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Bit-Interleaved Coded Modulation Revisited:

A Mismatched Decoding Perspective
Alfonso Martinez, Albert Guillén i Fàbregas, Giuseppe Caire and Frans Willems

Abstract

We revisit the information-theoretic analysis of bit-interleaved coded modulation (BICM) by mod-

eling the BICM decoder as a mismatched decoder. The mismatched decoding model is well-defined

for finite, yet arbitrary, block lengths, and naturally captures the channel memory among the bits

belonging to the same symbol. We give two independent proofs of the achievability of the BICM

capacity calculated by Caire et al. where BICM was modeled as a set of independent parallel binary-

input channels whose output is the bitwise log-likelihood ratio. Our first achievability proof uses typical

sequences, and shows that due to the random coding construction, the interleaver is not required. The

second proof is based on the random coding error exponents with mismatched decoding, where the largest

achievable rate is the generalized mutual information. Moreover, the generalized mutual information of

the mismatched decoder coincides with the infinite-interleaver BICM capacity. We show that the error

exponent –and hence the cutoff rate– of the BICM mismatched decoder is upper bounded by that of

coded modulation and may thus be lower than in the infinite-interleaved model; for binary reflected

Gray mapping in Gaussian channels the loss in error exponent is small. We also consider the mutual

information appearing in the analysis of iterative decoding of BICM with EXIT charts: if the symbol

metric has knowledge of the transmitted symbol, the EXIT mutual information admits a representation

as a pseudo-generalized mutual information, which is in general not achievable. A different symbol

decoding metric, for which the extrinsic side information refers to the hypothesized symbol, induces a

generalized mutual information lower than the coded modulation capacity. In this case, perfect extrinsic

side information turns the mismatched-decoder error exponent into that of coded modulation.
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Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK, e-mail: guillen@ieee.org. G. Caire is with the Electrical

Engineering Department, University of Southern California, 3740 McClintock Ave., Los Angeles, CA 90080, USA, e-mail:

caire@usc.edu. F. Willems is with the Department of Electrical Engineering, Technische Universiteit Eindhoven, Postbus

513, 5600 MB Eindhoven, The Netherlands, e-mail: f.m.j.willems@tue.nl.

This work has been supported by the International Incoming Short Visits Scheme 2007/R2 of the Royal Society.

This work has been presented in part at the 27th Symposium Information Theory in the Benelux, wic 2006, June 2006,

Noordwijk, The Netherlands, and at the IEEE International Symposium on Information Theory, Toronto, Canada, July 2008.

January 27, 2009 DRAFT

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301649707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Index Terms

Bit-interleaved coded modulation, coded modulation, cutoff rate, error exponents, generalized mu-

tual information, iterative decoding, maximum-likelihood decoding, mismatched decoding

I. INTRODUCTION

In the classical bit-interleaved coded modulation (BICM) scheme proposed by Zehavi in [1],

the channel observation is used to generate decoding metrics for each of the bits of a symbol,

rather than the symbol metrics used in Ungerböck’s coded modulation (CM) [2]. This decoder

is sub-optimal and non-iterative, but offers very good performance and is interesting from a

practical perspective due to its low implementation complexity. In parallel, iterative decoders

have also received much attention [3], [4], [5], [6], [7] thanks to their improved performance.

Caire et al. [8] further elaborated on Zehavi’s decoder and, under the assumption of an infinite-

length interleaver, presented and analyzed a BICM channel model as a set of parallel independent

binary-input output symmetric channels. Based on the data processing theorem [9], Caire et al.

showed that the BICM mutual information cannot be larger than that of CM. However, and

rather surprisingly a priori, they found that the cutoff rate of BICM might exceed that of CM

[10]. The error exponents for the parallel-channel model were studied by Wachsmann et al. [11].

In this paper we take a closer look to the classical BICM decoder proposed by Zehavi and

cast it as a mismatched decoder [12], [13], [14]. The observation that the classical BICM

decoder treats the different bits in a given symbol as independent, even if they are clearly

not, naturally leads to a simple model of the symbol mismatched decoding metric as the product

of bit decoding metrics, which are in turn related to the log-likelihood ratios. We also examine

the BICM mutual information in the analysis of iterative decoding by means of EXIT (extrinsic

information transfer) charts [5], [6], [7], where the sum of the mutual informations across the

parallel subchannels is used as a figure of merit of the progress in the iterative decoding process.

This paper is organized as follows. Section II introduces the system model and notation.

Section III gives a proof of achievability of the BICM capacity, derived in [8] for the independent

parallel channel model, by using typical sequences. Section IV shows general results on the error

exponents, including the generalized mutual information and cutoff rate as particular instances.

The BICM error exponent (and in particular the cutoff rate) is always upper-bounded by that of

CM, as opposed to the corresponding exponent for the independent parallel channel model [8],
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[11], which can sometimes be larger. In particular, Section IV-D studies the achievable rates of

BICM under mismatched decoding and shows that the generalized mutual information [12], [13],

[14] of the BICM mismatched decoder yields the BICM capacity. The section concludes with

some numerical results, including a comparison with the parallel-channel models. In general,

the loss in error exponent is negligible for binary reflected Gray mapping in Gaussian channels.

