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Control of a tandem queue with a startup cost for the
second server
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aCenter for Mathematics and Computer Science (CWI) Amsterdam, The Netherlands; bFaculty of
Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

ABSTRACT
Various systems across a broad range of applications contain
tandem queues. Strong dependence between the servers has
proven to make such networks complicated and difficult to
study. Exact analysis is rarely computationally tractable and
sometimes not even possible. Nevertheless, as it is most often
the case in reality, there are costs associated with running
such systems, and therefore, optimizing the control of tandem
queues is of main interest from both a theoretical and a prac-
tical point of view. Motivated by this, the present paper con-
siders a tandem queueing network with linear holding costs
and a startup cost for the second server. In our work, we pre-
sent a rather intuitive, easy to understand, and at the same
time very accurate technique to approximate the optimal
decision policy. Extensive numerical experimentation shows
that the approximation works extremely well for a wide range
of parameter combinations.
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1. Introduction

Queueing systems in which the departures from one server become the
arrivals to a downstream server are often modeled as tandem queues.
These models have proven to be very challenging to analyze,[1–4] and des-
pite decades of research, there are still many open problems without an
analytic solution.[5–8] At the same time, tandem queues abound in appli-
cations, and therefore, the study of these systems is also important for
practice. Moreover, in cases when one has a certain control over the net-
work, the analysis of the model becomes crucial for optimal management
of the application.[9,10] For example, in some practical situations, it is pos-
sible to temporarily switch off certain nodes in order to protect servers
further down the network from overflow. Systems with this feature can be
found in traffic control,[11] transportation, manufacturing, and many
other fields.[12–15]
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One particular application that can be modeled as a tandem network and
uses such control techniques is the caching in computer databases in data
centers (illustrated in Figure 1). By implementing the cache mechanism,
the contention at the data storage might be strongly reduced by first accu-
mulating write operations in the cache and only afterwards processing
them in the database. Furthermore, to avoid overload, new writes to the
cache are blocked whenever there are already a certain number of requests
in it. The corresponding threshold value is generally referred to as the high
water mark. Motivated by this application, in this paper we study two-node
tandem queueing networks where one can switch on/off any of the servers.
Note that switching off a server results in reducing the service capacity of

the system. Therefore, there is a trade-off for such tandem queues in balanc-
ing the requirement for ‘good’ performance while minimizing the resource
usage. One common technique to capture this trade-off is to introduce differ-
ent penalties (i.e., holding costs) for jobs waiting in the various queues.[16,17]

This way, one combines both metrics (e.g., the sojourn time spent in the sys-
tem and the required resources) in a single indicator. The problem is, there-
fore, reduced to the following question: “How to control the system in order
to minimize the costs associated with it?” However, this challenge is still ana-
lytically intractable, in spite of the considerable amount of research and the
great importance from a practical point of view.
Next to that, changing the ‘state’ of a server in such tandem networks

(i.e., shutting it down or starting it up) might also require resources on its
own. For instance, there are certain costs associated with establishing a
data transfer between the cache and the corresponding database. Motivated
by this, we study a system with two servers that has a startup cost associ-
ated with the second node. Our framework can be considered as a general-
ization of the ones researched in.[17,18]

In the following section, we introduce the model. In Section 3, we illus-
trate what the optimal decision policy for such systems looks like.
Subsequently, in Section 4, we propose an approximation method for
obtaining the optimal control policy. The accuracy of the presented tech-
nique is discussed in Section 5. Finally, in Section 6, we conclude with a
summary and discuss ideas for possible further research.

