
Math. Program., Ser. B (2007) 110:145–173
DOI 10.1007/s10107-006-0062-8

F U L L L E N G T H PA P E R

Semidefinite bounds for the stability number
of a graph via sums of squares of polynomials

Nebojša Gvozdenović · Monique Laurent
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Abstract Lovász and Schrijver (SIAM J. Optim. 1:166–190, 1991) have con-
structed semidefinite relaxations for the stable set polytope of a graph G =
(V, E) by a sequence of lift-and-project operations; their procedure finds the
stable set polytope in at most α(G) steps, where α(G) is the stability number of
G. Two other hierarchies of semidefinite bounds for the stability number have
been proposed by Lasserre (SIAM J. Optim. 11:796–817, 2001; Lecture Notes in
Computer Science, Springer, Berlin Heidelberg New York, pp 293–303, 2001)
and by de Klerk and Pasechnik (SIAM J. Optim. 12:875–892), which are based
on relaxing nonnegativity of a polynomial by requiring the existence of a sum
of squares decomposition. The hierarchy of Lasserre is known to converge in
α(G) steps as it refines the hierarchy of Lovász and Schrijver, and de Klerk and
Pasechnik conjecture that their hierarchy also finds the stability number after
α(G) steps. We prove this conjecture for graphs with stability number at most
8 and we show that the hierarchy of Lasserre refines the hierarchy of de Klerk
and Pasechnik.
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1 Introduction

Semidefinite programming plays an essential role for constructing good relax-
ations for hard combinatorial optimization problems, in particular, for the
maximum stable set problem which will be considered in the present paper
(see, e.g., [11] for a detailed account). Lovász [12] introduced the theta number
ϑ(G) as an upper bound for the stability number α(G) of a graph G = (V, E).
The theta number can be formulated via the semidefinite program

ϑ(G) := max Tr(JX) s.t. Tr(X) = 1, Xij = 0 (ij ∈ E), X � 0, (1)

and thus computed efficiently (to any arbitrary precision) using, e.g., interior
point methods (cf. [2,25]). It is also known that ϑ(G) coincides with α(G) when
G is a perfect graph (see [6]). Lovász and Schrijver [13] construct a hierarchy
of semidefinite relaxations for the stable set polytope of G by a sequence of
lift-and-project operations; their procedure is finite and it finds the stable set
polytope in at most α(G) steps.

Two other hierarchies of semidefinite bounds for the stability number have
been proposed by Lasserre [7,8] and by de Klerk and Pasechnik [5]. They use
the following notions about of sum of squares of polynomials: given a polyno-
mial f ∈ R[x1, . . . , xn], one says that f is a sum of squares of polynomials if it
can be written as f = g2

1 + g2
2 + · · · + g2

m, where g1, . . . , gm are polynomials in
R[x1, . . . , xn]. Obviously, f is nonnegative on R

n if it can be written as sum of
squares of polynomials. Hierarchies of Lasserre and of de Klerk and Pasechnik
are based on the following paradigm: while testing nonnegativity of a polyno-
mial is a hard problem, one can test efficiently whether a polynomial can be
written as a sum of squares of polynomials via semidefinite programming. As
was already proved by Hilbert in 1888 not every nonnegative multivariate poly-
nomial can be written as a sum of squares (see Reznick [19] for a nice survey on
this topic). However, some representation theorems have been proved ensuring
the existence of certain sums of squares decompositions under some assump-
tion, like positivity of the polynomial on a compact basic closed semi-algebraic
set (see, e.g., [24] for an exposition of such results). An early such result is due
to Pólya [18] who showed that, if p(x) is a homogeneous polynomial which
is positive on R

n+ \ {0}, then (
∑n

i=1 xi)
rp(x) has only nonnegative coefficients

[and thus (
∑n

i=1 x2
i )

rp(x2
1, . . . , x2

n) is a sum of squares] for some sufficiently large
integer r.

The starting point for Lasserre’s construction is that the stability number
α(G) of a graph G = (V, E) can be expressed as the smallest scalar t for which
the polynomial t − ∑

i∈V xi is nonnegative on the set {x ∈ R
V | xixj = 0 (ij ∈ E),

x2
i = xi (i ∈ V)}. Requiring the weaker condition that the polynomial t−∑

i∈V xi
can be written as a sum of squares modulo the ideal generated by xixj (ij ∈ E)
and x2

i − xi (i ∈ V) with given degree bounds, yields a hierarchy of semidefi-
nite upper bounds for α(G). The dual approach (in terms of moment matrices)
yields the hierarchy of Lasserre [7,8] of semidefinite relaxations for the stable
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set polytope. This hierarchy refines the hierarchy of Lovász and Schrijver (see
[9]) and thus it also finds the stable set polytope in α(G) steps.

By a result of Motzkin and Straus [15], one may alternatively express α(G) as
the smallest scalar t for which the matrix M := t(I + AG) − J (with entries t − 1
on the diagonal and at positions corresponding to edges and −1 elsewhere) is
copositive, meaning that the polynomial pM(x) := ∑

i,j∈V x2
i x2

j Mij is nonnegative
on R

n. Following Parrilo [16], de Klerk and Pasechnik [5] propose to relax the
nonnegativity condition on pM(x) and to require instead that (

∑
i∈V x2

i )
rpM(x)

be a sum of squares for some integer r ≥ 0. In this way they define a hierarchy
of bounds ϑ(r)(G) (for r ≥ 0). The convergence of these bounds to α(G) is
guaranteed by the above mentioned result of Pólya. The first bound in the hier-
archy coincides with the strengthening ϑ ′(G) of the theta number introduced
by McEliece et al. [14] and Schrijver [21] (see (7) below). It is however not
clear how the next bounds relate to the bounds provided by the construction of
Lasserre. It is conjectured in [5] that the stability number is found after α(G)

steps. In this paper, we study this conjecture and develop a proof technique
which enables us to show that the conjecture holds for graphs with stability
number at most 8. Moreover, we show that the hierarchy of bounds of Lasserre
(enhanced by adding some nonnegativity constraint) refines the hierarchy of
bounds of de Klerk and Pasechnik, answering another open question of [5].

The paper is organized as follows. In Sect. 2, we first recall some definitions
and results related to the hierarchies of bounds of Lasserre and of de Klerk and
Pasechnik. Next we introduce a dual formulation for the latter bounds, as well
as a weighted analogue and new semidefinite relaxations of the stable set poly-
tope. We complete the section with our main results. The proofs are delayed till
Sect. 3, where we prove the conjecture for graphs with stability number at most
8, till Sect. 4, where we prove a partial result for the weighted analogue of the
conjecture, and till Sect. 5, where we prove the relation between the hierarchies
of Lasserre and of de Klerk and Pasechnik. Section 6 contains some variations
and new interpretations of the bounds ϑ(r)(G). Finally, some variations of the
main conjecture about the convergence to the stability number in α(G) steps
are given.

Some notation Throughout, G = (V, E) denotes a graph with node set
V = {1, . . . , n}. For a node i ∈ V, N(i) denotes the set of nodes adjacent to i and
we set i⊥ := i∪N(i). Similarly for S ⊆ V, N(S) denotes the set of nodes adjacent
to some node in S and we set S⊥ := S∪N(S). For two nodes u, v ∈ V, write u � v
if u = v or uv ∈ E, and u 	� v otherwise. Let α(G) denote the stability number
of G, i.e., the largest cardinality of a stable set in G. The matrix AG denotes the
adjacency matrix of G, i.e., AG is the 0/1 matrix indexed by V whose (i, j)-th
entry is 1 when ij ∈ E. All matrices are assumed to be symmetric and I, J, e, ei
(i = 1, . . . , n) denote, respectively, the identity matrix, the all-ones matrix, the
all-ones vector, and the standard unit vectors of suitable sizes. A matrix M is
copositive if xTMx ≥ 0 for all x ∈ R

n+ and Cn denotes the copositive cone, con-
sisting of the n × n copositive matrices. For a symmetric matrix M, we write
M ≥ 0 if all entries are nonnegative, and M � 0 if M is positive semidefinite. The
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trace of M is denoted by Tr(M), while diag(M) denotes the vector containing the
diagonal entries of M. Given a vector v ∈ R

n, we let Diag(v) denote the diagonal
matrix whose diagonal entries are the components of v. Next, 1

v denotes the vec-
tor with entries 1

vi
(i = 1, . . . , n). For a sequence β ∈ Z

n+, we set |β| := ∑n
i=1 βi,

β! := β1! · · · βn!, S(β) := {i | βi 	= 0}, and Sodd(β) := {i | βi is odd}. One says
that β is even when Sodd(β) = ∅. We also set I(n, r) := {β ∈ Z

n+ | |β| = r} and
Pr(V) := {S ⊆ V | |S| ≤ r}. For x ∈ R

n and β ∈ I(n, r) we write xβ := �n
i=1xβi

i .
Following this a polynomial of the form p(x) = ∑

β∈I(n,r) pβxβ ∈ R[x] is said to
be homogeneous of degree r, and we let p = (pβ) ∈ R

I(n,r) denote the vector
containing its coefficients. For a cone of symmetric matrices K ⊆ R

n×n, K∗
denote the dual cone defined by K∗ = {M ∈ R

n×n| Tr(MN) ≥ 0, ∀N ∈ K}. It
is well known that the cone of positive semidefinite matrices is self-dual (i.e.,
coincides with its dual cone), while the dual cone of the copositive cone Cn is the
cone of completely positive matrices. We call a matrix M doubly nonnegative if
M � 0 and M ≥ 0.

