NOTE

SOME NEW TWO-WEIGHT CODES AND STRONGLY REGULAR GRAPHS

A.E. BROUWER

Mathematisch Centrum, Kruislaan 413, Amsterdam, The Netherlands

Received 8 November 1983 Revised 17 April 1984

It is well known (and due to Delsarte [3]) that the three concepts (i) two-weight projective code, (ii) strongly regular graph defined by a difference set in a vector space, and (iii) subset X of a projective space such that $|X \cap H|$ takes only two values when H runs over all hyperplanes, are equivalent. Here we construct some new examples (formulated as in (iii)) by taking a quadric defined over a small field and cutting out a quadric defined over a larger field.

Let F be a field with r elements and F_0 a subfield with q elements, so that $r=q^e$ for some e>1. Let V be a vector space of dimension d over F and write V_0 for the same vector space but now regarded as a vector space of dimension de over F_0 . (We shall use the zero subscript to indicate objects or operations in V_0 corresponding to those indicated without this subscript in V.) Let $\operatorname{Tr}: F \to F_0$ be the trace map (defined by $\operatorname{Tr}(x) = x + x^q + \cdots + x^{q^{e-1}}$). One immediately checks the following observations:

- (a) If $Q: V \to F$ is a quadratic form on V, then $Q_0 = \operatorname{Tr} \circ Q$ is a quadratic form on V_0 .
- (b) If $B: V \times V \to F$ is the bilinear form corresponding to Q (defined by Q(x+y) = Q(x) + Q(y) + B(x, y)), then $B_0 = \text{Tr} \circ B$ is the bilinear form corresponding to Q_0 .
 - (c) B_0 is nondegenerate iff B is nondegenerate.
- (d) Q_0 is nondegenerate iff Q is nondegenerate and either q is odd or d is even. [If q is odd, then Q is nondegenerate iff B is; if q is even and d is odd and Q is nondegenerate, then dim rad V=1 so that $\dim_0 \operatorname{rad}_0 V_0 = e$ and Q_0 is degenerate.]
 - (e) If d is even, then Q_0 has maximal (minimal) Witt index iff Q has.

Proof. (For details on orthogonal geometry, see e.g. Artin [1, Chapter III].) Let $\varepsilon = +1$ (-1), then Q(x) = 0 is true for $(r^{d/2} - \varepsilon)(r^{d/2-1} + \varepsilon)$ nonzero vectors in V. Since d is even the number of solutions of Q(x) = a does not depend on the $a \in F \setminus \{0\}$ chosen, so this equation has $r^{d-1} - \varepsilon r^{d/2-1}$ solutions. Since $\operatorname{Tr} y = 0$ is true for q^{e-1} elements of F among which 0, we see that $\operatorname{Tr} Q(x) = 0$ is true for

$$(q^{e-1}-1)(r^{d-1}-\varepsilon r^{d/2-1})+(r^{d/2}-\varepsilon)(r^{d/2-1}+\varepsilon)=(q^{de/2}-\varepsilon)(q^{de/2-1}+\varepsilon)$$

nonzero vectors x. Thus Q and Q_0 have simultaneously maximal or minimal Witt index.

Remark. If U is a totally isotropic subspace of V of dimension $\frac{1}{2}d$, then U_0 is totally isotropic of dimension $\frac{1}{2}de$ in V_0 so that Q_0 has maximal index when Q has. But it is not so easy to give a similar proof without counting when Q has minimal index.

If x^{\perp} is a tangent hyperplane to Q in PV, then $x^{\perp 0}$ is a tangent hyperplane to Q_0 in PV_0 . [Note: the converse does not hold.] [Note: PV is the projective space corresponding to V.]

After these preliminaries let us define $X = \{x \in PV_0 \mid Q_0(x) = 0 \text{ and } Q(x) \neq 0\}$, where Q_0 is a nondegenerate quadratic form on V_0 , and investigate $|X \cap H|$ for hyperplanes H in PV_0 . Write $H = a^{\pm 0}$. First assume that d is even. Distinguish three cases.

(i) a^{\perp} is a tangent hyperplane.

Now H is a tangent hyperplane, and $H \cap Q_0$ is a cone over a nondegenerate quadric in de-2 dimensions and hence contains $1+q(q^{de/2-1}-\varepsilon)(q^{de/2-2}+\varepsilon)/(q-1)$ projective points, i.e., $q-1+q(q^{de/2-1}-\varepsilon)(q^{de/2-2}-\varepsilon)=q^{de-2}-1+\varepsilon q^{de/2-1}(q-1)$ nonzero vectors.

Similarly $a^{\perp} \cap Q$ contains $r^{d-2} - 1 + \varepsilon r^{d/2-1}(r-1) = q^{de-2e} - 1 + \varepsilon q^{de/2-e}(q^e-1)$ nonzero vectors.

