
I
ELSEVIER Science of Computer Programming 40 (2001) 189-211

Science of
Computer
Programming

www.elsevier.nl/locate/scico

An empirical study into COBOL type inferencing*

Abstract

Arie van Deursen 1, Leon Moonen 1 *
CWL P. 0. Box 94079, 1090 GB Amsterdam, Netherlands

Accepted 2 February 2001

In a typical COBOL program, the data division consists of 50% of the lines of code. Automatic
type inference can help to understand the large collections of variable declarations contained
therein, showing how variables are related based on their actual usage. The most problematic
aspect of type inference is pollution, the phenomenon that types become too large, and contain
variables that intuitively should not belong to the same type. The aim of the paper is to provide
empirical evidence for the hypothesis that the use of subtyping is an effective way for dealing
with pollution. The main results include a tool set to carry out type inference experiments, a
suite of metrics characterizing type inference outcomes, and the experimental observation that
only one instance of pollution occurs in the case study conducted. @ 2001 Elsevier Science
B.V. All rights reserved.

Keywords: Software maintenance; Static program analysis; Variable usage; Case study

1. Introduction

In this paper, we will be concerned with the variables occurring in a COBOL pro­
gram. The two main parts of a COBOL program are the data division, containing
declarations for all variables used, and the procedure division, which contains the state­
ments performing the program's functionality. Since it is in the procedure division that
the actual computations are made, one would expect this division to be larger than the
data division. Surprisingly, we found that in a typical COBOL system this is not the
case: the data division often comprises more than 50% of the lines of code. We even
encountered several programs in which 90% of the lines of code were part of the data

*Revised version of the paper Understanding COBOL systems using inferred types, in: S. Woods (Ed.),
Proc. 7th lnternat. Workshop on Program Comprehension, IEEE Computer Society Press, Silver Spring, MD,
May 1999.

* Corresponding author.
E-mail address: leon.moonen@cwi.nl (L. Moonen).
1 http://www.cwi.nl/~{arie,leon}

0167-6423/01/$-see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0167-6423(01)00015-6

190 A. van Deursen, L. Moonen/Science of Computer Programming 40 (2001) 189-211

division. 2 (As we will see in this paper, one reason for this is that COBOL does not
distinguish between type and variable declarations.)

These figures have two implications. First of all, they suggest that only a subset of
all declared variables are actually used in a COBOL program. If 90% of the lines are
variable declarations, it is unlikely that the remaining 10% will use all these variables.
Indeed, in the systems we studied, we have observed that less than 50% of the variables
declared are used in the procedure division. 3

These figures also indicate that maintenance programmers need help when trying to
understand the data division part. Just reading the data division will involve browsing
through a lot of irrelevant information. Thus, the minimal help is to see which vari­
ables are in fact used, and which ones are not. In addition to that, the maintenance
programmer will want to understand the relationships that hold between variables. In
COBOL, some of these relations can be derived from the data division, such as whether
a variable is part of a larger record, whether it is a redefine (alias) of another variable,
or whether it is a predicate on another variable (level 88).

But not all relevant relations between variables are available in the data division.
When do two different variables hold values that represent the same business entity?
Can a given variable ever receive a value from some other given variable? What values
are permitted for this variable? Is the value of this variable ever written to file? Is the
value of this variable passed as output to some other program? What values are actually
used for a given variable? What are the operations permitted on a given variable?

In strongly typed languages, questions like these can be answered by inspecting the
types that are used in a program. First, a type helps to understand what set of values is
permitted for a variable. Second, types help to see when variables represent the same
kind of entities. Third, they help to hide the actual representation used (array versus
record, length of array, etc.), allowing a more abstract view of the variable. Last but
not least, types for input and output parameters of procedures immediately provide a
"signature" of the intended use of the procedure.

Unfortunately, the variable declarations in a COBOL data division suffer from a
number of problems that make them unsuitable to fulfill the roles of types as discussed
above. In COBOL, it is not possible to separate type definitions from variable declara­
tions. This has three unpleasant consequences. First, when two variables need the same
record structure, this structure is repeated. Second, whenever a data division contains
a repeated record structure, the lack of type definitions makes it difficult to determine
whether that repetition is accidental (the two variables are not related), or whether it
is intentional (the two variables should represent the same sort of entity). Third, the
absence of explicit types leads to a lack of abstraction, since there is no way to hide
the actual representation of a variable into some type name.

2 For three different systems, each approx. 100,000 LOC, we found averages of 53%, 43%, and 58%,
respectively.

3 For the Mortgage system under study in this paper, on average 58% of the variables declared in a
program were never used, the percentages ranging from 2.6% for the smallest up to 95% for the largest
program.

A. van Deursen, L. Moonen/ Science of Computer Programming 40 (2001) 189-211 191

In short, the problem we face with COBOL programs is that types are needed to
understand the myriads of different variables, but that the COBOL language does not
support the notion of types.

In [5], we have proposed a solution to this problem. Instead of deriving type infor­
mation from the data division, we perform a static analysis on the programs to infer
types from the usage of variables in the procedure division. The basic idea of type
inference is simple: if the value of a variable is assigned or compared to another vari­
able, we want to infer that these two variables should have the same type. However,
just inferring a type equivalence for every assignment will not do. As an example,
a temporary string value could receive values from names, streets, cities, etc., which
should all have different types. Via transitivity of equivalence, however, all variables
assigned to that string variable would receive the same type. This phenomenon, that a
type equivalence class becomes too large, and contains variables that intuitively should
not belong to the same type, is called pollution. In order to avoid pollution, we have
proposed to introduce subtyping for assignments rather than type equivalence [5].

In this paper, we will carefully study the problem of pollution, and test the hypoth­
esis that it is handled by deriving subtypes rather than equivalences. This is done by
presenting statistical data illustrating the presence of pollution, and the effectiveness of
subtyping for dealing with it. In particular, we look at the interplay between subtyping
and equivalence (for example, consider two types 1A. and 78, and 1A. ~ 78, and 18 ~JA,
we get 1A. = 18 -how does this affect pollution?).

