
Plasma Sources Science and Technology

Plasma Sources Sci. Technol. 24 (2015) 025014 (14pp) doi:10.1088/0963-0252/24/2/025014

Approximate semi-analytical solutions for
the steady-state expansion of a contactor
plasma

E Camporeale1, E A Hogan2 and E A MacDonald3

1 Center for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands
2 University of Colorado, Boulder, CO, USA
3 NASA Goddard Space Flight Center, Greenbelt, MD, USA

E-mail: e.camporeale@cwi.nl

Received 26 September 2014, revised 17 December 2014
Accepted for publication 5 January 2015
Published 13 February 2015

Abstract
We study the steady-state expansion of a collisionless, electrostatic, quasi-neutral plasma
plume into vacuum, with a fluid model. We analyze approximate semi-analytical solutions,
that can be used in lieu of much more expensive numerical solutions. In particular, we focus
on the earlier studies presented in Parks and Katz (1979 American Institute of Aeronautics,
Astronautics Conf. vol 1), Korsun and Tverdokhlebova (1997 33rd Joint Prop. Conf.
(Seattle, WA) AIAA-97-3065), and Ashkenazy and Fruchtman (2001 27th Int. Electric
Propulsion Conf. (Pasadena, CA)). By calculating the error with respect to the numerical
solution, we can judge the range of validity for each solution. Moreover, we introduce a
generalization of earlier models that has a wider range of applicability, in terms of plasma
injection profiles. We conclude by showing a straightforward way to extend the discussed
solutions to the case of a plasma plume injected with non-null azimuthal velocity.
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1. Introduction

The modeling of the expansion of a plasma plume in the
vicinity of a spacecraft has been intensively investigated in
the last several years. In particular, in the context of space
electric propulsion systems, such as ion or Hall thrusters, a
correct characterization of the emitted plasma plume is of
crucial importance to avoid interactions between the energetic
particles and spacecraft surface, and thus to prevent severe
damages to the spacecraft [4–7]. Similarly, in plasma contactor
technology (for instance, electrodynamics tether applications),
it is important to predict the shape and geometry of the plasma
plume emitted by a spacecraft [8, 9].

Due to the large difference in density between the plasma
plume and the background magnetospheric plasma, the physics
of the plume expansion is often well described by the expansion
of plasma in vacuum, which has also been investigated
thoroughly for several different geometries [10, 11]. The first-
principles numerical calculation of the steady-state profiles

reached by the expansion of a plasma plume in a large domain
is very challenging, due to the wide separation of scales
involved. For instance, the plasma Debye length can vary
by several order of magnitude in a few hundred meters along
the expansion trajectory. Therefore, numerical simulations
are usually constrained to either the near- or the far-field
expansion, i.e. to a restricted simulation domain [12–18].

A very appealing alternative to expensive numerical
simulations is, of course, to seek for analytical solutions of
the plume expansion. This is often done by assuming that the
plasma obeys simplified fluid equations [1–3, 19–21].

In this paper we analyze and discuss the self-similar
solutions presented in [1–3]. It is important to notice that the
self-similar approach used in such models is different from the
standard procedure followed in similarity methods described,
for instance, in classical textbooks [22]. In fact, the standard
approach is based on the idea of reducing the dimensionality of
a set of partial differential equations, through an appropriate
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variable transformation, that can be identified by exploiting
the symmetries of the system. On the other hand, the models
described in this paper retain their full dimensionality, and
are based on a variable transformation constructed on the
principle that one variable is constant along fluid streamlines.
Another crucial point to notice is that the solutions presented
in [1–3] are approximate solutions. As we will show, the
self-similarity assumption is indeed inconsistent with the fluid
model employed and, as such, the solutions obtained do not
exactly solve the initial set of equations. However, such
solutions, albeit inexact, have the advantage that they can be
quickly evaluated on an arbitrary large domain. For this reason,
they can still be valuable, if one is able to estimate how large
their error is with respect to the true solution, and, of course,
if such error is reasonably small.