Figure 1. Cache used in data centers.
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2. Model

We consider a two-node tandem queue with single servers at both queues.
Jobs arrive at the first node and after receiving service there, they are trans-
ferred to the second one. Subsequently, jobs are served at the second node
and leave the system. We assume Poisson arrivals with rate k at queue 1
and exponential service times with mean bi ¼ 1=li at server i 2 f1; 2g.
Moreover, both nodes are serving at maximum one job at a time according
to the First In First Out (FIFO) regime. The queues are taken to be of a
finite size N and K for queue 1 and queue 2, respectively.
Each job in queue i 2 f1; 2g generates a holding cost ci � 0 per time

unit. Moreover, there is a startup cost for the second server, denoted by
c3 � 0. To optimize the cost, one can control the system at any point in
time by switching on or off any of the two servers. We pose two restric-
tions on the possible decisions: (1) the first server cannot be working when
the buffer space at the second node is full (i.e., when there are K jobs in
the second queue) and (2) the second server switches off whenever it
becomes idle. Furthermore, to avoid a trivial solution of never switching
off the first server, we assume that c2> c1. This way, for certain system
states when the second server is not operating it might be optimal to keep
the jobs in the first queue. Next to that, the startup cost of server 2 creates
an additional trade-off between serving jobs at the second node as soon as
possible and waiting for enough jobs before switching on the server.
Therefore, the goal is to identify the decision policy minimizing the average
costs per time unit. Figure 2 gives an illustration of the model.
To calculate the optimal policy, we formulate the system as a Markov

Decision Process (MDP) with state space S :¼ f0; 1; :::;Ng�
f0; 1; :::;Kg � f0; 1g, where state ðx1; x2; s2Þ corresponds to having xi num-
ber of jobs at node i 2 f1; 2g and server 2 being off for s2 ¼ 0 or on for
s2 ¼ 1. Note that we do not have to explicitly include the state of node 1 in
our model due to the following two model properties: (1) the service times
are exponentially distributed and exhibit the memoryless property and (2)
the second server can be switched on/off instantaneously at no cost.

Figure 2. Illustration of the model. (a) s2¼ 00 and (b) s2¼ 1
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The action space consists of four possible actions a 2 A ¼ f1; 2; 3; 4g
defined as follows:

1. switch off both servers;
2. switch on server 1 and switch off server 2;
3. switch on server 2 and switch off server 1;
4. switch on both of the servers.

Now, we can formulate the Bellman equations for this MDP:

g þ V x1; x2; s2ð Þ ¼ c1x1 þ c2x2 þmina2ATa x1; x2; s2ð Þ;
where V denotes the value function. Moreover, g denotes the long-term
average costs per time unit and Taðx1; x2; s2Þ (for a 2 A and
ðx1; x2; s2Þ 2 S) are given by:

T1 x1; x2; s2ð Þ :¼ kV min x1 þ 1;Nf g; x2; 0ð Þ þ 1�kð ÞV x1; x2; 0ð Þ;
T2 x1; x2; s2ð Þ :¼ kV min x1 þ 1;Nf g; x2; 0ð Þ þ l1V x1�1; x2 þ 1; 0ð Þ

þ l2V x1; x2; 0ð Þ;
T3 x1; x2; s2ð Þ :¼ c3 1�s2ð Þ þ kV min x1 þ 1;Nf g; x2; 1ð Þ

þ l2V x1; x2 � 1; I x2ð Þ� �þ l1V x1; x2; 1ð Þ;
T4 x1; x2; s2ð Þ :¼ c3 1�s2ð Þ þ kV min x1 þ 1;Nf g; x2; 1ð Þ

þ l1V x1�1; x2 þ 1; 1ð Þ þ l2V x1; x2 � 1; I x2ð Þ� �
;

where the rates are scaled in such a way that kþ l1 þ l2 ¼ 1.
Furthermore, Iðx2Þ ¼ 0 if x2 ¼ 1, and Iðx2Þ ¼ 1 otherwise. Moreover, recall
that some actions are not possible under certain values for x1 and x2. More
precisely, for x1 ¼ 0 or x2 ¼ K, actions 2 and 4 (i.e., T2 and T4) are not
permitted; and for x2 ¼ 0, actions 3 and 4 (i.e., T3 and T4) are
not permitted.