In Section V we turn our attention to the iterative decoding of BICM. First, we review how

the mutual information appearing in the analysis of iterative decoding of BICM with EXIT

charts, where the symbol decoding metric has some side knowledge of the transmitted symbol,

admits a representation as a pseudo-generalized mutual information. A different symbol decoding

metric, for which the extrinsic side information refers to the hypothesized symbol, induces a

generalized mutual information lower in general than the coded modulation capacity. Moreover,

perfect extrinsic side information turns the error exponent of this mismatched decoder into that

of coded modulation. Finally, Section VI draws some concluding remarks.

II. CHANNEL MODEL AND CODE ENSEMBLES

A. Channel Model

We consider the transmission of information by means of a block code M of length N . At

the transmitter, a message m is mapped onto a codeword x = (x1, . . . , xN), according to one

of the design options described later, in Section II-B. We denote this encoding function by φ.

Each of the symbols x are drawn from a discrete modulation alphabet X = {x1, . . . , xM}, with

M
∆
= |X | and m = log2 M being the number of bits required to index a symbol.

We denote the output alphabet by Y and the channel output by y
∆
= (y1, . . . , yN), with yk ∈ Y .

With no loss of generality, we assume the output is continuous1, so that the channel output y

related to the codeword x through a conditional probability density function pY |X(y|x). Further,

we consider memoryless channels, for which

pY |X(y|x) =
N∏

k=1

pY |X(yk|xk), (1)

where pY |X(y|x) is the channel symbol transition probability. Henceforth, we drop the words

density function in our references of pY |X(y|x). We denote by X, Y the underlying random vari-

1All our results are directly applicable to discrete output alphabets, by appropriately replacing integrals by sums.
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ables. Similarly, the corresponding random vectors are X
∆
= (X, . . . , X︸ ︷︷ ︸

N times

) and Y
∆
= (Y, . . . , Y︸ ︷︷ ︸

N times

),

respectively drawn from the sets X ∆
= XN , Y ∆

= YN .

A particularly interesting, yet simple, case is that of complex-plane signal sets in AWGN with

fully-interleaved fading where Y = C and

yk = hk

√
snr xk + zk, k = 1, . . . , N (2)

where hk are fading coefficients with average unit energy, zk are the complex zero-mean unit-

variance AWGN samples and snr is the signal-to-noise ratio (SNR). The decoder outputs an

estimate of the message m̂ according to a given codeword decoding metric, which we denote

by q(x, y) as

m̂ = arg max
m

q(xm, y). (3)

The codeword metrics we consider are the product of symbol decoding metrics q(x, y), for

x ∈ X and y ∈ Y , namely

q(x, y) =
N∏

k=1

q(xk, yk). (4)

Assuming that the codewords have equal probability, this decoder finds the most likely code-

word as long as q(x, y) = f
(
pY |X(y|x)

)
, where f(·) is a one-to-one increasing function, i.e., as

long as the decoding metric is a one-to-one increasing mapping of the transition probability of

the memoryless channel. If the decoding metric q(x, y) is not an increasing one-to-one function

of the channel transition probability, the decoder defined by (3) is a mismatched decoder [12],

[13], [14].

B. Code Ensembles

1) Coded Modulation: In a coded modulation (CM) scheme M, the encoder φ selects a

codeword of N modulation symbols, xm = (x1, . . . , xN) according to the information message

m. The code is in general non-binary, as symbols are chosen according to a probability law

PX(x). Representing the information message set {1, . . . , |M|}, we have that the rate R of this

scheme in bits per channel use is given by R = K
N

, where K
∆
= log2 |M| denotes the number of

bits needed to represent every information message. At the receiver, a maximum metric decoder φ

(as in Eq. (3)) acts on the received sequence y to generate an estimate of the transmitted message,
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ϕ(y) = m̂. In coded modulation constructions, such as Ungerböck’s [2], the symbol decoding

metric is proportional to the channel transition probability, that is q(x, y) ∝ pY |X(y|x); the value

of proportionality constant is irrelevant, as long as it is not zero. Reliable communication is

possible at rates lower than coded modulation capacity or CM capacity, denoted by Ccm
X and

given by

Ccm
X

∆
= E

[
log

pY |X(Y |X)∑
x′∈X PX(x′)pY |X(Y |x′)

]
. (5)

The expectation is done according to PX(x)pY |X(y|x). We often consider a uniform input

distribution PX(x) = 2−m.

2) Bit-Interleaved Coded Modulation: In a bit-interleaved coded modulation scheme M, the

encoder is restricted to be the serial concatenation of a binary code C of length n
∆
= mN

and rate r = R
m

(R being defined as for CM), a bit interleaver, and a binary labeling function

µ : {0, 1}m → X which maps blocks of m bits to signal constellation symbols. The codewords

of C are denoted by b = (b1, . . . , bmN). The portions of codeword allocated to the j-th bit of the

label are denoted by bj
∆
= (bj, bm+j, . . . , bm(N−1)+j). We denote the inverse mapping function

for labeling position j as bj : X → {0, 1}, that is, bj(x) is the j-th bit of symbol x. Accordingly,

we now define the sets X j
b

∆
= {x ∈ X : bj(x) = b} as the set of signal constellation points x

whose binary label has value b ∈ {0, 1} in its j-th position. With some abuse of notation, we

will denote B1, . . . , Bm and b1, . . . , bm the random variables and their corresponding realizations

of the bits in a given label position j = 1, . . . ,m.