Moreover, we will discuss how relational algebra can be used for implementing
COBOL type inferencing. Relational algebra has recently been proposed as a valu­
able tool for various reverse engineering and program understanding activities, such
as architecture recovery [8,12]. It is based on Tarski's relational operators [23], such
as union, subtraction, relational composition, etc. The use of relational algebra helps
us to completely separate COBOL-specific source code analysis from calculating with
types. Moreover, it enables us to specify type relationships at an appropriate level of
abstraction.

All experiments are done on Mortgage, a real-life COBOL/CICS system from the
banking environment. This system consists of l 00,000 lines of code; with all copybooks
(include files) expanded (unfolded), it consists of 250,000 lines of code. It conforms
to the COBOL-85 standard, which is the most widely used COBOL version. Compared
to a COBOL code base of 3 million lines we have available, Mortgage contains fairly
representative COBOL code (it is neither the worst nor the best code).

2. Type inference

In this section, we summarize the essentials of COBOL type inferencing: a more
complete presentation is given in [5]. We start by describing the primitive types that we
distinguish. Then, we describe how type relations can be derived from the statements
in a single COBOL program, and how this approach can be extended to system-level

mlcr-pr.)i;mm

be extended h> mdudc types for !itat1ls. dis1..·uss the notion of
1Ai!h ;m

:l J. Primitlrc trpes

can
and conclude

We three types sud1 as numeric values
(2) arrays; and { 3 l record,;. Jcdared variah!e a

"'"mr11,,1r,, record name must
m a COBOL program. these names can be used as labels withm type to

Fur1hcrn1orc. we v;mablc names wnh progr:im or ··n1n-c· 1""'"'

names to obtam

of vam1bk A.

al the system kvd. \Ve use Ti tt1 denote the pnmitivc type

' '

By lookmg at the occurring m statements. an relation be-
tween primitive types t::.m he inforred. \Ve distingmsh thn:e cases:

(I) Re/at io11a! From a relational expression such as I' = 11 or r ~ u an
equivalence betwccn r; and T,, is mfcrred.

(2) Arithmetic ,. From a arithmctic expression such as r + u or r * u an
cqmvalencc between r,· and 7;, is inferred.

(3 l Array affes.1·cs: From two different accesses to the same array. such as a[r] and
an equivakncc bctwecn T. and T,, is inferred.

When we speak of a npc we will generally mean an e.;uiralence class
tvpes. For presentation purposes. we may also give names to types based on the names
of thc variabks part of the type. For example. the type of a variable with the name
L100-DESCRIPTION will be called DESCRIPTION-type.

l.3.

By lookmg al the as.1·if1nmmt s1a1eme11ts. we infer a subtype relation between prim­
itive types. Note that the notitm of assignment statements corresponds to COBOL
statements such as MOVE. COMPUTE, MULTIPLY. etc. From an assignment of the form
r : "'~ 11 we infer that T,, is a s11btrpc of T,, i.e .. r can hold al least all the values u can
hold.

:!A. Cnion rypes

From a COBOL clause. we inter a union tvpe relation betwl'.en prumtive
types. When a entry r in the data division redefines another entry u, we infer
that T, and T,, are part of the same union type.

A. van Deursen, L. Moonen/ Science of Computer Programming 40 (2001) 189-211 193

2.5. System-level analysis

In addition to inferring type relations within individual programs, we derive type
relations at the system-wide level. We infer that the types of the actual parameters
of a program call (listed in the COBOL USING clause) are subtypes of the formal
parameters (listed in the COBOL LINKAGE section), and that variables read from or
written to the same file or table have equivalent types. Furthermore, we want to ensure
that if a variable is declared in a copybook, its type is the same in all the different
programs that copybook is included in. In order to do this, we derive relations that
denote the origins of primitive types and the import relation between programs and
copybooks. These relations are then used to link types via copybooks.

2.6. Literals

A natural extension of our type inference algorithm involves the analysis of literals
that occur in a COBOL program. Whenever a literal value l is assigned to a variable
v, we conclude that the value I must be a permitted value for the type of v. Likewise,
when v and l are compared, I is considered a permitted value for the type of v. Literal
analysis indicates permitted values for a type. Moreover, if additional analysis indicates
that variables in this type are only assigned values from this set of literals, we can
infer that the type in question is an enumeration type.

2. 7. Pollution

The intuition behind type equivalence is that if the programmer would have used a
typed language, he or she would have chosen to give a single type to two different
COBOL variables whose types are inferred to be equivalent. We speak of type pollution
if an equivalence is inferred which is in conflict with this intuition.

Typical situations in which pollution occurs include the use of a single variable for
different purposes in different program slices; the use of a global variable acting as a
formal parameter, to which a range of different variables can be assigned; and the use
of a PRINT-LINE string variable for collecting output from various variables.

2.8. Example

Fig. 1 contains a COBOL fragment illustrating various aspects of type inferencing.
The first half contains the declarations of variables, containing their physical types,
i.e., how many bytes they occupy. The second half contains the actual statements from
which type relations between variables are inferred.

Going from bottom to top, we first see (line 41) that variable AOO-FILLED is com­
pared to N100, from which we infer that they belong to the same type. From line
39, we then infer an additional type equivalence, adding AOO-MAX to this equiva­
lence class. We thus obtain one type, for three different variables. If we also take

I~ A nm Dl'ursen, L. M .. •n.·n Is,"''"" of< 'ornpwa Pr11.;r<1mmm11 40 1."110!1 /8<J :: I I

l I variables containing business data.
2 01 PERSON-Rr::CORD.
3 03 INITIALS PIC X(05).
4
5
6
7

03 NAME
03 STREET

PIC X(27).
PIC X!l8).