3. Optimal policy

In this section, we study the optimal decision policy based on results
derived by numerically solving the MDP by applying the value iteration
technique. As an example, we use two systems with the following parame-
ters: N ¼ 750; K ¼ 200; c1 ¼ 0:1; c2 ¼ 1; c3 ¼ 1500; k ¼ 1: The service
rates of the servers are taken to be:

� l1 ¼ 2:2 and l2 ¼ 4 in the first example,
� l1 ¼ 4 and l2 ¼ 2:2 in the second example.

4 A. HRISTOV ET AL.



The corresponding optimal decision policies are shown in Figures 3 and
4. Note that we present only the states for which 0 � x1 � 400 and 0 �
x2 � 100 in order to exclude possible boundary effects.
Analyzing numerous cases for various parameter sets, we suspect that the

optimal policy for such a queueing network is of a threshold type. We
denote the different state-space regions, where a certain action is optimal,
as follows:

region (0, 0) – the optimal action is 1, namely, both of the servers should
be off;

region (1, 0) – the optimal action is 2, namely, the first server should be on,
whereas the second one – off;

region (0, 1) – the optimal action is 3, namely, the first server should be off,
whereas the second one – on;

region (1, 1) – the optimal action is 4, namely, both of the servers should
be on.

Figure 3. Optimal decision policy for l1 ¼ 2:2 and l2 ¼ 4. (a) s2¼ 0 and (b) s2¼ 1

Figure 4. Optimal decision policy for l1 ¼ 4 and l2 ¼ 2:2.
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Note that the numerical approach used in the current section can be
used only for systems of a relatively small size. In many real-world instan-
ces the large buffer sizes, N and K, require a more computationally efficient
algorithm. As an example, to optimize the running costs associated with
the database caching mechanism, one needs a method different than the
value iteration technique, as the latter becomes computationally unfeasible.
On the other hand, as discussed in Section 1, even the special case of no
startup cost associated with the second server (i.e., the special case of
c3 ¼ 0) has withstood an analytic analysis so far. Therefore, the goal of our
research is to develop a scalable method with respect to N and K that
approximates the optimal policy.

4. Approximation technique

In the following, we present our technique for approximating the optimal
policy. Our approach to obtaining the control policy is to estimate the
regions described in Section 3, rather than deriving an approximation of
the value function. To do this, we decompose the original system into two
sub-models. We refer to the parameters for these sub-models by appending
a superscript ð1Þ and ð2Þ, respectively.
Sub-model 1 consists of two single-server queues in a tandem setting.

The input is modeled as a Poisson process and the service times of the jobs
are assumed to be independent and exponentially distributed. There
are holding costs cð1Þ1 and cð1Þ2 per time unit for each job waiting at the
corresponding queue. In contrast to the main network analyzed in
this paper, there is no startup cost for the second server. The optimal pol-
icy for such a system is proven to be defined by a switching curve, see.[17]

In other words, for any given number of jobs xð1Þ1 at the first server, there
is a threshold value Sð1Þðx1Þ for the number of jobs at the second node,
xð1Þ2 . If xð1Þ2 exceeds the corresponding threshold, then it becomes optimal
to switch off the first server. We denote the arrival rate as kð1Þ and the ser-
vice rates as lð1Þ1 and lð1Þ2 .
Sub-model 2 consists of an M=M=1=N queue with holding costs cð2Þ2 per

time unit for each waiting job and a startup cost cð2Þ3 . One can control the
system by switching on/off the server. As in the main system analyzed in
this paper, the server cannot be idle, i.e., it switches off whenever there are
no jobs. The optimal policy for such a system is proven to be a threshold
policy, see.[19] More specifically, it is optimal to switch on the server when
the number of jobs in the system, xð2Þ2 , exceeds a given threshold value,
Sð2Þ. We denote the arrival rate for this system as kð2Þ and the service rate
as lð2Þ2 .