The classical BICM decoder [1] treats each of the m bits in a symbol as independent and uses a

symbol decoding metric proportional to the product of the a posteriori marginals pBj |Y (bj = b|y).

More specifically, we have that

q(x, y) =
m∏

j=1

qj

(
bj(x), y

)
, (6)

where the j-th bit decoding metric qj(b, y) is given by

qj

(
bj(x) = b, y

)
=
∑

x′∈X j
b

pY |X(y|x′). (7)

This metric is proportional to the transition probability of the output y given the bit b at position
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j, which we denote for later use by pj(y|b),

pj(y|b)
∆
=

1∣∣X j
b

∣∣ ∑
x′∈X j

b

pY |X(y|x′). (8)

The set of m probabilities pj(y|b) can be used as departure point to define an equivalent

BICM channel model. Accordingly, Caire et al. defined a BICM channel [8] as the set of m

parallel channels having bit bj(xk) as input and the bit log-metric (log-likelihood) ratio for the

k-th symbol

Ξm(k−1)+j = log
qj

(
bj(xk) = 1, y

)
qj

(
bj(xk) = 0, y

) (9)

as output, for j = 1, . . . ,m and k = 1, . . . , N . This channel model is schematically depicted

in Figure 1. With infinite-length interleaving, the m parallel channels were assumed to be

independent in [8], [11], or in other words, the correlations among the different subchannels

are neglected. For this model, Caire et al. defined a BICM capacity Cbicm
X , given by

Cbicm
X

∆
=

m∑
j=1

I(Bj; Y ) (10)

=
m∑

j=1

E

[
log

∑
x′∈X j

B
pY |X(Y |x′)

1
2

∑
x′∈X pY |X(Y |x′)

]
, (11)

where the expectation is taken according to pj(y|b)PB(b), for b ∈ {0, 1} and PB(b) = 1
2
.

In practice, due to complexity limitations, one might be interested in the following lower-

complexity version of (7),

qj(b, y) = max
x∈X j

b

pY |X(y|x). (12)

In the log-domain this is known as the max-log approximation.

Summarizing, the decoder of C uses a mismatched metric of the form given in Eq. (4) where

the decoder of C outputs a binary codeword b̂ according to

b̂ = arg max
b∈C

N∏
k=1

m∏
j=1

qj

(
bj(xk), yn

)
. (13)

III. ACHIEVABILITY OF THE BICM CAPACITY: TYPICAL SEQUENCES

In this section, we provide an achievability proof for the BICM capacity based on typical

sequences. The proof is based on the usual random coding arguments [9] with typical sequences,

with a slight modification to account for the mismatched decoding metric. This result is obtained
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without recurring to an infinite interleaver to remove the correlation among the parallel subchan-

nels of the classical BICM model. We first introduce some notation needed for the proof.

We say that a rate R is achievable if, for every ε > 0 and for N sufficiently large, there exists

an encoder, a demapper and a decoder such that 1
N

log |M| ≥ R − ε and Pr(m̂ 6= m) ≤ ε. We

define the joint probability of the channel output y and the corresponding input bits (b1, . . . , bm)

as

p(b1, . . . , bm, y)
∆
= Pr

(
B1 = b1, . . . , Bm = bm, y ≤ Y < y + dy

)
, (14)

for all bj ∈ {0, 1}, y and infinitely small dy. We denote the derived marginals by pj(bj), for

j = 1, . . . ,m, and pY (y). The marginal distributions with respect to bit Bj and Y are special,

and are denoted by pj(bj, y). We have then the following theorem.

Theorem 1: The BICM capacity Cbicm
X is achievable.

Proof: Fix an ε > 0. For each m ∈ M we generate a binary codeword b1(m) . . . , bm(m)

with probabilities pj(bj). The codebook is the set of all codewords generated with this method.

We consider a threshold decoder, which outputs m̂ only if m̂ is the unique integer satisfying(
b1(m̂), . . . , bm(m̂), y

)
∈ Bε, (15)

where Bε is a set defined as

Bε
∆
=

{(
b1, . . . , bm, y

)
:

1

N

m∑
j=1

log
pj

(
bj(m̂), y

)
pj(bj) p(y)

≥ ∆ε

}
(16)

for ∆ε
∆
=
∑m

j=1 I(Bj; Y )− 3mε. Otherwise, the decoder outputs an error flag.

The usual random coding argument [9] shows that the error probability, averaged over the

ensemble of randomly generated codes, P̄e, is upper bounded by

P̄e ≤ P1 + (|M| − 1)P2, (17)

where P1 is the probability that the received y does not belong to the set Bε,

P1
∆
=

∑
(b1,...,bm,y)/∈Bε

p(b1, . . . , bm, y), (18)

and P2 is the probability that another randomly chosen codeword would be (wrongly) decoded,

that is,

P2
∆
=

∑
(b1,...,bm,y)∈Bε

p(y)
m∏

j=1

pj(bj). (19)

January 27, 2009 DRAFT



8

First, we prove that Bε ⊇ Aε(B1, . . . , Bm, Y ), where Aε is the corresponding jointly typical

set [9]. By definition, the sequences
(
b1, . . . , bm, y

)
in the typical set satisfy (among other

constraints) the following

− log p(y) > N(H(Y )− ε), (20)