2 Semidefinite bounds for the stability number

2.1 The semidefinite bounds of Lasserre

Given an integer r ≥ 1 and a vector x = (xI)I∈P2r(V), consider the matrix

Mr(x) := (xI∪J)I,J∈Pr(V)

known as the moment matrix of x of order r. By setting

las(r)(G) := max
∑

i∈V xi s.t. Mr(x) � 0, xI ≥ 0 (I ⊆ V, |I| = r + 1),
x∅ = 1, xij = 0 (ij ∈ E)

(2)

one obtains a hierarchy of semidefinite bounds for the stability number, known
as Lasserre’s hierarchy [8,9]. Indeed, if S is a stable set, the vector x ∈ R

P2r(V)

with xI = 1 if I ⊆ S and xI = 0 otherwise, is feasible for (2) with objective value
|S|, showing α(G) ≤ las(1)(G). We note that las(1)(G) = ϑ ′(G) (see (7) below
for the definition of ϑ ′(G)). Note that the conditions xI ≥ 0 for |I| ≤ r are
implied by Mr(x) � 0. For any fixed r, the parameter las(r)(G) can be computed
in polynomial time (to an arbitrary precision) since the semidefinite program
(2) involves matrices of size O(nr) with O(n2r) variables.

Equality α(G) = las(r)(G) holds for r ≥ α(G). This result remains valid if we
remove the nonnegativity constraint: xI ≥ 0 (|I| = r + 1) in (2) ([9]). However,
with this nonnegativity condition, we will be able to compare the hierarchies of
Lasserre and of de Klerk and Pasechnik (see Theorem 4 below1).

1 There exist graphs with ϑ(G) > ϑ ′(G) (see, e.g., [22, vol. B, p. 1173]). Therefore, without condi-
tion xI ≥ 0 (|I| = r + 1) for r = 1 we would have las(1)(G) = ϑ(G) ≥ ϑ ′(G) = ϑ(0)(G), implying
that the statement of the theorem is wrong.
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2.2 The semidefinite bounds of de Klerk and Pasechnik

The starting point in [5] is the following formulation for α(G) found by Motzkin
and Straus [15]

1
α(G)

= min xT(I + AG)x subject to x ≥ 0,
n∑

i=1

xi = 1.

In other words,

α(G) = min t subject to t(I + AG) − J ∈ Cn. (3)

Therefore, upper bounds for α(G) can be obtained by replacing the copositive
cone Cn in program (3) by a smaller subcone of it. Following [5,16], given an
integer r ≥ 0, K(r)

n denotes the cone of n×n matrices M for which the polynomial

p(r)
M (x) :=

(
n∑

i=1

x2
i

)r
⎛

⎝
n∑

i,j=1

Mijx2
i x2

j

⎞

⎠ (4)

can be written as a sum of squares of polynomials. Parrilo [16] shows that

K(0)
n = {P + N | P � 0, N ≥ 0}. (5)

A characterization of K(1)
n can be found in [1,16] (see Lemma 14 and the com-

ment thereafter). Obviously, K(r)
n ⊆ K(r+1)

n ⊆ · · · ⊆ Cn. The result of Pólya
mentioned in Sect. 1 shows that the interior of the cone Cn is contained in⋃

r≥0 K(r)
n . Setting

ϑ(r)(G) := min t subject to t(I + AG) − J ∈ K(r)
n , (6)

one obtains a hierarchy of upper bounds for α(G). The first bound ϑ(0)(G) is
equal to

ϑ ′(G) = max Tr(JX) s.t. Tr(X) = 1, Xij = 0 (ij ∈ E), X � 0, X ≥ 0 (7)

(see [5]). Thus, ϑ(0)(G) ≤ ϑ(G), since program (7) without the nonnegativity
condition is a formulation of the theta number (1).

The problem of finding a sum of squares decomposition for a polynomial of
degree 2d can be formulated as a semidefinite program involving matrices of
size O(nd) and O(n2d) variables (see, e.g., [16]). Therefore, for fixed r, program
(6) can be reformulated as a semidefinite program of polynomial size and thus
ϑ(r)(G) can be computed in polynomial time (to any precision).
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Let us observe that, for the matrix M := α(I +AG)−J, the polynomial p(r)
M (x)

has a negative coefficient for any r ≥ 0 when α = α(G) ≥ 2. To see it, recall
from [1, p. 169, Theorem 2.2] that

p(r)
M (x) =

∑

β∈I(n,r+2)

r!
β!cβx2β , where cβ := βTMβ − βTdiag(M). (8)

If S(β) is a stable set, then cβ = α
∑

i βi(βi−1)−(r+1)(r+2). Write r+2 = qα+s
with q, s ∈ Z+, 0 ≤ s < α; then cβ < 0 for β = (q + 1, . . . , q + 1, q, . . . , q, 0, . . . 0)

with s entries equal to q + 1, α − s entries equal to q, and S(β) being a stable
set.

On the other hand the matrix M := α(1 + ε)(I + AG) − J with α = α(G)

and ε = α−1
α2−α+1

, belongs to the cone K(r)
n for r ≥ α2 since all the coefficients of

the polynomial p(r)
M (x) are nonnegative [5]. This implies that α(G) ≤ ϑ(r)(G) ≤

α(G)(1 + ε) < α(G) + 1, which gives the following result of de Klerk and
Pasechnik [5]

α(G) = �ϑ(r)(G)� for r ≥ α(G)2.

It is also shown in [5] that

ϑ(1)(G) ≤ 1 + max
i∈V

ϑ(0)(G\i⊥). (9)

Therefore, ϑ(1)(G) = α(G) when α(G) ≤ 2. More generally, de Klerk and
Pasechnik [5] conjecture:

Conjecture 1 ϑ(r)(G) = α(G) for r ≥ α(G) − 1.

2.3 Dual formulation

Using conic duality, the bound ϑ(r)(G) from (6) can be reformulated as

ϑ(r)(G) = max Tr(JX) subject to Tr((I + AG)X) = 1, X ∈ (K(r)
n )∗. (10)

As the programs (6) and (10) are strictly feasible, there is no duality gap and
the optima in (6) and (10) are indeed attained [5]. For r = 0, it follows from (5)
that (K(0)

n )∗ is the cone of doubly nonnegative (i.e., positive semidefinite and
nonnegative) matrices. For r ≥ 1, one can give an explicit description of the
dual cone (K(r)

n )∗. As a first step we introduce a class of matrices defined in (11).

Definition 1 Let y = (yδ)δ∈I(n,2r+4) be given.

(i) Define the matrix2 Nr+2(y) indexed by I(n, r + 2), whose (β, β ′)-th entry is
equal to yβ+β ′ , for β, β ′ ∈ I(n, r + 2).

2 Such a matrix is known as a moment matrix; for details see, e.g., Lasserre [7].
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(ii) For γ ∈ I(n, r), Nγ (y) denotes the principal submatrix of Nr+2(y) indexed
by γ + 2e1, . . . , γ + 2en; that is, Nγ (y) is the n × n matrix with (i, j)-th entry
y2γ+2ei+2ej , for i, j = 1, . . . , n.

(iii) Define the n × n matrix

C(y) :=
∑

γ∈I(n,r)

r!
γ !Nγ (y). (11)

Definition 2 Define the cone

C(r)
n := {Z ∈ R

n×n | Z = C(y) for some y ∈ R
I(n,2r+4) with Nr+2(y) � 0}.

Notice that the matrix C(y) in (11) involves only entries of y indexed by even
sequences. Therefore in the definition of the cone C(r)

n one can assume w.l.o.g.
that yδ = 0 whenever δ has an odd component.

Proposition 1 The cones K(r)
n and C(r)

n are dual of each other; that is,
C(r)

n = (K(r)
n )∗ and K(r)

n = (C(r)
n )∗.

The proof relies on a known duality relationship between the cone of sums
of squares of polynomials and the cone of positive semidefinite moment matri-
ces. Nevertheless, the explicit description of C(r)

n , the dual of K(r)
n , is new to the

best of our knowledge. Given u = (uα) ∈ R
I(n,r+2), consider the polynomial

p(x) := (
∑

α uαxα)2; then the following identity holds

yTp = uTNr+2(y)u for any y ∈ R
I(n,2r+4). (12)

Indeed, yTp = ∑
δ yδpδ = ∑

δ yδ(
∑

α,β|δ=α+β uαuβ) = ∑
α,β uαuβyα+β , which is

equal to uTNr+2(y)u. Define the two cones

�2r+4 := {
p = (pα) ∈ R

I(n,2r+4) |
∑

α

pαxα is a sum of squares of polynomials
}
,

N2r+4 := {y ∈ R
I(n,2r+4) | Nr+2(y) � 0}.

Lemma 1 The two cones N2r+4 and �2r+4 are dual of each other; that is, N2r+4 =
(�2r+4)

∗ and �2r+4 = (N2r+4)
∗.

Proof The equality N2r+4 = (�2r+4)
∗ follows as a direct application of (12) and

it implies the equality �2r+4 = (N2r+4)
∗ since �2r+4 is a closed cone (see [20, p.

