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a b s t r a c t

Coming high-cadence wide-field optical telescopes will image hundreds of thousands of sources per
minute. Besides inspecting the near real-time data streams for transient and variability events, the
accumulated data archive is a wealthy laboratory for making complementary scientific discoveries.

The goal of this work is to optimise column-oriented database techniques to enable the construction
of a full-source and light-curve database for large-scale surveys, that is accessible by the astronomical
community.

We adopted LOFAR’s Transients Pipeline as the baseline and modified it to enable the processing of
optical images that have much higher source densities. The pipeline adds new source lists to the archive
database, while cross-matching them with the known catalogued sources in order to build a full light-
curve archive.We investigated several techniques of indexing and partitioning the largest tables, allowing
for faster positional source look-ups in the cross matching algorithms. We monitored all query run times
in long-term pipeline runs where we processed a subset of IPHAS data that have image source density
peaks over 170,000 per field of view (500,000deg−2).

Our analysis demonstrates that horizontal table partitions of declinationwidths of one-degree control
the query run times. Usage of an index strategywhere the partitions are densely sorted according to source
declination yields another improvement. Most queries run in sublinear time and a few (< 20%) run in
linear time, because of dependencies on input source-list and result-set size. We observed that for this
logical database partitioning schema the limiting cadence the pipeline achieved with processing IPHAS
data is 25 s.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

High-cadence astronomy is a relatively new field in observa-
tional astronomy. Advances in hardware and software technology
have made it possible to stream large volumes of observational
data over fast links to clusters of computers that, in general, process
the data in one or more automated pipelines for scientific analysis.
The time available to do real-time analysis is limited by the ca-
dence of the instrument. Therefore, additional and complementary
scientific data analyses are forced to shift to non-real time envi-
ronments. Here, all data accumulates over time and the growth
may vary in the range of 0.1–100 PB/yr (Becla and Wang, 2014).

* Corresponding author.
E-mail address: bscheers@cwi.nl (B. Scheers).

These volumes clearly challenge many aspects of contemporary
datamanagement systems, which is also recognised by Ivezić et al.
(2017).

Several instruments have shown impressive demonstrations of
charting the sky down to a timescale of seconds, e.g., the inter-
national LOFAR telescope (van Haarlem et al., 2012), the Murchi-
son Wide-field Array (MWA; Tingay et al., 2013), the Australian
Square Kilometre Array Pathfinder (ASKAP; Murphy et al., 2013).
High-cadence observations in image-domain astronomy, where
sky regions are revisited many times in relatively short periods,
produce overwhelmingly large amounts of data. Optical and ra-
dio telescopes planned for the next decade will generate even
larger continuous data streams, e.g., the Large Synoptic Survey
Telescope (LSST; Lazio et al., 2014; Juric and Tyson, 2015), the addi-
tional Ground-based Wide Angle optical Camera (GWAC; Cordier
et al., 2015) of the Space-based multiband astronomical Variable
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Objects Monitor (SVOM), BlackGEM (Bloemen et al., 2015), the
Square Kilometre Array (SKA; Broekema et al., 2012).

Although high-cadence instruments are specifically designed
to carry out their own unique science, they share similar obser-
vational strategies. The main ones being: high-speed, wide- or
all-sky surveys, searching for transient and variable sources on a
variety of time scales and gradually archiving full-source light-
curve catalogues. In this respect, the archive is considered the
newBigData laboratory, equipped formaking scientific discoveries
in complex structured data. However, such discoveries are only
possiblewhen the infrastructure and software tools allow continu-
ous and simultaneous data mining, statistical modelling, machine
learning and ad-hoc querying.

The optical Sloan Digital Sky Survey (SDSS; York et al., 2000;
Alam et al., 2015) was the first instrument to seriously integrate a
database system into its survey design. It uses a database-centric
computing approach for their large-scale scientific datasets. SDSS
data are cumulatively released to the public in roughly annual
cycles. In this respect, SDSS is a low-cadence instrument since
the yearly updates of the full-source catalogue make the database
essentially static.

On account of Gray’s law to ship computations to the data
instead of data to the computations (Szalay and Blakeley, 2009)
many algorithms are designed to run inside the database engine.
Another design rule includes knowledge of the 50 most frequent
and intensive queries. Since astronomical pipelines process the
data in a structured way, this allows one to optimise execution
plans for known queries.

In the radio regime, the automated Transients Pipeline (TraP)
of the international LOFAR telescope adoptedmany database tech-
niques from SDSS (Swinbank et al., 2015). The TraP applies source
finding and fitting to calibrated radio images after which, per
image, all image and source properties, i.e. the source list, are
handed over to the database. Note that the images themselves are
not stored in the database. The loop of tasks of the TraP database
consists in total of about 50 queries which can be divided into four
successive steps, all executed in bulk mode:

1. load source list
2. cross-match source list with catalogue of known sources
3. update catalogue: maintain up-to-date statistical skymodel
4. find/identify transient and variable sources or other signifi-

cant deviations from the sky model

Typical source lists for LOFAR survey-mode observations do not
exceed 103 entries, whereas averages are less than 102 for cadence
modes as high as 10 s (Swinbank et al., 2015). The total number
of unique sources in the LOFAR radio catalogue is of the order 106.
Long-term monitoring of the database tasks is essential to predict
pipeline performance and understand the instrument as a whole.
Querieswith poor scaling (e.g. exponential) will eventually jam the
processing. Significant increases of cadence and/or source density
determine the critical limits of the system and permitted types of
observations. Swinbank et al. (2015) show that the TraP run times
increase linearly with input size within the LOFAR observation
constraints.