− log pj(bj) > N(H(Bj)− ε), j = 1, . . . ,m, (21)

− log p
(
bj, y

)
< N(H(Bj, Y ) + ε), j = 1, . . . ,m. (22)

Here H(·) are the entropies of the corresponding random variables. Multiplying the last equation

by (−1), and summing them, we have

log
pj

(
bj(m̂), y

)
pj(bj)p(y)

≥ N
(
H(Bj) + H(Y )−H(Bj, Y )− 3ε

)
(23)

= N
(
I(Bj; Y )− 3ε

)
, (24)

where I(Bj; Y ) is the corresponding mutual information. Now, summing over j = 1, . . . ,m we

obtain
m∑

j=1

log
pj

(
bj(m̂), y

)
pj(bj)p(y)

≥ N

( m∑
j=1

I(Bj; Y )− 3ε

)
= N∆ε. (25)

Hence, all typical sequences belong to the set Bε, that is, Aε ⊆ Bε. This implies that Bc
ε ⊆ Ac

ε

and, therefore, the probability P1 in Eq. (18) can be upper bounded as

P1 ≤
∑

(b1,...,bm,y)/∈Aε

p(b1, . . . , bm, y)

≤ ε, (26)

for N sufficiently large. The last inequality follows from the definition of the typical set.

We now move on to P2. For (b1, . . . , bm, y) ∈ Bε, and from the definition of Bε, we have that

2N∆ε ≤
m∏

j=1

pj

(
bj, y

)
pj(bj)p(y)

=
m∏

j=1

pj(bj|y)

pj(bj)
. (27)

Rearranging terms we have
m∏

j=1

pj(bj) ≤
1

2N∆ε

m∏
j=1

pj(bj|y). (28)
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Therefore the probability P2 in Eq. (19) can be upper bounded

P2 ≤
1

2N∆ε

∑
(b1,...,bm,y)∈Bε

p(y)
m∏

j=1

pj(bj|y) (29)

≤ 1

2N∆ε

∑
(b1,...,bm,y)

p(y)
m∏

j=1

pj(bj|y) (30)

=
1

2N∆ε

∑
(b1,...,bm,y)

p(b1, . . . , bm, y) (31)

=
1

2N∆ε
. (32)

Now we can write for P̄e,

P̄e ≤ P1 + (|M| − 1)P2

≤ ε + |M|2−N∆ε

≤ 2ε, (33)

for |M| = 2N(∆ε−ε) and large enough N . We conclude that for large enough N there exist codes

such that

1

N
log2 |W| ≥ ∆ε − ε =

m∑
j=1

I(Bj; Y )− (3m + 1)ε, (34)

and Pr
(
m̂ 6= m

)
≤ ε. The rate

∑m
j=1 I(Bj; Y ) is thus achievable.

To conclude, we verify that the BICM decoder is able to determine the probabilities required

for the decoding rule defining Bε in Eq. (16). Since the BICM decoder uses the metric qj(bj, y) ∝

pj(y|bj), the log-metric-ratio , or equivalently the a posteriori bit probabilities pj(bj|y), it can

also compute

pj(bj, y)

pj(bj) pY (y)
=

pj(bj|y)

pj(bj)
, (35)

where the bit probabilities are known, pj(1) = pj(0) = 1
2
.

IV. ACHIEVABILITY OF THE BICM CAPACITY: ERROR EXPONENTS, GENERALIZED

MUTUAL INFORMATION AND CUT-OFF RATE

A. Random coding exponent

The behaviour of the average error probability of a family of randomly generated codes,

decoded with a maximum-likelihood decoder, i. e. with metric q(x, y) = pY |X(y|x), was studied
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by Gallager in [15]. In particular, Gallager showed the error probability decreases exponentially

with the block length N according to a parameter called the error exponent, provided that

the code rate R is below the channel capacity C. For memoryless channels, the average error

probability over the random coding ensemble [15] can be bounded as

P̄e ≤ exp
(
−N

(
E0(ρ)− ρR

))
(36)

where E0(ρ) is the Gallager function, given by

E0(ρ)
∆
= − log

∫
y

(∑
x

PX(x)pY |X(y|x)
1

1+ρ

)1+ρ

dy

 , (37)

and 0 ≤ ρ ≤ 1 is a free parameter. For a particular input distribution PX(x), the tightest bound

is obtained by optimizing over ρ, which determines the random coding exponent

Er(R) = max
0≤ρ≤1

E0(ρ)− ρR. (38)

For uniform input distribution, we define the coded modulation exponent Ecm
0 (ρ) as the

exponent of a decoder which uses metrics q(x, y) = pY |X(y|x), namely

Ecm
0 (ρ) = − log E

[(
1

2m

∑
x′

(
pY |X(Y |x′)
pY |X(Y |X)

) 1
1+ρ

)ρ]
. (39)

The expectation is carried out according to the joint probability pY |X(y|x)PX(x).