The aim of this paper is twofold. First, we analyze
the earlier solutions of [1–3] and we measure their errors
with respect to the numerical solution of the underlying fluid
equations. Second, we present a generalization of such
solutions, in an attempt to provide a more flexible family of
solutions that can have a wider range of applicability.

The paper is organized as follows. Section 1 presents
the mathematical model, the self-similarity assumption, and
the resulting set of equations. In section 2, we describe the
approximate solutions presented in [1–3], and we comment
on their range of validity and respective errors. In section 3,
we describe a new class of solutions, that is based on a
generalization of previous models, and we show that they are
indeed applicable to a wider class of situations. In section 4
we show how to easily extend the solutions that were derived
for a plasma with no azimuthal velocity to a more general case.
Finally, we draw conclusions of this study in section 5.

2. Mathematical model

We study a system composed by collisionless, singly
charged, ions and electrons, in a steady-state, axisymmetric
configuration. We assume that electrons inertia can be
neglected, quasi-neutrality holds, the plasma is electrostatic,
and there is no background magnetic field. For simplicity, we
assume cold ions although a polytropic equation of state for
ions might be easily incorporated in the model. By employing
cylindrical coordinates (r, z, θ) the ion continuity equation and
the conservation of ion and electron momentum read:

∂(nuz)

∂z
+

1

r
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∂ur

∂z
+ ur

∂ur

∂r
− u2

θ

r
= −∂φ

∂r
, (2)

uz

∂uz

∂z
+ ur

∂uz

∂r
= −∂φ

∂z
, (3)

uz

∂uθ

∂z
+ ur

∂uθ

∂r
+

uθur

r
= 0, (4)

1

n
∇pe = ∇φ, (5)

−100 −50 0 50 100
−1

−0.5

0

0.5

1

r

 n

u
r
/100

Figure 1. PK solution. Profiles for the density n and the radial
velocity ur (rescaled by a factor of 100) at the injection boundary
z = 0. In the region r � 50 where the density becomes imaginary, it
is artificially set equal to zero.

where the symmetry condition ∂
∂θ

= 0 has been used, n is
the density, uz and ur are the ion axial, radial, and azimuthal
velocities, φ is the electrostatic potential, and pe is the electron
pressure. Equations (1)–(5) are complemented by a polytropic
equation of state for the electrons:

pe = nγ (6)

with γ the polytropic index. Quantities have been normalized
as follows: velocities to

√
T0/mi (with T0 a reference electron

temperature and mi the ion mass), the electrostatic potential
to T0/e (with e the elementary charge), density to a reference
density n0, lengths to a characteristic length R, and pressure
to n0T0. In general, the value of the polytropic index γ

depends on the degree of ionization of the plasma [23]. For
instance, [7] have reported experimental results for thrusters,
with γ lower than 5/3, and [24] have used the value 1.3 for
their PIC simulations. However, as shown in [23], γ tends
to the neutral gas theoretical value for a fully ionized plasma,
which, for simplicity, is the case treated in this paper. Hence,
for all the cases presented here γ = 5/3, i.e. the adiabatic
constant of the monoatomic perfect gas.

The model in equations (1)–(5) must be interpreted as a
boundary value problem in the two-dimensional plane (r, z).
Since the equations involved are first-order partial differential
equations, one is allowed to specify the boundary conditions
at r = 0 and z = 0, which determine the solution in the
whole domain. Also, note that the electron pressure and the
electric potential can be substituted in equations (2)–(3), and
post-processed after the solution for n, ur , uz and uθ has been
obtained.

2.1. Self-similar solution

We now elucidate the procedure to seek for a self-similar
solution of equations (1)–(5), extending the derivation in [25]
to the case uθ = 0. First, we introduce a change of variable
(r, z) → (η, z), with η = r

a(z)
, and a(z) an unspecified
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Figure 2. PK solution. Two-dimensional profiles of the density in (z, r), for uc = 2, 10, 20, 100, in logarithmic scale. The density is
artificially set equal to zero in the regions where it becomes imaginary.