37, Prop. 3.6]). ��
Proof (of Proposition 1) Let C(y) ∈ C(r)

n , let M be a symmetric n × n matrix
and let p(r)

M be the associated polynomial via (4). Using (8), one can verify that

Tr(M C(y)) = yTp(r)
M for any y ∈ R

I(n,2r+4). (13)
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Indeed,

Tr(MC(y)) =
n∑

i,j=1

MijC(y)ij =
n∑

i,j=1

Mij

∑

γ∈I(n,r)

r!
γ !y2γ+2ei+2ej

=
∑

β∈I(n,r+2)

⎛

⎝
∑

i|βi≥2

r!
(β − 2ei)!Miiy2β +

∑

i 	=j|βi,βj≥1

r!
(β − ei − ej)!Mijy2β

⎞

⎠

=
∑

β∈I(n,r+2)

⎛

⎝
∑

i

r!βi(βi − 1)

β! Miiy2β +
∑

i 	=j

r!βiβj

β! Mijy2β

⎞

⎠

=
∑

β∈I(n,r+2)

r!
β!y2β

(
βTMβ − βTdiag(M)

)
= yTp(r)

M .

Using (13) and the equality (N2r+4)
∗ = �2r+4, one can immediately conclude

that K(r)
n = (C(r)

n )∗. The cone C(r)
n is closed since it consists of linear combinations

of positive semidefinite matrices and the positive semidefinite cone is closed.
Hence C(r)

n = (K(r)
n )∗. ��

Let us note for further reference the following identities which follow using
(8) and (13)

Tr(JC(y)) =
∑

β∈I(n,r+2)

(r + 2)!
β! y2β , (14)

Tr(C(y)) =
∑

β∈I(n,r+2)

r!
β!y2β

(
n∑

i=1

β2
i − βi

)

. (15)

2.4 Semidefinite relaxations of the stable set polytope

Let Pstab(G) denote the stable set polytope of G, defined as the convex hull of
the incidence vectors of the stable sets in G. For an integer r ≥ 0, define the set

P(r)(G) := {x ∈ R
n | x = diag(X) for some X ∈ C(r)

n satisfying
Tr(AGX) = 0, X − xxT � 0}

and define the parameter

ϑ̃ (r)(G) := max
x∈P(r)(G)

∑

i∈V

xi. (16)

Lemma 2 Pstab(G) ⊆ P(r)(G) and α(G) ≤ ϑ̃ (r)(G) ≤ ϑ(r)(G) for any integer
r ≥ 0.
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Proof Given a stable set S with incidence vector x := χS, define the vector
y ∈ R

I(n,2r+4) with yδ = 1
|S|r if δ is even and S(δ) ⊆ S, and yδ = 0 otherwise.

Then, |S|rNr+2(y) is a 0/1 block diagonal matrix, whose blocks are indexed by
the sets OI := {α ∈ I(n, r + 2) | S(α) ⊆ S, Sodd(α) = I} for I ⊆ S, and the set
O := {α ∈ I(n, r + 2)| S(α) � S}. Each OI × OI block is the all-ones matrix, and
the O × O block is zero. Hence Nr+2(y) � 0. For γ ∈ I(n, r),

|S|rNγ (y) =
(

S V\S
S J 0
V\S 0 0

)

= xxT

if S(γ ) ⊆ S, and Nγ (y) = 0 otherwise. Hence C(y) = ∑
γ∈I(n,r)

r!
γ !N

γ (y) =
∑

γ∈I(n,r)
r!
γ !

1
|S|r xxT = xxT. Setting X := C(y) = xxT, we have Tr(AGX) = 0,

and x = diag(X), which shows that x ∈ P(r)(G). This shows the inclusion:
Pstab(G) ⊆ P(r)(G) which in turn implies the inequality: α(G) ≤ ϑ̃ (r)(G). The
inequality: ϑ̃ (r)(G) ≤ ϑ(r)(G) follows from Lemma 3 below. ��

The sets P(r)(G) provide a hierarchy of semidefinite relaxations for Pstab(G).
It is known that Pstab(G) = P(0)(G) when G is a perfect graph (see [6]). A natu-
ral question to ask is whether the analogue of Conjecture 1 may hold, asserting
that Pstab(G) = P(r)(G) for r ≥ α(G) − 1. We are able to give a positive answer
only in the case r = 1; see Corollary 2 below.

For this, given positive node weights w ∈ R
V+, we have to compare the

weighted stability number αw(G) := max
x∈Pstab(G)

wTx and the weighted parameter

ϑ̃ (r)
w (G) := max

x∈P(r)(G)
wTx. (17)

Busygin [3] shows the following extension to the weighted case of the
Motzkin-Straus theorem.

Theorem 1 [3] Given wi > 0 (i ∈ V), set wmin := mini∈V wi. Then,

wmin

αw(G)
= min

x∈

xT

(
Diag

(wmin

w

)
+ AG

)
x.

In other words, the matrix αw(G)
(
Diag

( 1
w

) + 1
wmin

AG
) − J is copositive or,

equivalently, the matrix αw(G)
(
Diag(w) + AG,w

) − wwT is copositive, where
AG,w is the matrix whose ij-th entry is

wiwj
wmin

if ij ∈ E and 0 otherwise. Set

wmax := max
i∈V

wi, WG := (wmax)
2

wmin
. (18)

The matrix αw(G)
(
Diag(w) + WGAG

)−wwT is also copositive, since the entries
of AG,w are at most WG. This leads us to define the following weighted analogue
of the parameter ϑ(r)(·):
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ϑ(r)
w (G) := min t subject to t(Diag(w) + WGAG) − wwT ∈ K(r)

n . (19)

This definition reduces to the original definition (6) when all weights are equal
to 1.

Lemma 3 The parameters (17) and (19) satisfy: ϑ̃
(r)
w (G) ≤ ϑ

(r)
w (G).

Proof Assume M := t(Diag(w) + WGAG) − wwT ∈ K(r)
n and let x = diag(X)

where X ∈ C(r)
n , Tr(AGX) = 0, X−xxT � 0. Then, 0 ≤ Tr(MX) = twTx−wTXw,

yielding twTx ≥ wTXw ≥ (wTx)2 and thus t ≥ wTx. This gives the desired
inequality. ��

Lemma 4 For r = 0, ϑ̃
(0)
w (G) = ϑ

(0)
w (G). Therefore, ϑ

(0)
w (G) = αw(G) when G is

a perfect graph.

Proof It remains to show the inequality: ϑ
(0)
w (G) ≤ ϑ̃

(0)
w (G). For this, we first

observe that

ϑ(0)
w (G) ≤ φ(G) := min t subject to tDiag(w) + yAG − wwT ∈ K(0)

n . (20)

Our argument is similar to the one used by de Klerk and Pasechnik [5] in the
unweighted case. Assume M := tDiag(w)+yAG−wwT ∈ K(0)

n . Then, M = P+N,
where P � 0, N ≥ 0, diag(N) = 0. Hence, t(Diag(w) + WGAG) − wwT =
M + (tWG − y)AG = P + N + (tWG − y)AG. It suffices now to verify that
N′ := N + (tWG − y)AG ≥ 0. For this pick an edge, say 12 ∈ E. As P � 0, we
have P11 + P22 ≥ 2P12, yielding t(w1 + w2) − 2(y − N12) ≥ (w1 − w2)

2. Finally,

2N′
12 = 2N12 + 2t w2

max
wmin

− 2y ≥ t(w1 + w2) − 2(y − N12) ≥ 0 proves (20).

Next, using conic duality, we obtain that

φ(G) = max wTXw subject to Tr(Diag(w)X) = 1, Tr(AGX) = 0, X ∈ C(0)
n .

Set u := (
√

wi)
n
i=1. Rescaling X by Y = Diag(u)XDiag(u), we find that

φ(G) = max uTYu subject to Tr(Y) = 1, Tr(AGY) = 0, Y ∈ C(0)
n .

(As C(0)
n consists of the nonnegative positive semidefinite matrices, it is closed

under the above rescaling.) We can now conclude that φ(G) ≤ ϑ̃
(0)
w (G); this is

the same proof as for Theorem 67.11 in [22] (which gives the result with the
cone C(0)

n being replaced by the cone of positive semidefinite matrices). ��

2.5 The main results

In this paper we prove the following results.
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Theorem 2 For a graph G and a positive integer r ≤ min(α(G) − 1, 6),

ϑ(r)(G) ≤ r + max
S⊆V stable, |S|=r

ϑ(0)(G\S⊥), (21)

Moreover, (21) holds for r = 7 = α(G) − 1.

Corollary 1 Conjecture 1 holds for α(G) ≤ 8; that is,

ϑ(α(G)−1)(G) = α(G) if α(G) ≤ 8.

Theorem 3 For a graph G with positive node weights w ∈ R
V,

ϑ(1)
w (G) ≤ max

i∈V
(wi + ϑ(0)

w (G\i⊥)). (22)

Corollary 2 Pstab(G) = P(1)(G) if G\i⊥ is perfect for all i ∈ V; this holds in
particular if α(G) = 2.