Source lists produced by optical instruments are in general
much larger, primarily due to the intrinsic higher resolution in
combination with the increased sensitivity. Also the catalogues
that represent the optical sky models hold orders of magnitude
more sources than their radio counterparts. Therefore, one avoids
naive implementations of the TraP for optical instruments, since
the extrapolation of the source counts into the optical spectrum
will most probably break linear performance or even in a best-case
long-term linear performance scenario, the processing time will
pass the cadence time at some point.

Table 1
Characteristics of the MeerLICHT telescope, a single BlackGEM prototype telescope.
DB source data size is the storage size that all properties of single source would
need when stored in a database. We assume observation nights of 10h.

Mirror diameter 65 cm
FoV 2.7 deg2
CCD size 10,536×10,536
Resolution 0.57′′/px
bits per px 16
Image size 222MB
Calib. images per night 2 × (10 bias + 5 × 5 flats) = 70
DB source data size 402B

Observation mode Nominal Fast

Integration time 5min 1min
Sensitivity 23mag 21mag
Science images per night 120 600
Data rate per night 42GB 148GB

The planned wide-field optical telescope array BlackGEM is
dedicated to measure optical emission from pairs of merging neu-
tron stars and black holes (Bloemen et al., 2015). BlackGEM will
start with 3 telescopes, all of which will be located at ESO La
Silla, Chile. MeerLICHT,1 a single BlackGEM telescope acting as a
prototype, is coupled to the MeerKAT radio array (a precursor to
SKA; Brederode et al., 2016) to operate in concert and allowing
to study the optical–radio sky simultaneously as a true multi-
wavelength instrument. Table 1 shows the characteristics of a
single BlackGEM telescope. From a database–pipeline perspective,
the most influential properties are the source data size, the source
density and the integration time, where the latter determines the
cadence.

In this paper we use the TraP-like queries as a baseline and
investigate its scalability to the MeerLICHT environment. We need
to know to what extent the processing of images with source den-
sities of 500,000 deg−2 or source lists with hundreds of thousands
of sources is still feasible.

The paper is outlined as follows. Section 2 gives the rationale
behind the choice of a column-oriented relational database man-
agement system (RDBMS). Section 3 describes the experimental
set up of the performance tests, the data and the TraP queries that
were adjusted andoptimised. The results are presented in Section 4
and concluded in Section 5. Although all source codes are publicly
available, the Appendices A–C show the relevant query snippets for
readability.

2. Rationale for MonetDB, a column-oriented relational
database management system

Non-relational databases, e.g., key–value andNoSQL stores, lack
solid support for many data manipulations that are required for
this type of astronomical application. We cannot afford redundant
or duplicate storage, and therefore have to distribute the data over
a minimal set of related tables. The absence of fast join and cross-
match functionality, schema free storage formats, no transactional
support and own unique query languages makes non-relational
databases hard to perform on such applications. Furthermore, the
bulk processing requires fast data aggregation, ordering and index-
ing to avoid large table scans. All these functionalities are well-
known and implemented in relational database systems.

Relational database storage models follow either the row-
oriented or column-oriented principles. The row-oriented storage
model partitions tabular data horizontally. Such record layouts
consist of rows that store all their columns contiguously, with
the adverse effect that a data block contains multiple data types.

1 Check the current status at www.meerlicht.org.

http://www.meerlicht.org
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Queries that touch only a few columns of a large table or joins of
tables, waste both bandwidth andmemory space in thismodel, be-
cause the blocks that the CPU reads and buffers are contaminated
with all the other, unwanted, columns. Abadi et al. (2008) discuss
more differences between row and column stores.

The columnarmodel splits tabular data vertically. Every column
is represented by an array of single data type. These kinds of array
can be manipulated easily and scanned quickly when sorted. Its
variables of fixed size are densely stored, possibly in compressed
format, on disk. The uniformity of the array fits well to the block-
oriented nature of memory transfers and CPU caches and exposes
good spatial locality andhigh cache hit ratioswhenqueries execute
large scans over a subset of columns. More in-depth details of
column-oriented databases can be found in Abadi et al. (2012).

More research and developments in the field of column-
oriented databases led to the implementation of many related
techniques in the open-source main-memory relational database
management system MonetDB (Boncz, 2002). MonetDB’s archi-
tecture is geared toward read-optimised data-intensive scien-
tific applications (Zukowski, 2005). It is compliant with the SQL-
2008 standard and has language bindings for C, Java, Python,
R and JavaScript/Node.js. The ease of extending its func-
tionality with user-defined functions (UDFs) written in SQL, C, R
and Python are other serious strengths. MonetDB follows a strict
columnar design and takes into account the underlying computer
architecture (Boncz et al., 1999; Héman, 2015). The fundamen-
tal removal of the expression interpreter fully eliminates pars-
ing expensive code, verifying record layouts and checking data
types. Hard-coded semantics makes MonetDB’s algebra simple yet
efficient, because all operators work on simple arrays allowing
the compiler to generate CPU-friendly instructions. Column-at-a-
time processing reduces the number of function calls and data
and control dependencies, which in turn improve the algorithms
and the CPU cache performance, as opposed to tuple-at-a-time
iterators. Look-up and range queries benefit from hash-indexes
and secondary imprints indexes, resp., that are automatically built
for touched columns (Sidirourgos and Kersten, 2013). A query opti-
miser generates and analyses alternative query plans and executes
the plan that minimises the query cost. Manegold et al. (2002)
developed cost models that estimate the query execution time
based on I/O and average CPU costs. Ivanova et al. (2013) extended
MonetDB’s code base to support SQLmanagement of external data
(SQL/MED). Loading binary columnar catalogue FITS files in this
way is orders of magnitude faster than using classical statements,
since the in-memory binary data exactly matches MonetDB’s stor-
age model.