6 A. HRISTOV ET AL.



Recall from Section 1 that an analytic solution for sub-model 1 is
unavailable. However, there are a number of studies[6,17] that discuss meth-
ods which can be used to calculate the optimal threshold levels. Therefore,
we assume that the optimal policy for sub-model 1 is given.
On the other hand, there is a closed-form solution for the optimal

threshold value Sð2Þ for sub-model 2, given by:

S 2ð Þ k 2ð Þ; l 2ð Þ
2 ; c 2ð Þ

2 ; c 2ð Þ
3

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k 2ð Þ 1� k 2ð Þ=l 2ð Þ

2

� �
c 2ð Þ
3 =c 2ð Þ

2

r
: (1)

Therefore, one can derive the optimal policy also for this sub-model.
Intuitively, it might seem that simply combining the solutions of those

two sub-models would give a good approximation of the optimal policy for
the main model. However, this is not the case, mainly due to the complex
dependency between the working regime of the first server and the arrival
rate at the second server. Therefore, in our algorithm, we try to take into
account this dependency.

4.1. Second server switched off

In this subsection, we show how to approximate each of the three switch-
ing curves (see Figures 3(a) and 4(a)) in the optimal decision policy in case
the second server is switched off (i.e., for states ðx1; x2; 0Þ, where 0 � x1 �
N and 0 � x2 � K). Considering the (0, 0, 0) state (i.e., an empty system)
as a reference point, we denote the first threshold levels to correspond to
the decision when to switch on the first server, i.e., the curve separating
region (0, 0) from region (1, 0). We characterize this curve by the function
p1ðx1Þ, where 0 � x1 � N. The value of the function gives the threshold
value of x2 for the corresponding 0 � x1 � N. Consequently, as the second
curve, we consider the one describing when to switch on the second server,
i.e., the transition between region (1, 0) and region (1, 1). Similarly, we
introduce the function p2ðx1Þ that defines this curve. Finally, the third set
of threshold levels, p3ðx1Þ, gives the states for which it is optimal to switch
off the first server and have only the second one working – region (0, 1).
In the remainder of this subsection we outline how to estimate those three
switching curves.

4.1.1. Switching on the first server
Under certain system parameters, the optimal decision is to keep both serv-
ers off whenever there are not many jobs in the network. Namely, if c2>c1
it would be optimal to keep jobs waiting at the first queue rather than at
the second one. Next to that, intuitively, the lower the load of the network
is, the bigger this region should be. As a first step of approximating this

STOCHASTIC MODELS 7



region, we determine the endpoints of the corresponding switching curve.
Namely, we are interested in the value of p1ð0Þ and the specific i01 for
which p1ði01Þ ¼ 0. To obtain these values, we use the following equations:

p1 0ð Þ ¼ S 2ð Þ k;l2; c1 þ c2; c3ð Þ;

i01 ¼
�
S 2ð Þ k;l2; c1; c3ð Þ þ S 2ð Þ l1; l2; c1 þ c2; c3ð Þ þ S 2ð Þ k; l2; c2; c3ð Þ

3

�
;

where the operator Sð2Þ denotes the threshold value determined by solving
sub-model 2 with the corresponding parameters (see Equation (1)) and bxc
denotes the floor function that outputs the largest integer less than or equal
to x.
The idea to take the average value over three solutions of sub-model 2

for obtaining i01 is to incorporate three different regimes of the system. The
first one being the regime just before taking the decision to switch on the
first server and having jobs only at the first server. The second regime is
when server 1 is switched on and there is a number of jobs in queue 1.
This implies that the arrival rate to the second node is l1. In the third
regime, the queue at server 1 is empty, and hence, there are no holding
costs acquired there and the arrival rate to the second queue is k.
Note that if l1>l2, then sub-model 2 with arrival rate l1 and service

rate l2 becomes unstable, i.e., the inflow to the system exceeds the outflow.
It is clear that in such case the optimal policy is to switch on the server
whenever a job arrives, and therefore we take Sð2Þðl1; l2; c1 þ c2; c3Þ ¼ 1.
As a second step, we approximate the curve by a straight line that con-

nects the two endpoints p1ð0Þ and i01. This results in the following switch-
ing curve:

p1 x1ð Þ ¼ p1 0ð Þ 1� x1
i01

	 
þ
;

for 0 � x1 � N.

