V$AaV, 

where Ao V:: AdV= R and A1 V=Aa-1 V= V. Its Poincare polynomial is 

PA(t) = (I + t)d = E(t,j). 

Remark 
Xi, ••• , x" are linearly dependent iff x1 A ••• /\X1< = 0. 

4. The symmetric algebra IV 6•6) 

2'2 Vis the linear space spanned by the symmetric 2-tensors, 

xv y : = Hx @y + y 0 x); x, ye V. 

Clearly, xv y=yvxand dimI2V= (d 'i 1). 
(xv y,u v v) = i((x,u) (y,v) + (x,v) (y,u)) = iper (~~~ &::D· 
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Likewise, for 0 ~ k < oo we define 

where 
EtV:= (x1 v ... v XkjxieV)n, 

1 
X1 V ••• V Xk= -kl L Xu!@ •• • @Xcrk· 

• cre9k 

The inner product derives from 

1 
(X1 v ... v Xk, Yi v ... v Yk) = kT per ((X;, YJ)). 

The symmetric algebra E V = :r,e (Ek V) has Poincare polynomial 
k~O 

Pr(t) = (1 - t)-a = H{t, j). 

Remark i 
The basis for I1c V may be normalized using the factors ( X ~ ) , where 

k! =ki! ... ka! and lkl =k1+ ... +ka=k, e11 v ... ve1k=e~1 v ... ve~d, 

5. Relating A to .I: 1•8) 

We shall consider power series whose coefficients are vector spaces, with 
addition defined as direct sum, and multiplication as tensor product. 

A(t; V): = :E (Ak V)tk; I(t; V): = :E (Ik V)tk. 
k~O k~O 

Theorem 5.1 
A(i; V(f) W) = A(t; V) ®A(t; W); I(t; Vffi W) = I(t; V) ©I(t; W). 

Proof 
By considering bases we proveA.t{ V® W) = :Ee A 1(V) ©AJ(W), and the 

analogous formula for Ik(V(f) W). i+J-k 

These imply the relations of the theorem. 0 

Theorem 5.2 
A(- t; V) ©I(t; V) = 1. 

Proof 
First observe that for dim V = 1 we have 

A(t; V) = 1 + tV; I(t; V) = 1 + tV + t 2 V + ... = (1 - tV)-1• 
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For an arbitrary V(which is the direct sum of one-dimensional subspaces), the 
theorem follows by application of theorem 5 .1. D 

6. Relating A and I to S 4•8 ) 

The semigroup (N, +) can be extended to the ring (Z, +, . ) by a well-known 
construction. Similarly, the isomorphism classes [V] of vector spaces V, over a 
fixed field form a semigroup with respect to direct sums, which can be extended 
to the Grothendieck ring K, with operations direct sum and tensor product. The 
map [VJ-+ dim V identifies the rings Kand Z. For V of dimension d we have 

More interesting is the isomorphism of the Grothendieck ring K and the 
ring S of symmetric functions (in infinitely many variables). Here we have the 
following correspondences: (V of dimension d, x = {x1, .. ., Xd, 0, 0, ... )) 

Ak V-+ ek(X); A(t; V)-+ E(t; x), 
Ik V-+ hk(x); I(t; V)-+ H(t; x). 

This shows the connection between theorems 5 .2 and 1.1. 

Remark 
The ring S of the symmetric functions is the underlying ring for the repre­

sentations of the symmetric group 9' in the following sense: Let n: 9',. -+ Aut (V,.) 
denote an irreducible representation of 9{ on the .9-module V,.. Let R(fl") 
denote the ring of.~1 S"uch .9-modules. The fundamental theorem [5] says that 
there is an isomorphism (of A.-rings) 

e: R(9') :::< S. 

We indicate how to obtain the symmetric function 8(V,.): Let X be any vector 
space, consider Vn ®Xi!>k and its,.Y'k-invariant subspace n(X). For instance, 
if n = 1 then n(X) = .Ek(X), if n = +I- then n(X) = Ak(X). Any linear 
T:X-+X induces Tk(T): TkX-+-TkX (see sec. 9) and n(T): n(X)-+-n(X). 
Now the function spec (T)-+ trace n(T) is the desired symmetric function in S 
which is attached to n. 