Until now, the largest database archive for a single telescope
is the SDSS SkyServer tuned to the commercial closed-source row
store Microsoft SQL Server. Full-sized data releases were success-
fully ported intoMonetDB. Ivanova et al. (2007) demonstrated that
MonetDB is capable of loading and querying the SDSS SkyServer
data. Initial performance evaluations on a smaller subset indicated
that 85% of themost executed queries run faster inMonetDB,while
the remaining are of competitive speed. Most of the time scientific
queries only touch a few columns, whereas the tables generally
have many hundreds of columns. This is a strong call for using
column-oriented databases

In all our experiments we use the Structured Query Language
(SQL) to interact with the data. SQL queries access data directly
and return aggregated or full result sets, in contrast to scripts that
retrieve datasets and process tuples iteratively. (Note that in this
context a query is a generic term for any kind of instruction set(s)
that run on database data.) Query response times are critical in
high-cadence pipeline applications. Because it is more efficient
to process data in bulk mode, the fact that data access is fastest
close to the CPU and that astronomical queries very often work on

columns or ranges thereof, the choice for a main-memory column-
oriented database in astronomical pipelines is obvious.

During database kernel and pipeline query development we
ran comparison tests with main alternative open source RDBMSs
regularly. However, reports of these results are beyond the scope
of this paper.

3. Baseline and alternative high-cadence pipeline benchmarks

3.1. BlackGEM pipeline architectures

BlackGEM will produce about 1 TB of data per night of which
90% are raw and calibrated images and 10% extracted information
for the full-source database. Raw data are calibrated and imaged
after which the source-extraction output product is a list of all
detected sources and their properties in binary catalogue FITS
format.

A primary image-differencing pipeline runs in real time to de-
tect transient and variable events in the data stream of calibrated
images. For differencing it uses reference images and parts of the
source list for PSF fitting. The output product is a binary catalogue
FITS file of all transient sources, which will be stored in a separate
relatively small transient-source database, which will not be dis-
cussed any further here.

The full-source binary catalogue FITS files serve as input for a
secondary pipeline that runs in an offline mode and consistently
stores all sources into the full-source database for scientific anal-
ysis. Delays in this mode are acceptable up to the point where the
overall cadence is not beingmet anymore. This paper concentrates
on the secondary pipeline and its full-source database. The high
cadence and source densities of BlackGEM and MeerLICHT force
us to carefully monitor the long-term run-time performance of
the pipeline queries, especially since they run in a dynamically
growing database.

The pipeline processes the data in a number of steps described
in Section 1. After the sources have been loaded into the database
(step 1), read, write and delete queries take care of the source
association and skymodelmaintenance procedures (steps 2 and 3).

It needs to be noted here that transactions in MonetDB follow
the optimistic concurrency control scheme. The lack of a locking
scheme implies that queries modifying the data (of which we have
many) are serialised at the application level and run in single-
threadedmode. Explicitly programmedmultiple threadswith own
database connections can run in parallel easily if the query’s write
operations are executed on independent tables, however, we did
not code that in our modules. On the other hand, queries that only
read data run in parallel multi-threaded mode implicitly.

3.2. IPHAS data

Before BlackGEM is operational we process real binary cata-
logue FITS files from the Isaac Newton Telescope (INT) Photomet-
ric Hα Survey of the Northern Galactic Plane (IPHAS; Barentsen
et al., 2014). The 10σ limit is at magnitude 20 and the field of view
is 0.29 deg2. IPHAS has about 200 observations per night, where
single source lists range between 1000 and 130,000 entries, with
peaks up to 170,000.

3.3. The SciLens cluster

We run our experimentation queries on multiple nodes of the
SciLens2,3 cluster located at CWI. Our queries ran on single cluster
nodes, to which the input files were transferred. Table 2 gives an
excerpt of the specifications of the nodes that we used.

2 http://www.scilens.org.
3 For the current status and overview of the configuration, see https://www.

monetdb.org/wiki/Scilens-configuration-standard.
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Table 2
Configuration of SciLens cluster nodes.

3.4. Baseline pipeline and query monitoring

We used the May 2007 binary catalogue FITS files as input
for the prototype pipeline. The series consists of 1893 files, where
each FITS file has four extensions due to the four CCDs of the
telescope. The Python prototype pipeline script is based on the
TraP (Swinbank et al., 2015) and was modified for the load and
cross-match stages (steps 1 and 2) before it could serve as the
baseline pipeline.

Themost significant change in the data loading of step 1was the
replacement of the classical SQL insert statements with SQL/MED
queries (Ivanova et al., 2013). This technique attaches datasets to
the database that can be queried before they are actually loaded.
Larger files, i.e., longer source lists, can be handled, because the
data do not need to be parsed. In step 2, the variable conical search
radius that is being used for cross-matching radio sources was
set as a constant parameter because of the more stable quality of
optical images (see Section 3.5).

All individual query run times are written to log files for easy
plotting and identification of CPU and I/O intensive queries. Sets
of queries that belong to a step as described in Sections 1 and 3.1
are grouped together and prefixed I or A for loading/inserting or
cross-matching/associating, resp. The modified TraP, as described
in the previous paragraph, is considered as the baseline pipeline to
which the query optimisations will be compared.

All source codes presented in this paper is publicly and freely
available for download and usage at the CWI git-repository site.4
It also provides instructions to get started.

3.5. Cross matching and baseline module M0

Weadopted the set of TraP source association queries, including
the cross-match query, and modified it slightly for the processing
of optical data. This then is our baseline module M0. The source
association queries are the most intense and sensitive database
operations, where a source list is cross-matched with the internal
catalogue of known sources. At the core of this query is the po-
sitional source look-up by a conical search. From SDSS SkyServer
log analyses Ivanova et al. (2007) found that these conical searches
were part of themost frequently executed queries. Optimising this
willminimise CPU time and compensate processing times for other
queries.

4 https://scm.cwi.nl/DA/blackgem-code. The git version used for this paper was
3ad947789a19.