4.1.2. Switching on the second server
Once there is a certain number of jobs at the second queue, it becomes
optimal to switch on the corresponding server. Following the same
approach as the previous case, we first estimate the endpoints of the
switching curve p2ð0Þ and p2ðNÞ. We use sub-model 2 as follows:

p2 0ð Þ ¼ S 2ð Þ k; l2; c2; c3ð Þ;
p2 Nð Þ ¼ S 2ð Þ l1; l2; c1 þ c2; c3ð Þ;

where again Sð2Þðl1; l2; c1 þ c2; c3Þ ¼ 1 if l1>l2. Our reason for choosing
these parameters for sub-model 2 is that when there are no jobs at server
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1, there are no holding costs c1 acquired. Furthermore, due to the fact that
in sub-model 2 the first queue is an M=M=1=N queue, the inflow to server
2 equals the inflow to the tandem system. On the other hand, when the
first queue is full, the arrival rate to the second server becomes l1, and fur-
thermore, one should take into account also the holding costs c1.
As a next step, one has to approximate the shape of the curve. In this

case, a straight line proved to be a relatively inaccurate fit for the switching
curve. Analysis of the optimal policies, which were derived by numerically
solving systems with small buffer sizes N and K, lead us to the following
fit:

p2 x1ð Þ ¼ p2 Nð Þ þ p2 0ð Þ�p2 Nð Þffiffiffiffiffi
x1

p ;

for 0< x1<N. We found this to be a good approximation while at the
same time has a simple, tractable form.

4.1.3. Switching off the first server
For sufficiently low holding costs at the first queue there will be certain
cases where it is optimal to switch off the first server. This will result in
jobs waiting at the first queue rather than waiting at the more expensive
second queue. We estimate the switching curve separating region (1, 1) and
region (0, 1) by using the results obtained from our approximation algo-
rithm so far, together with the solution for sub-model 1. More precisely,
we obtain p3ðx1Þ for 0 � x1 � N, by the following equation:

p3 x1ð Þ ¼ p2 x1ð Þ þ S 1ð Þ x1; k;l1; l2; c1; c2ð Þ;
where the operator Sð1Þ denotes the threshold value determined by solving
sub-model 1 with the corresponding parameters.

4.2. Second server switched on

It is clear that if the second server is working it is optimal to keep it on.
Therefore, the optimal decision when s2 ¼ 1 can be either action 3 or
action 4, corresponding to region (0, 1) and region (1, 1). Based on studying
the conducted numerical examples and evaluating the performance of dif-
ferent approaches, we decided to approximate the switching curve between
those two regions in the same manner as in Section 4.1, i.e., when s2 ¼ 0.
Namely, the switching curve is given by the points p3ðx1Þ, where
0 � x1 � N. This way, one can directly use the results derived from the
above-described procedure, which implies that this case does not increase
the complexity of the algorithm.

STOCHASTIC MODELS 9



5. Results

In this section, we evaluate the performance of the approximation algo-
rithm. Recall that our method is based on estimating the switching curves
of the optimal policy. Hence, the main idea is to derive a graph as similar
as possible to the optimal decision policy graph (see Figures 3 and 4).
However, in practice, the goal of ‘optimizing’ the system is often times to
reduce the average costs. Therefore, although our algorithm is approximat-
ing the various switching curves, in this section, we will not examine how
close are the approximated fitting functions to the optimal switching
curves. Instead, we present the relative difference, denoted as Er, between
the acquired long-term average cost if one uses the decision policy obtained
by our procedure, gest, and the optimal one, gopt, derived by numerically
solving the MDP. More precisely, the relative difference is defined by:

Er ¼ jgest�goptj
gopt

� 100%:

To cover the full spectrum of parameter values, we created multiple test
suites with approximately 750 parameter sets in total. We examine systems
with loads in the range ½0:1; 0:9� for each of the queues, and ratios between
the two holding costs: c1=c2 2 ½0:1; 0:9�. More precisely, we varied the
parameters as follows:

(1) systems where l1<l2. We take l2 fixed at 10, while varying l1 from
1.1 to 9.9 with a step size of 1.1;

(2) systems where l1>l2. We take l1 fixed at 10, while varying l2 from
1.1 to 9.9 with a step size of 1.1;

(3) systems where l1 ¼ l2. Once again we take the same range of values
for the service rates – from 1.1 to 9.9 with a step size of 1.1.