8
9
IO
II
12
13
14
IS
16

I variables containing char array of length 40,
I as well as several counters.

01 TABOOO.
03 AOC-NAME-PART.

05 AOO-POS PIC X(Ol)
03 AOO-MAX PIC S9(03)
03 AOC-FILLED PIC S9(03)

17
18 I other counters declared elsewhere.
19 01 NOOO.

OCCURS 40.
COMP-3 VALUE 40.
COMP-3 VALUE ZERO.

20 03 NlOO PIC S9(03) COMP-3 VALUE ZERO.
21 03 N200 PIC S9(03) COMP-3 VALUE ZERO.
22
23
24 I procedure dealing with initials.
25 R210-VOORLT SECTION.
26 MOVE INITIALS TO AOO-NAME-PART.
27 PERFORM R300-COMPOSE-NAME.
28
29 procedure dealing with last names.
30 R230-NAME SECTION.
31 MOVE NAME TO AOC-NAME-PART.
32 PERFORM R300-COMPOSE-NAME.
33
34 procedure for computing a result based on the
35 value of the AOO-NAME-PART.
36 Uses AOC-FILLED, AOO-MAX, and NlOO for array indexing.
37 R300-COMPOSE-NAME SECTION.
38
39 PERFORM UNTIL NlOO > AOO-MAX
40
41
42

IF AOO-FILLED NlOO

Fig. I. Exceipt from a real-life COBOL program.

a look at the data division. we see that this equivalence is in accordance with their
declared picture layouts (in lines 13, 14, and 20), which are all numeric data ele­
ments. However. we cannot infer such equivalences from just the pictures, as entirely
unrelated data structures may share the same physical layout (for example. N200 in

line 21).

A. van Deursen. L. Moonen! Science of Computer Programming 40 (2001) 189-211 195

As assignment example is given in line 31, where NAME is assigned to NAME-PART.
Here we infer that the type of NAME is a subtype of NAME-PART. In line 26, another
variable, INITIALS, is assigned to NAME-PART as well, giving rise to a second subtype
relationship, now between INITIALS and NAME-PART. In this way, INITIALS and NAME
share a common supertype (NAME-PART), but there is no direct relationship inferred
between them. If we look at the declared physical layout we see that all three are
strings of a different length (in lines 3,4 and 12). NAME-PART is the largest, capable
of accepting values from both INITIALS and NAME.

In fact, NAME-PART is a global variable acting as a formal parameter for the pro­
cedure R300-COMPOSE-NAME (COBOL does not support the declaration of parameters
for procedures). What we infer is that the type of the actual parameter is a subtype
of the formal parameter. Just deriving equivalences from assignments would lead to
pollution: it would give all the actual parameters, in this case the two different concepts
"initials" and "first name", the same type.

2.9. Practical value

COBOL type inferencing provides a theory for grouping variables based on their
usage. This is of great practical value for the understanding and (semi-automated)
transformation of COBOL legacy systems. Example application areas are discussed
in [5], and include the introduction of symbolic names for literal values (per type),
extraction of system interfaces based on parameter types, migration to strongly typed
languages such as Pascal, identification of candidate classes in legacy systems, and
type-related modifications such as the Euro and year 2000 problem.

Another major application is to use type inferencing to support the migration of
COBOL to the new COBOL standard, which is an object-oriented extension of COBOL-
85 [13]. This new version of COBOL does support types, and offers the possibility of
using type definitions. Type inferencing supports the detection of these types in ex­
isting COBOL programs, thus allowing old systems to benefit from the new language
features.

3. Implementation using relational algebra

This section describes how we use relational algebra to implement type inference for
COBOL systems. We start by giving an overview of the tool architecture. Then, we
describe the facts that are derived from COBOL sources. We continue with a discussion
of how these facts are combined and abstracted to infer more involved type relations.
Finally, we describe the extension of this approach to the system level.

3.1. Tool architecture

The set of tools we use for applying type inference to COBOL systems is shown in
Fig. 2. It separates source code analysis, inferencing and presentation, making it easier

196 A. van Deursen, L. Moonen/Science of Computer Programming 40 (2001) 189-211

Cobol
sources

extractor

Type statistics
collector

Fig. 2. Overview of the type inference tool set.

to adapt the toolset to different source languages or other ways of presenting the types
found.

In the first phase, a collection (database) of facts is derived from the COBOL
sources. For that purpose, we use a parser generated from the COBOL grammar dis­
cussed in [2]. The parser produces abstract syntax trees (ASTs) in a textual represen­
tation called the AsF1x format. These ASTs are then processed using a Java package
which implements the visitor design pattern [9]. The fact extractor itself is a refine­
ment of this visitor which emits type facts at every node of interest (for example,
assignments, relational expressions, etc.).

In the second phase, the derived facts are combined and abstracted to infer a number
of conclusions regarding type relations. Both facts and conclusions are stored in a
simple ASCII format, as also used in, for example, Rigi [17]. One of the tools we
use for inferring type relations is grok [12], a calculator for relational algebra [23].
Relational algebra provides operators for relational composition, for computing the
transitive closure of a relation, for computing the difference between two relations,
and so on. We use it, for example, to turn the derived type facts into the required
equivalence relation. In addition to relational algebra, we use Unix tools like sort,
uniq, awk, etc., to manipulate the relation files.

In the final phase, we pass information about the type relations to the end-user. In
this paper, we conduct an analysis of the effects of pollution, for which we collect
and present a range of statistical data. Other options include the generation of data
structures in a language supporting explicit type definitions, and visualization of type
information via graphs.

3.2. Derived facts

The different kinds of facts derived from the COBOL sources are listed in Fig. 3.
The contain and union relations are derived from the data division, the remaining ones
from the procedure division.