The cross-matching method applied here is based on the TraP
source association described in Section 4 of Swinbank et al. (2015).
In that paper it was also shown that the association algorithms
scale reasonably linear with the number of sources. Source lists
in their performance tests, however, do not exceed 1200 entries,
which is acceptable in the radio domain of LOFAR, but not in the
optical regimes of MeerLICHT and BlackGEM. The TraP is untested
for source densities that are orders of magnitude larger, making it
plausible that we cannot simply extrapolate the TraP test results to
the optical domain.

The resolution and positional uncertainties in the optical IPHAS
images are more stable compared to the LOFAR case, where the
image resolutions fluctuate due to more complex radio-specific
calibrations and antenna dependencies. Therefore, the TraP imple-
ments a variable search radius to cross-match sources, but because
the optical image quality is more stable we can replace it in the
query algorithm by a simpler conical search radius of constant
value that is determined by the telescope’s resolution element.

The cross-match baseline query is written out in Appendix B. It
joins the sources from the latest appended source list available in
the extractedsource table with the known catalogued sources
stored in runningcatalog. If the distance between a found
source pair is less than the search radius the pair is considered as a
genuine association and bothIDs and distance are returned. In fact,
however, more properties are returned, but for illustrative pur-
poses they are omitted here. It must be noted here that the cross-
match query result set does not contain only unique catalogue
source–extracted source pairs. Multiple types of association pairs
are possible, falling into the categories of no association, one-to-
one,many-to-one, one-to-many andmany-to-many. The association
module takes care of further processing these topologies,which are
described in detail by Swinbank et al. (2015).

The on-sky distance is only calculated for catalogue counter-
parts that lie within the boxes centred at the source positions from
the list. Thewidths of the boxes are determined by the fixed search
radius. Both tables have an integer zone column of 8-bit data type,
that specifies the declination strip in which the source lies. The
box height gives which neighbouring declination strips need to
be searched. The on-sky search radius is constant, but expressed
in RA it varies depending on declination. Therefore, the RA-box
width increases when moving towards the celestial poles. The
user-defined alpha() function determines the rate of inflation as
given by Gray et al. (2006).

The distance in radians on the sky, ϑ , between a measured
source position, x, and its candidate counterpart in the running

https://scm.cwi.nl/DA/blackgem-code


B. Scheers et al. / Astronomy and Computing 23 (2018) 27–39 31

catalogue,m, is given by the dot product xTm = cosϑ , where x and
m are unit vectors. However, when dealing with small angles the
alternative of using the sine function gives computationally more
accurate results. Therefore we use the arc-angle distance between
x and m to determine ϑ

sin 1
2ϑ =

1
2∥x − m∥. (1)

The above mentioned box size and distance criteria are de-
clared in the cross-match baseline SQL statement (see Appendix B).
Naive SQL execution plans in the case of large source lists may
downgrade the performance to unacceptable levels. Therefore, we
have to carefully design several alternative cross-match queries
that implement different search techniques and corresponding
query optimisations in order to evaluate their performance under
different circumstances.

In the next paragraph we will elaborate on alternative queries,
in a database schemawherewe partition and sort the largest tables
by declination.

3.5.1. Alternative module M5
Data partitioning is a well-known concept in database designs

to control load balancing and performance. Tables are divided into
independent smaller (sub)tables, which can be accessed at a finer
level of granularity. This functionality allows a table to be defined
as a union of its partitions. One then can query the parent table as if
it is an autonomous table.5 On the other hand, for finer control and
better data locality one can query individual partitions, which are
tables, to avoid access to partitions that are outside the query. In
module M5 we investigate the performance of the cross-matching
pipeline where the largest tables are partitioned horizontally into
declination zones of one degree.

We force the partition tables to be sorted according to declina-
tion, which uses the system cores in parallel. Thismeans thatwhen
table rows need to be updated or appended, the partition table is
rewritten. This is acceptable as most of the table chunks are sorted
according to their original format. Moreover, cross-matching will
be fast and can be done in memory, since the tables are relatively
small and in sorted order. The partitioning scheme is also prepared
to withstand database growth, since the partition sizes do not
exceed the expected number of sources. The relevant M5 SQL code
is shown in Appendix C.

4. Presentation of experimental results

The baseline (M0, Section 3.5) and alternative (M5, Section 3.5.1)
modules both have the same set of SQL/MED loading queries,
but a different set of cross-matching queries. On the same type
of node the same loading queries compete for memory and CPU
with different sets of cross-matching queries from the respective
modules. Every cross-matching module has its specific methods
of memory allocation and data storage, which produce unequal
loading behaviour. Nevertheless, the variations between modules
are small and therefore Section 4.1 only presents the loading query
run times of the alternative module M5. In Section 4.2 we present
the details of different cross-matching modules and in Section 4.3
the overall performances.

4.1. Loading part

The loading part consists of nine queries that first attach and
load the binary FITS files into temporary tables that are created
on the fly (I1–I3), then copy the FITS header data and sources
over into permanent tables (I4 and I5, resp.) and finally clean up

5 More on the internals can be found at https://www.monetdb.org/
Documentation/Cookbooks/SQLrecipes/DataPartitioning.

the schema (I6–I9) before the next file comes in. The accumulated
run-time performances of the individual queries and the growth of
the number of sources in the database with respect to the FITS
image sequence for the alternative module M5 on the diamonds
node are shown in the left graph of Fig. 1. The thick (red) line in
this graph represents the number of sources in the database at
the moment of query execution and corresponds to the number
of entries in the largest table, which is a measure for the database
size. Although the number of sources increases irregularly, the
individual query run times accumulate linearly over time,meaning
a query runs equally fast at any moment.

