
Science of Computer Programming 61 (2006) 75–113
www.elsevier.com/locate/scico

Modeling component connectors in Reo by constraint automata

Christel Baiera,∗, Marjan Sirjanib,c, Farhad Arbabd,e,f, Jan Ruttend,g

a Institut für Informatik I, University of Bonn, R¨omerstraße 164, D-53117 Bonn, Germany
b Department of Electrical and Computer Engineering, University of Tehran, Karegar Avenue, Pardis #2, Tehran, Iran

c School of Computer Science, IPM, Niavaran Square, Tehran, Iran
d Department of Software Engineering, Centrum voor Wiskunde en Informatica, Kruislaan 413, P.O. Box 94079,

1090 GB Amsterdam, The Netherlands
eLeiden Institute for Advanced Computer Science, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

f School of Computer Science, University of Waterloo, 200University Avenue West, Waterloo, ON N2L 3G1, Canada
g Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

Received 30 January 2004; received in revised form 24 May 2005; accepted 10 October 2005
Available online 30 March 2006

Abstract

In this paper we introduceconstraint automataand propose them as an operational model for Reo, an exogenous coordination
language for compositional construction of component connectors based on a calculus of channels. By providing composition
operators for constraint automata and defining notions of equivalence and refinement relations for them, this paper covers the
foundations for building tools to address concerns such as the automated construction of the automaton for a given component
connector, equivalence checking or containment checking of the behavior of two given connectors, and verification of coordination
mechanisms.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Constraint automata; Reo; Timed data streams; Coordination; Components; Composition; Bisimulation; Simulation; Verification

1. Introduction

Coordination models and languages emerged in the 1990sas the linguistic counterpart of the so-calledmiddle-ware
layer of software that consisted of ad-hoc libraries of functions providing higher-level inter-process communication
support in parallel and, especially, distributed applications. Coordination models and languages close the conceptual
gap between the cooperation model used by the constituent parts of an application and the lower-level communication
model used in its implementation. They provide a clean separation between individual software components and their
interactions within their overall software organization. This separation, together with the higher-level abstractions
offered by coordination models and languages, improve software productivity, enhance maintainability, advocate
modularity, promote reusability, and lead to software organizations and architectures thatare more tractable and more
amenable to verification and global analysis.

∗ Corresponding author.
E-mail addresses:baier@cs.uni-bonn.de(C. Baier),msirjani@ut.ac.ir(M. Sirjani), Farhad.Arbab@cwi.nl(F. Arbab),Jan.Rutten@cwi.nl

(J. Rutten).

0167-6423/$ - see front matterc© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.10.008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301649544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/scico
mailto:baier@cs.uni-bonn.de
mailto:msirjani@ut.ac.ir
mailto:Farhad.Arbab@cwi.nl
mailto:Jan.Rutten@cwi.nl
http://dx.doi.org/10.1016/j.scico.2005.10.008

76 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

The current interest in constructing applications out ofindependent software components necessitates paying
attention to the so-calledglue-code. The purpose of glue-code is to compose a set of components by filling the
significant interface gaps that naturally arise among them, simply because they are not (supposed to be) tailor-made
to work with one another. Using components thus means understanding how they interact individually with their
environment, and specifying how they should engage in mutual, cooperative interactions in order for their composition
to behave as a coordinated whole. Many of the core issues involved in component composition have already been
identified and studied as key concerns in work on coordination. Coordination models and languages address key
issues in Component Based Software Engineering such as specification, interaction, and dynamic composition of
components. Specifically,exogenous coordination models and languages, which enable third-party entities to wield
coordination control over the interaction behavior of mutually anonymous entities involved in a collaborationfrom
outsideof its participants, provide a very promising basis for the development of effective glue-code languages.

Constraint automata.In this paper, we introduce constraint automata as a formalism to describe the “behavior” and
possible data flow in coordination models that connect anonymous components to enable their coordinated interaction.
The theory of constraint automata thus yields a basis for the formal verification of coordination mechanisms (e.g.,
model checking against temporal-logical specifications or equivalence checking). Constraint automata can be thought
of as conceptual generalizations of probabilistic automata where data constraints, instead of probabilities, influence
applicable state transitions. We show that constraint automata can serve as anoperational modelfor the coordination
language Reo, introduced in [1]. Reo is a channel-based exogenous coordination model wherein complex coordinators,
called connectors, are compositionally built out of simpler ones. The simplest connectors in Reo are a set of
channels with well-defined behavior supplied by users. The emphasis in Reo is on connectors, their behavior, and
their composition, not on the entities that connect, communicate, and cooperate through them. The behavior of
every connector in Reo imposes a specific coordination pattern on the entities that perform normal input/output
(I/O) operations through that connector, without the knowledge of those entities. This makes Reo a powerful “glue
language” for compositional construction of connectors to combine component instances into a software system and
exogenously orchestrate their mutual interactions.

Using constraint automata as an operational model for Reo connectors, the automata states stand for the possible
configurations (e.g., the contents of the FIFO channels of a Reo connector) while the automata transitions represent
the possible data flow and its effect onthese configurations. In fact, the operational semantics for Reo presented in
[1] can be reformulated in terms of constraint automata. However, in this paper we follow a different approach and
define the constraint automaton of a given Reo connector in acompositionalway. For this, we introduce composition
operators for constraint automata corresponding to the Reo connector primitives, and thus provide the basis for the
algorithmic construction of constraint automata for Reo connectors.

The paper [2] presents a coalgebraic formal semantics for Reo connectors that assigns to any Reo connector a
relation over infinitetimed data streams(called TDS languages in this paper). In fact, many interesting properties of
Reo connectors, as well as notions of equivalence or refinement for Reo connectors, can be formulated in terms of TDS
languages. To reason about TDS languages, we may regard constraint automata asacceptorsfor timed data streams.
The rough idea behind the use of constraint automata aslanguage acceptors is that such an automaton observes the
data occurring at certain input/output ports of components and either changes its state according to the observed data
or rejects it if there is no corresponding transition in theautomaton. From this point of view, constraint automata
serve as a formalism for describing TDS languages, in a similar way that ordinary finite automata (or, alternatively,
ω-automata) can be used as a formalism to describe languages of finite (respectively, infinite) words (see, e.g., [14,
26]). In particular, they can serve as a specification formalism for a coordination mechanism that is yet to be designed,
or as interface specifications for the component instances that are (to be) glued together.

To solve typical verification problems, e.g., checking whether a given Reo connector meets its automata
specification or whether two Reo connectors are language-equivalent (in the sense that they induce the same TDS
language), the fact that constraint automata are close to both ordinary finite orω-automata and labeled transition
systems allows us to modify known methods for the analysisof reactive systems (modeled by labeled transition
systems) or formal languages (represented by finite orω-automata) to work with constraint automata. As checking
language equivalence or language inclusion for non-deterministic automata is computationally hard, we introduce
notions of bisimulation equivalence and a simulation relation for constraint automata. Being refinements of the
language relations with simpler decision algorithms, these branching time relations provide sound (but incomplete)
proof methods for checking language equivalence or language inclusion.

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 77

Related models.Of course, the use of automata-based models (including variants of labeled transition systems) as
operational models for coordination principles is not new. Our notion of constraint automata is most in the spirit of
I/O automata [17], timed port automata [11] and interface automata [8]. We briefly summarize the major differences
and similarities:

• While transitions in I/O automata are labeled with action names, transitions in timed port and constraint automata
are data-dependent. However, timed port automata label the transitions with specific data values, whereas we use a
symbolic representation by means of data constraints (Boolean expressions for the data values).

• Unlike I/O or timed port automata, we do not follow a strictly time-synchronous approach, which becomes
important when we compose constraint automata. The composition of constraint automataA1 andA2 allows
transitions when data occur at the input/output ports that the resulting automaton inherits from only one of the
automataAi , without involving the transitions or states that it inherits from the other automaton (because, at that
point in time, there is no suitable data on any of its corresponding ports). Such transitions do not exist in the
“one-to-many composition” of timed port automata.

• As for interface automata, we do not assume input enabledness, as is the case for I/O or timed port automata. In
fact, in our setting, there is no need to distinguish between input and output ports, unlike in interface automata.

• Constraint automata, like I/O-automata, are based on transition systems. Interface automata are based on game
theory, and their main purpose is to allow automatic checking of compatibility between interfaces.

Used as acceptors for TDS languages (e.g., to specify the “legal” data flow of a coordination mechanism that is
yet to be designed or for an interface specification of a component), constraint automata are in the spirit of ordinary
finite automata andω-automata. For the purposes of this paper, where we do not consider finite behavior — which
may occur, for example, if configurations are reached where data flow at certain ports is blocked — there is no need
for final states. Thus, acceptance of a timed data stream byconstraint automata requires only the existence of an
infinite run in the automata. However, this difference between standard automata and constraint automata cannot be
understood as an advantage of the latter, as it can be explained by our decision not to consider finite behavior. To
reason about finite timed data streams or assuming fairness for certain Reo-connector primitives, constraint automata
would have to be extended with final states, leading to a different notion of acceptance. To keep the presentation of the
basic concepts of constraint automata simple and clear and to avoid overloading with notation, we decided to restrict
ourselves in this paper to infinite behavior, without fairness assumptions.

In summary, constraint automata are close to various other automata models, which yields the advantange that
known validation technique can be adapted for our purposes. The characteristics of constraint automata are chosen in
a way that fits best in the Reo framework where the focus is on reasoning about the observable data flow at nodes in
a channel network by means of the relation of timed data streams. This is in contrast to other automata models that
were designed for slightly different tasks and rely on concepts (such as action names for the activities of individual
agents, input enabledness, and compatibility checking) that are not relevant for Reo component connectors.

Organization of the paper.The rest of this paper is organized as follows. InSection 2, we recall the definition of
timed data streams and introduce some notation. InSection 3, we present the definition of constraint automata and
their accepted TDS languages. The use of constraint automata as an operational semantics for Reo connectors is
explained inSection 4. This section starts with a brief overview of Reo. We then provide the definition of composition
operators (join and hiding) on constraint automata corresponding to the Reo connector primitives and demonstrate
the compositional construction of constraint automata for given Reo connectors through a series of examples. In
Section 5, we introduce notions of bisimulation and simulation for constraint automata, discuss their relationship
to the language-based relations, and provide congruence results for the composition operators defined inSection 4.
Section 6is concerned with algorithms for checking the equivalence of two constraint automata and whether one
automaton can be viewed as a refinement of another. We conclude inSection 7, hinting at our current and future work
on model checking and automated tools for reasoning about constraint automata and Reo connectors.

2. Timed data streams

In this section, we recall the definition of timed data streams (TDS for short) and explain our notations.

Streams.Let V be any set. We define the setVω of all streams (infinite sequences) overV as Vω = {α | α :
{0, 1, 2, . . .} → V }. For convenience, we consider only infinite behavior and infinite streams that correspond

78 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

to infinite “runs” of our automata, omitting final states including deadlocks. We denote individual streams as
α = α(0), α(1), α(2), . . . (or a = a(0), a(1), a(2), . . .). We callα(0) the initial value of α. The(stream) derivative
α′ of a streamα is defined asα′ = α(1), α(2), α(3), We write α(i) for thei -th derivative ofα, which isdefined as
α(0) = α andα(i+1) = (α(i))′. Note thatα′(k) = α(k + 1) andα(i)(k) = α(i + k), for all k, i ≥ 0.