function. Then, we assume that the unknowns n, uz, ur , uθ

can be factorized as

n(η, z) = nc(z)nt (η), (7)

uz(η, z) = uc(z)ut (η), (8)

ur(η, z) = ηa(z)uz(η, z), (9)

uθ (r, η) = η

a(z)
Eut (η), (10)

where prime indicates differentiation, and E is an arbitrary
constant. The definition for ur , equation (9), follows from
assuming that lines of constant η correspond to streamlines,
that is

∂η

∂r

����
z

ur +
∂η

∂z

����
r

uz = 0. (11)

As we anticipated, the set of equations (1)–(5) is actually
inconsistent with the separation of variables assumed in
(7)–(10). That is, the only solution that satisfies such
separation of variables is the trivial solution with n, uz, ur , uθ

all constant. However, the separation of variables is still worth
considering if one can derive a class of approximate solutions
for our model that are much faster to compute than the exact
numerical solution, and its error relative to the full solution is
small.

It is straightforward to prove that equation (4) is
automatically satisfied by using the factorization assumption
in equations (7)–(10). Substituting equations (7)–(9) into
equations (1)–(5) and separating each equation in η and z

dependent terms, one can get the following set of equations
for uc(z), nc(z) and a(z):

a2ncuc = A, (12)

1

2
u2

c +
γ

γ − 1
nγ−1

c = B, (13)

nc = aD, (14)

uca

n
γ−1
c

�
auc

� − E2

a2n
γ−1
c

= γC, (15)

and the following equations for nt (η) and ut (η):

n
2−D(γ−1)
t = u−2D

t , (16)

n
γ−2
t n

t

ηu2
t

= −C, (17)

where A, B, C and D are arbitrary (separation) constants.
Details of the calculation can be found in the appendix. Note
that equation (12) descends from the continuity equation (1),
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Figure 3. PK solution. Errors εr (black) and εz (red) as function
of uc.
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Figure 4. AF solution. Profile of the density n at the injection
boundary z = 0, for uc = 2, 10, 20, 100 (in black, red, blue and
magenta, respectively). In the region r � 50 where the density
becomes imaginary, it is artificially set equal to zero.

equations (13), (14), (16) from the momentum equation in the z

direction (3), and equations (15) and (17) from the momentum
equation in the r direction (2). Clearly, we have a set of six
equations for only five unknowns, and the system is over-
determined.

3. Approximate solutions for uθ = 0

In order to derive an approximate solution of the model, a
common approach is to assume uc = const and to prescribe
a certain profile for ut . In this way one can still satisfy
some (but not all) of the equations (12)–(17). For simplicity,
and to be adherent to earlier literature, we consider in this
section the case where E = 0, and thus uθ = 0. All of the
solutions discussed here satisfy the continuity equation and the
conservation of momentum in r , but not in z. From equations
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Figure 5. AF solution. Profile of the axial velocity uz at the
injection boundary z = 0, for uc = 2, 10, 20, 100 (in black, red,
blue and magenta, respectively). Vertical axis in logarithmic scale.
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Figure 6. AF solution. Profile of the radial velocity ur at the
injection boundary z = 0, for uc = 2, 10, 20, 100 (in black, red,
blue and magenta, respectively).

(12), (15) and (17), it follows that

nc(z) = a2(0)nc(0)

a2(z)
, (18)

a(z) = a1−2γ (z)
γC

u2
c

a(0)2(γ−1)nc(0)1−2γ , (19)

n
γ−2
t n

t = −ηu2
t C. (20)

In addition to the value of uc and the profile of ut , equations
(18)–(20) require to specify the value of C, a(0), a(0) and
nc(0). As we will see some of these free parameters depend on
the boundary conditions at z = 0, i.e. the boundary from which
the plume is injected. We assume the following boundary
conditions:

n(r = 0, z = 0) = 1, (21)

n(r = R, z = 0) = 0.01, (22)
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Figure 7. AF solution. Two-dimensional profiles of the density in (z, r), for uc = 2, 10, 20, 100, in logarithmic scale. The density is
artificially set equal to zero in the regions where it becomes imaginary.

ur(r = 1, z = 0) = 1, (23)

∂n

∂r

����
r=0

= 0, (24)

∂uz

∂r

����
r=0

= 0, (25)

ur(r = 0, z) = 0. (26)

Equations (21) and (23) are simply normalization constraints.
Equation (22) requires that the profile of the density at injection
decreases by a factor of 100 within the characteristic length R.
Equations (24)–(26) are symmetry conditions at r = 0.