The constant-time complexityO(1) is clearly visible in the right
graph of Fig. 1, where the individual query run times are plotted
vs. the number of sources in the database. Although there is some
scatter on the nodes that have limited memory in combination
with the slower HDDs (not plotted here), these queries run in-
dependent of the database size. It is not possible to make a fair
comparison with the loading query set of the TraP as presented
by Swinbank et al. (2015), because they donot separate the loading
from the cross-matching in their performance plots. However, the
flat performance of the SQL/MED queries for the baseline and
alternative modules allows the loading of source lists that more
than 100 times larger.

Queries I3, I4 and I5 (spelled out in Appendix A.1,
Appendix A.2 and Appendix A.3, resp.) contribute most to the total
load time. Query I3 is an SQL/MED procedure call. After the FITS
data have been attached to the database by generating a fully
queryable temporary table, this call really loads the data into the
database, effectively making the data-vaults table permanent in
the database schema. Query I4 loads the header data, common
to all sources originating from the same FITS file, into the image
table as a single entry, whereas I5 appends all data from the data-
vaults table to the permanent extractedsource table. Such bulk
inserts vary, but can be over 105 entries (see Section 3.2). The
insertion of only one entry into the image table is an expensive
operation, because all fifteen data types per entry have to be
parsed. Comparison to the other append/insert queries (I1, I3
and I5) makes the effect more conspicuous, where the cost of
appending 105 sources is low since the SQL queries are aware of
attaching binary data and the data types. However, all load queries
run in constant time, independent of the database size with the
ability to scale up even further.

4.2. Cross-matching part

After the sources from a FITS file have been inserted the cross-
matching procedure starts and runs 15 to 46 queries depending
whether the baseline or alternativemodulewas chosen. The source
list is cross-matched with counterparts in the catalogue of known
objects. As described in Section 3.5 this results in a candidate list
that is further sifted by subsequent queries to resolve the various
association types of source–object pairs that turn up. Swinbank
et al. (2015) discuss the different types and elaborate on the de-
vised steps, i.e., queries, to append the new source measurements
to existing or new light curves. The final step is to update the statis-
tical properties of the known catalogue sources to include the new
measurements in the model. Sources for which no counterparts
were found are appended as new entries in the catalogue.

There are many queries involved in this module, but we will
focus on the query that performs the cross-matching.

4.2.1. The baseline cross-match module M0
The baseline cross-match module consists of fifteen queries

in total of which the cross-matching query is labelled Q11b (see
Appendix B). The graphs in Fig. 2 show the performance of the
cross-matching module as a whole (left column), the other queries

https://www.monetdb.org/Documentation/Cookbooks/SQLrecipes/DataPartitioning
https://www.monetdb.org/Documentation/Cookbooks/SQLrecipes/DataPartitioning
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Fig. 1. Accumulated (left-column graphs) and instantaneous (right-column graphs) run times of the loading queries in the alternative module M5 on the diamonds node
in the SciLens cluster with respect to the image sequence number and the number of sources appended to the database, resp. (See Table 2 for the node specifications.) The
thick (red) line in the left-column graphs shows the growth of the appended number of sources, which is a measure of the database size. 16-9 is the subset of queries that
is responsible for the database schema clean up. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(middle column) and the individual cross-matching query Q11b
(right column), while the rows specify the types of node on which
the pipeline ran.

The left-column graphs show the run times summed over all
fifteen queries vs. the image sequence number. During a pipeline
run the total run time to process a single FITS image fluctuates
heavily and depends strongly on the growth rate of the database
size. Larger data input sizes will slow down the pipeline run.

From the right-column graphs it can be seen that the cross-
matching query run times are of the same order as the above
mentioned summed query run times, meaning that the pipeline
run time is determined by Q11b. We have divided the cross-
matching query run times in these graphs into three consecutive
parts according to their image sequence number: the first 500
images, the middle part of images 500–1500 and the remaining
images starting from sequence number 1500. This points out that
cross matching is not only a function of number of query rows,
but also of database size, since for the same number of rows the
query run times slow down as the database fills up with sources.
Searching for counterpart candidates takes longer, since larger
tables have to be scanned.

Comparisons of the run times of the cross-matching query to
the other queries, shown in the graphs in the middle column of
Fig. 2, reveal a difference of more than two orders of magnitude,
making the cross-matching query the most dominant one in mod-
ule M0. The middle graphs show that most queries evolve linearly
in time as the database size grows, while only a few run in constant
time independent of the database size.

It all indicates that the cross-matching query and thus the
baseline module scales with database size in O(NM) time, where
N is the number of sources in the database and M the number
of sources in the resulting candidate list, which is approximately
equal to the number of entries in the source list originating from
the FITS file.

The pipeline performance on the diamonds and bricks nodes
is similar, because for the former the RAM size is large enough and
for the latter RAM size is sufficient in combination with the low
latency storage access of the SSDs. On the stones and bricks
nodes some of the other queries are memory bound. The fast CPU
of the rocks node does not compensate its small RAM size, which
effect is more prominent when the database size is larger. In these
cases the operating system starts memory swapping data from
RAM to disk, a process that impacts the pipeline performance
negatively. The larger storage access latency for HDDs as compared
to SSDs makes the pipeline runs slower and less smooth on a
stones node than on a bricks node, despite its faster CPU.

4.2.2. The partitioned cross-matching module M5
In module M5 the catalogued sources are distributed over mul-

tiple tables according to their declination zone as described in
Section 3.5.1. The number of rows a query touches is now limited
by the size of the partitioned tables, which is for zone widths of
1 degree two orders of magnitude smaller than the unpartitioned
version. Query run times now only depend either on the number of
rows of partitioned tables or on the size of the result sets instead of
the size of the entire database. This is nicely demonstrated in Figs. 3
and 5, where the run-time performance of all queries inmodule M5
is shown.

The cross-matching query, labelled Q32 in module M5, is shown
in the right-column graphs of Fig. 3. Because the partitioning re-
stricts thenumber of sources, the query run timesdonot dependon
the database size anymore. Therefore, in contrast with the baseline
module, the cross-matching run times do not hinge on the image
sequence number, but are determined by the number of entries
in the result set, i.e. the number of counterpart candidates, which
is approximately equal to the number of entries in the source list.
This makes the M5 cross-matching query to run stable and faster
over time than its counterpart in module M0.