Observe that the relations in this figure indicate the degree of language independence
of type inferencing: it can be applied to any language from which these facts can be
derived. Other languages like Fortran, C, or IBM 370 assembly, can be analyzed by

A. van Deursen. L. Moonen/ Science of Computer Programming 40 (2001) 189-211 197

relation dom mg description

assign T, Tu an expression of type Tv is assigned to a variable of type Tu

expression T, Tu variables of types T, and Tu are used in the same expression

array Index Ta 1i variable of type 7; is used as index in array of type Ta

contain T, TJ structured type T, contains T1

union Tv Tu types Tv and Tu are part of the same union type

literalAssign T, literal l is assigned to a variable of type T,

litera!Exp Tv literal l is compared to a variable of type Tv

arrayLitidx Ta literal l is used as index in array of type Ta

Fig. 3. Derived facts.

relation dom mg description

typeEquiv T1 T2 type Ti is equivalent to type T1

subtypeOf T1 T2 type T1 is subtype of type T2

literal Type T type T contains literal I

Fig. 4. Inferred relations.

adding a parser and fact extractor for those languages. Furthermore, since the facts
for different languages can easily be combined, this approach allows for the transpar­
ent analysis of multi-language systems where, for example, some parts are written in
COBOL and other parts are written in assembly.

3.3. Inferred relations

The resolution process infers relations between types from the facts that were derived
from the COBOL system. Our resolution process is based on relational algebra and is
implemented using grok [12].

The three key relations inferred are typeEquiv, subtypeOf, and literalType, summa­
rized in Fig. 4.

Besides the relations in Fig. 4, some auxiliary relations are inferred. These include:
arraylndexEquiv for equivalence of types through array access (if variables i and j are
used as indexes for the same array A, their types should be equivalent), subtypeEquiv

for type equivalence through subtyping (if ~ ~ Ts and 1B ~ ~, we get 1'.4 = Ts), and
transSubtypeOf for the transitive closure of subtypeOf.

The resolution algorithm is outlined in pseudo code in Fig. 5. The operators used
are those of relational algebra and can be mapped directly to grok operators. Note that

array!ndexEquiv ·,,, arrayln00x·· 1 " arrayindex

typeEquiv := arraylndexEqU'.iv..; expressi;oo

sublypeOf ·:,. asstgn

repeat

subtypeEquiv := equivlsubtypeO! +

typeEqulv := equiv(typeEquiv subtypeEquiv)

subtypeOf := subtypeOf \ fypeEqmv

subtypeOf := sut>typeO! :..: subtypeOf o typeEquiv u typeEqurv " sublypeOf

until fixpolnt of (typeEqwv, subtypeOf)

!iteralType . = typeEquill (literalExp ·-1 literalAssign

u (array!ooeic 1 o arrayliterailndex))

fun equiv(R) := {R '.I R ;)•

fun..:tion abstraction and unbounded iteration arc not available m grok. for this reason,
in the actual implementation the functions were written out explicitly and bounded itcr­
atmn is used. The number of llcrntwns was detem1ined heurisueally; for the ease study
conducted, 5 iterations were sufficient. We were infomied that addition of unbounded
ntemtion is considered tix future releases of grok.

1.1·pcs

In order to do systcm-kvd type inference, the primitive types have to be unique
for the whole system. As described in Section 2.5, this can be done by qualifying
them with program names. Prirnitin:: types derived from copybooks that are included
in the data div1s1on should be using the copybook's name-this ensures that
variables of those types will have the same type in all the programs that this copybook
1s included in.

However, this approad1 does not allow us to deal with system-level type inference
without loading all COBOL sources in memory at once, We would need to analyze
se!f-conlamcd du:>ters of programs and copybooks, in order to qualify types with the
Cl)ITcct names. Such clusters arc likely lo become as large as the complete system.

To facilitate complete separation of the analysis of copybooks and programs. we
derive all infonnation as before, and add extra facts from COBOL sources concerning
the use of copybooks and declaration of types. The extra relations are described in
Fig. 6.

Next v.c compose the copy and decl relations, and inter a copyOf relation that
indicates which types used in a program are actually "'copies'" of types that were

A. z:1111 Deursen, L. Mounen ! Science o(Computer Programming 40 (WOJ) 189-211 199

relation dorn mg description

de cl m T, module m declares Tv

copy mi m2 module m1 imports m2

actualPararn P.n Tv nth actual parm. of P has type Tv

forma!Param P.n T, nth formal parm. of P has type T,

Fig. 6. Derived system-level relations.

copyOf

Fig. 7. Inferred system-level relations.

declared in a copybook (Fig. 7). This join is done on the imported module field m2

of the copy relation with the module field m of the decl relation.
Finally, the copyOf relation between Tp and Tc is interpreted as a substitution on

the derived relations replacing all occurrences of Tp by Tc. This substitution propagates

type dependencies through copybooks.
At this point we have achieved the same database as we would have obtained by

analyzing all sources at once, but now using a modular approach. Such a modular

approach allows us to analyze large industrial-scale systems that are too big to be

handled in memory at once.

Example 1. Suppose we derive the following information from programs P and Q:

subtype Of P.A P.B copy P Z dee l Z Z.B

subtype()/' Q.B Q. C copy Q Z

Program P and Q both use variable B and import copybook Z in which B is declared.

Joining the copy and decl relations yields two copyOf facts:

copyOf P.B Z.B copyOf Q.B Z.B

After substituting these in subtypeOf, we get

subtypeOf PA Z.B subtypeOf Z.B Q.C

Observe that, via transitivity of the subtypeOf relation, we can now infer that PA is

a subtype of Q.C, a relation that could not have been found without the propagation

through the copybook.

We have written a dedicated C program to perform the substitution since standard

Unix tools like sed or perl could not handle the amount of substitutions involved. 4

4 For example, for Mortgage, the copyOf relation contains 121, 915 tuples.

200 A. van Deursen, L. Moonen I Science of Computer Programming 40 (2001) 189-211

tonnalParam: 107 (0.3%)

actualParam: 191 (0.6%)

Fig. 8. Facts derived from Mortgage.