In this section, we describe the solutions presented in
[1–3], and we propose a new class of solutions that includes
earlier models as limiting cases and produces a higher degree
of flexibility in terms of plume injection profiles that can be
represented at z = 0.

Such approximate solutions provide the density and
velocity profiles at the boundary z = 0 which are used to
calculate the (exact) numerical solution. The latter is evaluated
on a domain [r, z] = [0, R] × [0, 80], with R = 50 and grid
size r = z = 0.2. The derivatives in r and z are discretized
with a fourth order central (5-points stencil) and a third order
upwind (4-points stencil) difference scheme, respectively.

Since we are only interested in the steady-state solution,
we have used the following marching scheme for solving
numerically equations (1)–(5). First, the solution is calculated
on the partial domain [0, R] × [0, 4z] with an iterative
Newton-GMRES solver [26]. The solution is then extended
to the full domain by adding one row of cells in z at the time
and calculating the new solution at each step. This is possible
since we use an upwind discretization in z that requires only
the points where the solution has already been calculated.

For each approximate solution we evaluate the error with
respect to the full numerical solution. We define the following
two measures of error:

εr = max

����
(naua

r − nnun
r )

nnun
r

���� · 100, (27)

εz = max

����
(naua

z − nnun
z )

nnun
z

���� · 100, (28)

which are the percentage L1 norm of the relative error of the
radial and axial fluxes, where the superscripts a and n indicate
the approximate and the numerical solutions, respectively.
Each of the solutions presented in [1–3] makes a different
assumption on ut , and we proceed to discuss them separately.
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Figure 8. AF solution. Errors εr (black) and εz (red) as function
of uc.
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Figure 9. KT solution. Profiles for the density n (rescaled by a
factor of 2) and the radial velocity ur at the injection boundary
z = 0.

3.1. Parks and Katz (PK) solution

The solution proposed in [1] assumes a constant ut = 1.
Solving equation (20) for nt gives the profile:

nt =
�

C0 − γ − 1

2
Cη2

� 1
γ−1

, (29)

where C0 is an integration constant. Following [25] we set
C0 = 1, therefore the PK solution reads:

n(r, z) = a2(0)

a2(z)

�
1 − γ − 1

2
C

r2

a2(z)

� 1
γ−1

, (30)

ur(r, z) = r

a(z)
a(z)uc, (31)

uz(r, z) = uc, (32)
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Figure 10. KT solution. Profile for the axial velocity uz at the
injection boundary z = 0, for uc = 1, 10, 100 (in blue, red, and
black, respectively). The vertical axis is in logarithmic scale.

where we have used nc(0) = 1, imposed by equation (21). The
boundary condition (22) allows to solve forC and equation (23)
yields the relationship

a(0) = uca
(0). (33)

In summary, the only two free parameters are uc and a(0) and
the profile for a(z) can be calculated by solving numerically
equation (19). Note that the profiles of ur and n at the injection
boundary z = 0 do not depend on the particular choice of uc

and a(0). Figure 1 shows the profiles for the density and the
radial velocity at z = 0 as a function of r . Clearly, the radial
velocity increases linearly with r . An important feature of the
PK solution is that, for any given value of z, the solution is
constrained to a certain range in r . Indeed, one can see from
equation (30) that the density becomes a complex quantity
(i.e. unphysical) for a large enough r . In figure 1 we have
artificially set n = 0 in the regions where the density becomes
imaginary. Figure 2 shows the density profile in the (z, r)

plane, for different values of the axial velocity uz = uc, in
logarithmic scale, for a fixed value of a(0) = 0.2. Once again,
notice that the density profile at z = 0 is not a function of uc.
The errors εr and εz as a function of uc are shown in figure 3.
For uc > 20, εr and εz are smaller than 1%. Note, however,
that here and in the next similar figures, the error has been
calculated in the restricted region |r| � R. The region where
the density is artificially set equal to zero is excluded by the
evaluation of the error. The reason is that the marching routine
described above is not very robust when a sharp gradient in the
density is included as boundary condition and, therefore, it is
not straightforward to obtain a numerical solution that extends
to |r| > R.