The summed query run times fluctuate irregularly over the
course of images, as can be seen in the left column of Fig. 3. This
originates from query contributions that depend mainly on the
input source-list size, which varies from image to image, but the
run times never exceed the cadence time. The middle graphs in
Fig. 3 show all queries that run in constant time. It can be seen
that for the different nodes the scatter of the run times increases
with decreasing RAM size. This is caused by queries that run in
linear-time complexity and compete with all queries for the same
memory resources. Queries that depend on the number of rows
need to allocate a relatively larger percentage of total memory on
the nodes with smaller RAM sizes, leaving a smaller amount to the
remaining queries which in turn results in longer query run times.

The small group of queries that scales linearly with the number
of rows are displayed in Figs. 4 and 5. Fig. 4 shows two queries of
which the run time increases linearly with respect to the database
size. The respective queries select the maximum ID value of the
growing tables of extracted (Q12) and catalogued sources (Q19).
Note that the latter is a MERGE table of many partitions. Since
the number of unique sources is smaller than the total number of
extracted sources the slope of query Q19 is less steep. Although it
is not noticeable in these experiments, but if we extrapolate the
database size to larger numbers, the run times will hit the cadence
time at some point. A fairly easy way to correct this part to run in
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Fig. 2. Query run times for cross-match module M0. Per row the graphs show the run times for the different types of node on which the pipelines ran; from top to bottom
these are the diamonds, stones, bricks and rocks nodes. (See Table 2 for the node specifications.) The left-column graphs show the summed run times of all queries (left
vertical axis) of module M0with respect to the image sequence number (horizontal axis). The thick (red) line shows the actual accumulated number of sources stored in the
database (right vertical axis) at the moment of FITS file processing. The graphs in the middle column show the individual query run times according to the database size,
which actually is the number of sources stored in the database at the moment of query execution. All but the cross-matching queries are shown. The right-column graphs
show the run times of the cross-matching query with respect to the number of rows in the query result set, which approximates the number of entries in the source list. The
run times are divided into three parts, where the image sequences run from start to 500, 500 to 1500, and from 1500 up to the end.
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Fig. 3. Query run times for cross-match module M5. The left-column graphs show the summed run times of all queries vs. the image sequence number. The graphs in the
right column show the cross-matching query run times with respect to the number of sources in the database (N) and the remaining queries that run in constant time
with respect to N are shown in the middle column. (See caption of Fig. 2 for further descriptions of the graphs.) The performance of the remaining queries of the module is
depicted in Figs. 4 and 5.
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Fig. 4. Run time vs. number of sources in the database of the two queries that call
the SQL MAX function in module M5 on the diamonds node.

Table 3
Accumulated processing times (in ks) of the modules for a complete pipeline run,
specified per type of node. Node rows give the specific node on which the pipeline
ran, pipeline rows specify the total pipeline run time and query rows report the
total run times of all queries summed.

Module Diamonds Stones Bricks Rocks

M0 Pipeline 659.0 575.1 750.6 589.4
Query 658.4 572.7 749.8 585.6

M5 Pipeline 9.6 14.8 12.0 23.2
Query 6.5 7.8 7.0 10.0

constant time would be to maintain the values at the application
level. However, a solution where the database itself keeps track
of statistical parameters, e.g., average, minimum, maximum, stan-
dard deviation, ismore elegant and is considered in future releases.

The graphs of Fig. 5 show the M5 query run times that do
not run in constant time. The areas of the query run times are
confined to certain regions. Queries Q46a and Q28 are working on
the light-curve table and take into account an order of magnitude
more entries than the queries that run over the catalogue table
with unique sources (Q43a and Q24, where the latter is hidden
behind the markers of other query run times). All four query run
times depend on the number of sources in the partitions, i.e., the
source density. Numbers of new datapoints appended to the light-
curve table (Q39) do not exceed 106, whereas new entries for the
extracted source table (Q14) and catalogue table (Q38) both do not
exceed the number of source list entries. The graphs show that the
performance is controlled and that the queries run at acceptable
speeds.

4.3. Overall pipeline runtime

Table 3 reports the total time of the pipeline runs and the
summed execution time of all queries, i.e. loading and cross-
matching, for the baseline and the alternative module, specified
per cluster node. It shows that absolute increment of the pipeline
overhead is more prominent in the alternative module M5 than
in the baseline module M0. This is caused by fact that we do not
include the query commit times in the query runtime results.
The larger number of queries and thus commits in the alternative
module contribute more to the total pipeline runtimes.

The scalability of the baseline module M0, which extrapolates
LOFAR’s TraP pipeline from the radio to the optical domain, is lim-
ited. Most queries write data, i.e. append or update, and therefore
most of the time only one CPU core is being used. The M0 cross-
matching query is CPU-bound on all nodes and the full material-
isation of the large intermediate results into memory introduces
significant degradations of the performance, making it unfeasible
to process the source lists within MeerLICHT’s cadence time.

Smaller scans over sorted partitioned tables and less complex
computations expose better instruction code locality and reduce
intermediates for the M5 cross matching, from which the overall
M5 pipeline performance distinctly benefits. The M5 cross-match
query is about three orders of magnitude faster and behaves lin-
early. The queries in M5 utilise the available resources differently,
since the cross-matching requires less CPU time. All queries are
bound to maximum row numbers and finish execution within
limited amounts of times. Internal database index structures fur-
ther speed up the queries to run sublinear, giving the pipeline
an additional boost of a factor of two. The partitioned database
schema better predicts query behaviour on the long term, controls
the overall pipeline performance and scales to larger numbers of
sources.