Timeddata streams.We now recall the definition of timed data streams from [2]. In the sequel,Data is a fixed, non-
empty and finite set of data that can be sent (and received) via channels.1 The set of all (infinite) timed data streams
overData is given by:

TDS= {〈α, a〉 ∈ Dataω × IRω+ : ∀k ≥ 0 : a(k) < a(k+ 1) and lim
k→∞ a(k) = ∞}

.

Thus, a timed data stream〈α, a〉 consists of adata streamα ∈ Dataω and atime stream a∈ IRω+ consisting of
increasing positive real numbers that go to infinity. The time streama indicates, for each data itemα(k), the moment
a(k) at which it is being input or output.

TDS-tuples.To formalize the input/output behavior of a coordination model by means of timed data streams, we use
names,say A1, . . . , An, for the input or output ports that connect the component instances with other component
instances or the environment of the whole system. With each portAi , we associate a timed data stream. That is, for a
given name-setNames= {A1, . . . , An}, we define

TDSNames= {
(〈α1, a1〉, . . . , 〈αn, an〉) : 〈αi , ai 〉 ∈ TDS, i = 1, . . . , n

}
as the set of all TDS-tuples consisting of one timed data stream for each port. When writing the elements ofTDSNames

as tuples of timed data streams, we assume a fixed enumeration of the port names inNames, sayA1, . . . , An, such that
the i -th timed data stream of the TDS-tupleθ stands for the timed data stream of thei -th port Ai . If no enumeration
of the port names is given, then we use a family notationθ = (θ |A)A∈Namesfor the elements ofTDSNames, whereθ |A
stands for the timed data stream for portA.

Data assignments.By a data assignment, we mean a functionδ : N → Data where∅ �= N ⊆ Names. We use
notations like

δ = [
A �→ δA : A ∈ N

]
to describe the data assignment that assigns to any TDS nameA ∈ N the valueδA ∈ Data.

Notations for TDS-tuples.If θ = (〈α1, a1〉, . . . , 〈αn, an〉) ∈ TDSNames, then we write θ.timeto denote the time stream
obtained by merging the timed data streamsa1, . . . , an in increasing order. That is,

θ.time(0) = min
{
ai (0) : i = 1, . . . , n

}
,

θ.time(1) = min
{
ai (k) : ai (k) > θ.time(0), i = 1, . . . , n, k = 0, 1, 2, . . .

}
,

θ.time(2) = min
{
ai (k) : ai (k) > θ.time(1), i = 1, . . . , n, k = 0, 1, 2, . . .

}
,

...

Next we defineθ.N = θ.N(0), θ.N(1), θ.N(2), . . . as a stream over 2Namesby

θ.N(k) = {
Ai ∈ Names: ai (�) = θ.time(k) for some� ∈ {0, 1, 2, . . .} }

.

Intuitively, θ.N(k) is the name-set consisting of the portsA ∈ Namesat which a data item is observed at time point
θ.time(k). Moreover, we defineθ.δ = θ.δ(0), θ.δ(1), θ.δ(2), . . . as a stream over the set of data assignments where
θ.δ(k) represents the observed data flow at time pointθ.time(k). Formally,

θ.δ(k) = [Ai �→ αi (�i) : Ai ∈ θ.N(k)]
where�i ∈ {0, 1, 2, . . .} is theunique index withai (�i) = θ.time(k).

1 The finiteness ofData is irrelevant in most of this paper. In a few examples, we also consider infinite data domains.

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 79

We write θ ′ for the TDS-tuple that is obtained by the first derivatives of the timed data streamsθ |A for A ∈ θ.N(0)

together with the timed data streamsθ |A for A /∈ θ.N(0). For instance, ifθ.N(0) = {A1, A2}, then

θ ′ = (〈α′1, a′1〉, 〈α′2, a′2〉, 〈α3, a3〉, . . . , 〈αn, an〉).
The(i + 1)-st derivative is given byθ(i+1) = (θ(i))′.

Remark 2.1 (Infinite Data Flow at all Ports). The requirement that all timed data streams〈αi , ai 〉 in a TDS-tuple
θ = (〈α1, a1〉, . . . , 〈αn, an〉) are infinite (together with the assumption on time streamsa that limk→∞ a(k) = ∞)
implies that, for any portA ∈ Names, there are infinitely many indicesk with A ∈ θ.N(k). Hence, we assume that
at anyport A there is an infinite data flow. This assumption simplifies the notations but, on the other hand, lacks the
possibility to describe, e.g., deadlock situations where a certain coordination mechanism blocks the data flow at port
A. �

Remark 2.2 (Distinguishing Inputs and Outputs). Timed data streams, as defined here, do not distinguish between
input and output actions; instead, they merely report the “observed” data at a portA, but not whether it is a write
or read operation that occurs atA. However, we can assume a fixed classification of the ports into input or output
ports and — using this classification — derive the information whether an observed data itemd at portA stands for
“readingd” or “writing d”.2 Alternatively, we can deal with a data domain that distinguishes between written and
read values. �

A TDS language (forNames) denotes any subset ofTDSNames. Following the approach of [2] where a
compositional semantics for Reo circuits is provided using coinductive reasoning with timed data streams, we shall use
TDS languages as a formalism to describe the possible data flow of a coordination model. For instance, the language
for a 1-bounded FIFO channel (viewed as a connector that sends values from input portA to output portB) equalsthe
TDS language{

(〈α, a〉, 〈β, b〉) ∈ TDS× TDS| α = β ∧ a < b < a′
}

where, for time streamsa andb, theordering< is given bya < b iff a(k) < b(k) for all k ≥ 1.

3. Constraint automata

Constraint automata use a finite setN of names, e.g.,N = {A1, . . . , An} whereAi stands for thei -th input/output
port of a connector or component. The transitions of constraint automata are labeled with pairs consisting of a non-
empty subsetN of {A1, . . . , An} and a data constraintg. Data constraints can be viewed as a symbolic representation
of setsof data assignments. Formally,data constraintsare propositional formulae built from the atoms “dA = d”,
where data itemd is assigned to portA. Data constraints are given by the following grammar:

g ::= true
∣∣∣ dA = d

∣∣∣ g1 ∨ g2

∣∣∣ ¬g

where A ∈ N is a name andd ∈ Data. In the sequel, we writeDC(N, Data), for a non-empty subsetN of N ,
to denote the set of data constraints using only atoms “dA = d” for A ∈ N. We useDC as an abbreviation for
DC(N , Data). The Boolean connectors∧ (conjunction),⊕ (exclusive or),→ (implication),↔ (equivalence), and so
on, can be derived as usual. We often use derived data constraints such asdA �= d or dA = dB, which stand for the
data constraints¬(dA = d) and

∨
d∈Data

(
(dA = d) ∧ (dB = d)

)
, respectively.

Remark 3.1 (Some Comments on the DataDomains). We assume a global data domainData for all names.
Alternatively, we can assign a data domainDataA to every nameA and require type-consistency in the definition
of data constraints.

The assumption thatData is finite allows us to derive data constraints as “dA = dB” or “ dA ∈ D” or “ (dA, dB) ∈ E”
for D ⊆ DataandE ⊆ Data×Data. However, as long as we do not speak about algorithmic aspects, we can allow for

2 In the context of Reo, some input and output ports can also be internal to a component instance. Any data flow at such an internal portA stands
for the transmission of data inside the corresponding component instance via portA. Thus, observing data itemd at A has the meaning of “writing
d” and “readingd”.

80 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

an infinite data domain as well. In this case, to derive data constraints as above, we enrich the syntax of data constraints
by infinite disjunctions/conjunctions, or simply add “dA = dB”, “ dA ∈ D” etc., asatomic data constraints.�

The symbol|= stands for the obvious satisfaction relation which results from interpreting data constraints over data
assignments (which were introduced inSection 2). For instance,[

A �→ d1, B �→ d2, C �→ d1
] |= dA = dC,[

A �→ d1, B �→ d2, C �→ d1
] �|= dA = dB

if d1 �= d2. With this satisfaction relation, we may identify any data constraintg with the setδ of all data assignments
whereδ |= g holds.

Satisfiability and validity, logical equivalence≡, and logical implication≤ of data constraints are defined as usual,
e.g.:

g1 ≡ g2 iff for all data assignmentsδ: δ |= g1 ⇐⇒ δ |= g2
g1 ≤ g2 iff for all data assignmentsδ: δ |= g1 =⇒ δ |= g2.

3.1. Definition of constraint automata

We now present the definition of constraint automata which can be viewed as acceptors for TDS-tuples (see
Section 3.2) and which can serve as an operational model forchannel-based coordination languages (seeSection 4).

Definition 3.2 (Constraint Automata). A constraint automaton (over the data domainData) is a tuple A =
(Q,Names,−→, Q0) where

• Q is a set of states,
• Namesis a finite set of names,
• −→ is a subset ofQ× 2Names×DC× Q, called the transition relation ofA,
• Q0 ⊆ Q is the set of initial states.

We write q
N,g−→ p instead of(q, N, g, p) ∈−→. Wecall N the name-set andg theguard of the transition. For every

transition

q
N,g−→ p

we requirethat: (1)N �= ∅, and (2)g ∈ DC(N, Data). A is called finite iff Q, −→ and the underlying data domain
Dataare finite. �

We do not generally assume thatA is finite, because modeling connectors that use channels with unbounded
capacity leads to constraint automatawith an infinite state-space. In fact, except for algorithmic aspects (seeSection 6),
assuming thatA is finite is not important. (Even the requirement thatN is finite can be relaxed.)

The intuitive meaning of a constraint automatonA as an operational model for connectors of a coordination
language is similar to the interpretation of labeled transition systems as formal models for reactive systems. The
states represent the configurations of the connector, the transitions, the possible one-step behavior where the meaning
of

q
N,g−−→ p

is that, in configurationq, theports Ai ∈ N have the possibility of performing I/O operations that meet the guardg
and that lead from configurationq to p, while the other portsAj ∈ Names\ N do not perform any I/O operation.

Example 3.3 (1-Bounded FIFO Channel). Fig. 1 shows aconstraint automaton for a 1-bounded FIFO channel with
input portA and output portB. Here, we assume that the data domain consists of two data items 0 and 1. Intuitively,
the initial stateq0 stands for the configuration where the buffer is empty, while the statesp0 and p1 represent the
configurations where the buffer is filled with one of the data items.�

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 81

Fig. 1. Constraint automaton for a 1-bounded FIFO channel.

The intuitive behavior of a constraint automatonA viewed as an acceptor for TDS-tuples is as follows. We assume
that the automaton gets a TDS-tupleθ ∈ TDSNamesas input and tries to find out whetherθ describes a possible data
flow of A viewed as an operational model, in a similar way that a finite automaton (orω-automaton) obtains a finite
(infinite) word as input and tries to find an accepting run. (However, as constraint automata do not have final states,
accepting runs are always infinite.) That is,A starts in one of its initial statesq0. If the current state isq, thenA waits
until data items occur at some of the input/output portsAi ∈ Names. Suppose that data itemd1 occurs atA1 and
dataitem d2 occurs atA2, while (at this moment) no data isobserved at the other portsA3, . . . , An. This triggers the
automaton to check the data constraints of the outgoing{A1, A2}-transitions of stateq to choose a transition

q
{A1,A2},g−−−−−−→ p

where
[
A1 �→ d1, A2 �→ d2

] |= g and move to statep. If there is no{A1, A2}-transition from q whose data constraint
is fulfilled, thenA rejects. In general, if data occur exactly at the input/output portsAi ∈ N, thenonly N-transitions
(but noN′-transitions, whereN′ is a subset or superset ofN) where the data constraint is fulfilled can fire.