3.2. Ashkenazy and Fruchtman (AF) solution

The AF solution [3] assumes a conical velocity profile at the
injection, such that

ut =
�
1 + a(0)2η2

�− 1
2 . (34)
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Figure 11. KT solution. Two-dimensional profiles of the density in (z, r), for uc = 2, 10, 20, 100, in logarithmic scale.
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Figure 12. PK solution. Errors εr (black) and εz (red) as function
of uc.

The profile for nt is given by solving equation (20):

nt =
�

C0 − C(γ − 1)

2(a(0))2
log

�
1 + (a(0))2η2

�� 1
γ−1

, (35)
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Figure 13. PK and AF solutions. Angle (in degrees), with respect to
the axis r = 0, that determines the (approximately straight)
isocontour n = 0, as a function of the injection velocity uc. The
expansion is bounded within this cone angle.

where C0 is an integration constant that we set equal to 1.
The boundary condition (21) imposes nc(0) = 1, while
equation (22) yields an equation that must be solved to obtain
the value of C. The remaining free parameters uc, a(0), a(0)
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Figure 14. Generalized solution. Density profile at the injection
boundary z = 0 for D = −7, −3, 1, 5 (in green, black, red and blue,
respectively).

obey, via the boundary condition (23), the relationship

a(0)

a(0)

�
1 +

�
a(0)

a(0)

�2

= uc. (36)

For simplicity, we fix a(0) = 0.2, allowing uc to vary,
and calculate a(0) through equation (36). As usual, a(z) is
calculated via equation (19). In summary, the profiles for n,
ur and uz are

n(r, z) =
�

a(0)

a(z)

�2

×
�

1 − C(γ − 1)

2(a(0))2
log

�
1 +

�
a(0)

a(z)
r

�2
�� 1

γ−1

, (37)

ur(r, z) = r

a(z)
a(z)uc

×
�

1 − C(γ − 1)

2(a(0))2
log

�
1 +

�
a(0)

a(z)
r

�2
�� 1

γ−1

, (38)

uz(r, z) = uc�
1 +

�
a(0)

a(z)
r
�2

. (39)

Figure 4 shows the density profile for the AF solution at the
injection boundary z = 0, as function of r , for the values
uc = 2, 10, 20, 100. Similarly to the previous model, the
density becomes imaginary for r larger than certain values.
The corresponding profiles for uz and ur are plotted in figures 5
and 6, respectively. Figure 7 shows the two-dimensional
density profile in the (z, r) plane, in logarithmic scale for four
values of uc. One can notice a qualitative similarity with the
profiles of the PK solution, especially for large uc. The errors
for the AF solution are shown in figure 8 and are comparable
with those obtained for the PK solution (figure 3), i.e. the errors
are smaller than 1%, for uc � 20.

−100 −50 0 50 100
−100

−50

0

50

100

r

u
r

 

 

D=−7
D=−3
D= 1
D= 5

Figure 15. Generalized solution. Radial velocity profile at the
injection boundary z = 0 for D = −7, −3, 1, 5 (in green, black, red
and blue, respectively).
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Figure 16. Generalized solution. Axial velocity profile at the
injection boundary z = 0 for D = −7, −3, 1, 5 (in green, black, red
and blue, respectively).

3.3. Korsun and Tverdokhlebova (KT) solution

The solution proposed in [2] assumes the profile

ut (η) =
�

1 − C

2
η2

�− γ

2

(40)

from which equation (20) dictates

nt (η) =
�

1 − C

2
η2

�−1

. (41)

Moreover, by setting D = −2, the KT solution satisfies
equation (16). By applying the boundary condition (21) and
equation (14), it follows that a(0) = nc(0) = 1. In summary,
the KT solution not only satisfies the equations of continuity
and momentum in r , but also equations (14) and (16), i.e.
it satisfies two out of three equations for the conservation of
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Figure 17. Generalized solution. Two-dimensional profiles of the density in (z, r), for uc = 2, 10, 20, 100, and D = −5, in logarithmic
scale.