Theorem 4 For r ≥ 1, the parameters from (2), (10) and (16) satisfy

las(r)(G) ≤ ϑ̃ (r−1)(G) ≤ ϑ(r−1)(G). (23)

Corollary 1 follows directly from Theorem 2. Analogously, Corollary 2 fol-
lows from Theorem 3 together with Lemma 4. The proofs for Theorems 2, 3, 4
are given in Sects. 3, 4, 5, respectively.

Our proof technique for Theorem 2 does not apply to the case when α(G) ≥ 9.
It is quite more complicated than the proof of convergence in α(G) steps for
the Lovász-Schrijver and the Lasserre semidefinite hierarchies. One of the main
difficulties (as pointed out later in the proof) comes from the fact that, for r ≥ 1,
the cone K(r)

n is not invariant under some simple matrix operations, like extend-
ing a matrix by adding a zero row and column to it, or rescaling it by positive
multipliers (which obviously preserve copositivity and positive semidefinite-
ness). For instance, when G is a circuit of length 5, the matrix M := 2(I+AG)−J
belongs to K(1)

5 , but adding a zero row and column yields a matrix that does not

belong to K(1)

6 . We thank E. de Klerk for communicating this example to us.
As Theorem 4 shows, the bound las(r)(G) is at least as good as ϑ̃ (r−1)(G).

There exist in fact graphs for which strict inequality: las(2)(G) < ϑ̃(1)(G) holds.
For this, given integers 2 ≤ d ≤ n, consider the graph G(n, d) with node set P(V)

(|V| = n) where I, J ∈ P(V) are connected by an edge if |I
J| ∈ {1, . . . , d − 1}.
Then α(G(n, d)) is the maximum cardinality of a binary code of word length
n with minimum distance d. Delsarte [4] introduced a linear programming
bound which coincides with the parameter ϑ ′(G(n, d)) ([21]). Schrijver [23]
introduced a stronger semidefinite bound which roughly3 lies between the

3 Indeed, the formulation of Schrijver’s bound has an additional constraint, namely, xijk ≤ xij for

all i, j, k ∈ V, which does not appear in the definition of the bound las(r)(G) used in the present
paper.
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bounds las(1)(G(n, d)) and las(2)(G(n, d)) ([10]). While G(n, d) has 2n vertices,
Schrijver’s bound can be computed via a semidefinite program of size O(n3)

(using a block diagonalization of the underlying Terwiliger algebra). It turns
out that the same algebraic property holds for the bound ϑ(1)(G(n, d)); thus
we could compute this bound as well as Schrijver’s bound for the parameters
(n, d) = (17, 4), (17, 6), (17, 8), and we found

las(2)(G(17, 4)) ≤ 3276 < 3607 ≤ ϑ(1)(G(17, 4))

las(2)(G(17, 6)) ≤ 352 < 395 ≤ ϑ(1)(G(17, 6))

las(2)(G(17, 8)) ≤ 41 < 42 ≤ ϑ(1)(G(17, 8)).

3 Proof of Theorem 2

Let G = (V, E) be a graph with stability number α(G), V = {1, . . . , n} and
1 ≤ r ≤ α(G) − 1 an integer. Set

t := r + max
S⊆V stable,|S|=r

ϑ(0)(G\S⊥).

Then, t ≥ r + 1. As t − r ≥ ϑ(0)(G\S⊥), we deduce that

(t − r)(I + AG\S⊥) − J ∈ K(0)

n−|S⊥| for any stable set S in G of size r. (24)

In order to prove Theorem 2, we have to show that, for 1 ≤ r ≤ min(α(G)−1, 6),

M := t(I + AG) − J ∈ K(r)
n . (25)

We need some notation. Let B be an m × n matrix. We say that B is a
q × s block matrix if the set {1, . . . , m} indexing its rows can be partitioned into
Q1 ∪ . . . ∪ Qq and the set {1, . . . , n} indexing its columns can be partitioned into
S1 ∪ . . . ∪ Ss in such a way that, for any h ∈ {1, . . . , q}, h′ ∈ {1, . . . , s}, the entries
Bij for i ∈ Qh, j ∈ Sh′ are all equal to the same value, say b̃hh′ . In other words,
B is obtained from the matrix B̃ := (b̃hh′) h∈{1,...,q}

h′∈{1,...,s}
by suitably duplicating rows

and columns. We call B̃ the skeleton of the block matrix B. Obviously, B � 0 if
and only if B̃ � 0 (assuming m = n, q = s); moreover, B ∈ K(r)

n if and only if
B̃ ∈ K(r)

q (see Lemma 15 below).
Finally, for x ∈ R

n, set v(x) := (x2
i )

n
i=1.

The following observation plays a central role in the proof.

Lemma 5 Let X(i) (i ∈ V) be symmetric matrices satisfying the condition

X(i)jk + X(j)ik + X(k)ij ≥ 0 for all i, j, k ∈ V, (26)

then the polynomial
∑

i∈V x2
i v(x)TX(i)v(x) = ∑

i,j,k∈V x2
i x2

j x2
kX(i)jk is a sum of

squares.
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Proof The polynomial
∑

i,j,k∈V x2
i x2

j x2
kX(i)jk is equal to

∑
(i,j,k)∈V3
i 	=j 	=k	=i

x2
i x2

j x2
k[X(i)jk + X(i)jk + X(i)jk]

+∑
(i,j)∈V2

i 	=j

x2
i x4

j [X(i)jj + 2X(j)ij] + ∑
i∈V x6

i X(i)ii,

which is a sum of squares, since all coefficients are nonnegative by (26). ��
Our strategy will be to construct matrices X({i1, . . . , ik}, i) (i ∈ V) satisfying

(26) when {i1, . . . , ik} is a stable set of size k ≤ r. We will use them to recursively
decompose M into M − X(i1)− X(i1, i2)−· · ·− X(i1, . . . , ik) in such way that at
the last level k = r we obtain matrices in K(0)

n . It turns out that this last property
holds for r ≤ 7, but not for r = 8. This is why we are able to prove the conjecture
only for graphs with the stability number at most 8.

3.1 Defining sets of matrices satisfying the linear condition (26)

Let S be a stable set of cardinality k, 0 ≤ k ≤ r. We define a set of matrices
X(S, i) (for i ∈ V) indexed by V that satisfy the condition (26). Set m0 := 1 and
mk := tk

(t−1)···(t−k)
for k = 1, . . . , r. (Recall that t ≥ r + 1 > k.)

For i ∈ S⊥, X(S, i) is the symmetric matrix whose entry at position (u, v) is
defined as follows:

mk times

⎧
⎨

⎩

0 if u or v ∈ S⊥
t − k − 1 if u, v ∈ V \ S⊥ and u � v
−1 if u, v ∈ V \ S⊥ and u 	� v.

For i 	∈ S⊥, X(S, i) is the symmetric matrix whose entry at position (u, v) is
defined as follows:

mk times

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if u, v ∈ S⊥
− t−k−1

2 if u ∈ S⊥, v ∈ i⊥ \ S⊥
1
2 if u ∈ S⊥, v ∈ V \ (S⊥ ∪ i⊥)

0 if u, v ∈ i⊥ \ S⊥ and u � v
−(t − k) if u, v ∈ i⊥ \ S⊥ and u 	� v
t − k

2 if u ∈ i⊥ \ S⊥, v ∈ V \ (S⊥ ∪ i⊥) and u � v
k
2 if u ∈ i⊥ \ S⊥, v ∈ V \ (S⊥ ∪ i⊥) and u 	� v
−k if u, v ∈ V \ (S⊥ ∪ i⊥) and u � v
0 if u, v ∈ V \ (S⊥ ∪ i⊥) and u 	� v.

If S = {i1, . . . , ik}, we also denote X(S, i) as X(i1, . . . , ik, i). When S = ∅, we set
X(∅, i) =: X(i). Given an ordering (S) = (i1, . . . , ik) of the elements of S, define
the matrix

M((S)) := M − X(i1) − X(i1, i2) − · · · − X(i1, . . . , ik). (27)
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Lemma 6 Given a stable set S of size 0 ≤ k ≤ r, the matrices X(S, i) (i ∈ V)
satisfy (26).

Proof We prove X(S, i)jk+X(S, j)ki+X(S, k)ij ≥ 0 for all possible combinations
of i, j and k. Indeed, omitting the scalar factor mk, we find

– For i, j, k ∈ S⊥: 0 + 0 + 0 = 0;
– For i, j ∈ S⊥, k /∈ S⊥: 0 + 0 + 0 = 0;
– For i ∈ S⊥, j, k /∈ S⊥, j � k: (t − k − 1) + ( − t−k−1

2

) + ( − t−k−1
2

) = 0;
– For i ∈ S⊥, j, k /∈ S⊥, j 	� k: −1 + 1

2 + 1
2 = 0;

– For i, j, k /∈ S⊥, i � j � k � i: 0 + 0 + 0 = 0;
– For i, j, k /∈ S⊥, i � j � k 	� i:

(
t − k

2

) + (−t + k) + (
t − k

2

) = t;
– For i, j, k /∈ S⊥, k 	� i � j 	� k: k

2 + k
2 − k = 0;

– For i, j, k /∈ S⊥, i 	� j 	� k 	� i: 0 + 0 + 0 = 0.