Having this behavior in mind, the intuitive meaning of conditions (1) and (2) inDefinition 3.2 is as follows.
Condition (1) stands for the requirement that automata transitions can fire only if some data occurs at one or more
of the portsA1, . . . , An, while condition (2) formalizes that the behavior of an automaton may depend only on its
observed data (and not on data that will occur sometime in the future).

The constraint automaton for the FIFO1 channel (Example 3.3) is deterministic, in the sense that (1) there is a
uniqueinitial state and (2) for every stateq, every non-empty subsetN of Namesand every data assignmentδ, there
is at mostonetransition

q
N,g−→ q′ suchthatδ |= g.

As for ordinary finite orω-automata, deterministic constraint automata have a “unique” behavior (formalized as a
“run” in the next section) for a given input streamθ . However,Definition 3.2allows fornon-deterministicconstraint
automata since, for a fixed stateq, a non-empty subsetN of Names, and a given data-assignmentδ, there may be
several transitions:

q
N,g1−→ q1, q

N,g2−→ q2, . . . with δ |= gi , i = 1, 2,

Later, inRemark 3.9, we see that (as for ordinary finite automata) for any constraint automaton there exists a language-
equivalent deterministic constraint automaton.

Example 3.4 (Non-deterministic Behavior of Constraint Automata). The constraintautomaton inFig. 2 can be
viewed as an operational model for a connector with portsA and B that allows A first to consume an arbitrary
(but finite) number of data items without any effect for the current configuration (represented by the self-loop with
name-set{A} at the initial stateq0), followed by an I/O operation atA that leads to configurationq1 in which A and
B are forced to synchronize (e.g., in a handshaking mechanism via a synchronous channel). Recall that we assume
infinite data flow at all ports (seeRemark 2.1). Here and in the sequel, valid guards are skipped in the pictures for
constraint automata.

82 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

Fig. 2. A non-deterministic constraint automaton.

We now consider the same automaton as an acceptor for TDS pairsθ ∈ TDS{A,B}. The automaton starts in the
initial stateq0 and waits there until data flow atA and/orB is observed. If there is only some data value atA, then
the automaton has the non-deterministic choice to move to stateq1 or to stay in its initial state. IfA is in q0 and data
flow is observed simultaneously atA andB, theautomaton finds no matching transition and rejects. The same holds
for the case where, in stateq0, data flow occurs only atB, and for state q1, when data flowoccurs at only one of the
portsA or B, or different data values are observed atA andB.

As for ordinary non-deterministic finite automata orω-automata, the accepted language — which is formally
defined inSection 3.2— covers all input streams that have at least one‘successful’ (non-rejecting) run in the
automaton. Hence, the existence of a rejecting run doesnot mean that the input stream is not included in the accepted
language. Thus, for the above automaton in a situation where the current state isq0 and data flow is observed atA, the
“correct choice” for an input streamθ = (〈α, a〉, 〈β, b〉) with 〈β, b〉 = 〈α(i), a(i)〉 for somei ≥ 1 requires an oracle
thatknows the indexi in advance. �

3.2. From automata to streams

In this section, we give the formal definition of the accepted TDS language of a constraint automaton which was
informally described in the previous section. In the sequel, we consider constraint automata as acceptors for TDS-tuple
that get an “input-stream”θ ∈ TDSNamesand (try to) generate an infinite run forθ , i.e., a sequenceq0, q1, q2, . . . of
automaton states that can be obtained via transitions whose name-sets and guards matchθ .

We first look at a simple yet representative example. We consider a constraint automatonA = (Q,Names,→, Q0)

that models the behavior of connector or component instance through which data elements flow from input portA to
output portB. Thus, we setNames= {A, B} and we associate withA andB timed data streams〈α, a〉 and〈β, b〉 in
TDS. We define thelanguage accepted byA as follows:

LTDS(A) =
⋃

q∈Q0

LTDS(A, q)

whereLTDS(A, q) denotes the language accepted by the stateq (viewed as thestarting state) of automatonA which
is defined as the set of all TDS-tuples(〈α, a〉, 〈β, b〉) that have an infinite run inA starting in stateq. Intuitively, the
data streamsα andβ in the input streamθ = (〈α, a〉, 〈β, b〉) contain the data elements that are being input and output
by the portsA andB. Thetime streamsa andb contain, for each of them, the time moments at which these input and
output actions take place. The relevance of this timing information is restricted to the particular connector at hand:
what matters is only the relative order of the initial valuesa(0) andb(0), whichdetermines which channel ends will
be active next. Then,(〈α, a〉, 〈β, b〉) ∈ LTDS(A, q) if, at anymomentθ.time(k), both the set of names of active ports
(the name-setθ.N(k)) and the values of their incoming and outgoing data items (given by the data assignmentθ.δ(k))
“match” the name-sets and constraints of the subsequent transitions ofq.

The formal definition ofLTDS(A, q) can be given by means of a recursive equation system.LTDS(A, q) consists
of all TDS pairsθ = (〈α, a〉, 〈β, b〉) such that there exists a transition

q
N,g−−→ q̄

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 83

that satisfies the following condition:

a(0) < b(0)∧ N = {A} ∧ [A �→ α(0)] |= g∧ (〈α′, a′〉, 〈β, b〉) ∈ LTDS(A, q̄),

or b(0) < a(0)∧ N = {B} ∧ [B �→ β(0)] |= g∧ (〈α, a〉, 〈β ′, b′〉) ∈ LTDS(A, q̄),

or a(0) = b(0)∧ N = {A, B} ∧ [A �→ α(0), B �→ β(0)] |= g∧ (〈α′, a′〉, 〈β ′, b′〉) ∈ LTDS(A, q̄).

Although the above definition ofLTDS(A, q) is circular (i.e.,q̄ may be equal toq), it can be formally defined by
means of the greatest-fixed-point of a suitably chosen monotone operator.

Definition 3.5 (Fixed-point Definition of the Accepted TDS language). For a given constraint automatonA =
(Q,Names,−→, Q0), we define theoperator

ΩA :
(

Q → 2TDSNames
)
→

(
Q → 2TDSNames

)

as follows. Let L : Q → 2TDSNames
be a function andq ∈ Q. Then, ΩA(L)(q) consists of all TDS-tuples

θ ∈ TDSNamesfor which there exists a transition

q
N,g−→ q̄

with θ ′ ∈ L(q̄), θ.N(0) = N andθ.δ(0) |= g. We then defineLTDS(A, ·) as the greatest-fixed-point ofΩA. As before,
LTDS(A) denotes the union of the TDS languagesLTDS(A, q0) for theinitial statesq0 ∈ Q0. �

The above fixed-point definition of the accepted TDS language is often useful for providing simple proofs for
language-based properties of automata. However, in some cases, it is easier to reason with the accepted language
characterized by means of the (standard) notion of runs:

Definition 3.6 (Runs in Constraint Automata). Given a TDS-tupleθ ∈ TDSNames, the set of infinite q-runs forθ in
A is the greatest set of streamsq = q0, q1, . . . overQ suchthatq0 = q and there is a transition

q0
N,g−→ q1

with N = θ.N(0), θ.δ(0) |= g andq′ is an infiniteq1-run for θ ′ in A. By a rejectingq-run for θ in A, we mean a
finite sequence of automaton statesq0, . . . , qn suchthat

• q0 = q,

• if n ≥ 1, then there is a transitionq0
N,g−−→ q1 with N = θ.N(0), θ.δ(0) |= g andq1, . . . , qn is a rejectingq1-run

for θ ′,
• if n = 0, then there is no transitionq0

N,g−−→ q1 with N = θ.N(0), θ.δ(0) |= g.

By an accepting run forθ in A we mean an infiniteq0-run forθ whereq0 is an initial state. Similarly, a rejecting run
for θ in A denotes a rejectingq-run forθ in A whereq ∈ Q0. �

It is easy to see that

LTDS(A, q) = {
θ ∈ TDSNames: there exists an infinite q-run forθ in A}

.

Example 3.7 (Accepted TDS language). The language accepted by the constraint automaton for a 1-bounded FIFO
channel (Example 3.3) equalsthe set{

(〈α, a〉, 〈β, b〉) ∈ TDS× TDS| α = β ∧ a < b < a′
}
.

Because this automaton is deterministic, any TDS pair has a unique (accepting or rejecting) run. However, this is
not the case for non-deterministic constraint automata. For instance, the non-deterministic constraint automaton in
Example 3.4whose accepted TDS language is{

(〈α, a〉, 〈α(i), a(i)〉) : 〈α, a〉 ∈ TDS, i ≥ 1
}
,

has infinitely many rejecting runs for any input stream(〈α, a〉, 〈α(i), a(i)〉) (namely, the runsqi+k
0 , for k ≥ 1, where

the automaton stays too long in its initial state) and exactly one accepting run, namelyqi
0, qω

1 . �

84 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

Fig. 3. Example for the powerset construction.

We now show that any non-deterministic constraint automaton can be transformed into a language-equivalent
deterministic constraint automaton. For the construction, we need the following notation:

Notation 3.8 (Data Constraints dc(. . .)). For a constraint automatonA as before,q a state inA, N ⊆ Namesand
P ⊆ Q, we define

dcA(q, N, P) =
∨ {

g : q
N,g−→ p for somep ∈ P

}
.

If A is understood from the context, we simply writedc(q, N, P). We usedc(q, N) as an abbreviation fordc(q, N, Q)

anddc(N, P) for
∨

q∈Q
dc(q, N, P). �

Intuitively, dc(q, N, P) is the weakest data constraint that ensures the existence of anN-transition from stateq to
P. Note thatdc(q, N, P) = false if there is noN-transition from q to a P-state.

Remark 3.9 (Deriving Deterministic Constraint Automata). As for standard finiteautomata, deterministic constraint
automata are as powerful as their non-deterministic variants, if we are interested only in their accepted stream
languages.3 More precisely, given a non-deterministic constraint automatonA = (Q,Names,−→, Q0), one can
use the standard powerset construction to obtain a deterministic constraint automaton

det(A) = (
2Q \ {∅},Names,−→det, Q0

)
where the transition relation−→det is defined as follows.4 For P, P′ ⊆ 2Q with P �= ∅ andP′ �= ∅ andN ⊆ Names:

P
N,g−→det P′ iff g =

∨
p∈P

dc(p, N, P′).

Using similar arguments as in the correctness proof of the powerset construction in ordinary finite automata, it can be
shown thatLTDS(A) = LTDS(det(A)). Fig. 3shows an example.�

3 Nevertheless, as for ordinary finite automata, using non-deterministicautomata has the advantage that they may be exponentially smaller than
their deterministic equivalents.

4 Of course, we can use the same ideas as for standard finite automata and apply an on-the-fly construction of the reachable part ofdet(A). This
may lead to a smaller state-space, but cannot avoid the exponential blowup in the worst-case.

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 85

Fig. 4. Components and connectors.

4. Constraint automata as operational model for Reo circuits

In this section, we show how constraint automata can serve as an operational semantics for the coordination
language Reo [1]. We start with a brief introduction to Reo (Section 4.1) and then define composition operators
for constraint automata that correspond to the Reo connector primitives (Sections 4.2–4.4). Section 4.5illustrates the
compositional construction of the constraint automaton for a given Reo connector through a few examples.