Time complexity of this program is O(n log n + m log n) (where n is the number of
tuples in copyOf, and m is number of tuples in the database), and its space requirements
are O(n).

4. Assessing derived facts

In this section we study the nature of the facts that can be directly derived from the
COBOL sources, i.e., without applying the resolution step. This means that we only
look at the intra-module dependencies, and only consider direct subtype relationships,
not transitive ones. This will help us to understand to what extent individual programs
are responsible for causing pollution. In the next section, we will look at inter-module
dependencies, and relationships arising from taking the transitive closure.

The database that is derived from the Mortgage sources contains 34.313 unique
facts. An overview of these is shown in Fig. 8. All duplicates were removed, thus, if
variable v is assigned to variable u in two different statements in a certain program,
this results in only one subtype relation between 1'v and Tu. The majority of facts are
from decl and contain. Type equivalence and subtype relationships are inferred from
the remaining facts. An interesting observation is that the assign relation is almost
9 times as large as the expression relation. This means that variables in a COBOL
program are much more often moved around (assigned) than tested for their value. In
this section, we will particularly look at these assign-facts.

A. van Deursen, L. Moonen I Science of Computer Programming 40 (2001) 189-211 201

20 40 60
Program 10s

80 100

Fig. 9. Maximum number of subtypes per program before resolution.

4.1. Direct subtypes per type

120

A variable that receives values from many different other variables is a potential
cause for pollution. Therefore, in this section we will search for those types that have
many different subtypes, i.e., types of variables that are assigned values from many
other variables.

In Fig. 9 we show, for each program, the highest number of different subtypes that a
single type has. The numbers at the x-axis can be seen as program IDs-they are given
in order of increasing program size. As an example, the program with ID-number 20
(one of the smaller programs) has a pulse of length 2 associated with it, i.e., the type
with the most different subtypes just has 2 different subtypes.

The dashed line indicates the average number of subtypes per type. It shows that
most types have just 1 or 2 subtypes. To compute the average number of subtypes per
type, only those types that have at least one subtype were taken into account (hence
this average will always be larger than 1), ignoring types that were not used at all, or
only in expressions. The overall average number of subtypes is 1.18.

Most programs do not contain types with more than 5 subtypes; one program contains
a type with an exceptionally large number of 45 different subtypes. If we look at the
COBOL code underlying these data, we can understand the high maximum of 45. This
involves the type of a variable called P800-LINE, which is a string of length 132. It
acts as the formal parameter of a section called Y800-PRINT-LINE. Whenever data

202 A. van Deursen, L. Moonen/ Science of Computer Programming 40 (200/J 189-211

20

c: 15

~
5l
I!!
I!!
.g
~
"' 10
~ z.
a;
Q.
::s

"' ..
~
E

5

0

l II
Ill 11111

0 20 40 60
Program IDS

80

ma>'mum -
av!rage - -

100

Fig. 10. Maximum number of supertypes per program before resolution.

120

is to be printed, it is moved into that variable and the YBOO-PRINT-LINE section is
called. Type inference concludes that the types of all the variables that are printed this
way, are subtypes of the type of Y800-PRINT-LINE.

4.2. Direct supertypes per type

Another figure of interest consists of the number of supertypes per primitive type,
i.e., types of variables that are assigned to many other variables. Fig. 10 shows the
number of supertypes per type. Again, most types that have a supertype have one or
two supertypes, the average being 1.32. Most of the maxima are below 6, but a number
of programs contain types with many more supertypes, for example with 17, 18, or 19
different ones.

If we look at the COBOL source code, we can explain the role of these types. The
type with 19 supertypes occurs in a (fairly large) program with ID-number 104, and
turns out to be the type of a CURSOR variable, used in a CICS interactive setting. We
will refer to this type as CURSOR-type. The variable of this type navigates through
the screen positions of a terminal. It is compared with, and copied into a number of
different variables representing screen positions of certain fields, such as the position
where to enter the name of a person. All these positions together, each declared with
numeric picture, share one subtype: the CURSOR-type. Thus, number 19 is not due to
pollution, but rather provides meaningful information for understanding the program,

A. rnn Dcursen, L. !vfoonen! Science of Computer Programming 40 (2001) 189·211 203

namely that all these types share the values of their common CURSOR-subtype. This
CURSOR-mechanism is used by many different programs, and thus is the explanation
for most of the maxima higher than 6 occurring in Fig. 10.

One of the non-CURSOR cases occurs in the program with ID-number 90. It concerns
a so-called DESCRIPTION-type which has 17 different supertypes. It is the type of
an output field of a procedure for reading a value from a particular database. The
particular database contains a wide variety of data, and depending on some of the input
parameters, different sorts of data are returned. Each of these becomes a supertype of
the DESCRIPTION-type.

4.3. Type equivalence

In addition to looking at the subtype relations, we can look at the direct type equiv­
alence relations we derive, i.e., we look at types that occur in the same relational or
arithmetic expressions. The statistics derived needed for this is based on fewer input
tuples, as we know from Fig. 8 that there are almost 9 times fewer expression tuples
than assign tuples. The resulting figure, however, is quite similar to Fig. 10, so we
omitted the figure in the paper.

If we look at the maxima, they are again 19, 18, and lower. As with the supertypes,
one of the types responsible for this is the CURSOR-type. A variable of this type is
compared with 18 other variables. Therefore, we conclude that the types of these 18
variables must be the same as the CURSOR-type. The resulting type represents a screen
position.

Another type that is equivalent to many other types is the so-called DFHBMEOF-type.
This is the type of a special CICS variable which has a constant value for a certain
control character. After reading the input entered from a screen, the status characters
for the strings that were read are compared with this CICS variable. The types of those
status characters are thus equivalent to the type of that CICS variable in our approach.

