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It is well known (and due to Delsarte [3]) that the three concepts (i) two-weight projective code, 
(ii) strongly regular graph defined by a difference set in a vector space, and (iii) subset X of a 
projective space such that jXnHI takes only two values when H runs over all hyperplanes, are 
equivalent. Here we construct some new examples (formulated as in (iii)) by taking a quadric 
defined over a small field and cutting out a quadric defined over a larger field. 

Let F be a field with r elements and F0 a subfield with q elements, so that r=qe 
for some e > 1. Let V be a vector space of dimension d over F and write V0 for the 
same vector space but now regarded as a vector space of dimension de over F0 • 

(We shall use the zero subscript to indicate objects or operations in V0 correspon­
ding to those indicated without this subscript in V.) Let Tr: F-F0 be the trace 
map (defined by Tr(x) ::::x+xq + ··· +xq'- 1

). One immediately checks the following 
observations: 

(a) If Q: V-+ F is a quadratic form on V, then Q0 = Tr 0 Q is a quadratic form 
on V0• 

(b) If B: Vx v-Fis the bilinear form corresponding to Q (defined by Q(x+y)= 
Q(x) + Q(y) + B(x. y)), then B0 = Tr o B is the bilinear form corresponding to Q0• 

(c) 8 0 is nondegenerate if! Bis nondegenerate. 
(d) Q0 is nondegenerate if! Q is nondegenerate and either q is odd or dis even. 

[If q is odd, then Q is nondegenerate iff B is; if q is even and d is odd and Q is non­
degenerate, then dim rad V = 1 so that dimo rado V0 = e and Q0 is degenerate.] 

(e) If dis even, then Q0 has maximal (minimal) Witt index iff Q has. 

Proof. (For details on orthogonal geometry, see e.g. Artin [1. Chapter III].) Let 
e=+l (-1), then Q(x)=O is true for (rd12 -e)(rd12 - 1+e) nonzero vectors in V. 
Since d is even the number of solutions of Q(x) =a does not depend on the 
aeF\{O} chosen, so this equation has rd- 1-erd12 - 1 solutions. Since Try::;:;O is 
true for qe-I elements of F among which 0, we see that Tr Q(x) = 0 is true for 
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(qe-1_l)(rd-1_8rd/2-1) + (rd/2 _ e)(rd/2-1 +F.)= (qde/2 _ e)(qde/2-1 + e) 

nonzero vectors x. Thus Q and Q0 have simultaneously maximal or minimal Witt 
index. 

Remark. If U is a totally isotropic subspace of V of dimension td, then U0 is 
totally isotropic of dimension tde in V0 so that Q0 has maximal index when Q has. 
But it is not so easy to give a similar proof without counting when Q has minimal 
index. 

If x-1 is a tangent hyperplane to Q in PV, then x.LO is a tangent hyperplane to Q0 

in PV0 • [Note: the converse does not hold.] [Note: PV is the projective space cor­
responding to V.] 

After these preliminaries let us define X={xePV0 IQ0(x)=O and Q(x)::#O}, 
where Q0 is a nondegenerate quadratic form on V0 , and investigate IXnHI for 
hyperplanes Hin PV0 • Write H=a.L0• First assume that dis even. Distinguish 
three cases. 

(i) a.L is a tangent hyperplane. 
Now His a tangent hyperplane, and H n Q0 is a cone over a nondegenerate quad­

ric in de-2 dimensions and hence contains l+q(qdei2 - 1-e)(qdel2 - 2+e)l(q-l) 
projective points, i.e., q-1 +q(qde/2-I -e)(qde/2- 2 -e) =qde-2_ l + eqde/2-I(q- l) 
nonzero vectors. 

Similarly a.L n Q contains rd- 2-1 + erd12 - 1(r- l) = qde-ze -1 + eqde12 -e(qe -1) 
nonzero vectors. 

Since Q contains qde- e - 1 + eqde/2 -e (qe - 1) nonzero vectors and each nonzero 
value of the inner product B(a, ·) occurs equally often on Q \ a.L we find that each 
nonzero value of B(a, ·) is taken for qde-ie vectors in Q \ a.L. 

Now the number of nonzero vectors x with Q(x)=O and B0(a,x)=O is 

Finally 

qde-~e-1 + eqde/2-e(qe -1)+ (qe-l _ l)qde-2e 

= qde-e-t _ 1 + eqde/2-e(qe -1). 

IXnHI = _I_(qe-1 _ l)(qde-e-1 _ 8qde12-e). 
q-l 

(ii) a.J. is a secant hyperplane but H is tangent. 
We find the same value for IHn Q0 I as before; this time a.L n Q is a nondegener­

ate quadric in d-1 dimensions and hence contains rd- 2 - 1 nonzero vectors. 
Each nonzero value of B(a, ·)is taken for qde- 2e+eqdei2 -e vectors in Q\a.L so 

that H n Q contains qde-e- 1 - 1 + eqdei2 -e (qe- l - 1) nonzero vectors. Finally 

IXnHI = _1_ [qde-e-1(qe-1 _ l)+eqdel2-e(q"- 2qe-1 + l)]. 
q-1 
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(iii) Both aJ. and H are secant. 
This time H n Q0 contains qde- 2 -1 nonzero vectors, H n Q has the same size as 

under (ii), and 

IXnHI = _l_ (qe-1 - l)(qde-e-1 -eqde/2-e), 
q-1 

the same value as we found under (i). 

Theorem. Let d be even. X is a subset of size (qe-i - l)(qde-e -eqde/2-e)/(q- l) of 
PV0 such that IX<I HI is either (qe-I - l)(qde-e-I - eqde/2-e)l(q- 1) or 

[qde-e-l(qe-1 -1) + eqde-e(qe _ 2qe-I + l)]/(q-1) 

where the latter possibility occurs for precisely IX J hyperplanes H. 
The corresponding two-weight code over F0 has word length IXI and weights 

Wo= 0, WI: (qe-1 - l)qde-e-1 and W2 =(qe-1 - l)qde-e-1 -eqde/2-1. 

The corresponding strongly regular graph has v = I V0 [ = qde vertices, valency 
k = (q-1) IX I= (qe-l - l)(qde-e - eqde/2-e) and eigenvalues k- qw1 (i =0, 1, 2). 

Proof. We already saw the first part. For the connections with two-weight codes 
and strongly regular graphs see Calderbank & Kantor [2]. 0 

Comparison with known constructions 
For e = + 1 the graphs constructed above have the parameters of Latin square 

graphs derived from OA(u,g), where 

U = qde/2 and g = qde/2-e(qe-I - l). 

Many constructions for graphs with Latin square parameters are known; I do not 
know whether the graphs constructed above are isomorphic to previously con­
structed ones. 

For e =-1 these graphs have •negative Latin square' parameters. When d =2 
these are known (not surprisingly: Q is empty, so X = Q0 \ Q = Q0) but for d ~ 4 
they seem to be new. The smallest graph constructed here and not known before 
has parameters (q = e = 2, d = 4): 

v=256, k=68, -1.-=12, µ=20, r=4, s=-12. 

A cyclotomic description of this same graph can be given by taking V = GF(256), 
Q(x) = x 11 + x 68 , X = {a 15i+j I O:s i :s 16, j == 1, 2, 4, 8} where a is a primitive element 
of GF(256). 

Cased odd 
Similar computations when dis odd show that \XnH\ takes more than two dis­

tinct values here, so that this case is not interesting for our purpose. 
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