��

3.2 The role of the matrices X(S, i) and M((S)) in the proof

Our objective is to prove that the matrix M from (25) belongs to the cone K(r)
n ,

i.e., that the polynomial p(r)
M (x) = σ(x)rv(x)TMv(x) is a sum of squares, setting

σ(x) := ∑n
i=1 x2

i . Recall that v(x) = (x2
i )

n
i=1. The basic idea is to decompose

p(r)
M (x) as

σ(x)r−1
n∑

i=1

x2
i v(x)TX(i)v(x) + σ(x)r−1

n∑

i=1

x2
i v(x)TM((i))v(x). (28)

The first sum is a sum of squares by Lemmas 5 and 6. Each matrix M((i)) can
be written as

M((i)) = M − X(i) =
( i⊥ V \ i⊥

i⊥ (t − 1)J −J
V \ i⊥ −J t(I + AG\i⊥) − J

)

(29)

= t
t − 1

(
0 0
0 (t − 1)(I + AG\i⊥) − J

)

+
(

(t − 1)J −J
−J 1

t−1 J

)

. (30)

When r = 1, (29), (30) together with assumption (24) imply that M−X(i) ∈ K(0)
n

and thus p(1)
M (x) is a sum of squares; therefore (9) holds. Assume now r ≥ 2. The

last matrix in (30) is positive semidefinite. Suppose our assumption would be
that (t−1)(I −AG\i⊥)−J ∈ K(r−1)

n−|i⊥|, then it would be tempting to conclude from

(29) and (30) that M−X(i) ∈ K(r−1)
n (which would then imply that M ∈ K(r)

n and
thus conclude the proof). This would be correct if we would work with cones of
matrices which are closed under adding a zero row and column, but this is not
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the case for the cones K(r) and thus this argument does not work. To go around
this difficulty, we proceed as follows. If a vertex i is adjacent to all other vertices,
then M((i)) = (t − 1)J � 0 implying that σ(x)r−1x2

i v(x)TM((i))v(x) is sum of
squares. Otherwise, we further decompose the second sum in (28) by developing
summands σ(x)r−1x2

i v(x)TM((i))v(x) as σ(x)r−2 ∑n
j=1 x2

i x2
j v(x)TM((i))v(x) and

then as σ(x)r−2 ∑n
j=1 x2

i x2
j v(x)TX(i, j)v(x)+σ(x)r−2 ∑n

j=1 x2
i x2

j v(x)TM((i, j))v(x)

(recall the def. of M((i, j)) from (27)). In the next step we then decompose the
summands σ(x)r−2x2

i x2
j v(x)TM((i, j))v(x) if i⊥ ∪ j⊥ 	= V, etc. Generally, we have

the following ‘inclusion–exclusion’ formula for the matrix σ(x)rM:

σ(x)rM =
r∑

h=1

σ(x)r−h
∑

i1∈V, i2 	∈i⊥1 ,...,ih−1 	∈i⊥1 ∪...∪i⊥h−2
ih∈V

x2
i1 · · · x2

ih X(i1, . . . , ih)

+
r∑

h=2

σ(x)r−h
∑

i1∈V, i2 	∈i⊥1 ,...,ih−1 	∈i⊥1 ∪...∪i⊥h−2
ih∈i⊥1 ∪...∪i⊥h−1

x2
i1 · · · x2

ih M((i1, . . . , ih))

+
∑

i1∈V, i2 	∈i⊥1 ,...,ir−1 	∈i⊥1 ∪...∪i⊥r−2
ir 	∈i⊥1 ∪...∪i⊥r−1

x2
i1 · · · x2

ir M((i1, . . . , ir)).

(31)

Therefore, in order to show that M ∈ K(r)
n , it suffices to show that

M((i1, . . . , ik, ik+1)) ∈ K(0)
n for S := {i1, . . . , ik} stable,

ik+1 ∈ S⊥, 1 ≤ k ≤ r − 1,
(32)

and
M((i1, . . . , ir)) ∈ K(0)

n for {i1, . . . , ir} stable. (33)

For this we need to study the structure of the matrices M((S)).

3.3 The structure of the matrices M((S))

Given an ordered stable set (S) = (i1, i2, . . . , ik) with k = 1, . . . , r, consider the
matrix M((S)) from (27) and write

M((S)) :=
(

S⊥ V \ S⊥

S⊥ Ck(S) Dk(S)

V \ S⊥ Dk(S)T Ek(S)

)

. (34)

Lemma 7 The matrix M((S)) from (34) has the following properties.

(i) Ck(S) is a k × k block matrix whose rows and columns are indexed by the
partition of S⊥ into i⊥1 ∪ (i⊥2 \ i⊥1 ) ∪ . . . ∪ (i⊥k \ {i1, . . . , ik−1}⊥). Let Ck be
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the skeleton of Ck(S) (Ck is a k × k matrix) and set dk := Cke ∈ R
k. Then,

eTCke =
k∑

h=1

dk(h) = (mk − 1)(t − k)2.

(ii) The matrix Dk(S) is a k × 1 block matrix, with the same partition as above
for the set S⊥ indexing its rows. Given h ∈ {1, . . . , k}, all entries in the
(h, 1)-block take the same value, which is equal to −dk(h)

t−k .

(iii) For u, v ∈ V \ S⊥, the (u, v)-th entry of Ek(S) is equal to tmk−1 − 1 if u � v
and to −1 if u 	� v.

Proof The block structure of the matrices Ck and Dk is determined by the
construction of the matrix M((S)) in (27) and the shape of the matrices X(·)
defined in Sect. 3.1. We show the lemma by induction on k ≥ 1. For k = 1,
the matrix M((S)) = M − X(i1) has the shape given in (29) and the desired
properties hold. Assume (i), (ii), (iii) hold for a stable set S of size k ≥ 1. Let
i ∈ V \ S⊥. We show that (i), (ii), (iii) hold for the stable set S ∪ {i}. Let D′

k(S)

(resp., D′′
k(S)) be the submatrices of Dk(S) whose columns are indexed by i⊥ \ S

(resp., V \ (S∪ i⊥)) and with the same row indices as Dk(S). Then Ck+1(S, i) and
Dk+1(S, i) have the following block structure:

Ck+1(S, i) =
(

Ck(S) D′
k(S) + t−k−1

2 mkJ
D′

k(S)T + t−k−1
2 mkJT (tmk−1 − 1)J

)

(35)

Dk+1(S, i) =
(

D′′
k(S) − 1

2 mkJ
(−1 − mk

k
2 )J

)

, (36)

where J denotes the all-ones matrix of the appropriate size. By the induction
assumption, the entries in the h-th row of D′

k(S) and D′′
k(S) are equal to −dk(h)

t−k
(for h = 1, . . . , k), and eTdk = eTCke = (mk − 1)(t − k)2.

We first show that Ck+1(S, i) satisfies (i). Indeed,

eTCk+1e = eTCke + 2
(
− eTdk

t−k + mk
t−k−1

2

)
+ tmk−1 − 1

= (mk − 1)(t − k)2 − 2(mk − 1)(t − k) + mk(t − k − 1)k + mk(t − k) − 1
= mk(t − k − 1)t − (t − k − 1)2 = (mk+1 − 1)(t − k − 1)2.

We now show that Dk+1(S, i) satisfies (ii). Setting dk+1 := Ck+1e, for h =
1, . . . , k, we have

dk+1(h) = dk(h) − dk(h)

t − k
+ t − k − 1

2
mk = (t − k − 1)

(
dk(h)

t − k
+ mk

2

)

.

This yields: −dk+1(h)

t−k−1 = −dk(h)
t−k − mk

2 , which is indeed equal to the entries of
Dk+1(S, i) in its h-th row. The entries of Dk+1(S, i) in its (k+1)-th row are equal
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to −1 − mk
k
2 , thus equal to −dk+1(k+1)

t−k−1 since

dk+1(k + 1) = ∑k
h=1

(
−dk(h)

t−k + k(t−k−1)
2 mk

)
+ tmk−1 − 1

= − eTCke
t−k + k t−k−1

2 mk + tmk−1 − 1 = (t − k − 1)
(

1 + kmk
2

)
.

We finally show that Ek+1(S, i) satisfies (iii). Indeed, its (u, v)-th entry remains
the same as in Ek(S), i.e., equal to −1, if u 	� v and, for u � v, it is equal to
tmk−1 − 1 + kmk = (t − k)mk − 1 + kmk = tmk − 1. ��
Corollary 3 Let S be a stable set of size k = 1, . . . , r. Then,

G((S)) :=
(

Ck(S) Dk(S)

Dk(S)T (mk − 1)J

)

� 0 ⇐⇒ Ck(S) � 0, (37)

M((S)) = G((S)) + mk

(
0 0
0 (t − k)(I + AG\S⊥) − J

)

, (38)

M((S, i)) = G((S)) if i ∈ S⊥. (39)

Proof By Lemma 7, Ck(S), Dk(S) are block matrices; hence G((S)) � 0 if and

only if its skeleton G :=
(

Ck − 1
t−k Cke

− 1
t−k eTCk mk − 1

)

is positive semidefinite. Now,

G � 0 ⇐⇒ Ck � 0 since the last column of G is a linear combination of the first
k columns; thus (37) holds. Relations (38), (39) follow using the definitions. ��

Therefore, (32), (33) hold (and thus M ∈ K(r)
n ) if we can show that Ck(S) � 0

for any stable set S of size k ≤ r. As Ck(S) is a block matrix, it suffices to show
that its skeleton Ck is positive semidefinite. Moreover, it suffices to show that
Cr � 0 since, in view of (35), the matrices Ck (1 ≤ k ≤ r) are in fact the leading
principal submatrices of Cr.