5. Assessing inferred relations

In this section we examine the relations that result from applying the resolution
step. This will help us to understand the merits of resolution and how it affects type
pollution.

Before executing the resolution process, we prepare the derived facts for system­
level analysis. The copyOf relation that is inferred from the copy and decl relations
contains 121, 915 tuples. The propagation of copyOf information in the derived database
takes 6 s. The resolution was done using a grok script implementing the algorithm in
Fig. 5 which takes 7 min for the case study at hand (on Sun Ultra 10, 300 MHz, 576 M
memory).

After resolution, the database contains 202, 848 tuples. An overview of these is shown
in Fig. 11. For a number of relations (such as arraylndex or literalExp), the number

204 A. van Deursen, L. Moonen I Science of Computer Programming 40 { 2001) 189-211

subtypeEquiv: 42692 (21 o/o)

actualParam: 191 (0.1%)

formalParam: 107 (0.1 %)

litera!Exp: 1614 (0.8%)

Fig. 11. Information inferred from Mortgage.

of tuples in the resulting database is smaller than before since the substitution results
in some tuples become duplicates. For others, such as subtypeOf, the number of tuples
increases, via propagation of the equivalence relation.

5.1. Subtype relation

One of the goals of the resolution process is to improve the subtypeOf relation by
removing tuples for which we have more specific information, namely that they are part
of the typeEquiv relation. On the other hand, the subtypeOf relation is also extended
with information of the typeEquiv relation. For example, if T,.i ~TB and Ts =Tc then
also TA~ Tc. The percentage of subtypes that are added or removed as a result of both
modifications is shown in Fig. 12.

In this figure we see that for most programs, resolution reduces the number of
subtypes. The average reduction in these programs is 18.4% with a maximum of47.1%.
There are however a couple of programs in which the number of subtypes grows. The
average growth in these programs is 54.5% and the maximum is 393.8%. Inspection of
these programs shows that the cause of these large numbers is again the CURSOR that
was earlier described in Sections 4.2 and 4.3. The reason for this is that CURSOR is the
subtype of a lot of types (say set S), and it is equivalent to a number of types (say
set E). Since the resolution process ensures that all types in set E become subtypes of
all the types in set S, the resulting database contains a rather large number of subtypes
(!SI x IEI to be precise) just because of this CURSOR.

A. van Deursen. L. Moonen/ Science of Computer Programming 40 (2001) 189-211 205

350

300

250

200

150

100

percentage added -
average= 12.3o/o - -

average of positive = 54.5o/o - - -
average of negative= -18.4o/o - - -

20 40 60
ProgramlDs

80

Fig. 12. Subtypes added by resolution.

100 120

As not all variables are used in comparisons (recall that in COBOL it is very
common to just move variables), other types with many sub- or supertypes (such
as DESCRIPTION and P800-LINE) but which are never used in comparisons, play no
role of importance here.

5.2. Type equivalence

The typeEquiv partitions types into equivalence classes. An overview of all classes
that occur in Mortgage and their sizes is presented in Fig. 13.

Fig. 13(a) contains the classes ifresolution is only done on a per-program basis, i.e.,
without taking system-wide propagation via copybooks and program calls into account.
On this program level, resolution does not have a big influence on these equivalence
classes. The explanation for this is that the classes at the program level are small and
tightly connected, so all relations are already found by analyzing the code (e.g., if
3 variables are equivalent, they will all be compared to each other so the transitive
closure does not find new tuples). The maxima are still 19 and 18 and the average class
size is 3. Furthermore, approx. 90% of the classes have less than 5 equivalent elements.

Things get more interesting at the system level presented in Fig. 13b. The maximum
class size jumps to 201, followed by 118 but the total number of different classes drops
to 191, one-third of the number of classes before resolution. Again, approximately 90%
of the classes have less than 5 equivalent elements.

:::1 if, .'!l

oi percent

()f total

135 70.7%

22 !LS'ili·

5 2.6'l

4 2.1%

9 4.7%

31%

l.O'l!:·

0.5%

I a) program level (b) system level

Inspection of the 1.krivcd cqmvalencc classes shows that the dass with 20 l elements
contains all elements that arc equi\'aknt to the CURSOR-type. All CURSOR classes oe-

m different programs arc taken togdher, as the underlying CURSOR variable
is declared in a -.·opybook. \Vhen we look at the code \Ve sec that the elements in
this dass are typkally used m a relational expression with the CURSOR-type, although
m some eases they arc both a sub- and supertypc of it and therefore inferred to be
equivalent.

The next biggest dass has 118 elements and represents a type lwlding some C!CS
status informatim1. It contains all ekments equivalent to the DFHBMEOF-type described
m Section -1.3, again coming from a copybook.

The class with 39 elemenls represents the index type for some array type. The
elements in this class were typically found using the rule for array index equivalence.
II contains the primitive types of variables that were used to access arrays in loops and
those that were used for array bounds. Here the array variable was declared
m a copybook.

A. ran Deursen. L. Moonen! Science of Computer Programming 40 (2001 J 189-211 207

The last class we will discuss here is the one with 24 elements. This class rep­
resents the so-called RELATION-ID-type and is worth mentioning since it contains a
form of pollution that is not solved by subtyping. The spurious type is the so-called
MORTGAGE- ID-type which is unrelated to the RELATION- ID-type according to the busi­
ness logic. The reason that they end up in the same class is that both types are used
as parameter of a "function" that does a sanity check on the number (11-check) and
return the corrected number when necessary. In the call both types become subtypes of
the input type of that function. After the call, the output is moved back so the output
type becomes a subtype of RELATION- ID and MORTGAGE- ID. Since the input and out­
put type for this function is the same, RELATION-ID becomes a subtype MORTGAGE-ID
and vice versa so they are considered to be equivalent.