Gallager’s derivation can easily be extended to memoryless channels with generic codeword

metrics decomposable as product of symbols metrics, that is q(x, y) =
∏N

n=1 q(xn, yn), Details

can be found in [13]. The error probability is upper bounded by the expression

P̄e ≤ exp
(
−N

(
Eq

0(ρ, s)− ρR
))

, (40)

where the generalized Gallager function Eq
0(ρ, s) is given by

Eq
0(ρ, s) = − log E

[(∑
x′

PX(x′)
q(x′, Y )s

q(X, Y )s

)ρ]
. (41)

For an input distribution PX(x), the random coding error exponent Eq
r (R) is then given by [13]

Eq
r (R) = max

0≤ρ≤1
max
s>0

Eq
0(ρ, s)− ρR. (42)

January 27, 2009 DRAFT



11

For the specific case of BICM, assuming uniformly distributed inputs and a generic bit metric

qj(b, y), we have that Gallager’s generalized function Ebicm
0 (ρ, s) is given by

Ebicm
0 (ρ, s) = − log E

[(
1

2m

∑
x′

m∏
j=1

qj(bj(x
′), Y )s

qj(bj(X), Y )s

)ρ]
. (43)

For completeness, we note that the cutoff rate is given by R0 = E0(1) and, analogously, we

define the generalized cutoff rate as

Rq
0

∆
= Eq

r (R = 0) = max
s>0

Eq
0(1, s). (44)

B. Data processing inequality for error exponents

In [13], it was proved that the data-processing inequality holds for error exponents, in the

sense that for a given input distribution we have that Eq
0(ρ, s) ≤ E0(ρ) for any s > 0. Next, we

rederive this result by extending Gallager’s reasoning in [15] to mismatched decoding.

The generalized Gallager function Eq
0(ρ, s) in Eq. (41) can be expressed as

Eq
0(ρ, s) = − log

(∫
y

∑
x

PX(x)pY |X(y|x)

(∑
x′

PX(x′)

(
q(x′, y)

q(x, y)

)s
)ρ)

dy. (45)

As long as the metric does not depend on the transmitted symbol x, the function inside the

logarithm can be rewritten as∫
y

(∑
x

PX(x)pY |X(y|x)q(x, y)−sρ

)(∑
x′

PX(x′)q(x′, y)s

)ρ

dy. (46)

For a fixed channel observation y, the integrand is reminiscent of the right-hand side of

Hölder’s inequality (see Exercise 4.15 of [15]), which can be expressed as(∑
i

aibi

)1+ρ

≤
(∑

i

a1+ρ
i

)(∑
i

b
1+ρ

ρ

i

)ρ

. (47)

Hence, with the identifications

ai = PX(x)
1

1+ρ pY |X(y|x)
1

1+ρ q(x, y)
−sρ
1+ρ (48)

bi = PX(x)
ρ

1+ρ q(x, y)
sρ

1+ρ , (49)

we can lower bound Eq. (46) by the quantity∫
y

(∑
x

PX(x)pY |X(y|x)
1

1+ρ dy

)1+ρ

. (50)
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Recovering the logarithm in Eq. (45), for a general mismatched decoder, arbitrary s > 0 and

any input distribution, we obtain that

E0(ρ) ≥ Eq
0(ρ, s). (51)

Note that the expression in Eq. (50) is independent of s and of the specific decoding metric

q(x, y). Nevertheless, evaluation of Gallager’s generalized function for the specific choices s =

1
1+ρ

and q(x, y) ∝ pY |X(y|x) attains the lower bound, which is also Eq. (39).

Equality holds in Hölder’s inequality if and only if for all i and some positive constant c,

a
ρ

1+ρ

i = c b
1

1+ρ

i (see Exercise 4.15 of [15]). In our context, simple algebraic manipulations show

that the necessary condition for equality to hold is that

pY |X(y|x) = c′q(x, y)s′ for all x ∈ X (52)

for some constants c′ and s′. In other words, the metric q(x, y) must be proportional to a power

of the channel transition probability pY |X(y|x), for the bound (51) to be tight, and therefore, to

achieve the coded modulation error exponent.

C. Error exponent for BICM with the parallel-channel model

In their analysis of multilevel coding and successive decoding, Wachsmann et al. provided

the error exponents of BICM modelled as a set of parallel channels [11]. The corresponding

Gallager’s function, which we denote by Eind
0 (ρ), is given by

Eind
0 (ρ) = −

m∑
j=1

log

∫
y

1∑
bj=0

pj(bj)pj(y|bj)

 1∑
b′j=0

pj(b
′
j)

qj(b
′
j, y)

1
1+ρ

qj(bj, y)
1

1+ρ

ρ

dy, (53)

which corresponds to a binary-input channel with input bj , output y and bit metric matched to

the transition probability pj(y|bj).

This equation can be rearranged into a form similar to the one given in previous sections.