4.1. A Reo primer

Reo is a channel-based exogenous coordination model wherein complex coordinators, calledconnectors, are
compositionally built out of simpler ones. The simplest connectors in Reo are a set ofchannelswith well-defined
behavior supplied by users [1]. The emphasis in Reo is on connectors, their behavior, and their composition, not on
the entities that connect, communicate,and cooperate through them. The behavior of every connector in Reo imposes
a specific coordination pattern on the entities that performnormal I/O operations throughthat connector, without the
knowledge of those entities. This makes Reo a powerful “glue language” f or compositional construction of connectors
to combine component instances into a software system and exogenously orchestrate their mutual interactions.

Reo’s notion of components and connectors is depicted inFig. 4, where component instances are represented as
boxes, channels as straight lines, and connectors are delineated by dashed lines. Each connector in Reo is, in turn,
constructed compositionally out of simpler connectors, which are ultimately composed of primitive channels. For
instance, the connector inFig. 4a may in fact be a flow-regulator (if its three constituent channels are of the right
type, as described in [1]). Fig. 4a would then represent a system composed of twowriter component instances (C1
and C3), plus areader component instance (C2), glued together by our flow-regulator connector. Every component
instance performs its I/O operations following its own timing and logic, independently of the others. None of these
component instances is aware of the existence of the others, the specific connector used to glue it to the rest, or even
of its own role in the composite system. Nevertheless, the protocol imposed by our flow-regulator glue code (see [1]
and [2]) ensures that a data item passes from C1 to C2 only whenever C3 writes a data item (whose actual value is
ignored): the “tokens” written by C3 thus serve as cues to regulate the flow of data items from C1 to C2. The behavior
of the connector, in turn, is independent of the components that it connects: without their knowledge, it imposes a
coordination pattern among C1, C2, and C3 that regulates the precise timing and/or the volume of the data items that
pass from C1 to C2, according to the timing and/or the volume of tokens produced by C3. The other connectors in
Fig. 4 implement more complex coordination patterns.

Channels.Reo defines a number of operations for components to (dynamically) compose, connect to, and perform
I/O through connectors. Atomic connectors arechannels. Thenotion of channel in Reo is far more general than its
common interpretation. A channel is a primitive communication medium with exactly two ends, each with its own
uniqueidentity. There are two types of channel ends:

• sourceend through which data enters, and
• sinkend through which data leaves a channel.

A channel must support a certain set of primitive operations, such as I/O, on its ends; beyond that, Reo places
no restriction on the behavior of a channel. This allowsan open-ended set of different channel types to be used
simultaneously together in Reo, each with its own policy for synchronization, buffering, ordering, computation, data
retention/loss, etc.

86 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

Fig. 5. Nodes in Reo.

Connectors.A connector is a set of channel ends organized in a graph ofnodesand edges such that:

• zero or more channel ends coincide on every node,
• every channel end coincides on exactly one node,
• there is an edge between two (not necessarily distinct) nodes iff there is a channel, one end of which coincides on

each of those nodes.

A node is an important concept in Reo. Not to be confused with a location or a component, a node is a logical
construct representing the fundamental topological property of the coincidence of a set of channel ends, which has
specific implications on the flow of data among and through those channel ends.

The set of channel ends coincident on a nodeA is disjointly partitioned into the setsSrc(A) andSnk(A), denoting
the sets of source and sink channel ends that coincide onA, respectively. A nodeA is called

• a source nodeif Src(A) �= ∅ ∧ Snk(A) = ∅,
• a sink nodeif Src(A) = ∅ ∧ Snk(A) �= ∅,
• a mixed nodeif Src(A) �= ∅ ∧ Snk(A) �= ∅.

Fig. 5a and b show sink nodes with, respectively, two and three coincident channel ends.Fig. 5c and d show source
nodes with, respectively, two and three coincident channel ends.Fig. 5e shows a mixed node where three sink and two
source channel ends coincide.

Reo provides operations that enable components to connect to and perform I/O on source and sink nodes only;
components cannot connect to, read from, or write to mixed nodes. At most, one component can be connected to a
(source or sink) node at a time. A component can write data items to a source node to which it is connected. The write
operation succeeds only if all (source) channel ends coincident on the node accept the data item, in which case the
data item is transparently written to every sourceend coincident on the node. A source node thus acts as areplicator.
A component can obtain data items from a sink node to which it is connected through destructive (take) and non-
destructive (read) input operations. A take operation succeedsonly if at least one of the (sink) channel ends coincident
on the node offers a suitable data item; if more than one coincident channel end offers suitable data items, one is
selected non-deterministically. A sink node thus acts as a non-deterministicmerger. A mixed node is a self-contained
“pumping station” that combines the behavior of a sink node (merger) and a source node (replicator) in an atomic
iteration of an endless loop: in every iteration, a mixed node non-deterministically selects and takes a suitable data
item offered by one of its coincident sink channel ends and replicates it into all of its coincident source channel ends.
A data item is suitable for selection in an iteration only if i t can be accepted by all source channel ends that coincide
on the mixed node.

It follows that every channel represents a (simple) connector with two nodes. More complex connectors are
constructed in Reo out of simpler ones using itsjoin operation. Joining two nodes destroys both nodes and produces
a new node on which all of their coincident channel ends coincide. This single operation allows construction of
arbitrarily complex connectors involving any combination of channels picked from an open-ended assortment of user-
defined channel types. The semantics of a connector is defined as a composition of the semantics of its (1) constituent
channels, and (2) nodes. The semantics of each channel is defined by the user who provides it. Reo defines the
semantics of its three types of nodes, mentioned above.

Fig. 6a and b show two Reo connectors. We consider these connectors in more detail inExamples 4.6and4.7,
respectively, inSection 4.3. Here, we use them to introduce our visual syntax for presenting Reo connector graphs
and some frequently useful channel types. The enclosing thick boxes in these figures representhiding: the topologies
of the nodes (and their edges) inside the box are hidden and cannot be modified, yielding a connector with a number
of input/outputports, represented as nodes on the border of the bounding box, which can be used by other entities
outside the box to interact with and through the connector.

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 87

Fig. 6. Exclusive router and shift-lossy FIFO1.

The simplest channels used in these connectors are synchronous (Sync) channels, represented as simple solid
arrows. A Sync channel has a source and a sink end, and no buffer. It accepts a data item through its source end iff it
can simultaneously dispense it through its sink. A lossy synchronous (LossySync) channel is similar to a Sync channel,
except that it always accepts all data items through its source end. If it is possible for it to simultaneously dispense the
data item through its sink (e.g., there is a take operation depending on its sink), the channel transfers the data item;
otherwise, the data item is lost. LossySync channels are depicted as dashed arrows, e.g., inFig. 6a. The edge BD in
Fig. 6b represents an asynchronous channel with the bounded capacity of 1 (FIFO1), with the small box in the middle
of the arrow representing its buffer. This type of channel can have an initially empty buffer or, as inFig. 6b, contain
an initial data value (in this case, the “o” in the boxrepresenting its buffer). Analogously, the edge AF inFig. 6b
represents an asynchronous FIFO channel with the bounded capacity of 2 (FIFO2), with its obvious semantics.

An example of the more exotic channels permitted in Reo is the synchronous drain channel (SyncDrain), whose
visual symbol appears as the edges XZ and AC inFig. 6a andb, respectively. ASyncDrainchannel has two source
ends. Because it has no sink end, no data value can ever beobtained from this channel. It accepts a data item through
one of its ends iff a data item is also available for it to simultaneously accept through its other end as well. All data
accepted by this channel are lost. A close kin ofSyncDrainis the asynchronous drain (AsyncDrain) channel (not
shown inFig. 6): it has two source ends through which it accepts and loses data items, but never simultaneously.
SyncSpoutandAsyncSpoutare dual to the drain channel types, as they have two sink ends.

In this paper, as in [2], we do not consider the dynamic behavior of components in creating and composing
connectors. Our focus is on the Reo circuits, built from basic connectors (channels and merger) via join and hide
operations, without considering the split-operation, which may abolish the effectof previous join-operations and can
be followed by further join-operations (yielding a network of Reo circuits).

We now explain how constraint automata can be used to model the possible data flow of a given Reo circuit. The
nodes of a Reo circuit play the role of the ports in the constraint automata.

The operational semantics presented in [1] describes the configurations in which a set of I/O operations for
certain nodes can take place and which successor configurations can be reached. Hence, we can reformulate the
semantics presented in [1] in terms of a constraint automaton whose states are the configurations and whose
transitions correspond to the possible I/O operations. Instead, we follow another approach in this paper and provide a
compositionalsemantics for Reo circuits. Thus, we need constraintautomata for each of the basic channel connectors
and automata operations to mimic the behavior of the Reo operations for join and hiding.

4.2. Constraint automata for the basic channels

Fig. 7 shows the constraint automata for some of the standard basic channel types: synchronous channels with
sourceA and sinkB (or vice versa), (a)synchronous drain with the sourcesA, B, (a)synchronous spout with the sinks
A, B, and lossy synchronous channels with sourceA and sinkB. In everycase, one single state is sufficient. Moreover,
the automata are deterministic.

A constraint automaton for the FIFO1 channel was shown inExample 3.3. For FIFO channels with capacity≥ 2,
similar constraint automata can be used. However, the number of states grows exponentially with the capacity. For

88 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

Fig. 7. Deterministic constraint automata for some basic connectors.

instance, for a FIFO2 channel with the data domain{0, 1}, we need seven states representing the configurations where
the buffer is empty or the buffer contains one element (0 or 1) or is full (00, 01, 10 or 11). For unbounded FIFO
channels, we even get constraint automata with an infinite state-space.

Of course, for compositional reasoning, we must assume that other user-defined basic channel types are also
specified by appropriate constraint automata.

4.3. Join: Merge and product

As constraint automata do not distinguish between input ports (source nodes in Reo) and output ports (sink nodes
in Reo), we cannot expect a general join operator on constraint automata that covers both the replicator semantics of
joining source nodes and the merge semantics of joining sink nodes.

Since we restrict our attention to (static) Reo circuits, we may assume that a given Reo circuit is built out of some
basic channels via the join and hiding operations where the join operations are performed in an order such that any
mixed node of the final circuit arises through first joining certain sink nodes and then joining the resulting node with
certain source nodes. On the automata level, the join of a source node with another (sink, source or mixed) node will
be realized by aproductconstruction, while joining sink nodes will be modeled with the help of amerger.

We first consider the join operation for node pairs〈B, B̄〉 where, in each pair, at most one of the nodes is a sink or
mixed node (while the other is a source node). In this case, the effect of join is that all data flow at the nodesB andB̄
agree.

In the sequel, let us assume that two Reo circuits with node-setsN1 andN2 are given for which we want to
perform a join operation for node-pairs〈Bi , B̄i 〉 ∈ N1 ×N2, i = 1, . . . , k, where, for anyi , at least one of the nodes
Bi or B̄i is a source node. We may assume that the constraint automataA1 andA2 for both circuits have already
been constructed. To simplify the notation, we assume that the names of the nodes are renamed in such a way that
B1 = B̄1, . . . , Bk = B̄k and that the two circuits/automata do not contain other common nodes. That is, we have
to join all common nodesB ∈ N1 ∩ N2. On the language level, join (under the above conditions) can be viewed
as an analogue to the natural join (denoted��) for relational data bases. For instance, given two TDS languages
L1 = L1(A, B) andL2 = L2(B, C),5 the TDS language(L1 �� L2)(A, B, C) is given by

L1 �� L2 =
{
(〈α, a〉, 〈β, b〉, 〈γ, c〉) : (〈α, a〉, 〈β, b〉) ∈ L1 and(〈β, b〉, 〈γ, c〉) ∈ L2

}
.