We can solve such pollution by deriving an additional cast relation during fact
extraction. Whenever a variable of a supertype is assigned to a variable of a subtype,
we derive that the supertype is casted into the subtype. Furthermore, we can use data
flow analysis to derive what are the input parameters of a function and what are the
output parameters of a function. This mechanisms also allows us to deal with explicit
casts as, for example, can occur in C programs.

6. Related work

A principal source of inspiration to us was Lackwit, a tool for understanding C
programs by means of type inference [20]. Lackwit performs a type analysis of variables
based on their usage. The analysis results are used to find abstract data types, detect
abstraction violations, identify unused variables, and to detect certain types of errors.
New in our work is not only the significantly different source language, but also the
use of subtyping for dealing with pollution, and the use of type inference to classify
literals. Another paper discussing type inference for C is by Sniff and Reps [22], who
use inferred types to generalize c functions to c++ function templates.

Our approach is also related to va1ious tools for the analysis and correction of the
year 2000 problem where date seeds are tracked through the statements in a program
[11,14,18]. In year 2000 analysis, preventing pollution (called classification noise in
[14]) is an important issue. We have not been able to find papers that propose the
use of subtyping to do this. Our current paper adds a strong empirical basis for using
subtyping to reduce pollution.

Recently, two papers appeared which rely on type theory to deal with the year 2000
problem [7,21]. These papers do not address the problem of pollution, but do con­
tain an interesting algorithm for propagating type information through the elements
of aggregate data structures such as arrays or records. Our approach essentially treats
each aggregate as a single scalar value. If, however, two entire records are moved,
types can also be propagated through the individual fields. Such moves may even
cross field boundaries if the two records differ in record layout, or if records are
aliased using COBOL's redefine statement. Ramalingam et al. [21] and Eidorff et al.

208 A. van Deursen, L. Moonen/Science of Computer Programming 40 (2001) 189-211

[7] provide an algorithm that finds a minimal splitting of all aggregates such that
types can be correctly propagated for the resulting "atoms". In our earlier paper [5],
we proposed a weaker method using an inference rule called substructure comple­
tion, which just ensures that type equivalences between structurally equivalent aggre­
gates are propagated to the components. As discussed later, we plan to combine this
algorithm with our type inferencing approach to see if we can further improve the
accuracy.

Chen et al. [3] describe a (semi)-automatic approach for COBOL variable classifi­
cation. They distinguish a fixed set of categories, such as input/output, constant, local
variable etc., and each variable is placed into one or more of these classes. They pro­
vide a set of rules to infer this classification automatically, essentially using data flow
analysis. Their technique is orthogonal to ours: the types we infer can be used for
both local and global variables, for variables that are used for databases access and for
those that are not, etc.

Newcomb and Kotik [19] describe a method for migrating COBOL to object orien­
tation. Their approach takes all level 01 records as starting point for classes. Records
that are structurally equivalent, i.e., matching in record length, field offset, field length,
and field picture, but possibly with different names, are called "aliases". According
to Newcomb and Kotik, "for complex records consisting of 5-10 or more fields, the
likelihood of false positives is relatively small, but for smaller records the probability
of false positives is fairly large" [19, p. 240]. Our way of type inferencing may help to
reduce this risk, as it provides a complementary way of grouping such 01 level records
together based on usage.

Wegman and Zadeck [24] describe a method to detect whether the value of a variable
occurring at a particular point in the program is constant and, if so, what that value
is. Merlo et al. [16] describe an extension of this method that allows detection of all
constants that can be the value of a particular variable occurrence. This differs from
our approach which finds all constants that can be assigned to any variable of a given
type. Furthermore, the methods described in both papers take the flow of control into
account where as our approach is flow-insensitive (control flow is completely ignored).
Consequently, their results are more precise (e.g., we report constants that are used in
dead code) but their approach is also more expensive.

Gravley and Lakhotia [1 OJ identify enumeration types that are modeled using define
preprocessor directives. Their approach is orthogonal to ours since they group constants
which are defined "in the same context" (i.e., close to each other in the program text)
whereas we group constants based on their usage in the source code.

Concerning the tool used for implementing type inference, there is second suite
of relational algebra tools available from Philips, as described by Feijs et al. [8].
An alternative to the use of relational algebra, is to view type inferencing as a graph
traversal problem. A graph querying formalism such as GReQL [15] can then be used to
compute the closures of several relations. A second alternative is to use one of several
program analysis frameworks. Of particular interest is BANE, the Berkely ANalysis
Engine as described by Aiken et al. [1]. BANE provides constraint specification and

A. van Deursen, L Moonen/Science of Computer Programming 40 (2001) 189-211 209

resolution components, which can be to experiment with program analyses in which
properties of types are expressed as constraints.

7. Concluding remarks

7.1. Contributions

In this paper, we carried out an empirical study into the relations between variables
established by COBOL type inference. We argued that such relations are necessary in
a COBOL setting: COBOL programs contain a large number of variable declarations
(50% of a program's lines of code consist of variable declarations), but only half of
these variables are actually used. Inferred types help to understand how variables are
used and how they are related to each other.

The empirical study aimed at finding out how the problem of pollution is handled
by the use of subtyping. Pollution occurs when a counter-intuitive type equivalence
is found for two variables. Since it is impossible to check by hand the hundreds of
type equivalences classes found by type inferencing, we devised a suite of numeric
measurements directing us to potential pollution spots.

We manually inspected, and explained in the paper, the results from these mea­
surements. Of all inferred type equivalence classes, only one contains a clear case of
pollution: in Section 5.2 we discuss how type casts could help to address this problem.

To conduct our experiments, we developed a tool environment permitting all sorts
of experiments. An important new element is the use of relational algebra to do the
inference of type conclusions from derived type facts. Moreover, we devised a modular
approach to infer types for variables playing a system-wide role. Owing to this modular
approach, system-level type analysis scales up to large systems.