First, we insert the summation in the logarithm,

Eind
0 (ρ) = − log

 m∏
j=1

∫
y

1∑
bj=0

pj(bj)pj(y|bj)

 1∑
b′j=0

pj(b
′
j)

qj(b
′
j, y)

1
1+ρ

qj(bj, y)
1

1+ρ

ρ

dy

 . (54)
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Then, we notice that the output variables y are dummy variables which possibly vary for each

value of j. Let us denote the dummy variable in the j-th subchannel by y′j . We have then

Eind
0 (ρ) = − log

 m∏
j=1

∫
y′j

1∑
bj=0

pj(bj)p(y′j|bj)

 1∑
b′j=0

pj(b
′
j)

qj(b
′
j, y

′
j)

1
1+ρ

qj(bj, y′j)
1

1+ρ

ρ

dy′j

 (55)

= − log

(∫
y′

∑
x

PX(x)pY |X(y′|x)

(∑
x′

PX(x′)
q(x′, y′)

1
1+ρ

q(x, y′)
1

1+ρ

)ρ

dy′

)
. (56)

Here we carried out the multiplications, defined the vector y′ to be the collection of the m

channel outputs, and denoted by x = µ(b1, . . . , bm) and x′ = µ(b′1, . . . , b
′
m) the symbols selected

by the bit sequences. This equation is the Gallager function of a mismatched decoder for a

channel output y′, such that for each of the m subchannels sees a statistically independent

channel realization from the others.

In general, since the original channel cannot be decomposed into parallel, conditionally

independent subchannels, this parallel-channel model fails to capture the statistics of the channel.

The cut-off rate with the parallel-channel model is given by

Rind
0 = −

m∑
j=1

log

∫
y

 1∑
bj=0

pj(bj)pj(y|bj)
1
2

2

dy. (57)

The cutoff rate was given in [8] as m times the cutoff rate of an averaged channel,

Rav
0

∆
= m

log 2− log

1 +
1

m

m∑
j=1

E


√√√√∑x′∈X j

B̄
pY |X(Y |x′)∑

x′∈X j
B

pY |X(Y |x′)

 . (58)

From Jensen’s inequality one easily obtains that Rav
0 ≤ Rind

0 .

D. Generalized mutual information for BICM

The largest achievable rate with mismatched decoding is not known in general. Perhaps the

easiest candidate to deal with is the generalized mutual information (GMI) [12], [13], [14], given

by

Igmi
∆
= sup

s>0
Igmi(s), (59)

where

Igmi(s)
∆
= E

[
log

q(X, Y )s∑
x′∈X PX(x′)q(x′, Y )s

]
. (60)
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As in the case of matched decoding, this definition can be recovered from the error exponent,

Igmi(s) =
dEq

0(ρ, s)

dρ

∣∣∣∣∣
ρ=0

= lim
ρ→0

Eq
0(ρ, s)

ρ
. (61)

We next see that the generalized mutual information is equal to the BICM capacity of [8]

when the metric (7) is used. Similarly to Section III, the result does not require the presence of

an interleaver of infinite length. Further, the interleaver is actually not necessary for the random

coding arguments. First, we have the following,

Theorem 2: The generalized mutual information of the BICM mismatched decoder is equal to

the sum of the generalized mutual informations of the independent binary-input parallel channel

model of BICM,

Igmi = sup
s>0

m∑
j=1

E

[
log

qj(bj, Y )s

1
2

∑1
b′=0 qj(b′j, Y )s

]
. (62)

The expectation is carried out according to the joint distribution pj(bj)pj(y|bj), with pj(bj) = 1
2
.

Proof: For a given s, and uniform inputs, i.e., PX(x) = 1
2m , Eq. (60) gives

Igmi(s) = E

[
log

∏m
j=1 qj

(
bj(X), Y

)s∑
x′

1
2m

∏m
j=1 qj

(
bj(x′), Y

)s
]

. (63)

We now have a closer look at the denominator in the logarithm of (63). The key observation

here is that the sum over the constellation points of the product over the binary label positions

can be expressed as the product over the label position is the sum of the probabilities of the bits

being zero and one, i.e.,∑
x′

1

2m

m∏
j=1

qj

(
bj(x

′), Y
)s

=
1

2m

m∏
j=1

(
qj(b

′
j = 0, Y )s + qj(b

′
j = 1, Y )s

)
(64)

=
m∏

j=1

(
1

2

(
qj(b

′
j = 0, Y )s + qj(b

′
j = 1, Y )s

))
. (65)

Rearranging terms in (63) we obtain,

Igmi(s) = E

[
m∑

j=1

log
qj

(
bj(x), Y

)s
1
2

(
qj(b′j = 0, Y )s + qj(b′j = 1, Y )s

)] (66)

=
m∑

j=1

1

2

1∑
b=0

1

2m−1

∑
x∈X j

b

E

[
log

qj

(
bj(x), Y

)s
1
2

∑1
b′=0 qj(b′j, Y )s

]
, (67)

the expectation being done according to the joint distribution pj(bj)pj(y|bj), with pj(bj) = 1
2
.

January 27, 2009 DRAFT



15

There are a number of interesting particular cases of the above theorem.

Corollary 1: For the classical BICM decoder with metric in Eq. (7),

Igmi = Cbicm
X . (68)

Proof: Since the metric qj(bj, y) is proportional to pj(y|bj), we can identify the quantity

E

log
qj

(
Bj, Y

)s
1
2

∑1
b′j=0 qj(b′j, Y )s

 (69)

as the generalized mutual information of a matched binary-input channel with transitions pj(y|bj).

Then, the supremum over s is achieved at s = 1 and we get the desired result.