Since Q contains $q^{de^{-e}}-1+\varepsilon q^{de/2-e}(q^e-1)$ nonzero vectors and each nonzero value of the inner product $B(a, \cdot)$ occurs equally often on $Q \setminus a^{\perp}$ we find that each nonzero value of $B(a, \cdot)$ is taken for $q^{de^{-2e}}$ vectors in $Q \setminus a^{\perp}$.

Now the number of nonzero vectors x with Q(x) = 0 and $B_0(a, x) = 0$ is

$$q^{de-2e} - 1 + \varepsilon q^{de/2-e} (q^e - 1) + (q^{e-1} - 1) q^{de-2e}$$

$$= q^{de-e-1} - 1 + \varepsilon q^{de/2-e} (q^e - 1).$$

Finally

$$|X \cap H| = \frac{1}{q-1} (q^{e-1}-1)(q^{de-e-1}-\varepsilon q^{de/2-e}).$$

(ii) a^{\perp} is a secant hyperplane but H is tangent.

We find the same value for $|H \cap Q_0|$ as before; this time $a^{\perp} \cap Q$ is a nondegenerate quadric in d-1 dimensions and hence contains $r^{d-2}-1$ nonzero vectors.

Each nonzero value of $B(a, \cdot)$ is taken for $q^{de-2e} + \varepsilon q^{de/2-e}$ vectors in $Q \setminus a^{\perp}$ so that $H \cap Q$ contains $q^{de-e-1} - 1 + \varepsilon q^{de/2-e} (q^{e-1} - 1)$ nonzero vectors. Finally

$$|X \cap H| = \frac{1}{q-1} [q^{de-e-1}(q^{e-1}-1) + \varepsilon q^{de/2-e}(q^e-2q^{e-1}+1)].$$

(iii) Both a^{\perp} and H are secant.

This time $H \cap Q_0$ contains $q^{de-2}-1$ nonzero vectors, $H \cap Q$ has the same size as under (ii), and

$$|X \cap H| = \frac{1}{q-1} (q^{e-1}-1)(q^{de-e-1}-\varepsilon q^{de/2-e}),$$

the same value as we found under (i).

Theorem. Let d be even. X is a subset of size $(q^{e-1}-1)(q^{de-e}-\varepsilon q^{de/2-e})/(q-1)$ of PV_0 such that $|X\cap H|$ is either $(q^{e-1}-1)(q^{de-e-1}-\varepsilon q^{de/2-e})/(q-1)$ or

$$[q^{de-e-1}(q^{e-1}-1)+\varepsilon q^{de-e}(q^e-2q^{e-1}+1)]/(q-1)$$

where the latter possibility occurs for precisely |X| hyperplanes H.

The corresponding two-weight code over F_0 has word length |X| and weights $w_0 = 0$, $w_1 = (q^{e-1} - 1)q^{de-e-1}$ and $w_2 = (q^{e-1} - 1)q^{de-e-1} - \varepsilon q^{de/2-1}$.

The corresponding strongly regular graph has $v = |V_0| = q^{de}$ vertices, valency $k = (q-1)|X| = (q^{e-1}-1)(q^{de-e} - \varepsilon q^{de/2-e})$ and eigenvalues $k-qw_i$ (i=0,1,2).

Proof. We already saw the first part. For the connections with two-weight codes and strongly regular graphs see Calderbank & Kantor [2].

Comparison with known constructions

For $\varepsilon = +1$ the graphs constructed above have the parameters of Latin square graphs derived from OA(u, g), where

$$u = q^{de/2}$$
 and $g = q^{de/2 - e}(q^{e-1} - 1)$.

Many constructions for graphs with Latin square parameters are known; I do not know whether the graphs constructed above are isomorphic to previously constructed ones.

For $\varepsilon = -1$ these graphs have 'negative Latin square' parameters. When d = 2 these are known (not surprisingly: Q is empty, so $X = Q_0 \setminus Q = Q_0$) but for $d \ge 4$ they seem to be new. The smallest graph constructed here and not known before has parameters (q = e = 2, d = 4):

$$v = 256$$
, $k = 68$, $\lambda = 12$, $\mu = 20$, $r = 4$, $s = -12$.

A cyclotomic description of this same graph can be given by taking V = GF(256), $Q(x) = x^{17} + x^{68}$, $X = \{\alpha^{15i+j} \mid 0 \le i \le 16, j = 1, 2, 4, 8\}$ where α is a primitive element of GF(256).

Case d odd

Similar computations when d is odd show that $|X \cap H|$ takes more than two distinct values here, so that this case is not interesting for our purpose.

References

- [1] E. Artin, Geometric Algebra, Interscience Tracts in Pure and Applied Mathematics 3 (Interscience, New York, 1957).
- [2] R. Calderbank and W.M. Kantor, The geometry of two-weight codes, Preprint, Bell Labs. (1982).
- [3] Ph. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete Math. 3 (1972) 47-64.