7. Duality 6 ) 

The dual V* of the vector space V consists of the linear functionals on V. 
The action of V* on V may conveniently be described by a pairing [V, V*]: 
[11, w*] := w*(v). Ifwe identify (TkV)* with T.t{V*) we may write 
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k k 
fv1 © ... 0 vk, wt © ... © wtl = TI [v;, wtl = TI wt(v1). 

i= I i= l 

Likewise we have (AkV)*::::: A.t(V*) and (L'kV)* == .Ek(V*) with the induced 

pairings 
1 

[v1 /\ ... /\ Vk, wt A ... A wt] = kl det (wt(v;)), 

Remark 
J; V* is isomorphic with the ring of polynomial functions on V, with 

ordinary multiplication. In a certain sense A V* corresponds to the set of 
square-free polynomials in d variables, cf. sec. 9. 

8. Metrics 6) 

Let V have basis e1, ... , ed and let et, .. ., e: be the dual basis for V*, i.e., 

[e;, eJ] = au. 
In V a non-degenerate inner product is defined by a non-singular map 

G:V-+V* and (v,w):= [v,Gw], v,weV. For the orthogonal geometry 

O(r,s) the standard matrix for G, with respect to the bases e; and ej is 

G = ( Ir 0 ) , and G = ( 0 Im ) 
0 -ls -Im 0 

for the symplectic geometry. The map G: V-+ V* induces I'kG: Tk V-+ Tk V*: 

X1 ® ... 0 Xk-+ G Xi 0 ... G Xk', which in Tk V leads to the inner product 

(t, u) : = [t, Tk Gu]; t, u E Tk V, 
or 

k k 
(x1 0 ... Xk, Yi 0 ... Yk) = TI [x1, Gy1] = IT (x1, Y1) • 

l=l l=l 

1 
(x1 /\ ... /\ Xk, Y1 /\ ... A Yk) = kl det ((x,, Y1)), 

1 
(X1 v ... v Xk, Yl v ... v Yk) =kl per ((x;, Y1)). 

9. Exterior and symmetric powers of a matrix 5•6•9•10) 

Let A: V-+ V denote a linear map of V. The k-th tensor power TkA is de­

fined by TkA: X1 ® ... ®xk-+Ax1 © ... ®Axk. Likewise the maps AkA 

and IkA are defined. 
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Notation: 
Fork and/, with I kl = I II = k the matrix A(k, l) is the kx k matrix which is 

obtained from (the dxd matrix) A by repeating k1 times the i-th row, and 11 

times thej-th column, for i,j = 1, ... , d. 

Lemma9.1 

In (A x)k the coefficient of x1 equals / 1 per A(k, l). 

Proof 

(A x)k = IT ( f, aii x1)k'. Arrange the terms a;iXJ in a kx d matrix. Change 
i=I j~l 

this into a kxk matrix with columns corresponding to/. Suppress x1, then we 
are left with A(k, /)and the result follows. D 

In the final remark of sec. 7 we mentioned that A kV corresponds in a cer­

tain sense to the square-free polynomials, the sense being that 

for a E /Jf, i.e., the polynomials are skew. In this sense one has the following 
skew version of lemma 9 .1: 

Lemma 9.11 

In (A x)k the coefficient of x 1 equals detA(k, I). Note that detA(k, /) + 0 
implies l ! = 1. By use of the orthonormal bases for .1h V and Ik Vintroduced 
in sees 3 and 4, we can now calculate the entries of the power matrices. D 

Theorem 9.2 

Ak(A)k,1 = detA(k, /); L'.t(A)k,1 = per A(k, /) 
Vk! V n 

From the definition we infer: 

Theorem 9.3 

D 

Let A have eigenvalues a1, .. .,aa. The eigenvalues of Ak(A) are the(~) 

square~ree, those of Ek(A) the ( d + z- 1 ) homogeneous monomials of de­
gree km a1, .. ., ad. D 

The following expansion of the determinant is well-known: 

d 

det (I+ t A) == 1 + n: aii + t2 ~ I au atj I + ... + td det (A). 
i=I i<j a11ajj 

Its counterpart for permanents is used less frequently: 
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Theorem 9.4 
d 

det (/ + t A) = I', tk · traceAk(A) =I: tlkl detA(k, k); 
k .. Q k 

det-1(/ - t A) = :E tk · traceic(A) = :E rlA:I per'!.(~, k). 
k;,;.O k • 

Proof 
The equalities on the right hand sides follow from theorem 9.2. As for the 

left hand sides, theorem 9.3 implies that trace.Ek(A) is the k-th complete sym­
metric polynomial in the eigenvalues a of A, i.e., we have 

trace.Ek(A) = hk(a), similarly trace Ak(A) = ek(a). 