7.2. Future work

Now that we have all machinery for conducting large scale type inferencing experi­
ments in place, and now that we understand which data to collect, we are in a position
to apply type inference to more COBOL systems. We intend to do this, and collect
statistical data on other case studies as well.

A question of interest is how we can further improve the accuracy of our type
inferencing approach by deconstructing aggregates into "atoms" of the appropriate size,
following the algorithm of [7,21]. An important problem to be solved is how to combine
this algorithm with subtyping, in order to minimize the danger of pollution.

At the moment, we are conducting experiments with new ways of presenting type
relations [6]. One way is to visualize type relations as graphs. We are integrating
such graphs with the COBOL documentation generator covered in [4]. This generator
provides an abstract view of COBOL systems, highlighting essential relationships be­
tween programs, databases, screens, etc. Types play an important role in this form of

210 A. van Deursen, L. Moonen! Science of Computer Programming 40 (2001) 189-211

documentation, as they help to characterize the interfaces of COBOL modules, or the
interplay of variables occurring in the COBOL programs.

References

[l] A. Aiken, S. Fiihndrich, S. Foster, Z. Su, A toolkit for constructing type- and constraint-based program
analyses, in: Second Internal. Workshop on Types in Compilation, TIC'98, Lecture Notes in Computer
Science, vol. 1473, Springer. Berlin, 1998. pp. 78-96.

[2] M.GJ. van den Brand, A. Sellink, C. Verhocf, Generation of components for software renovation
factories from context-free grammars, in: Fourth Working Conf. on Reverse Engineering. WCRE'97,
IEEE Computer Society, Silver Spring, MD, 1997. pp. 144-155.

[3] X.P. Chen, W.T. Tsai, J.K. Joiner. H. Gandarnaneni, J. Sun, Automatic variable classification for COBOL
programs, in: 18th Ann. Internal. Computer Software and Applications Conf. COMPSAC'94. IEEE
Computer Society, Los Alamitos, CA, 1994. pp. 432-437.

[4] A. van Deursen, T. Kuipers, Building documentation generators, Internal. Conf. on Software
Maintenance, ICSM'99, IEEE Computer Society, 1999, pp. 40-49.

[5] A. van Dew·sen, L. Moonen, Type inference for COBOL systems, in: M. Blaha, A. Quilici, C. Verhoef
(Eds.), Fifth Working Conf. on Reverse Engineering. WCRE'98, IEEE Computer Society, Silver Spring,
MD. 1998. pp. 220--230.

[6] A. van Deursen, L. Moonen, Exploring legacy systems using types, in: Seventh Working Conf. on
Reverse Engineering, WCRE'OO, IEEE Computer Society Press, Silver Spring. MD, 2000.

[7] P.H. Eidorff, F. Henglein, C. Mossin, H. Niss, M.H. Sorensen, M. Tofte, Anno Domini: From type
theory to Year 2000 conversion tool, in: 26th Arm. Symp. on Principles of Programming Languages,
POPL'99. ACM, New York, 1999.

[8] L Feijs, R. Krikhaar. R. van Ommering, A relational approach to support software architecture analysis,
Software Practice Exp. 28 (4) (1998) 371-400.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, Reading, MA, 1994.

(10] J.M. Gravley, A. Lakhotia, Identifying enumeration types modeled with symbolic constants. in: Third
Working Conf. on Reverse Engineering, WCRE'96, IEEE Computer Society Press, Silver Spring, MD,
1996. pp. 227-236.

[11] J. Hart, A. Pizzarello, A scaleable, automated process for year 2000 system correction, in: l 8th Internal.
Conf. on Software Engineering, ICSE-18, IEEE. New York, 1996, pp. 475-484.

[12] R. Holt, Structural manipulations of software architecnrre using Tarski relational algebra, in: M. Blaha,
A. Quilici, C. Verhoef (Eds.). Fifth Working Conf. on Reverse Engineering, WCRE'98, IEEE Computer
Society, Silver Spring. MD, 1998. pp. 210--219.

[13] ISO, Programming language COBOL: Proposed Revision of ISO 1989:1985. International
Standardization Organization, 2000, Committee Draft 1.8, ISO/IEC CD 1.8 1989 : yyyy(E).

[14] K. Kawabe, A. Matsuo, S. Uehara. A. Ogawa, Variable classification technique for software maintenance
and application to the year 2000 problem, in: P. Nesi, F. Lehner (Eds.), Second European Conf. on
Software Maintenance and Reengineering, CSMR '98, IEEE Computer Society, Silver Spring, MD, 1998,
pp. 44-50.

[15] B. Kullbach, A. Winter. Querying as an enabling technology in software reengineering, in: Third
European Conf. on Software Maintenance and Reengineering, CSMR'99, IEEE Computer Society, Silver
Spring, MD, 1999. pp. 42-50.

[16] E. Merlo, J.F. Girard, L. Hendren. R. De Mori, Multi-valued constant propagation analysis for user
interface reengineering, Internal. J. Software Eng. Knowledge Eng. 5 (1) (1995) 5-23.

[17] H.A. Muller, M.A. Orgun, S.R. Tilley, J.S. Uhl, A reverse engineering approach to subsystem structure
identification, J. Software Maintenance 5 (4) (1993) 181-204.

(18] M.G. Nanda, P. Bhaduri, S. Oberoi, A. Sanyal, An application of compiler technology to the year 2000
problem, Software Practice Experience 29 (4) (1999) 359-377.

[19] P. Newcomb, G. Kottik. Reengineering procedural into object-oriented systems, in: Second Work­
ing Conf. on Reverse Engineering, WCRE'95, IEEE Computer Society, Silver Spring, MD, 1995.
pp. 237-249.

tu pn.tgrmi

ACM. Ne"'

ACM SKiSOFT Svmp.
I. pp

the
\5-141>