In a similar way, we may define the natural join for TDS languages with other name-sets. Thus, join as an operator for
TDS languages can be regarded as a generalization of intersection. It is realized on the automata level by a product
construction.

Definition 4.1 (Product automaton). The product automaton of the two constraint automataA1 = (Q1,Names1,
−→1, Q0,1) andA2 = (Q2,Names2,−→2, Q0,2) is:

A1 �� A2 = (Q1 × Q2,Names1 ∪Names2,−→, Q0,1 × Q0,2)

5 ThenotationL(A, B) suggests thatL is a TDS language for the name-setN = {A, B}.

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 89

where−→ is defined by the following rules:

q1
N1,g1−→1 p1, q2

N2,g2−→2 p2, N1 ∩Names2 = N2 ∩Names1

〈q1, q2〉 N1∪N2,g1∧g2−−−−−−−−−→ 〈p1, p2〉
and

q1
N,g−→1 p1, N ∩Names2 = ∅
〈q1, q2〉 N,g−→ 〈p1, q2〉

and the latter’s symmetric rule.�

The following lemma shows the correctness of the product construction, in the sense that the product automaton
realizes the (natural) join of the TDS languages of its arguments:

Lemma 4.2 (Correctness of the Product). LetA1 andA2 be two constraint automata as above. Then:

(a) LTDS(A1 �� A2) = LTDS(A1) �� LTDS(A2),

(b) if Names1 = Names2 thenLTDS(A1 �� A2) = LTDS(A1) ∩ LTDS(A2). �

Proof. (b) follows by (a). We provide the proof for (a). In the sequel, letNames= Names1 ∪Names2.

“⊇”: We show that, for all statesq1 ∈ Q1, q2 ∈ Q2, the functionQ1 × Q2 → 2TDSNames
, 〈q1, q2〉 �→ L(q1, q2)

where

L(q1, q2) = LTDS(A1, q1) �� LTDS(A2, q2)

is a post-fixed-point ofΩA1��A2 (as defined inDefinition 3.5), i.e.,

L(q1, q2) ⊆ ΩA1��A2(L)(q1, q2).

Recall that the greatest-fixed-point ofa monotonic operator in a lattice is the greatest post-fixed-point; see, e.g., [7].
Let θ ∈ L(q1, q2), that is,θ is the “join” of two timed data streamsθi ∈ LTDS(Ai , qi), i = 1, 2, with θ1|A = θ2|A

for all A ∈ N1 ∩N2. (By the “join” of θ1 andθ2, we mean the unique TDS-tuple for the name-setN with θ |A = θi |A
if A ∈ Ni .)

• If θ.time(0) = θ1.time(0) < θ2.time(0), then thereexists a transitionq1
N,g−−→1 p1 in A1 suchthat

N = θ.N(0) = θ1.N(0), θ.δ(0) = θ1.δ(0) |= g and θ ′1 ∈ LTDS(A1, p1).

Hence,N ⊆ N1 \N2 and the above transition can be lifted to a transition

〈q1, q2〉 N,g−−→ 〈p1, q2〉.
Moreover, we haveθ ′ = (θ ′1, θ2) ∈ L(p1, q2), andhence,θ ∈ ΩA1��A2(L)(q1, q2).

• The caseθ.time(0) = θ2.time(0) < θ1.time(0) is symmetric.

• If θ.time(0) = θ1.time(0) = θ2.time(0), then there exist transitionsqi
Ni ,gi−−−→i pi in Ai , i = 1, 2, such that

Ni = θi .N(0), θi .δ(0) |= gi and θ ′i ∈ LTDS(Ai , pi).

Hence, the above transitions can be lifted to a transition〈q1, q2〉 N,g−−→ 〈p1, p2〉whereN = N1∪N2 andg = g1∧g2.
We then have:

N = θ.N(0), θ.δ(0) |= g and θ ′ = (θ ′1, θ
′
2) ∈ L(p1, p2).

We conclude thatθ ∈ ΩA1��A2(L)(q1, q2).

90 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

Fig. 8. The merger.

“⊆”: If θ ∈ LTDS(A1 �� A2, 〈q1, q2〉), thenθi = (θ |A)A∈Ni ∈ LTDS(Ai , qi) because, for any accepting run

〈q0,1, q0,2〉, 〈q1,1, q1,2〉, 〈q2,1, q2,2〉, . . .
for θ in A1 �� A2, the projection to theAi states yields an accepting run forθi in Ai when the statesqj+1,i are
removed, wherej is any index such that, for the taken transition

〈qj ,1, qj ,2〉 Nj ,gj−−−−→ 〈qj+1,i , qj+1,2〉
the name-setNj has an empty intersection withNi . �

It remains to explain how the join of two sink nodes, sayA andB, is realized with constraint automata. To capture
the merge semantics of the resulting (new) nodeC, we use amerger, as shown inFig. 8, which we then join (via
the product operator��) with the constraint automata that containA andB, respectively. We can then again apply the
product construction to join the resulting constraint automaton (that containsC in its name-set) withanother constraint
automaton that containsC as a source node. In a similar way, a merger can be defined as a connector with three or
more “input” nodes.

Examples for realizing join via merge and product appear inSection 4.5.

4.4. Hiding

The effect of hiding a node that is internal to some connector in a Reo circuit is that data flow at that node is no
longer observable from outside. To obtain this effect for TDS languages, the hiding of a name (node)C in a TDS
languageL(C, A1, . . . , An) is realized by existential quantification over theC-component; e.g., forL = L(C, A, B):

∃C[L] = {
(〈α, a〉, 〈β, b〉) : ∃ TDS 〈γ, c〉 with (〈γ, c〉, 〈α, a〉, 〈β, b〉) ∈ L

}
.

In constraint automata, the hiding operator removes all information aboutC.

Definition 4.3 (Hiding on Constraint Automata). Let A = (Q,Names,−→, Q0) be a constraint automaton and
C ∈ Names. The constraint automaton

∃C[A] = (
Q,Names\ {C},−→C, Q0,C

)
is defined as follows. Let�∗ be the (transition) relation such thatq �∗ p iff there exists a finite path

q
{C},g1−→ q1

{C},g2−→ q2
{C},g3−→ · · · {C},gn−→ qn

whereqn = p andg1, . . . , gn are satisfiable (i.e.,gi �≡ false). (Note that thegi s depend only onC.) The setQ0,C of
initial states is

Q0,C = Q0 ∪
{

p ∈ Q : q0�∗ p for someq0 ∈ Q0
}
.

The transition relation−→C is given by:

q �∗ p, p
N,g−→ r, N̄ = N \ {C} �= ∅, ḡ = ∃C[g]

q
N̄,ḡ−→C r

where∃C[g] = ∨
d∈Data g[dC/d]. Here, we writeg[dC/d] to denote the data constraint obtained by syntactically

replacing all occurrences ofdC in g with d. More precisely, we replace the atomsdC = d′ with true if d = d′ and
with false if d �= d′. �

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 91

Fig. 9. Hiding a node of the merger.

For instance, ifAmergerdenotes the merger automaton inFig. 8, then∃C
[Amerger

]
is the same as the automaton for

the asynchronous drain shown inFig. 7.
Unfortunately, the equalityLTDS(∃C[A]) = ∃C[LTDS(A)] does not hold in general (only the “⊆” relation, as

shown in part (a) ofLemma 4.4, holds). For instance, hidingB in the merger automaton inFig. 8yields a constraint
automaton shown inFig. 9, with a single state, one{A, C}-transition, and one{C}-transition.

Hence, any TDS pair(〈α, a〉, 〈γ, c〉) with α = γ anda = c belongs to the accepted language of∃B[Amerger]. On
the other hand, none of the pairs(〈α, a〉, 〈γ, c〉) with a = c is in the language∃B[LTDS(Amerger)] because, in every
TDS-tuple accepted byAmerger, it infinitely often happens that data simultaneously occur onB andC but not A. To
remedy the situation in general, we need to addfairnessconditions that declare whichautomata transitions must be
taken infinitely often (similar to B¨uchi or otherω-automata). Instead, here we show the correctness of hiding under
certain conditions:

Lemma 4.4 (Correctnessof Hiding). (a) ∃C
[LTDS(A)

] ⊆ LTDS(∃C[A]).
(b) If A is finite and does not contain a cycle q0

N1,g1−−−→ q1
N2,g2−−−→ . . .

Nk,gk−−−→ qk = q0 where k≥ 1, g1, . . . , gk are
satisfiable and C/∈ N1 ∪ · · · ∪ Nk, then

∃C
[LTDS(A)

] = LTDS(∃C[A]).
In part (b), we may also assume an infinite constraint automaton without infinite paths built by transitions that do

not containC in their name-set and that have satisfiable guards.

Proof. Part(a). With arguments that are similar to those used in the proof ofLemma 4.2, wecan show that the function

L : Q → 2TDSNames
whereL(q) = ∃C

[LTDS(A, q)
]

is a post-fixed-point of the operatorΩ∃C[A]. From this, weconclude that, for any stateq, ∃C
[LTDS(A, q)

] ⊆
LTDS(∃C[A], q).

Part(b). Letθ ∈ TDSN \{C} be a TDS-tuple inLTDS(∃C[A]) and letq = q0, q1, q2, . . . be an infinite run forθ in
∃C[A] with q0 ∈ Q0,C. By our assumption, there are infinitely many transitions taken in that run which are obtained
from transitions inA that containC in their name-set.

We now extendq by inserting states and define a timed data stream〈γ, c〉 such that the extended run is an infinite
run for the TDS-tuple(θ, 〈γ, c〉) ∈ TDSN in A.

• As q0 ∈ Q0,C, we haveq′0�∗ q0 for someq′0 ∈ Q0. Hence, there exists a sequence ofC-transitions with satisfiable
data constraints inA that leads fromq′0 to q0, say

q′0
{C},g1−−−−→ p1

{C},g2−−−−→ · · · {C},gn−−−−→ pn = q0.

Then, we replaceq by q0 = q′0, p1, . . . , pn, q1, q2, We choose real valuesc(k) with

0 < c(0) < c(1) < · · · < c(n− 1) < θ.time(0)

and data valuesγ (k) suchthat[C �→ γ (k)] |= gk, k = 0, 1, . . . , n− 1.
• We now assume thatq j ∈ Qω andγ (0), . . . , γ (�) ∈ Data, an increasing sequencec(0), . . . , c(�) of time points

are defined (such thatc(�) < θ.time(j)). We then consider the transition

qj
N̄,h̄−−→C qj+1

which was taken in thegiven runq for θ in ∃C[A]. That is,we have

θ.N(j) = N̄, θ.δ(j) |= ḡ

92 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

Fig. 10. Composition of two FIFO1 channels.

and there are transitions

qj
{C},h1−−−−→ r1

{C},h2−−−−→ · · · {C},hm−−−−→ rm
N,h−−→ qj+1

in A whereh1, . . . , hm �≡ false and N̄ = N \ {C}, h̄ = ∃C[h]. Hence, we may choose real numbersc(k) for
k = �+ 1, . . . , �+m+ 1, with

c(�) < c(�+ 1) < · · · < c(�+m+ 1) < θ.time(j + 1)

and data valuesγ (k) ∈ Datawith [C �→ γ (�+ i)] |= hi andδ |= h, whereδ is a data assignment for the name-set
N that agrees withθ.δ(j) for all A ∈ N̄ and possibly contains a suitable data assignment forC.