Hence the sums of the traces are the generating functions E(t; a) and H(t; a) 
of sec. 1. The theorem now follows from theorem 1.1. D 

Corollary 9.5 
det (I+ t A) = traceA(t; A) = trace-1 .E(t; A), 

for the generating functions 

A(t; A) = I: tkAk(A) and I(t; A) = I', tk Ik(A). 
k .. O k .. O 0 

10. Applications 

I. G. Macdonald told us the following proof of MacMahon's master 
theorem. 

Theorem 10.1 
The coefficient of x" in the symmetric product (A x)k equals the coefficient 

of rin 1/det(l-A..<l(x)), whereLl(x) = diag(X1, .. . ,Xd). 

Proof 
By 9.1 and 9 .2 the coefficient of x'< in (A x)k equals the (k, k) entry of Ik(A) 

where k = l k[ . Hence it is the coefficient of xk in trace .Ek(A LI (x)). However, 
:I: traceik(A Ll(x)) = 1/det(I -A Ll(x)), according to theorem 9.4. D 

k .. O 

Theorem 10.21) 

Proof 

(x, Ay)k 
k! 

"\' x'< yl 
L. kl I! per A(k, l). 

lkl .. IJl=k 

Write x=x1 e1 + ... + Xded, and take the inner products of the symmetric 

tensors ;l xv ... vxand ;! Ayv ... vAy,using 
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1 I xk k1 k4 -xv ... vx= -k1 e1 v ... vea. 
kl . 

lkl=k 

Corrolary 10.3 (N. G. de Bruijn) 
For any rectangular matrix A = (a11) we have 

Proof 

-1- (E au)k = ~ 
k! i,j ~ 

ikl=lll-k 

per A(k, l) 
k! II 

0 

Make A into a square matrix by supplying zeros, and apply theorem 10.2. 

11. Fredholm' s integral equation 2•3•11 ) 

From the theory of integral equations it follows that 
l 

u(x) = f (x) + A. J K(x, t) u(t) dt 
0 

has the solution l 

u(x) = f(x) + j Di;{A~ A.) f(y) dy, 
0 

D 

provided D(.A) + 0. To explain the notation, we divide the interval [0, 1) into 
1 d-1 

d equal parts_by 0 < d< ... <-d-< 1. Letfbe the d-vector with c~m~o-

nents ft = !( J), and let M be the dx d matrix with entries M 11 = ~ K ( ~, ~). 
Then the integral equation is approximated by the following set of matrix 
equations of increasing size d = 1, 2, 3, ... 

(1-).M)u=f. 

These equations may be solved using Cramer's rule. Fredholm's determinant 
D().) is defined by 

It is the limit, for d-+ co, of 

A().) : = 1 - A. .!:
1
• M11 + A.2

2
1 ~ I Mii MiJ I + ... + ( - W). d det M. L Mj1Mjj 

;,j 

Fredholm's first minor D(x,y; ).) is defined by 
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I 

). K( ) - ),,2 r I K(x,y)K(x, t)I dt + 
x, y } K(t, y) K(t, t) 

0 
1 1 

;; J J 
0 0 

I K(x, y) K(x, s) K(x, t) I 
K(s, y) K(s, s) K(s, t) ds dt + ... 
K(t, y) K(t, s) K(t, t) 

It is the limit for d-+ oo, of 

.d(x,y; A.):=). M:ry - ;.,2 "\' I Mxy M,,,, + 
~ Mi,M11 

I 

~'"'"' 2!~ 
l,J 

I Mxy Mxt Mxj I 
M,, M11 M11 + . . . . 
M;,~;MJJ 

By replacing determinants by permanents we get expressions which we denote 
by P(-:-A.), ll(-A.), -P(x,y; -.A), -II(x,y; -A.), respectively. Now in ref. 2 
it is proved that 

D(A.)P{A.) = l, D(x,y;).)P(A.) = P(x,y;Ji.)D(A.). 

As a consequence the solution of Fredbolm's equation may also be written in 
terms of permanents: 

1 

u(x) =f(x) +j P(x,y;A.) f(y)dy 
P(A.) . 

0 

Now the first equality in(•) is implied by 

LI (1) = det(l - ). M) = (ll(A.))-1. 

One can verify that Ll(x,y;l)IT(.A.) = ll(x,y;A.)Ll(.A.) also holds, but we lack 
an elegant proof of this fact. 
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