momentum in the z direction. The profiles for n, ur and uz are

n(r, z) = 1

a2(z)

�
1 − C

2

r2

a2(z)

�−1

, (42)

ur(r, z) = r

a(z)
a(z)uc

�
1 − C

2

r2

a2(z)

�− γ

2

, (43)

uz(r, z) = uc

�
1 − C

2

r2

a2(z)

�− γ

2

. (44)

The boundary condition (22) provides the expression for
C = 2(1 − 1

0.01 )/R2 = −0.0792, and a(z) is calculated via
equation (19). Hence, the only free parameter is uc which is
related to a(0) through the relationship

a(0) = 1

uc

�
1 − C

2

� γ

2

, (45)

that is obtained by applying equation (23).
Similarly to the PK solution, the density and radial velocity

profiles at the injection boundary z = 0 are not a function of
uc. They are shown in figure 9. The profile for uz is a linear
function of uc. Three examples for the values uc = 1, 10, 100
are shown in figure 10. Four examples of two-dimensional
density profiles are shown in logarithmic scale in figure 11, for

uc = 2, 10, 20, 100. The errors εr and εz as a function of uc

are shown in figure 12. Notice that they are much higher than
the respective errors for the PK and AF solutions. This might
be surprising since the KT solution satisfies equations (14) and
(16), while the PK and AF solutions do not. However, given
the nonlinear nature of the model, one cannot predict how large
the errors will be with respect to the true solution. Moreover, as
discussed in the appendix, equations (14) and (16) follow from
the assumption that equation (13) holds. Hence, satisfying
equations (14) and (16) does not automatically yield a lower
error, since equation (13) is still not satisfied.

3.4. Discussion on the PK, AF and KT solutions

We have noted a certain similarity between the PK and AF
solutions for large uc. This is not surprising if one realizes
that the AF solution tends exactly to the PK solution in the
limit uc → ∞. Indeed, in this limit, equation (36) requires
that a(0) → ∞ and/or a(0) → 0. Taylor expanding the
logarithmic term in n and ur (equations (37) and (38)) one has

log

�
1 +

�
a(0)

a(z)
r

�2
�

→
�

a(0)r

a(z)

�2

, (46)

and equations (37)–(39) reduce exactly to equations (30)–(32).
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Figure 18. Generalized solution. Two-dimensional profiles of the density in (z, r), for D = −7, −3, 1, 5, and uc = 20, in logarithmic scale.

Although the PK and AF solutions yield relatively good
results in terms of small errors with respect to the numerical
solutions (especially for large uc), they are severely limited in
the choice of density and velocity profiles at the injection. In
fact, the value of uc determines, by construction, the injection
profiles that, in turn, determine the region in which the plume
propagates. From figures 2 and 7, it is evident that the cone
of propagation becomes more and more collimated as uc in-
creases. In figure 13, we show the angle (in degrees) of the
isocontour n = 0 with respect to the axis r = 0, as a function
of uc. Note that the cone of propagation is identical for the
AF and PK solutions. Also, although the isocontour n = 0 is
not exactly a straight line in the (z, r) plane, it can be consid-
ered approximately straight in the region plotted in figures 2
and 7. We emphasize that this cone of propagation, and the
corresponding angles shown in figure 13 are an intrinsic char-
acteristic of the PK and AF solutions, which depends solely
on the value of uc. On the other hand, the user of such approx-
imate solutions might need to be able to choose a different
injection profile than the one imposed by these solutions, as
this will depend on the source generating the contactor plasma.
In particular, as highlighted in figure 13, large injection angles
are not possible for a large injection velocity, for the PK and AF
solutions. Differently from PK and AF, the KT solution does
not involve a propagation cone. Indeed, from equation (42), it

is easy to see that the density tends to zero only asymptotically
for r → ∞. Unfortunately, although the KT profiles offer
an alternative to the PK and AF solutions, they yield a much
larger error and therefore are not preferable.

In the following section we introduce a new class of
solutions that allows a rather wide choice of injection profiles,
still yielding relatively small errors with respect to the
numerical solutions.