Corollary 2: For the max-log metric in Eq. (12),

Igmi = sup
s>0

m∑
j=1

E

[
log

(
maxx∈XB

j
pY |X(y|x)

)s
1
2

∑1
b=0

(
maxx′∈X j

b
pY |X(y|x′)

)s
]

. (70)

Szczecinski et al. studied the mutual information with this decoder [16], using this formula for

s = 1. Clearly, the optimization over s may induce a larger achievable rate, as we see in the

next section. More generally, as we shall see later, letting s = 1/(1+ρ) in the mismatched error

exponent can yield some degradation.

E. BICM with mismatched decoding: numerical results

The data-processing inequality for error exponents yields Ebicm
0 (ρ, s) ≤ Ecm

0 (ρ), where the

quantity in the right-hand side is the coded modulation exponent. On the other hand, no gen-

eral relationship holds between Eind
0 (ρ) and Ecm

0 (ρ). As it will be illustrated in the following

examples, there are cases for which Ecm
0 (ρ) can be larger than Eind

0 (ρ), and viceversa.

Figures 2, 3 and 4 show the error exponents for coded modulation (solid), BICM with

independent parallel channels (dashed), BICM using mismatched metric (7) (dash-dotted), and

BICM using mismatched metric (12) (dotted) for 16-QAM with Gray mapping, Rayleigh fading

and snr = 5, 15,−25 dB, respectively. Dotted lines labeled with s = 1
1+ρ

correspond to the

error exponent of BICM using mismatched metric (12) letting s = 1
1+ρ

. The parallel-channel

model gives a larger exponent than the coded modulation, in agreement with the cutoff rate

results of [8]. In contrast, the mismatched-decoding analysis yields a lower exponent than coded

modulation. As mentioned in the previous section, both BICM models yield the same capacity.
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In most cases, BICM with a max-log metric (12) incurs in a marginal loss in the exponent

for mid-to-large SNR. In this SNR range, the optimized exponent and that with s = 1
1+ρ

are

almost equal. For low SNR, the parallel-channel model and the mismatched-metric model with

(7) have the same exponent, while we observe a larger penalty when metrics (12) are used. As

we observe, some penalty is incurred at low SNR for not optimizing over s. We denote with

crosses the corresponding achievable information rates.

An interesting question is whether the error exponent of the parallel-channel model is always

larger than that of the mismatched decoding model. The answer is negative, as illustrated in

Figure 5, which shows the error exponents for coded modulation (solid), BICM with independent

parallel channels (dashed), BICM using mismatched metric (7) (dash-dotted), and BICM using

mismatched metric (12) (dotted) for 8-PSK with Gray mapping in the unfaded AWGN channel.

V. EXTRINSIC SIDE INFORMATION

Next to the classical decoder described in Section II, iterative decoders have also received

much attention [3], [4], [5], [6], [7] due to their improved performance. Iterative decoders can

also be modelled as mismatched decoders, where the bit decoding metric is now of the form

qj(b, y) =
∑

x′∈X j
b

pY |X(y|x′)
∏
j′ 6=j

extj′
(
bj′(x

′)
)
, (71)

where we denote by extj(b) the extrinsic information, i.e., the “a priori” probability that the j-th

bit takes the value b. Extrinsic information is commonly generated by the decoder of the binary

code C. Clearly, we have that extj(0) + extj(1) = 1, and 0 ≤ extj(0), extj(1) ≤ 1. Without

extrinsic information, we take extj(0) = extj(1) = 1
2
, and the metric is given by Eq. (7).

In the analysis of iterative decoding, extrinsic information is often modeled as a set of random

variables EXTj(0), where we have defined without loss of generality the variables with respect

to the all-zero symbol. We denote the joint density function by p(ext1(0), . . . , extm(0)) =∏m
j=1 p(extj(0)). We discuss later how to map the actual extrinsic information generated in

the decoding process onto this density. The mismatched decoding error exponent Eq
0(ρ, s) for

metric (71) is given by Eq. (43), where the expectation is now carried out according to the joint

density PX(x)pY |X(y|x)p(ext1(0))· · · p(extm(0)). Similarly, the generalized mutual information

is again obtained as Igmi = maxs limρ→0
Eq

0(ρ,s)

ρ
.
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It is often assumed [5] that the decoding metric acquires knowledge on the symbol x effectively

transmitted, in the sense that for any symbol x′ ∈ X , the j-th bit decoding metric is given by

qj

(
bj(x

′) = b, y
)

=
∑

x′′∈X j
b

pY |X(y|x′′)
∏
j′ 6=j

extj′
(
bj′(x

′′)⊕ bj′(x)
)
, (72)

where ⊕ denotes the binary addition. Observe that extrinsic information is defined relative to the

transmitted symbol x, rather than relative to the all-zero symbol. If the j-th bit of the symbols x′′

and x coincide, the extrinsic information for bit zero extj(0) is selected, otherwise the extrinsic

information extj(1) is used.

For the metric in Eq. (72), the proof presented in Section IV-B of the data processing inequality

fails because the integrand in Eq. (46) cannot be decomposed into a product of separate terms

respectively depending on x and x′, the reason being that the metric q(x′, y) varies with x.