In all three test suites, we further varied c1 between 0.1 and 0.9 with a
step of 0.1 and c3 ¼ 500; 1000 or 1500. Next to that, we fixed k¼ 1. The
reason is that only the ratio between the various service rates is important

Table 1. Approximation errors of the technique.

Start-up Service Median
Er percentiles

cost rates Er 80th 90th 95th

c3 ¼ 500 l1<l2 1.22% 3.50% 6.64% 8.34%
l1>l2 1.93% 5.27% 8.78% 11.28%
l1 ¼ l2 1.96% 5.20% 8.32% 9.24%

c3 ¼ 1000 l1<l2 1.67% 4.23% 8.92% 10.01%
l1>l2 1.91% 4.28% 7.24% 11.02%
l1 ¼ l2 1.63% 4.31% 8.36% 10.09%

c3 ¼ 1500 l1<l2 1.86% 4.58% 9.34% 10.75%
l1>l2 1.83% 4.40% 7.90% 10.18%
l1 ¼ l2 1.38% 4.25% 7.24% 9.80%

10 A. HRISTOV ET AL.



with respect to the approximation error. This comes from the fact that scal-
ing the rates is equivalent to scaling the time, which does not influence the
results. Due to the same reasoning, we also fixed one of the costs: c2 ¼ 1.
We note that in all tests the startup costs are considerably higher than the
holding costs. We chose such values to ensure that the optimal decision
policy is not a trivial one, i.e., switching the second server whenever there
are jobs in the queue.
To evaluate the accuracy of our method, we compared the average costs

acquired by implementing the approximated optimal policy to those
derived from numerically solving the MDP. As discussed, due the computa-
tional complexity of the numerical approach, one cannot use it for large
systems. Therefore, although, our approximation technique is capable of
solving such instances of the model, we could create a benchmark only for
smaller buffer sizes, e.g., we take N¼ 1000 and K¼ 100. Furthermore, this
way we can use the exact solution for sub-model 1, i.e., the threshold val-
ues given by the operator Sð1Þ, when studying the accuracy of our tech-
nique. Since the method is based on the solution of sub-model 1,
approximation errors in the latter will influence the results of
our technique.
The results of the conducted tests are shown in Table 1. We present the

approximation error of the algorithm in each of the three values for the
startup cost c3. Furthermore, motivated by the differences of the optimal
policies from Figures 3 and 4, we aggregate the results according to the fol-
lowing three cases for the service rates: l1<l2; l1>l2 and l1 ¼ l2. Finally,
next to the median of the relative error, we also list the 80th, the 90th, and
the 95th percentile for the corresponding nine test suites.
Based on the results from Table 1 we conclude that our algorithm’s per-

formance is not influenced by the value of the startup cost, c3. Next to
that, the errors for the three service rate configurations are also compar-
able, and therefore we believe that these parameters do not affect the accur-
acy either. In conclusion, our technique performs equally well regardless of
the system parameters.
In all nine test suites, the achieved median for the relative error is less

than 2%. We believe that this approximation accuracy together with the
intuitive and easy to implement nature of our method makes it a suitable
choice in practice.

6. Conclusion

In this paper, we analyzed the control of a two-node tandem queuing net-
work with holding costs at both nodes, and a startup cost for the second
server. We presented a simple, easy to implement and efficient method to
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approximate the optimal decision policy. Extensive numerical evaluation
showed that our technique is extremely accurate for a wide range of par-
ameter combinations.
Finally, we address a few topics for further research. First, we find prom-

ising the idea of extending the method to tandem queues composed of
more than two servers. Second, from a practical point of view it is interest-
ing to study models with other cost structures, for example, models with
startup cost for the first server or a startup time associated with the nodes.
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