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It is well known (and due to Delsarte [3]) that the three concepts (i) two-weight projective code,
(ii) strongly regular graph defined by a difference set in a vector space, and (iii) subset X of a
projective space such that | X N H| takes only two values when H runs over all hyperplanes, are
equivalent. Here we construct some new examples (formulated as in (iii)) by taking a quadric
defined over a small field and cutting out a quadric defined over a larger field.

Let F be a field with r elements and Fj a subfield with g elements, so that r=¢°
for some e>1. Let V be a vector space of dimension d over F and write ¥, for the
same vector space but now regarded as a vector space of dimension de over Fj.
(We shall use the zero subscript to indicate objects or operations in ¥} correspon-
ding to those indicated without this subscript in ¥.) Let Tr: F— F; be the trace
map (defined by Tr(x)=x+x7+--- +qu). One immediately checks the following
observations:

(@) If Q:V — F is a quadratic form on V, then Qy,=Tro Q is a quadratic form
on Vo.

(b) If B: VX V— Fis the bilinear form corresponding to Q (defined by Q(x+y) =
O(x)+ Q(»¥) + B(x, y)), then By=Tro B is the bilinear form corresponding to Q.

(c) By is nondegenerate iff B is nondegenerate.

(d) Qy is nondegenerate iff Q is nondegenerate and either q is odd or d is even.
[If g is odd, then Q is nondegenerate iff B is; if ¢ is even and d is odd and Q is non-
degenerate, then dimrad V=1 so that dimgrad, Vy=e and Q, is degenerate.]

(e) If d is even, then Qy has maximal (minimal) Witt index iff Q has.

Proof. (For details on orthogonal geometry, see e.g. Artin [1, Chapter III].) Let
g=+1 (—1), then Q(x)=0 is true for (#+%%—¢)(r¥?>~!+¢) nonzero vectors in V.
Since d is even the number of solutions of Q(x)=a does not depend on the
ae F\ {0} chosen, so this equation has r?~!—¢gr??-! solutions. Since Try=0 is
true for g°~! elements of F among which 0, we see that Tr Q(x) =0 is true for
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(qE—l _ l)(rd*l _ erd/z—l) + (rd/l_g)(’,d/2~l +8)= (qde/Z_e)(qde/l—l +£)

nonzero vectors x. Thus Q and Q, have simultaneously maximal or minimal Witt
index.

Remark. If U is a totally isotropic subspace of ¥V of dimension id, then U, is
totally isotropic of dimension 4de in ¥V, so that Qg has maximal index when Q has.
But it is not so easy to give a similar proof without counting when Q has minimal
index.

If x* is a tangent hyperplane to Q in PV, then x*? is a tangent hyperplane to Q,
in PV,. [Note: the converse does not hold.] [Note: PV is the projective space cor-
responding to V.]

After these preliminaries let us define X ={xePV,|Qy(x)=0 and Q(x)+0},
where Q, is a nondegenerate quadratic form on ¥V, and investigate |X N H| for
hyperplanes H in PV,. Write H =g*0. First assume that d is even. Distinguish
three cases.

(i) a* is a tangent hyperplane.

Now H is a tangent hyperplane, and HN Q, is a cone over a nondegenerate quad-
ric in de—2 dimensions and hence contains 1+ g(g?%2~'—e)(@®? % +¢&)/(g-1)
projective points, i.e., g—1+q(g%?> 1 —e)(g%* ?—e)=q® 2 —1+eq%?* W g-1)
nonzero vectors.

Similarly ¢* N Q contains r¢ 2—1+er?? 1(r—1)=q% 2 —1+q%2"%(¢°-1)
nonzero vectors.

Since Q contains g%~ ¢—1+¢&g?’?~¢(g°—1) nonzero vectors and each nonzero
value of the inner product B(a, ‘) occurs equally often on O \ a* we find that each
nonzero value of B(g, -) is taken for g%~ 2¢ vectors in Q\ a*.

Now the number of nonzero vectors x with Q(x)=0 and By(a,x)=0 is

qde—z.e__ 1+ sqde/2—e(qe_ DN+ (qe—l - l)qde-ze
— qde—e-l_ 1+ eqde/2—e(qe__ 1).
Finally
IXnHI = _é__l__l_(qe-—l _ 1)(qde—e—l _ 8qde/2-—e).
(i) a* is a secant hyperplane but H is tangent.
We find the same value for |H N Q,| as before; this time ¢* N Q is a nondegener-
ate quadric in d—1 dimensions and hence contains 7¢~2 -1 nonzero vectors.

Each nonzero value of B(g, -) is taken for g% %€+ gg%/?>~¢ vectors in Q \a* so
that HNQ contains g%~ ¢~ —1+£g%/2~¢(g° "1 —1) nonzero vectors. Finally

(XNH| = —c}{_l [g Y g* ™' — 1)+ &g %(¢° - 2¢° " +1)].
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(iii) Both a* and H are secant.

This time A N Q, contains ¢%~2—1 nonzero vectors, HN Q has the same size as
under (ii), and

1
q-—_

the same value as we found under @).

IXNH| = 1 (g = 1) (g% ¢! - gg/2-¢),

Theorem. Let d be even. X is a subset of size (g~ —1)(q% ¢ —eq%*~%)/(q—1) of
PV, such that | X\ H| is either (g~ ' —1)(g% "' —£q®'*~%)/(g— 1) or

g% 1(g* - 1)+ eg®%(g*—2¢° '+ )/ (g - 1)

where the latter possibility occurs for precisely |X | hyperplanes H.

The corresponding two-weight code over F, has word length |X| and weights
Wo= 0, w, =(qe-l _ l)qde—e-—l and w2=(qe—1 . l)qde—-e-l _ aqdeIZ—l.

The corresponding strongly regular graph has v=|Vy|=q% vertices, valency
k=(@-1|X]|=(q@° "= 1)(g% °—eq®*~°) and eigenvalues k — qw; (i=0,1,2).

Proof. We already saw the first part. For the connections with two-weight codes
and strongly regular graphs see Calderbank & Kantor [2]. O

Comparison with known constructions
For ¢=+1 the graphs constructed above have the parameters of Latin square
graphs derived from OA(y, g), where

u= qde/z and g= qde/z—e(qe—l _1).

Many constructions for graphs with Latin square parameters are known; I do not
know whether the graphs constructed above are isomorphic to previously con-
structed ones.

For £=—1 these graphs have ‘negative Latin square’ parameters. When d=2
these are known (not surprisingly: Q is empty, so X=0,\ Q=Q,) but for d=4
they seem to be new. The smallest graph constructed here and not known before
has parameters (g=e=2, d=4):

v=256, k=68, A=12, u=20, r=4, s=-12.

A cyclotomic description.of this same graph can be given by taking V' =GF(256),
0x)=x"+x%, X={a"*/|0=<i=<16, j=1,2,4,8} where a is a primitive element
of GF(256).

Case d odd
Similar computations when d is odd show that | XN H| takes more than two dis-
tinct values here, so that this case is not interesting for our purpose.



114 A.E. Broswer

References

{1} E. Artin, Geometric Algebra, Interscience Tracts in Pure and Applied Mathematics 3 (Interscience,
New York, 1957).

[2] R. Calderbank and W.M. Kantor, The geometry of two-weight codes, Preprint, Bell Labs. (1982).

[3] Ph. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete Math. 3 (1972)
47-64.