3.4 The matrix Cr is positive semidefinite for r ≤ min(α(G) − 1, 6)

Recall that the entries of Cr depend on the parameter t; thus one may alterna-
tively write Cr as Cr(t). Our task is now to show that Cr(t) � 0 for all t ≥ r + 1
and r ≤ min(α(G) − 1, 6). We achieve this by proving that

det Ck(t) > 0 for t ≥ r + 1, k = 1, . . . , r. (40)

The proof of (40) relies on establishing a recurrence relationship among the
determinants of Ck(t). We need the following lemma.

Lemma 8 Assume Ck+1 is nonsingular for k ≥ 1. Then,

eT(Ck+1)
−1e = t2

(t − k)2

det Ck

det Ck+1
. (41)
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Proof Write Ck+1 :=
(

Ck x
xT a

)

, (Ck+1)
−1 :=

(
A y
yT b

)

. Then,

(a) ACk + yxT = I; (b) Cky + bx = 0; (c) Ax + ay = 0; (d) xTy + ab = 1.

(42)

By Lemma 7 and (35), a = tmk−1 − 1 = (t − k)mk − 1 and x = ρke − 1
t−k Cke,

setting ρk := mk
t−k−1

2 . Moreover, eTCke = (mk − 1)(t − k)2, implying

eTx = kρk − (t − k)(mk − 1),
eTx

t − k
+ a = ρk

(
k

t − k
+ 2

)

. (43)

Taking the inner product of relation (c) with the all-ones vector and using
(42)(a) and (43), we find:

0 = eTAx + aeTy = eTA
(
ρke − 1

t−k Cke
) + aeTy

= ρkeTAe − 1
t−k eT(I − yxT)e + aeTy = ρkeTAe − k

t−k + eTy
( xTe

t−k + a
)

= ρk(eTAe + 2eTy) + k
t−k (ρkeTy − 1);

that is,

eTAe + 2eTy = k
t − k

(
1
ρk

− eTy
)

. (44)

Using relations (42)(d),(b) and (43), we find

1 = xTy + ab = (
ρke − 1

t−k Cke
)Ty + ab

= ρkeTy + b
t−k eTx + ab = ρkeTy + bρk

( k
t−k + 2

)
;

that is,

eTy = 1
ρk

− b
(

k
t − k

+ 2
)

. (45)

Relations (44) and (45) imply that eT(Ck+1)
−1e = eTAe + 2eTy + b = b t2

(t−k)2 .

By the cofactor rule, b = det Ck
det Ck+1

, and the lemma follows. ��

Corollary 4 Let k ≥ 2 and assume that Ck(t) is nonsingular. Then,

det Ck+1(t) = 2tρk

t − k
det Ck(t) − t2ρ2

k

(t − k + 1)2 det Ck−1(t), (46)

after setting ρk := mk
t−k−1

2 .
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Proof Setting P :=
(

I − 1
t−k e

0 1

)

, we find that PTCk+1P =
(

Ck ρke
ρkeT µ

)

, after

setting µ := mk
t(t−k−1)

t−k . Set u := (Ck)−1e and let v1, . . . , vk+1 denote the col-

umns of PTCk+1P. Then, vk+1 − ρk(
∑k

i=1 uivi) has all zero entries except the
last (k + 1)-th entry equal to µ − ρ2

k(
∑k

i=1 ui) = mk
t(t−k−1)

t−k − ρ2
keT(Ck)−1e.

Therefore, we can conclude that

det Ck+1 = det PTCk+1P =
(

2tρk

t − k
− ρ2

keT(Ck)−1e
)

det Ck. (47)

Relation (46) now follows directly from Lemma 8 and (47). ��
Lemma 9 Consider the rational functions f1(t) = t − 1, f2(t) := t2(t−2)(3t−2)

4(t−1)2 and,
for h = 2, . . . , k,

fh+1(t) = 2tρh

t − h
fh(t) − t2ρ2

h

(t − h + 1)2 fh−1(t),

and the polynomials g1(t) := 1, g2(t) := 3t − 2 and, for h = 2, . . . , k,

gh+1(t) = εh(t − h)gh(t) − t(t − h − 1)gh−1(t),

with εh = 1 if h is even and εh = 4 otherwise. As before, ρh := mh
t−h−1

2 .

(i) For h = 2, . . . , k + 1, fh(t) = t(
h+1

2 )−1(t−h)

4�h/2�(t−1)h(t−2)h−1···(t−h+1)2 gh(t).

(ii) For 1 ≤ k ≤ 6, gk(t) > 0 for all t ≥ k. Moreover, g7(8) > 0.

Proof The proof for (i) is by induction on k. For (ii), setting Gk(t) := gk(t + k),
one has to show that Gk(t) > 0 for t ≥ 0, k ≤ 6. This follows from the fact that
G2(t) = 4 + 3t, G3(t) = 7 + 7t + 2t2, G4(t) = 64 + 68t + 30t2 + 5t3, G5(t) =
167+165t+84t2 +25t3 +3t4, G6(t) = 1, 776+1, 296t+540t2 +248t3 +70t4 +7t5.
Moreover, g7(8) = 1, 024. ��

We can now conclude the proof of Theorem 2. Let t ≥ r + 1. Consider
first the case when 1 ≤ r ≤ min(α(G) − 1, 6). We show that (40) holds using
Corollary 4 and Lemma 9. First note that det Ch(t) = fh(t) for h = 1, 2 (direct
verification). Let k ∈ {1, . . . , r}. If k = 1, 2, then det Ck(t) > 0. Assume k ≥ 3
and Ck−1(t) � 0. By Corollary 4, det C1(t), . . . , det Ck(t) are related via (46);
that is, det Ch(t) = fh(t) for h = 1, . . . , k. We now deduce from Lemma 9 that
det Ck(t) > 0. This shows that Cr(t) � 0 for t ≥ r + 1, which concludes the proof
of the first part of Theorem 2.

Consider now the case when r = 7 = α(G) − 1. We have to show that the
matrix M = t(I + AG) − J from (25) with t := α(G) = 8 belongs to K(7)

n . As
before we are left with the task of proving that det C1(t), . . . , det C7(t) > 0 for
t = 8, which follows from the assertions g1(8), . . . , g6(8), g7(8) > 0 in Lemma 9.
This concludes the proof of Theorem 2.
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Note that the same argument cannot be used for proving Conjecture 1 in the
case α(G) = 9, since g1(9), . . . , g6(9) > 0 while g7(9) < 0 which implies that the
matrix C7(9) is not positive semidefinite.

4 Proof of Theorem 3

The proof is along the same lines as in the preceding section. Set

t := max
i∈V

wi + ϑ(0)
w (G\i⊥).

For i ∈ V, define w(i) := (wj)j∈V\i⊥ , the vector of node weights restricted to
the graph G\i⊥. The matrix Pi := (t − wi)(Diag(w(i)) + WGAG\i⊥) − w(i)(w(i))T

belongs to the cone K(0)

|V\i⊥| (since WG\i⊥ ≤ WG). Define a := (1/wj)j∈V and,

for i ∈ V, let a(i) be the restriction of a to G\i⊥. Moreover, set BG\i⊥ :=
WGDiag(a(i))AG\i⊥Diag(a(i)) and Mi := Diag(a(i))PiDiag(a(i)). Then,

Mi = (t − wi)(Diag(a(i)) + BG\i⊥) − J ∈ K(0)

|V\i⊥|.

Our goal is to show that P := t(Diag(w) + WGAG) − wwT ∈ K(1)
n ; equivalently,

setting M := Diag(a)PDiag(a), we have to show that

the polynomial p(x) :=
(

∑

i

aix2
i

)

v(x)TMv(x) is a SOS.

We follow the same strategy as in the proof of Theorem 2: we introduce a set of
symmetric matrices X(i) (i ∈ V) satisfying (26). Namely, given i ∈ V, all entries
of X(i) are equal to 0, except

X(i)ij = − 1
2 aj(ai − aj)t, X(i)jj = ai(aj − ai)t for j ∈ N(i),

X(i)jk = −aiajakWGt for j, k ∈ N(i), j 	� k,
X(i)jk = aiajakWGt for j ∈ N(i), k ∈ V \ i⊥, j � k.

Then, X(i)jk + X(j)ik + X(k)ij ≥ 0 since it takes the values

– For i = j = k: 0;
– For i = j � k: 2

( − 1
2 ak(ai − ak)t

) + ak(ai − ak)t = 0;
– For i = j 	� k: 2·0+0=0;
– For i � j � k � i: 0+0+0=0;
– For i � j 	� k � i: −aiajakWGt + aiajakWGt + aiajakWGt = aiajakWGt;
– For i 	� j � k 	� i: 0+0+0=0;
– For i 	� j 	� k 	� i: 0+0+0=0.
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One can decompose the polynomial p(x) as

∑

i

x2
i v(x)T(aiM − X(i))v(x) +

∑

i

x2
i v(x)TX(i)v(x).