4. A new class of solutions

The new class of solutions is based on a generalization of the
KT and PK solutions. Interestingly, their error is much smaller
than the errors yield for the KT solution, and comparable to
the ones of the PK and AF solutions. As in previous models,
we still assume a constant uc. We also assume the following
profiles for nt and ut :

nt (η) =
�

F − C

D
η2

�D
2

, (47)

ut (η) =
�

F − C

D
η2

�D(γ−1)

4 − 1
2

. (48)

Note that the KT solution belongs to this class of solution,
for the particular case D = −2 and F = 1, while for

10
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Figure 19. Generalized solution. Error εz as a function of uC for
D = −7, −3, 5 (in blue, green and red, respectively), and F = 1.
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Figure 20. Generalized solution. Error εr as a function of uC for
D = −7, −3, 5 (in blue, green and red, respectively), and F = 1.

D = 2/(γ −1) and F = 1, one recovers the PK solution. Also,
one can verify that equations (47)–(48) satisfy equation (16).

The solution reads:

n(r, z) = a2(0)nc(0)

a2(z)

�
F +

C

D

r2

a2(z)

�D
2

, (49)

ur(r, z) = r

a(z)
a(z)uc

�
F +

C

D

r2

a2(z)

�D(γ−1)

4 − 1
2

, (50)

uz(r, z) = uc

�
F +

C

D

r2

a2(z)

�D(γ−1)

4 − 1
2

. (51)

Applying the boundary conditions (21)–(23), one gets the
following relationships:

nc(0) = F− D
2 , (52)

C = Da(0)2

R2
(F (0.01 − 1))

2
D , (53)

uc = a(0)

a(0)

�
F +

C

Da(0)2

� 1
2 − D(γ−1)

4

. (54)
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Figure 21. Ratio v/uθ as a function of r at z = 0, for E = 250
(black), 500 (red) and 1000 (blue).

It follows that four parameters can be freely chosen between
D, F , a(0), a(0) and uc. In order to simplify the study and
to be consistent with the previous models, we fix a(0) = 0.2,
F = 1, and we vary D and uc (solving equations (53)–(54)
for a(0) and C). Note that the profiles of n, ur and uz at the
injection boundary z = 0 do not depend on a(0).

Figure 14 shows the density profile at z = 0 for D = −7
(green), −3 (black), 1 (red), 5 (blue), as a function of r .
Clearly, the value of D controls the width of the injected
density, that can vary from Gaussian-like to a profile closer
to a step function. Also, similar to the KT solution, the density
tends to zero asymptotically when D < 0, for r → ∞. In
this case, however, the value of D determines the asymptotic
scaling. On the other hand, for D > 0, one has imaginary
values that must be artificially set equal to zero. Figures 15
and 16 show the profiles of ur and uz, respectively, for D = −7
(green), −3 (black), 1 (red), 5 (blue), obtained with uc = 2.
Note that whilst the profiles of n and ur do not change by
varying uc, the axial velocity uz is a linear function of uc, i.e.
the profiles in figure 16 are linearly rescaled by changing the
value of uc. In figure 17 we present a representative example
of the two-dimensional density profile, in logarithmic scale,
for uc = 2, 10, 20, 100, and D = −5. In order to show the
versatility of this class of solutions, we show more examples of
the two-dimensional density profile in figure 18, for uc = 20
and varying D = −7, −3, 1, 5. Clearly, the cases with D < 0
do not present a propagation cone.

Figures 19 and 20 present the errors εz and εr , as a
function of uc, for D = −7 (blue), −3 (green), 5 (red).
As anticipated, the errors are comparable to the ones for the
PK and AF solutions, and are monotonically decreasing with
increasing uc.

5. Extension to the case uθ �= 0

By still considering a constant uc, equation (19) is modified as

u2
caa

n
γ−1
c

− E2

a2n
γ−1
c

= γC. (55)
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Figure 22. Generalized solution. Two-dimensional profiles of the density in (z, r), for uθ = 0, D = −10, F = 1, and E = 0, 500, 1000,
2000, in logarithmic scale.