5. Conclusions

High-cadence astronomical observatories have the potential
to building up extremely large databases of catalogued sources
and their light curves. Making scientific discoveries with the use
of databases rely on the ability to efficiently grind the massive
amounts of data. In this work, we matched optimised Big Data
storage models to pipeline query access patterns in a layered
storage system. The layers present the data in different formats,
going from coarse high-level overviews at the top (all-sky) to the
fine-grained details at the bottom tier (declination strip).

This work describes a scalable solution for the full-source
database for the MeerLICHT and planned BlackGEM wide-field
optical telescopes. We adopted the Transients Pipeline (TraP)
database schema and pipeline queries from the LOFAR Transients
Key Science Project as a baseline to ingest, process and store
optical data from binary catalogue FITS files. We investigated
the database schemas and query modules to optimise source
cross matching and achieve long-term sublinear run times for all
pipeline queries. We monitored all queries individually to study
their long-term behaviour. Experiments with real data from the
IPHAS Survey showed that themodified TraP baseline cross-match
module is not scalable towards optical source densities. We devel-
oped an alternative cross-match module for database schema and
query optimisations that improved the pipeline runs significantly.
The column-oriented database schema design in which the data
are partitioned horizontally according to declination strips allows
the database to grow in size and simultaneously to run all pipeline
queries in constant time, making this the preferred schema for
processing large source lists at high cadence.

Cross-match algorithms of associating a new source list with
the stored known sources are highly sensitive to their imple-
mentations. The list of known sources is reduced significantly
by maintaining an up-to-date compact statistical sky model. Af-
ter operations start, the model’s size settles relatively early and
therefore the cross-matching avoids large scans over continuously
growing tables. We accelerated the cross-match positional look-
ups by three orders ofmagnitudewith the use ofMonetDB’s default
hash indexes on a single sorted column of declination values. The
overall pipeline speed was increased by two orders of magnitude.
Most queries run in constant time and only a few run in linear time
with known upper limits.

In related tests, we noticed that the creation of a three-
dimensional tree index structure of the known catalogued sources
becomes unbalanced after awhile and that tree rebuilds are expen-
sive, which slows down the pipeline run. This makes the kd tree,
where k = 3 for the Cartesian co-ordinates, not the appropriate
index structure in the sky model build-up phase, however, in a
read-only static database it might well be the preferred index
structure for fast positional look-ups and cross-matching. In this
context, further Bkd tree performance investigations, especially
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Fig. 5. Module M5 queries that run in linear time. The plots show the remaining queries that depend on the number of rows, which approximates the source list size. Pipeline
runs were on the different cluster nodes.

in the treatment of updating and removing points from the tree,
optimising memory buffer sizes, number of trees in memory and
tuning access to main memory may demonstrate its usefulness in
dynamic, distributed, databases.

Performance results showed that the processing of IPHAS data,
with similar average and peak source densities MeerLICHT will
encounter, was feasible well within cadence limits of 25 s. Source
lists with average densities could be processed at rates of 5 s per
image on nodes with modest CPUs and large RAM.

MeerLICHT’s larger field of view implies larger source lists,
but the sublinear-time behaviour and scalability of most queries,
including the cross-matching, will not affect the performance.
Queries that run in linear time will have similar performance for
MeerLICHT, since the dependence scales with source density and
not source list size for the most intense queries. The assumption
of 12 h of observation per night and the offline mode that allows
delays due to peaks will relax the criteria, meaning that with
the alternative database and partitioning schema MeerLICHT full-
source data can be processed at the one minute cadence.

The BlackGEMarraywill consist of three telescopes, where each
one will observe a different patch of the sky and will produce its
own data stream, similar to MeerLICHT is doing. This simplifies
parallelisation at an early stage, where the fields of view can be
processed independently by multiple threads and database con-
nections working on distinct partitions of the data. The in-memory
column-oriented data storage structures of MonetDB match with
the data ingestion and pipeline-specific queries. Independent par-
allel data streams will make the BlackGEM full-source pipeline
capable of processing the data within its cadence time of one
minute.

Development of the MonetDB database and the MeerLICHT &
BlackGEM full-source pipeline continues, where we will address
improvements on data-partition querying, multi-dimensional tree
indexing and techniques to visualise data in full-source archives.
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Appendix A. Insertion queries

A.1. I3, loading FITS data

/* tabname is the data-vaults table that was generated at the moment
the FITS file was attached to the database schema.
This procedure really loads the data permanently into the
database. */

CALL fitsload(’%(tabname)s’);

A.2. I4, loading FITS header data

INSERT INTO image
(run
,extver
,irafname
,wffpos
,wffband
,wffpsys
,wffid
,jd
,mjd
,magzpt
,exptime
,airmass
,extinct
,apcor
,percorr
)

VALUES
(%(run)s
,%(extver)s
,’%(irafname)s’
,%(wffpos)s
,CAST(’%(wffband)s’ AS CHAR(1))
,’%(wffpsys)s’
,%(wffid)s
,%(jd)s
,%(mjd)s
,%(magzpt)s
,%(exptime)s
,%(airmass)s
,%(extinct)s
,%(apcor)s
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,%(percorr)s
)

;

A.3. I5, inserting FITS data into permanent table

INSERT INTO extractedsource
(id
,number
,isophotal_flux
,total_flux
,core_flux
,x_coordinate
,y_coordinate
,gaussian_sigma
,ellipticity
,position_angle
,peak_height
,areal_1_profile
,areal_2_profile
,areal_3_profile
,areal_4_profile
,areal_5_profile
,areal_6_profile
,areal_7_profile
,areal_8_profile
,core1_flux
,core2_flux
,core3_flux
,core4_flux
,ra
, " dec "
,classification
,statistic
,core5_flux
,skylev
,skyrms
,bad_pixels
,blank31
,blank32
,ra_deg
,dec_deg
,dec_zone_deg
,x
,y
,z
,extver
,image
)