The second summation is a SOS by Lemma 5. To conclude the proof, it suffices
to show that the matrix aiM−X(i) belongs to K(0)

n . For this, note that the matrix
A := wi(aiM − X(i)) = M − wiX(i) can be decomposed as

A =
(

(tai − 1)J −J
−J 1

tai−1 J

)

+
(

N 0
0 0

)

+
(

0 0
0 tai

tai−1 Mi

)

where N ≥ 0, which shows that A ∈ K(0)
n and concludes the proof of Theorem

3. (When all weights are equal to 1, N = 0 and we find the decomposition from
(29), (30).) Indeed, one can verify that

Ajj = tai − 1 for j ∈ i⊥
Aij = tWGaiaj − 1 + aj

2ai
(ai − aj)t for j ∈ N(i)

Ajk = tWGajak − 1 for j 	= k ∈ N(i)
Ajk = −1 for j ∈ i⊥, k ∈ V \ i⊥
Ajj = taj − 1 for j ∈ V \ i⊥
Ajk = tWGajak − 1 for j 	= k ∈ V \ i⊥, j � k
Ajk = −1 for j, k ∈ V \ i⊥, j 	� k.

The principal submatrix of A indexed by V \ i⊥ is thus equal to 1
tai−1 J + tai

tai−1 Mi.

Moreover, tWGajak − 1 ≥ tai − 1 since WG ≥ ai
ajak

= wjwk
wi

. Finally, we have

tWGaiaj − 1 + aj
2ai

(ai − aj)t ≥ tai − 1 since WG ≥ a2
j +2a2

i −aiaj

2a2
i aj

= w2
i +2w2

j −wiwj

2wj
;

indeed, if wi ≤ wj, then
w2

i +2w2
j −wiwj

2wj
≤ wj ≤ wmax ≤ WG and, if wi ≥ wj, then

w2
i +2w2

j −wiwj

2wj
≤ wi(wi+wj)

2wj
≤ (wmax)2

wmin
= WG. ��

5 Proof of Theorem 4

Obviously, las(1) = ϑ(0)(G). In view of Lemma 2, we have to show that las(r) ≤
ϑ̃ (r−1)(G) for any positive integer r. For this, let x ∈ R

P2r(V) be feasible for (2),
i.e., x∅ = 1, xI ≥ 0 (|I| = r + 1), xij = 0 (ij ∈ E), and Mr(x) � 0. Then, xI = 0
for any I ∈ P2r(V) containing an edge. We may assume that

∑n
i=1 xi > 0. For

p = 1, . . . , r + 1, define

�p :=
∑

β∈I(n,p−1)

(p − 1)!
β! xS(β).
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Then, �1 = 1, �p ≥ �2 = ∑n
i=1 xi > 0 for p ≥ 2. For p = 1, . . . , r, define

y = (yδ)δ∈I(n,2p+2) as follows: yδ = 0 if Sodd(δ) 	= ∅, yδ := 1
�p

xS(δ) otherwise
(then |S(δ)| ≤ p + 1 ≤ r + 1).

Lemma 10 Np+1(y) � 0.

Proof For I ⊆ V, set OI := {β ∈ I(n, p + 1) | Sodd(β) = I} and NI :=
(yβ+β ′)β,β ′∈OI . Then, Np+1(y) is a block diagonal matrix with the matrices NI
(I ⊆ V) as diagonal blocks. As �pNI = (xS(β)∪S(β ′))β,β ′∈OI , NI � 0 since it is
obtained from a principal submatrix of Mr(x) by duplicating certain rows/col-
umns (unless |I| = r + 1 in which case NI is the 1 × 1 matrix with entry x|I| ≥ 0,
implying again NI � 0). ��

Therefore, the matrix Z(p) := C(y) = ∑
γ∈I(n,p−1)

(p−1)!
γ ! Nγ (y) belongs to the

cone C(p−1)
n . Moreover, Z(p)ij = 0 if ij ∈ E. Define the matrix

Z̃(p) :=

⎛

⎜
⎜
⎜
⎝

1 Z(p)11 . . . Z(p)nn
Z(p)11

... Z(p)

Z(p)nn

⎞

⎟
⎟
⎟
⎠

. (48)

Lemma 11 Z̃(p) � 0.

Proof The matrix

�pZ̃(p) =
∑

γ∈I(n,p−1)

(p − 1)!
γ !

⎛

⎜
⎜
⎜
⎝

xS(γ ) y2γ+4e1 . . . y2γ+4en

y2γ+4e1
... (y2γ+2ej+2ek)

n
j,k=1

y2γ+4en

⎞

⎟
⎟
⎟
⎠

=
∑

γ∈I(n,p−1)

(p − 1)!
γ !

⎛

⎜
⎜
⎜
⎝

xS(γ ) xS(γ+e1) . . . xS(γ+en)

xS(γ+e1)

... (xS(γ+ej+ek))
n
j,k=1

xS(γ+en)

⎞

⎟
⎟
⎟
⎠

is positive semidefinite, since the matrices in the above summation are principal
submatrices of Mr(x). ��

Lemma 12 Tr(JZ(p)) = �p+2
�p

and Tr(Z(p)) = �p+1
�p

.

Proof As Z(p) = C(y) ∈ C(p−1)
n , one can use (14) and (15). Namely,

Tr(JZ(p)) =
∑

β∈I(n,p+1)

(p + 1)!
β! y2β = 1

�p

∑

β∈I(n,p+1)

(p + 1)!
β! xS(β) = �p+2

�p
.
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Moreover,

Tr(Z(p)) =
∑

β∈I(n,p+1)

(p − 1)!
β! y2β

n∑

i=1

(β2
i − βi)

= 1
�p

n∑

i=1

∑

β∈I(n,p+1)

(p − 1)!
β! βi(βi − 1)xS(β).

We can restrict the inner summation to β with βi ≥ 2. Then, δ := β − ei has the
same support as β and

Tr(Z(p)) = 1
�p

n∑

i=1

∑

δ∈I(n,p)

(p − 1)!
δ! δixS(δ) = 1

�p

∑

δ∈I(n,p)

(p − 1)!
δ! |δ|xS(δ) = �p+1

�p
.

��
Lemma 13 �p+2

�p+1
≥ �p+1

�p
.

Proof By Lemma 11, Z̃(p) � 0, implying Z(p)−diag(Z(p))diag(Z(p))T � 0.
Therefore, eT(Z(p) − diag(Z(p))diag(Z(p))T)e ≥ 0, yielding Tr(JZ(p)) ≥
(Tr(Z(p)))2. The result now follows using Lemma 12. ��

From Lemmas 12 and 13, we deduce that
∑n

i=1 Z(r)ii = �r+1
�r

≥ �2
�1

= ∑n
i=1 xi.

The vector z := diag(Z(r)) is feasible for the program (16) defining the param-
eter ϑ̃ (r−1)(G). Hence, ϑ̃ (r−1)(G) ≥ ∑n

i=1 zi = Tr(Z(r)) ≥ ∑n
i=1 xi. This shows

that ϑ̃ (r−1)(G) ≥ las(r)(G).

6 Concluding remarks

6.1 Some variations of the bound ϑ(r)(G)

Given a polynomial q ∈ R[x1, . . . , xn], define the even polynomial q̃(x) :=
q(x2

1, . . . , x2
n); a polynomial being even when each variable occurs with an even

degree in any nonzero term. One can express the condition that q̃ be a SOS
directly in terms of the polynomial q.

Proposition 2 [26] Given a homogeneous polynomial q of degree d, the associ-
ated even polynomial q̃(x) := q(x2

1, . . . , x2
n) is a SOS if and only if the polynomial

q admits a decomposition:

q(x) =
∑

I⊆{1,...,n}
|I|≤d, |I|≡d (mod 2)

σI(x)
∏

i∈I

xi (49)

where σI is a form of degree d − |I| which is SOS.
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The condition (49) can obviously be reformulated as

q(x) =
∑

β∈Z
n+,|β|≤d,|β|≡d mod 2

σβxβ (50)

where σβ is a form of degree d − |β| which is SOS. As the polynomial p(r)
M from

(4) is an even polynomial, we can apply the above criterion for characterizing
whether an n × n matrix M belongs to the cone K(r)

n . Namely, M ∈ K(r)
n if and

only if (
n∑

i=1

xi

)r

xTMx =
∑

β∈Z
n+,|β|≤r+2,|β|≡r+2 mod 2

σβxβ (51)

where σβ is a form of degree r + 2 − |β| which is SOS.
Peña et al. [17] consider the set Q(r)

n consisting of the matrices M for which
such a decomposition (51) exists involving only the two highest order terms
with |β| = r + 2, r. Therefore, Q(r)

n is a subcone of the cone K(r)
n with equality

Q(r)
n = K(r)

n for r = 0, 1, and the bound

ν(r)(G) := min t such that t(I + AG) − J ∈ Q(r)
n (52)

satisfies

α(G) ≤ ϑ(r)(G) ≤ ν(r)(G).

For r ≤ α(G) − 1, Peña et al. [17] show that

ν(r)(G) ≤ r + max
S⊆V, S stable, |S|=r

ν(0)(G\S⊥) (53)

for r = 1, 2, 3, and for r = 4, 5 if α(G) ≤ 6, which implies ν(r)(G) = α(G) if
α(G) ≤ 6, thus proving Conjecture 1 for graphs with α(G) ≤ 6.