In this way, weobtain an infinite runq for (θ, 〈γ, c〉) in A. (Here, it is important to notice that, by our assumption,γ

andc are infinite.) Hence,(θ, 〈γ, c〉) ∈ LTDS(A) and thusθ ∈ ∃C
[LTDS(A)

]
. �

4.5. Examples for the construction of constraint automata via join and hiding

We now provide some simple examples to demonstrate howthe constraint automaton of a Reo circuit can be
obtained in a compositional way.

Example 4.5 (Composition of Two 1-Bounded FIFO Channels). Fig. 10 shows how a 2-bounded FIFO channel can
be obtained from two 1-bounded FIFO channelsAFIFO1(A, C) andAFIFO1(C, B) via product and hiding:

AFIFO2(A, B) = ∃C
[AFIFO1(A, C) �� AFIFO1(C, B)

]
.

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 93

Fig. 11. Exclusive router obtained through composition of basic Reo channels.

For simplicity, we deal with a singleton data domainData = {d} which allows us to skip the data constraints of the
transitions. Note that the state〈q1, p2〉 is not reachable inAFIFO2(A, B). The reason is that〈q1, p2〉 is entered through
C when the data element moves from the buffer of the first channel to that of the second. As we abstract away from
the activities ofC, state 〈q1, p2〉 can be skipped inAFIFO2(A, B) (or, alternatively, it canbe identified with the state
〈p1, q2〉). �

Example 4.6 (Exclusive Router). Fig. 6a shows the Reonetwork for anexclusive routerconnector. A data item
arriving at the input port F flows through to only one of the output ports B or E, depending on which one is ready to
consume it. If both output ports are prepared to consume a data item, then one is selected non-deterministically. The
input data is never replicated to more than one of the output ports.6

Fig. 6a shows thatthe exclusive router isobtained by composing twoLossySyncchannels (XM, XN), aSyncDrain
(XZ) channel, a merger (inherent in the mixed node of Z), and fiveSyncchannels (FX, MW, NU, ME, NB):

AXRouter(F, E, B) = ∃M, N,U, W, X, Z
[ALossySync(X, M) �� ALossySync(X, N) ��

ASyncDrain(X, Z) �� Amerger(U, W, Z) �� ASync(F, X) ��
ASync(N,U) �� ASync(M, W) �� ASync(M, E) �� ASync(N, B)

]
.

Fig. 11 shows how the constraint automaton for our exclusive router is obtained as the product of the constraint
automata of its constituent channels followed by hiding of its internal transitions.�

Example 4.7 (Shift-lossy FIFO1 Channel). Fig. 6b shows a Reonetwork for a connector that behaves as a lossy
FIFO1 channel with a shift loss-policy. Thischannel is called shift-lossy FIFO1 (ShiftFIFO1). It behaves as a normal

6 The behavior of this connector is the counterpart of the primitive non-deterministic selection inherent in the merge that a Reo (sink or mixed)
node performs on its multiple input, modeled by the merger inFig. 7.

94 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

Fig. 12. Shift-lossy FIFO1 channel obtained through composition of other Reo channels.

FIFO1 channel, except that, if its buffer is full, then the arrival of a new data item deletes the existing data item in
its buffer, making room for thenew arrival. As such, this channel implements a “shift loss-policy” losing the oldest
contents in its buffer in favor of the latest arrivals. This is in contrast to the behavior of anoverflow-lossy FIFO1
channel, whose “overflow loss-policy” loses the new arrivals when its buffer is full.

The connector inFig. 6b is composed of an exclusive router, XRouter(F,E,B) (shown inFig. 6a and explained in
Example 4.6), a merger (inherent in the mixed node of C), aSyncDrain(AC), an initially full FIFO1 channel (BD),
and an initially empty FIFO2 channel (AF):7

AShiftFIFO1(A, B) = ∃C, D, E, F
[AXRouter(F, E, B) �� Amerger(E, D, C) ��

ASyncDrain(A, C) �� AFIFO1(B, D) �� AFIFO2(A, F)
]
.

Fig. 12 shows how the constraint automaton for ourShiftFIFO1 channel is obtained from the constraint automata of
its constituents through product and hiding.�

4.6. Parameterized constraint automata

In the previous examples, we concentrated on data-abstract coordination mechanisms. In many applications, the
data-abstract view is too coarse, e.g., for reasoning aboutthe functionality of the components that are glued together.
Because data dependences often lead to rather complex constraint automata, we propose a parameterized notation that
can simplify the picture of constraint automata with non-trivial guards. For instance, the 1-bounded FIFO channel
with arbitrary data domain can be depicted as inFig. 13.

7 The assumption that the FIFO1 channel BD is full, while the FIFO channel AF is initially empty — as depicted inFig. 6b — yields an initially
empty shift-lossy channel.

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 95

Fig. 13. Parameterized constraint automaton for a 1-bounded FIFO channel.

The automaton inFig. 13 is not a constraint automaton, but an intuitive symbolic representation of the constraint
automaton with state-spaceQ = {q0} ∪ {q(d) : d ∈ Data}, Q0 = {q0}, Names= {A, B} and the transitions

q0
{A},dA=d−−−−−−→ q(d), q(d)

{B},dB=d−−−−−−→ q0

for any data item d ∈ Data. Formally, to reason about data-dependent coordination mechanisms, we define a
parameterized constraint automatonas a tuple

P = (Loc, Var, v,Names,�, Loc0, init)

where

• Loc is a set of locations,
• Loc0 ⊆ Loc is a set of initial locations,
• Var is a set of variables,
• v : Loc→ 2Var assigns to any location� a (possibly empty) set of variables,
• init is a function that assigns to any initial location� ∈ Loc0 a condition for the variables.

v(�) can be viewed as the parameter list of location�. For instance, inFig. 13 we useq(x) to denote thatq is a
location with parameter listv(q) = {x}, while q0 is a location with an empty parameter list. The initial condition for
q0 is omitted which denotes thatinit(q0) = true.

The transition relation� of a parameterized constraint automaton is a (finite) set of tuples(�, N, h, X, �′), written
in the form

�
N,h� X �̄.

Here,� and�̄ are locations andN is a non-empty name-set.h is a (parameterized) data constraint forN, built out of
atoms of the form “dA = expr”. The expressionexpr is built from constantsd ∈ Data, the symbolsdB for B ∈ N,
variablesx ∈ v(�) and operators for the chosen data domain, e.g., Boolean operator∨, ∧, etc. forData= {0, 1} and
arithmetic operators+, ∗, etc. forData= N. The subscriptX of the above transition stands for a function that assigns
to each variablēx ∈ v(�̄) \ v(�) and possibly to some of the variables inv(�̄) ∩ v(�) an expression that is built out
of the symbolsdA for nodesA ∈ N, constantsd ∈ Data, variablesx ∈ v(�), andoperators onData. For instance,
if Data = N, the intuitive meaning ofX(x̄) = dA + x is the assignment “̄x := dA + x”. For another example, if
Data= {0, 1}, then we deal with assignments like “x̄ := ¬dA ∧ x”.

We use parameterized constraint automata as asymbolic representationof (non-parameterized) constraint
automata. The states of the latter are obtained by augmenting the locations with values for the variables of their
parameterlist. Formally, givenP as above, the induced constraint automatonAP = (Q,Names,−→, Q0) is defined
as follows. The state-spaceQ of AP consists of the pairs〈�, η〉, where� ∈ Loc is a location andη is a variable
evaluation for the variablesx ∈ v(�), i.e., η is a function fromv(�) to Data. The states〈�, η〉 with � ∈ Loc0 and
η |= init(�) are the initial states ofAP . Thetransition relation−→ is derived from� by the following rule:

�
N,h� X �̄, η̄ = η[X, δ]|v(�̄), g = h[x/η(x) : x ∈ v(�)] ∧ g[δ]

〈�, η〉 N,g−→ 〈�̄, η̄〉

96 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

Fig. 14. Reo circuit for Fibonacci series.

Fig. 15. Parameterized constraint automaton for Sum.

whereδ = [A �→ δA : A ∈ NX] is an arbitrary data assignment forNX , the set of names A ∈ N whereX contains
an assignment “̄x := . . . dA . . .” (in which thesymbol dA occurs in the expression on the right) andg[δ] is the data
constraint

g[δ] =
∧

A∈NX

(dA = δA).

The constructh[x/η(x) : x ∈ v(�)] stands for the data constraint obtained fromh by syntactically replacing variable
x ∈ v(�) with the valueη(x) ∈ Data. The constructη[X, δ] denotes the evaluation for the variables inv(�)∪ v(�̄) that
is obtained fromη by executing the assignments ofX. For instance,

η[x̄ := dA︸ ︷︷ ︸
X

, A �→ d︸ ︷︷ ︸
δ

](y) =
{
η(y) : if y ∈ v(�) \ {x̄}
d : if y = x̄.

The constructη[X, δ]|v(�̄) denotes the restriction of η[X, δ] to the variables inv(�̄).
Note that constraint automata are special instances of their parameterizedversion with empty parameter lists for

all their locations. (In this case, there is no difference between locations and states, and we haveAA = A.)
The product construction (Definition 4.1) can easily be modified for parameterized constraint automataP1 and

P2 with disjoint variable sets such that the unfolding of the productP1 �� P2 into a (non-parameterized) constraint
automatonAP1��P2 generates the same TDS language as the productAP1 �� AP2 of the constraintautomata forP1
andP2.

Example 4.8 (A Component connector for the Fibonacci numbers). We consider the Reo circuit inFig. 14, which
uses a component, Sum, in the context of certain channelsto generate the stream of numbers in the Fibonacci series.
Sum has two input portsA andB and one output portC through which it produces the sum of its input values.

Fig. 15shows a parameterized constraint automatonPSumthat can be viewed as an interface specification for Sum.
(Here, we assume thatData= N.)

JoiningPSumwith the constraint automaton for the Reo circuit inFig. 14“around” Sum (which can be obtained in
a compositional way, as in the previous examples), we obtain the parameterized constraint automatonPFib in Fig. 16.

We may nowunfoldPFib into a (non-parameterized) constraint automaton, and hide the namesA andB to obtain
an infinite-state constraint automatonA (with the singleton name-set{C}) whose accepted TDS-language is the set of
timed data streams〈γ, c〉, where the data streamγ stands for the infinite sequence of Fibonacci numbers andc is an
arbitrary time stream. �

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 97

Fig. 16. Parameterized constraint automaton for Fibonacci series.

Fig. 17. Transformation of deterministic and non-deterministic constraint automata.

4.7. Remarks on the constraint automata semantics for Reo

We conclude our presentation of the constraint automata semantics for Reo with a few remarks.

Deterministic constraint automata.The product of two deterministic constraint automata is always a deterministic
automaton, while hiding can turn a deterministic constraint automaton into a non-deterministic one. In particular,
the constraint automaton for a Reo circuit without hidden nodes is always deterministic, provided that the user-
defined basic channels are specified by deterministic constraint automata. (Recall that the automaton for the standard
basic channels, such as synchronous channels, drains, spouts and FIFO channels, are deterministic.) For modeling
circuits with hidden nodes, the hiding operator may yield a non-deterministic automaton, as illustrated by the left
transformation inFig. 17.