SELECT id
,number
,isophotal_flux
,total_flux
,core_flux
,x_coordinate
,y_coordinate
,gaussian_sigma
,ellipticity
,position_angle
,peak_height
,areal_1_profile
,areal_2_profile
,areal_3_profile
,areal_4_profile
,areal_5_profile
,areal_6_profile
,areal_7_profile
,areal_8_profile
,core1_flux
,core2_flux
,core3_flux
,core4_flux
,ra
, " dec "
,classification
,statistic
,core5_flux
,skylev
,skyrms
,bad_pixels
,blank31
,blank32
,ra_deg
,dec_deg
,dec_zone_deg
,x
,y
,z
,extver
,%(image_id)s

FROM tmpextrsrc
;



38 B. Scheers et al. / Astronomy and Computing 23 (2018) 27–39

Appendix B. Baseline cross-match module M0

DECLARE iassoc_r_arcsec , iassoc_r_deg , idist_const DOUBLE;
SET iassoc_r_arcsec = CAST(%(dr_arcsec)s AS DOUBLE);
SET iassoc_r_deg = iassoc_r_arcsec / 3600;
SET idist_const = PI() * iassoc_r_arcsec / 1296000;

SELECT t0.runcat
,t0.xtrsrc
,3600 * DEGREES(2 * t0.dist_const) AS distance_arcsec

FROM (SELECT rc1.id AS runcat
,x1.id AS xtrsrc
,ASIN(SQRT( (rc1.x - x1.x) * (rc1.x - x1.x)

+ (rc1.y - x1.y) * (rc1.y - x1.y)
+ (rc1.z - x1.z) * (rc1.z - x1.z)
) / 2) AS dist_const

FROM extractedsource x1
,image i1
,runningcatalog rc1

WHERE i1.run = irun
AND x1.image = i.id
AND rc1.dec_zone_arcsec BETWEEN CAST(FLOOR(3600 * x1.dec_deg - iassoc_r_arcsec) AS INTEGER)

AND CAST(FLOOR(3600 * x1.dec_deg + iassoc_r_arcsec) AS INTEGER)
AND rc1.ra_deg BETWEEN x1.ra_deg - alpha(x1.dec_deg, iassoc_r_deg)

AND x1.ra_deg + alpha(x1.dec_deg, iassoc_r_deg)
) t0

WHERE t0.dist_const < idist_const
;

Appendix C. Alternative cross-match module M5

/* Create the partition rc_zone table, where the table name
is appended with the zone id. Then, append it to the MERGE
table runcat. */

CREATE TABLE " %(rc_zone)s "
(id INT NOT NULL
,xtrsrc INT NOT NULL
,datapoints INT NOT NULL
,active BOOLEAN NOT NULL DEFAULT TRUE
,avg_ra DOUBLE PRECISION NOT NULL
,avg_dec DOUBLE PRECISION NOT NULL
,avg_ra_deg DOUBLE PRECISION NOT NULL
,avg_dec_deg DOUBLE PRECISION NOT NULL
,avg_dec_zone_deg TINYINT NOT NULL
,x DOUBLE PRECISION NOT NULL
,y DOUBLE PRECISION NOT NULL
,z DOUBLE PRECISION NOT NULL
)

;
ALTER TABLE runcat ADD TABLE " %(rc_zone)s " ;

/* Declare the temporary new zoned runcat table rcz */
CREATE SEQUENCE " rcz_seq " AS INT START WITH " %(rcz_seq_start)s " ;
DECLARE TABLE rcz

(id INT NOT NULL DEFAULT NEXT VALUE FOR " rcz_seq "
,xtrsrc INT NOT NULL
,datapoints INT NOT NULL
,active BOOLEAN NOT NULL DEFAULT TRUE
,avg_ra DOUBLE NOT NULL
,avg_dec DOUBLE NOT NULL
,avg_ra_deg DOUBLE NOT NULL
,avg_dec_deg DOUBLE NOT NULL
,avg_dec_zone_deg TINYINT NOT NULL
,x DOUBLE PRECISION NOT NULL
,y DOUBLE PRECISION NOT NULL
,z DOUBLE PRECISION NOT NULL
)

;

/* rcz is loaded with use of a select statement (for brevity not
explicitly shown) that unions all the relevant rc_zone tables. */

INSERT INTO rcz
(id, xtrsrc, datapoints , avg_ra,avg_dec
,avg_ra_deg ,avg_dec_deg ,avg_dec_zone_deg
,x,y,z)

" %(select_query)s "
;

/* The cross-match query. Python variables are defined analogously to M2 */
SELECT t1.runcat

,t1.xtrsrc
,3600 * DEGREES(2 * ASIN(SQRT(t1.dist) / 2)) AS distance_arcsec

FROM (SELECT z0.id AS runcat
,t0.id AS xtrsrc
, (z0.x - t0.x) * (z0.x - t0.x)
+ (z0.y - t0.y) * (z0.y - t0.y)
+ (z0.z - t0.z) * (z0.z - t0.z) AS dist

FROM rcz z0
,(SELECT id

,dec_deg - " %(iradius)s " AS decmin
,dec_deg + " %(iradius)s " AS decmax
,ra_deg - alpha(dec_deg, " %(iradius)s) " AS ramin
,ra_deg + alpha(dec_deg, " %(iradius)s) " AS ramax
,x
,y
,z

FROM tmpextrsrc x0
) t0

WHERE z0.avg_dec_deg BETWEEN t0.decmin AND t0.decmax
AND z0.avg_ra_deg BETWEEN t0.ramin AND t0.ramax

) t1
,rcz z1
,tmpextrsrc x1

WHERE z1.id = t1.runcat
AND t1.dist < " %(isint2)s "
AND x1.id = t1.xtrsrc

;
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