On the other hand, since the symbol metric q(x′, y) is the same for all symbols x′, the

decomposition of the generalized mutual information as a sum of generalized mutual informations

across the m bit labels in Theorem 2 remains valid, and we have therefore

Igmi =
m∑

j=1

E

[
log

qj(Bj, Y )
1
2

∑1
b′=0 qj(bj = b′, Y )

]
. (73)

This expectation is carried out according to p(bj)pj(y|bj)p(ext1(0))· · · p(extm(0)), with p(bj) =

1
2
. Each of the summands can be interpreted as the mutual information achieved by non-uniform

signalling in the constellation set X , where the probabilities according to which the symbols are

drawn are a function of the extrinsic informations extj(·). The value of Igmi may exceed the

channel capacity [5], so this quantity is a pseudo-generalized mutual information, with the same

functional form but lacking operational meaning as an achievable rate by the decoder.

Alternatively, the metric in Eq. (71) may depend on the hypothesized symbol x′, that is

qj

(
bj(x

′) = b, y
)

=
∑

x′′∈X j
b

pY |X(y|x′′)
∏
j′ 6=j

extj′
(
bj′(x

′′)⊕ bj′(x
′)
)
. (74)

Differently from Eq. (72), the bit metric varies with the hypothesized symbol x′ and not with

the transmitted symbol x. Therefore, Theorem 2 cannot be applied and the generalized mutual

information cannot be expressed as a sum of mutual informations across the bit labels. On the

other hand, the data processing inequality holds and, in particular, the error exponent and the

generalized mutual information are upper bounded by that of coded modulation. Moreover, we

have the following result.
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Theorem 3: In the presence of perfect extrinsic side information, the error exponent with

metric (74) coincides with that of coded modulation.

Proof: With perfect extrinsic side information, all the bits j′ 6= j are known, and then

∏
j′ 6=j

extj′
(
bj′(x

′′)⊕ bj′(x
′)
)

=

1 when x′′ = x′,

0 otherwise,
(75)

which guarantees that only the symbol x′′ = x′ is selected. Then, qj

(
bj(x

′) = b, y
)

= pY |X(y|x′)

and the symbol metric becomes q(x′, y) = pY |X(y|x′)m for all x′ ∈ X . As we showed in Eq. (52),

this is precisely the condition under which the error exponent (and the capacity) with mismatched

decoding coincides that of coded modulation.

The above result suggests that with perfect extrinsic side information, the gap between the

error exponent (and mutual information) of BICM and that of coded modulation can be closed

if one could provide perfect side information to the decoder. A direct consequence of this result

is that the generalized mutual information with BICM metric (71) and perfect extrinsic side

information is equal to the mutual information of coded modulation. An indirect consequence

of this result is that the multi-stage decoding [17], [11] does not attain the exponent of coded

modulation, even though its corresponding achievable rate is the same. The reason is that the

decoding metric is not of the form c pY |X(y|x)s, for some constant c and s, except for the last bit

in the decoding sequence. We hasten to remark that the above rate in presence of perfect extrinsic

side information need not be achievable, in the sense that there may not exist a mechanism for

accurately feeding the quantities extj(b) to the demapper. The actual link to the iterative decoding

process is open for future research.

VI. CONCLUSIONS

We have presented a mismatched-decoding analysis of BICM, which is valid for arbitrary

finite-length interleavers. We have proved that the corresponding generalized mutual information

coincides with the BICM capacity originally given by Caire et al. modeling BICM as a set

of independent parallel channels. More generally, we have seen that the error exponent cannot

be larger than that of coded modulation, contrary to the analysis of BICM as a set of parallel

channels. For Gaussian channels with binary reflected Gray mapping, the gap between the BICM

and CM error exponents is small, as found by Caire et al. for the capacity. We have also seen
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that the mutual information appearing in the analysis of iterative decoding of BICM via EXIT

charts admits a representation as a form of generalized mutual information. However, since this

quantity may exceed the capacity, its operational meaning as an achievable rate is unclear. We

have modified the extrinsic side information available to the decoder, to make it dependent on

the hypothesized symbol rather than on the transmitted one, and shown that the corresponding

error exponent is always lower bounded by that of coded modulation. In presence of perfect

extrisinc side information, both error exponents coincide. The precise connection with iterative

decoding is open for future research.
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Fig. 1. Parallel channel model of BICM.
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Fig. 2. Error exponents for coded modulation (solid), BICM with independent parallel channels (dashed), BICM using

mismatched metric (7) (dash-dotted), and BICM using mismatched metric (12) (dotted) for 16-QAM with Gray mapping,

Rayleigh fading and snr = 5 dB.
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Fig. 3. Error exponents for coded modulation (solid), BICM with independent parallel channels (dashed), BICM using

mismatched metric (7) (dash-dotted), and BICM using mismatched metric (12) (dotted) for 16-QAM with Gray mapping,

Rayleigh fading and snr = 15 dB.
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Fig. 4. Error exponents for coded modulation (solid), BICM with independent parallel channels (dashed), BICM using

mismatched metric (7) (dash-dotted), and BICM using mismatched metric (12) (dotted) for 16-QAM with Gray mapping,

Rayleigh fading and snr = −25 dB. Crosses correspond to (from right to left) coded modulation, BICM with metric (7), BICM

with metric (12) and BICM with metric (12) with s = 1.
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Fig. 5. Error exponents for coded modulation (solid), BICM with independent parallel channels (dashed), BICM using

mismatched metric (7) (dash-dotted), and BICM using mismatched metric (12) (dotted) for 8-PSK with Gray mapping, AWGN

and snr = 5 dB.
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