However, one canderive from∃C[A] a language-equivalent deterministic automatondet(∃C[A]); seeRemark 3.9.
Intuitively, the states ofdet(∃C[A]) stand forsetsof configurations in the given Reo circuit, as depicted by the right
transformation inFig. 17.

Composition operators in related models.Our product operator relies on the standard construction for building finite
automata for intersection and has similarities with composition operators in similar models, e.g., TCSP-like parallel
composition of labeled transition systems with synchronization over common actions and interleaving for the other
actions [4] or theone-to-many composition of port automata [11]. On the other hand, the hiding operator for timed
port automata is totally different from our construction.The former does not change the structure of the automata,
but makes certain output ports invisible. In contrast, our construction removes all information about the hidden
names (similar to thedeletion of ε-transitions in ordinary non-deterministic finite automata). In interface automata,
composition is complex, because it requires a compatibility check first. Two interface automata are compatible if
errors can be avoided.

Other semantics for Reo.Essentially, our compositional constraint automata semantics of Reo in this paper is
consistent with the operational semantics presented in [1] (and its derived constraint automata semantics), and with
the timed data stream semantics of [2], in the sense that the diagram inFig. 18commutes.

Because the semantics that we consider in this paper is a simplification of the full operational semantics of Reo, e.g.,
as informally described in [1], the left-hand side of the diagram inFig. 18commutes only modulo certain details. The

98 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

Fig. 18. Relationships amongvarious semantics for Reo.

primary simplifications involve (1) the context-sensitive behavior of certain channels (most prominently, that of our
lossysynchronous channel), and (2) the fairness of merge. The specification of the behavior of the lossy synchronous
channel requires itnot to lose the data item written to its source end, if this data item can be consumed at its sink end.
This type of context-sensitive behavior can be dealt with inconstraint automata by introducing the notion of priorities
for their transitions. The details of this scheme are beyond the scope of this paper.

Strictly speaking, Reo itself does not require fairness: Reo is oblivious to (the fairness or other aspects of) the
behavior of the channels that it composes, and its internal consistency does not depend on assuming that the non-
deterministic merge inherent in the semantics of its sink and mixed nodes is fair. Nevertheless, the expressive power
of channel composition in Reo and the correspondence of the formal semantics of Reo connector circuits with the
intuitive interpretation of their behavior break down if this non-deterministic merge is not assumed to be fair. We do
not address a formal treatment of fairness in our constraintautomata semantics for Reo in this paper because, on the
one hand, the fairness assumption can be formally incorporated in our basic model analogously to the way it is treated
in other models. On the other hand, while it involves no real novelty, the additional formal complexity introduced by
fairnessbecomes somewhat distracting.

The right-hand side of the diagram inFig. 18commutes in the sense that, for any Reo circuitR, we have

LTDS(AR) = L[AR02]
TDS (R) (∗)

whereAR denotes the constraint automaton forR obtained by the compositional semantics presented in this paper
and R �→ L[AR02]

TDS (R) denotes the timed-data-stream semantics in [2]. The argument uses the greatest-fixed-point
definition of the accepted TDS language, and requires showing that the equation (∗) holds for the basic channels, and
that

LTDS(A1 �� A2) = LTDS(A1) ��[AR02] LTDS(A2)

where��[AR02] is the semantic join operator used in [2]. The argument is the same for hiding.

5. Bisimulation and simulation

As for standard labeled transition systems, branching time relations like bisimulation and simulation `a la Milner
and Park (see e.g., [21]) can be defined for constraint automata. In the context of Reo, we are interested only
in the TDS languages induced by Reo circuits (or constraint automata) rather than their branching behavior.
Nevertheless, branching time relationsare important because they yield an alternative characterization of language
equivalence/inclusion, as well as a simple(r) way to verify if two automata are language equivalent, or if the language
of one is contained in the language of the other.

5.1. Bisimulation

Recall the definition ofdc(q, N, P) introduced in Notation3.8 in Section 3.2, which weneed to define our notion
of bisimulation equivalence:

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 99

Fig. 19. Similarity and bisimilarity.

Definition 5.1 (Bisimulation). LetA = (Q,Names,−→, Q0) be a constraint automaton and letR be an equivalence
relation onQ. R is called a bisimulation forA if, for all pairs(q1, q2) ∈ R, all R-equivalence classesP ∈ Q/R, and
everyN ⊆ Names:

dc(q1, N, P) ≡ dc(q2, N, P).

Statesq1 and q2 are called bisimulation-equivalent (denotedq1 ∼ q2) iff there exists a bisimulation R with
(q1, q2) ∈ R. �

As usual, two constraint automataA1 andA2 with the same set of names are called bisimulation-equivalent
(denotedA1 ∼ A2) iff , for every initial stateq0,1 of A1, there is an initial stateq0,2 of A2 suchthat q0,1 andq0,2
are bisimulation-equivalent, and vice versa. Here,A1 andA2 must be combined into a “large” automaton obtained
through the disjoint union of (the state spaces of)A1 andA2.

Example 5.2. In the constraint automata ofFig. 19, statesq1 andq2 are bisimilar, whileq1, q2 �∼ q3. To see whyq1
andq2 are bisimilar, it suffices to establish a bisimulation that contains(q1, q2). In fact, the equivalenceR induced by
the partition

Q/R = {{q1, q2}, {q3}, {p1, p2, p′2}, {r1, r2}, {u3}
}

can be shown to be a bisimulation. Note that, for instance,

dc(q1, {A}, {p1, p2, p′2}) = true ≡ dc(q2, {A}, {p1, p2, p′2}).
On the other hand,q1 andq2 are not bisimilar toq3. The reason is that there is no state reachable fromq1 or q2
that is bisimilar tou3, becausedc(u3, {B}) = dc(u3, {C}) = true, while dc(r1, {B}) = dc(r2, {B}) = false and
dc(p1, {C}) = dc(p2, {C}) = false. �

In Fig. 19, statesq1, q2, andq3 are language-equivalent (i.e.,LTDS(A, q1) = LTDS(A, q2) = LTDS(A, q3)) but
not bisimulation-equivalent. For non-deterministic constraint automata, bisimulation is strictly finer than language
equivalence. However, for deterministic constraint automata, bisimulation and language equivalence coincide, as
shown in part (b)of the following theorem.

Theorem 5.3 (Bisimulation Versus Language Equivalence). Let A1 and A2 be two constraint automata with the
same name-setNames:

(a) if A1 ∼ A2, thenLTDS(A1) = LTDS(A2);
(b) if A1 andA2 are deterministic andLTDS(Ai , q) �= ∅ for all states q inAi (i = 1, 2), then

A1 ∼ A2 iff LTDS(A1) = LTDS(A2).

Proof. (a) follows from theobservation that, if q1 ∼ q2, then, for anyθ ∈ LTDS(A1, q1) and any infiniteq1-run
q1 = q0,1, q1,1, q2,1, . . . for θ in A1, there exists aq2-run q2 = q0,2, q1,2, q2,2, . . . for θ in A2 suchthatqi,1 ∼ qi,2
for all indicesi . To see this, we may use an inductive argument to define the runq2. Assume thati ≥ 0 andqi,1 ∼ qi,2
(where, fori = 0, we putqi,2 = q2). Let

qi,1
N,g−−→ qi+1,1

100 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

Fig. 20. Language equivalence and bisimilarity.

be the(i + 1)-th taken transition inq1 (that is,N = θ.N(i) andθ.δ(i) |= g). Then,

θ.δ(i) |= g ≤ dc(qi,1, N, [qi+1,1]) ≡ dc(qi,2, N, [qi+1,1]).
Here, we write[p] to denote the bisimulation equivalence class ofp. Hence, there exists a transition

qi,2
N,h−−→ qi+1,2

whereqi+1,2 ∈ [qi+1,1] (i.e., whereqi+1,1 ∼ qi+1,2) andθ.δ(i) |= h.
Part(b). LetA = (Q,Names,−→, Q0) be a deterministic constraint automaton whereLTDS(A, q) �= ∅ for all

statesq ∈ Q. We show that the relation

R = {
(q1, q2) ∈ Q× Q : LTDS(A, q1) = LTDS(A, q2)

}
is a bisimulation. Let(q1, q2) ∈ R, N a non-empty subset ofNamesand P anR-equivalence class. To prove the
logical equivalence ofdc(q1, N, P) anddc(q2, N, P), it suffices to show that, for any data assignmentδ for N with
δ |= dc(q1, N, P), thereexists a transition

q2
N,h−−→ p2

in A with δ |= h and p2 ∈ P.

If δ |= dc(q1, N, P), then there is a transitionq2
N,g−−→ p1 with δ |= g and p1 ∈ P. We now choose an arbitrary

TDS-tupleθ ∈ LTDS(A1, p1) and real numbert with

0 < t < θ.time(0).

We defineθ̄ = (θ̄ |A)A∈Namesas the TDS-tuple with

θ̄ .time(0) = t, θ̄ .N(0) = N, θ̄ .δ(0) = δ

and wherēθ |A = θA if A ∈ Names\ N and, forA ∈ Names, the firstderivative ofθ̄ |A is θ |A. Then,

θ̄ ∈ LTDS(A1, q1) = LTDS(A2, q2).

Hence, there exists a transitionq2
N,h−−→ p2 with δ = θ̄ .δ(0) |= h andθ = θ̄ ′ ∈ LTDS(A, p2). AsA is deterministic,

we have

LTDS(A, pi) =
{
θ̃ ′ : θ̃ ∈ LTDS(A, qi), θ̃ .N(0) = N, θ̃ .δ(0) = δ

}
, i = 1, 2.

As LTDS(A, q1) andLTDS(A, q2) agree, we obtainLTDS(A1, p1) = LTDS(A2, p2), andhence theR-equivalence of
p1 and p2. Thus,p2 ∈ P. �

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 101

Fig. 21. ABP: components involved.

To see why inpart (b) ofTheorem 5.3the assumptionLTDS(Ai , q) �= ∅ is necessary for all statesq, considerthe
deterministic constraint automataA1 andA2 in Fig. 20, with initial statesq1 andq2, respectively.

We haveLTDS(A1, r) = ∅, because of the time-divergence assumption which forcesA andB to have infinite data
flow. Thus,A1 andA2 are language-equivalent, as both accept the TDS language

{
(〈α, a〉, 〈β, b〉) : a = b

}
. On the

other hand,A1 andA2 are not bisimulation-equivalent, becausedc(q1, {A}) = true while dc(q2, {A}) = false.

Example 5.4 (Alternating Bit Protocol). The alternating bit protocol (ABP) is a method for ensuring successful
transmission of data through a faulty communication medium. Here we follow the description of ABP as suggested
in [10]. The transmission success is based on the assumption that data can be re-sent an unlimited number of times,
if necessary.Fig. 21 shows the components that are involved in this protocol. Data elements from a setMsg are
communicated between aSenderand aReceiver. Once theSenderreads a message from its portA, it sends this
datum through the communication mediumM1 to theReceiver, which sends the message out through its portC.
The communication mediumM1 is faulty, thus a message sent through this medium can turn up as an error message
(represented as!). Everytime theReceiverreceives a message viaM1, it sends an acknowledgment to theSendervia
the communication mediumM2. The communication mediumM2 is also faulty and may change the datum it conveys.