Clearly, from equation (10), the value of E determines the
magnitude of the azimuthal velocity. We plot in figure 21 the
ratio between the total velocity v = (u2

r + u2
z + u2

θ )
1/2 and the

azimuthal velocity uθ , at the injection boundary z = 0, as a
function of r , for different values of E. Note that uθ increases
linearly with r , and v/uθ does not depend on D. The inclusion
of a non-null azimuthal velocity at injection causes a distortion
of the density profile. Figure 22 shows the two-dimensional
density profile in (z, r), for E = 0, 500, 1000, 2000, D = −10,
and F = 1. The notable effect of the azimuthal velocity is
that the density decreases much more sharply along the axial
direction, when uθ is sufficiently large. This effect is even
more evident when D > 0, i.e. when the plume is bounded
by a propagation cone. Figure 23 shows the two-dimensional
density profile in (z, r) for D = 3 and F = 1 (i.e. for the
PK solution). Clearly, the cone of propagation is distorted and
the isocontour n = 0 becomes more and more curved, with
increasing E.

6. Conclusions

We have analyzed in detail the self-similar solutions presented
in [1–3], that approximately resolve a fluid model for the
steady-state, axisymmetric expansion of an electrostatic,

quasi-neutral, collisionless plasma plume. It is important
to recall that the semi-analytical solutions can be computed
in a negligible fraction of the time needed to obtain a full
numerical solution, and they are often preferable, as long as
we have a measure for the errors. Therefore, in order to judge
whether such approximate solutions can reasonably be used in
real applications, we have numerically solved the underlying
model and we have calculated errors between the approximate
and the numerical solutions. A common characteristic of all
the solutions is that the errors decrease with increasing axial
injection velocity uc. For the PK [1] and AF [3] solutions,
the errors are smaller than 1% for uc � 20. The KT solution
yields larger errors. Each solution is characterized by a given
profile for the density and velocity at injection, and the user
has little freedom for adjusting the profiles for more general
situations. For this reason, we have introduced a new class
of solutions, that includes the PK and the KT solutions as
special cases. We have shown that this new family of solutions
can describe fairly general injection profiles, yielding errors
comparable to the PK and AF models. Finally, we have shown
that a simple extension to the case of a non-null azimuthal
velocityuθ is possible. Interestingly, the effect of the azimuthal
velocity is to distort the geometry of the plume in such a way
that the density decreases more sharply in the vicinity of the
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Figure 23. Generalized solution. Two-dimensional profiles of the density in (z, r), for uθ = 0, D = 3, F = 1, and E = 0, 500, 1000, 2000,
in logarithmic scale.

injection boundary. In real applications, such a scenario might
be more favorable for plasma contactors, where it is preferable
to have the plume as close as possible to its source, in order to
maximize the efficiency of the charge neutralization process.
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Appendix. Derivation of equations (12)-(17)

Substituting equations (7)–(9) in the continuity equation (1)
yields:

2ncuca
 + a(ucn


c + ncu


c) = 0, (56)

which reduces to

(a2ncuc)
 = 0 (57)

from which equation (12) follows. For what concerns the
momentum equation in the r direction (2) one gets

γ (ncnt )
γ n

t

ncn
2
t

+ ηaucu
2
t (a

u
c + uca

) = 0, (58)

that can be separated as

uca

n
γ−1
c

�
uca

� = −γn
γ−2
t n

t

ηu2
t

= γC, (59)

from which equations (15) and (17) follow.
Substituting equations (7)–(9) in the momentum equation in
the z direction (3) one obtains

γ (ncnt )
γ−2

�
ntn


c − a

a
ηncn


t

�
+ ucu

2
t u


c = 0, (60)

which is unfortunately not separable, and this is the source of
the over-determination of the system of equations (12)–(17).
In order to make equation (60) separable, one has to make the
assumption

γnγ−2
c n

c + ucu

c = 0 (61)

that can be integrated to obtain equation (13). Finally, using
this assumption and taking the η derivative of equation (60),
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the result separates as

n
ca

nca = − 2n
t ut

2ntu

t − (γ − 1)n

t ut

= D (62)

that ultimately yields, by integration, equations (14) and (16).
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