For r ≤ α(G) − 1, our proof of Theorem 2 shows in fact that relation (53)
holds for r ≤ 6, and for r = 7 if α(G) = 8. Indeed, the decomposition (31)
shows that the matrix M from (25) belongs to the cone Q(r)

n . This implies
ν(α(G)−1)(G) = α(G) if α(G) ≤ 8.

It is known (see [5]) that, for the circuit C5 on 5 nodes, α(C5) = 2 =
ϑ(1)(C5) < ϑ(0)(C5). Peña et al. [17] construct graphs G8, G11, G14 with,
respectively, 5,8,11,14 nodes, that satisfy: α(Gn) = ϑ(2)(Gn) for n = 8, 11, 14,
α(G8) = 3 < ν(1)(G8), α(G11) = 4 < ν(2)(G11), and α(G14) = 5 < ν(3)(G14).
Therefore, the inclusion Q(r)

n ⊆ K(r)
n is strict for r = 2.

Let us mention a consequence of the strict inclusion Q(2)
n ⊂ K(2)

n for the
description of the cone K(2)

n . The following sufficient condition for member-
ship in K(r)

n has already been implicitly mentioned earlier in the paper (e.g., in
Sect. 3.2).
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Lemma 14 Let M be a symmetric n × n matrix and r ≥ 1 an integer. If there exist
matrices X(1), . . . , X(n) satisfying (26) and for which M − X(i) ∈ K(r−1)

n (for
i = 1, . . . , n), then M ∈ K(r)

n .

Proof Directly from the decomposition (28). ��
For r = 1, K(1)

n = Q(1)
n and the implication of Lemma 14 holds as an equivalence,

which gives the characterization of the cone K(1)
n from [1,16]. For r = 2 however,

the reverse implication does not hold since Q(2)
n is a strict subset of K(2)

n .
In order to prove relation (21) for any r and thus Conjecture 1, one should

probably obtain a decomposition (51) for the polynomial (
∑

i xi)
rxTMx involv-

ing also terms with |β| < r (while our proof in this paper involves only terms
with |β| = r, r + 2).

Note finally that one can formulate the following sharpening of the bound
ϑ(r)(G)

ϑ(r)(G) := min
s,t∈R

t subject to tI + sAG − J ∈ K(r)
n (54)

whose dual formulation reads

max Tr(JX) subject to Tr(X) = 1, Tr(AGX) = 0, X ∈ C(r)
n = (K(r)

n )∗ (55)

and is obtained by splitting the constraint Tr((I + AG)X) = 1 into Tr(X) = 1
and Tr(AGX) = 0. The bounds ϑ̃ (r)(G) (from (16)), ϑ(r)(G) (from (54)) and
ϑ(r)(G) (from (6), (10)) satisfy

ϑ̃ (r)(G) ≤ ϑ(r)(G) ≤ ϑ(r)(G).

The second inequality is obvious. For the first one take a matrix X that cor-
responds to x feasible for (16). Then X

Tr(X)
is feasible for (55) and Tr(JX)

Tr(X)
=

Tr(JX)∑n
i=1 xi

≥ ∑n
i=1 xi since X − xxT � 0.

For r = 0, the three bounds coincide ([5], see also Lemma 4). It is not clear
whether they coincide for r ≥ 1.

6.2 Some variations of Conjecture 1

The next lemma shows that a block matrix belongs to the cone K(r) if and only
if its skeleton does. Combined with arguments in our proof of Theorem 2, it will
enable us to derive Proposition 3 below.

Lemma 15 Consider the matrices

M =
(

A b
bT c

)

, M′ =
⎛

⎝
A b b
bT c c
bT c c

⎞

⎠

with respective sizes n and n + 1. Then, M ∈ K(r)
n ⇐⇒ M′ ∈ K(r)

n+1.
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Proof Assume that M ∈ K(r)
n . Then, the polynomial (

∑n
i=1 yi)

ryTMy (in the
variables y1, . . . , yn) has a decomposition of the form (51). In view of the shape
of the matrix M′, the polynomial (

∑n+1
i=1 xi)

rxTM′x (in the variables x1, . . . , xn,
xn+1) can be written as (

∑n
i=1 yi)

ryTMy, after setting yi = xi for i ≤ n − 1 and
yn = xn +xn+1. Therefore, (

∑n+1
i=1 xi)

rxTM′x also admits a decomposition of the

form (51), which shows that M′ ∈ K(r)
n+1. The reverse implication is easy (simply

set the additional variable to zero). ��
Proposition 3 For a graph G = (V, E) and an integer r ≥ 1, we have

ϑ(r)(G) ≤ max
i∈V

ϑ(r−1)(G\N(i)). (56)

Proof Set t := maxi∈V ϑ(r−1)(G\N(i)). Then, for any i ∈ V, the matrix

t(I + AG\N(i)) − J =
( i V \ i⊥

i t − 1 −eT

V \ i⊥ −e t(I + AG\i⊥) − J

)

belongs to the cone K(r−1)
|V\N(i)|. Lemma 15 implies that the matrix

M − X(i) =
( i⊥ V \ i⊥

i⊥ (t − 1)J −J
V \ i⊥ −J t(I + AG\i⊥) − J

)

from (29) belongs to K(r−1)
n . In view of (28), this implies that M ∈ K(r)

n . ��
We can now formulate some strengthenings of Conjecture 1.

Conjecture 2 For any r ≥ 1,

ϑ(r)(G) ≤ r + max
S⊆V, S stable, |S|=r

ϑ(0)(G\S⊥). (57)

Conjecture 3 For any r ≥ 1,

ϑ(r)(G) ≤ 1 + max
i∈V

ϑ(r−1)(G\i⊥). (58)

Conjecture 4 If i is an isolated node in G, i.e., N(i) = ∅, then for any r ≥ 0,

ϑ(r)(G) ≤ ϑ(r)(G\i) + 1. (59)

Theorem 2 claims that Conjecture 2 holds for r ≤ min(6, α(G)− 1). For r = 1
Conjectures 2 and 3 are identical; they hold by (9), which was first proved by
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de Klerk and Pasechnik [5]. Conjecture 4 is true for r = 0. In order to prove
this set t := 1 + ϑ(0)(G\i). Then (t − 1)(I + AG\i) − J ∈ K(0)

n−1. Observe that

M := t(I +AG)−J ∈ K(0)
n can be decomposed as in (29) (with i⊥ = {i} as i is iso-

lated). The first matrix in this decomposition belongs to K(0)
n since K(0)

n−1 is closed
under adding a zero row/column. The second matrix is positive semidefinite.

Lemma 16 Conjecture 4 �⇒ Conjecture 3 �⇒ Conjecture 2 �⇒ Conjecture 1.

Proof The implication: Conjecture 4 �⇒ Conjecture 3 follows using Proposi-
tion 3, and the implications: Conjecture 3 �⇒ Conjecture 2 �⇒ Conjecture 1
are obvious. ��

Hence the whole question boils down to showing that the parameter ϑ(r)(·)
behaves well on a graph with an isolated node. Note that the condition (59)
is a natural requirement which holds, e.g., for the parameter α(·) in place of
ϑ(r)(·), or for the parameter las(r)(·) (easy to check). A reason why the parame-
ter las(r)(·) is much easier to handle than the new bound ϑ(r)(·) might lie in the
fact that the formulation of the Lasserre bound incorporates in an explicit way
the 0/1 condition, while the formulation of ϑ(r)(·) does not.

6.3 Another interpretation of the bound ϑ(r)(G)

We finally observe that the dual formulation (10) for ϑ(r)(G) can be interpreted
as the Shor relaxation of a polynomial optimization program giving yet another
formulation of α(G). For a graph G = (V, E) and an integer r ≥ 0, consider the
program

max

(
∑

i∈V

x2
i

)r+2

subject to

(
∑

i∈V

x2
i

)r

v(x)T(I + AG)v(x) = 1. (60)

Lemma 17 For any integer r ≥ 0, α(G) is equal to the optimum value of (60).

Proof Let µ denote the maximum value of (60). Given a stable set S ⊆ V,

the vector x := tχS where t := |S|− r+1
2(r+2) , is feasible for (60) with objective

value |S|, which shows α(G) ≤ µ. Conversely, if x is feasible for (60), then
v(x)T(α(G)(I + AG) − J)v(x) ≥ 0, since the matrix α(G)(I + AG) − J is coposi-
tive. This implies that µ ≤ α(G). ��

Following Lasserre [7], one can define a hierarchy of relaxations for the poly-
nomial optimization problem (60). As the degree of the polynomials involved
in (60) is 2r+4, the Shor relaxation of the problem (i.e., the relaxation of lowest
order in the hierarchy; see [7] for details) reads

max
∑

β∈I(n,r+2)
(r+2)!

β! y2β

subject to Nr+2(y) � 0
∑

β∈I(n,r+2)
r!
β! (β

T(I + AG)β − βTe)y2β = 1.
(61)
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(Recall the definition of the matrix Nr+2(y) from Definition 1.) In view of
(8) and (14), the objective function reads: Tr(JC(y)) and the constraint reads:
Tr((I + AG)C(y)) = 1. Therefore, the program (61) is identical to the program
(10) giving the dual formulation of ϑ(r)(G).
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