The ABP protocol is applied to establish correct communication between theSenderand theReceiverover the
faulty communication mediaM1 andM2. TheSenderattaches a 0 or 1 bit (alternately) to the message, when it sends
it throughM1. Thus, the data sent by theSender, or received by theReceiver, are pairs(d, 0) or (d, 1) with d ∈ Msg.
TheReceiversends back the attached bit viaM2, to acknowledge the reception. If theReceiverreceives a corrupted
message, then it sends the previous acknowledgment to theSenderonce more. As long as theSenderreceives a
corrupted (i.e.,!) or wrong acknowledgment (i.e., one whose value it is not expecting), it repeats sending the previous
message-bit pair. Alternation of the attached bit enables theReceiverto determine whether the received datum is really
new, and alternation of the acknowledgment enables theSenderto determine whether it acknowledges reception of a
datum or that of a corrupted message.

The parameterized constraint automata showing the behavior of theSender, theReceiver, the two communication
mediaM1 andM2, and the synchronous channels connecting these components, namelyB1 B2, B3 B4, D1 D2, and
D3 D4, are shown inFig. 22. Our ABP problem involves the following data domain:

Data= Msg∪ (Msg× {0, 1}) ∪ {!} ∪ {0, 1}.
For (d, b) ∈ Msg× {0, 1}, we definemsg(d, b) = d. At portsA andC, we allow only data items fromMsg. At ports
B1, B2, B3, andB4, all data items are fromMsg× {0, 1} ∪ {!}, while the channels connectingD1 to D2 can transmit
dataitems in{0, 1, !} and channels connectingD3 andD4 can transmit data items in{0, 1} only. These assumptions
can be formalized by data constraints. For simplicity in the figures, we skip these data constraints.

The parameterized product automata, which is the result of applying the join and hide operations to all the
components in ABP, are shown inFig. 23. As mentioned earlier, the specification of the protocol requires that the
data received by theSenderthrough its portA is correctly sent out through portC of theReceiver. This specification
is shown inFig. 24. By comparing the unfoldings of the two parameterized automata inFigs. 23and24 into proper
constraint automata, it can be seen that the constraint automaton that results from applying product and hiding
operations to the constraint automata of the components in the ABP is bisimilar to the constraint automaton for
the specification of the ABP.�

5.2. Simulation

We now provide an alternative characterization of language inclusion by means of the simulation preorder which
can be viewed as a uni-directional version of bisimulation:

102 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

Fig. 22. ABP: constraint automata of components.

Definition 5.5 (Simulation). LetA = (Q,Names,−→, Q0) be a constraint automaton andR a binary relation onQ.
R is called a simulation forA if, for all pairs(q1, q2) ∈ R, all R-upward closed setsP ⊆ Q, and everyN ⊆ Names:

dc(q1, N, P) ≤ dc(q2, N, P).

P is calledR-upward closed iff, for all statesp ∈ P and(p, p′) ∈ R, we havep′ ∈ P. A stateq1 is simulated
by another stateq2 (andq2 simulatesq1), denoted asq1 � q2, iff there exists a simulationR with (q1, q2) ∈ R. A
constraint automatonA2 simulates another constraint automatonA1 (denoted asA1 � A2) iff every initial state of
A1 is simulated by an initial state ofA2.8 �

8 Here, we assume thatA1 andA2 rely on the same set of names.

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 103

Fig. 23. ABP: product of automata.

As the logical or (∨) is idempotent, we have thatR is a simulation iffdc(q1, N, p) ≤ dc(q2, N, p ↑R) for all
pairs(q1, q2) ∈ R, states p ∈ Q, andN ⊆ Names. Here, p ↑R denotes theR-upward closure of{p}, i.e., the set
{p′ ∈ Q : (p, p′) ∈ R}.

Example 5.6. Stateq3 in Fig. 19simulates statesq1 andq2 in the same figure.Other examples include, inFig. 7:

104 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

Fig. 24. ABP: specification of the protocol.

Fig. 25. Data-abstract constraint automaton for a 2-bounded FIFO channel.

• the automaton for the synchronous drain which simulates the automaton for the synchronous channel,
• the automaton for the asynchronous drain which simulates the automaton for the 1-bounded channel (Example 3.3),

and
• the automaton for the synchronous channel which is simulated by the automaton for the lossy synchronous

channel. �

As for ordinary transition systems, simulation is the keynotion for any abstraction method. For instance, simulation
coversdata abstractionin a quite simple way. We will explain this by the example of the constraint automatonAFIFOn

for ann-bounded FIFO channel. Recall thatAFIFOn has a state-space whose size is exponential inn when the data
domainDatacontains two or more elements. When we abstract away from the data values, all states (configurations)
where the buffer containsk elements (for somek with 0≤ k ≤ n) can be collapsed into a single state. In this way, we
obtain a constraint automaton that hasn+ 1 reachable states and simulates the original constraint automatonAFIFOn.
For instance, forn = 2, Fig. 25 shows the data-abstract constraint automaton for 2-bounded FIFO channels (with an
arbitrary data domain).

Using analogous arguments as in the proof ofTheorem 5.3, weobtain that the simulation preorder is strictly finer
than language inclusion:

Theorem 5.7 (Simulation Versus Language Inclusion). Let A1 andA2 be two constraint automata with the same
name-setNames.

(a) If A1 � A2, thenLTDS(A1) ⊆ LTDS(A2).
(b) If A1 andA2 are deterministic such thatLTDS(A1, q) �= ∅ for all states q inA1, then

A1 � A2 iff LTDS(A1) ⊆ LTDS(A2).

As for ordinary labeled transition systems, bisimulation equivalence is strictly finer thansimulation equivalence,
the kernel of the simulation preorder which identifies exactly those automata that simulate each other. Formally,
A1 andA2 are simulation-equivalent iffA1 � A2 andA2 � A1. However, bisimulation equivalence and simulation
equivalence agree for deterministic automata. Given deterministic constraint automata with non-empty TDS languages
for all their states, the latter follows from the observation that simulation equivalence agrees with language equivalence
(part (b) ofTheorem 5.7) which, in turn, agrees with bisimulation equivalence (part (b) ofTheorem 5.3). In the second
part ofLemma 5.8, we provide the proof for the general case.

Lemma 5.8 (Bisimulation Versus Simulation Equivalence). (a) If A1 ∼ A2, thenA1 � A2 (andA2 � A1).
(b) If A1 andA2 are deterministic, then

A1 � A2 and A2 � A1 iff A1 ∼ A2.

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 105

Proof. (a) follows from the fact that any bisimulation is a simulation. We prove (b) by showing that, for a given
deterministic automatonA, simulation equivalence is a bisimulation.

Let q1, q2 be two states withq1 � q2 andq2 � q1 and letN be a non-empty name-set andP be a simulation
equivalence class. To show the logical equivalence of the data constraintsdc(q1, N, P) anddc(q2, N, P), it suffices
to prove that, for any transition

q1
N,g−−→ p1

wherep1 ∈ P and any data assignmentδ with δ |= g, thereexists a transition

q2
N,h−−→ p2

with p2 ∈ P andδ |= h. (This argument shows thatdc(q1, N, P) ≤ dc(q2, N, P). The symmetry yields the logical
equivalence.)

Let q1
N,g−−→ p1 bea transition with p1 ∈ P andδ a data assignment withδ |= g. As q1 � q2, we have

g ≤ dc(q1, N, p1) ≤ dc(q2, N, p1 ↑).

(Here, we writep ↑ for the set of states p̄ with p � p̄.) Hence,δ |= dc(q2, N, p1 ↑). That is, there exists a transition

q2
N,h−−→ p2

with p2 ∈ p1 ↑ andδ |= h. We now use the fact thatq1 simulatesq2. Hence,

h ≤ dc(q2, N, p2) ≤ dc(q1, N, p2 ↑).

Thus, there exists a transitionq1
N,ḡ−−→ p̄1 with δ |= ḡ and p2 � p̄1. The assumption thatA is deterministic yields

ḡ = g and p̄1 = p1. Hence,

p1 � p2 � p̄1 = p1,

i.e., p1 and p2 belong to the same simulation equivalence class, namelyP. �

5.3. Compositionality

The following lemma provides a congruence result for bisimulation equivalence and the simulation preorder for
the operators hiding and join (product). This result allows us to replace a “large” constraint automaton by a “small”
bisimulation-equivalent automaton during the construction of constraint automaton with the help of join and hiding
without affecting the accepted TDS language.

Lemma 5.9 (Compositionality of Join and Hiding).

(a) If A1 � A′
1 andA2 � A′

2, thenA1 �� A2 � A′
1 �� A′

2.
(b) If A1 ∼ A′

1 andA2 ∼ A′
2, thenA1 �� A2 ∼ A′

1 �� A′
2.

(c) If A1 � A2, then∃C[A1] � ∃C[A2].
(d) If A1 ∼ A2, then∃C[A1] ∼ ∃C[A2].
Proof. To prove (a) and(b), consider the relations

Rsim = {
(〈q1, q2〉, 〈q′1, q′2〉) : q1 � q′1, q2 � q′2

}
,

Rbis = {
(〈q1, q2〉, 〈q′1, q′2〉) : q1 ∼ q′1, q2 ∼ q′2

}
.

Then,Rsim can be shown to be a simulation andRbis a bisimulation on the product automata.
We now provide the proof for (c) and observe that the proof for (d) is similar. To prove (c), it suffices to show

that, given a constraint automatonA = (Q,Names,−→, q0), any simulationR for A is a simulation for∃C[A]. By
considering the{C}-transitions inA, weobtain:

(*) (q1, q2) ∈ R ∧ q1�∗ q′1 =⇒ q2 �∗ q′2 for some state q′2 with (q′1, q′2) ∈ R.

106 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

Let (q1, q2) ∈ R, let N be a non-empty subset ofNames\ {C}, and letP be anR-upward closed subset ofQ. Then,
for all statesq ∈ Q:

dc∃C[A](q, N, P) =
∨

q′∈q∗

(
dcA(q′, N, P) ∨ dcA(q′, N ∪ {C}, P)

)

whereq∗ = {
q′ ∈ Q : q �∗ q′

}
. From (∗), we obtain that, for every stateq′1 ∈ q∗1, there exists a stateq′2 ∈ q∗2 with

(q′1, q′2) ∈ R. Because

dcA(q′1, N, P) ≤ dcA(q′2, N, P),

dcA(q′1, N ∪ {C}, P) ≤ dcA(q′2, N ∪ {C}, P),

we getdc∃C[A](q1, N, P) ≤ dc∃C[A](q2, N, P). �

6. Equivalence and refinement checking

Problems like the question of whether two constraint automata have the same observable behavior or whether one’s
behavior is a refinement of the other one arise naturally and frequently. For instance:

• The replacement of a quite complex Reo circuit by a simpler one (e.g., which uses fewer and/or cheaper connectors)
can be justified by showing that their induced constraint automata accept the same TDS language.

• Having a certain coordination mechanism in mind, it is often quite easy to depict a constraint automatonA that
describes the allowed behavior (i.e., which rejects all timed data streams that should not occur). In this sense,A
can serve as a specification for a Reo circuit that is to be designed. The correctness of a design can then be defined
by language inclusion: a Reo circuitG is viewed to be correct (with respect to specificationA) iff all timed data
streams that are accepted by the constraint automatonAG for G are also accepted byA.

For ordinary labeled transition systems, checking language equivalence or language inclusion is computationally
hard (PSPACE-complete in the case of labeled transition systems [16]), while checking bisimilarity or checking
whether one system simulates another can be done in polynomial time [16,24,13]. For deterministic systems, the
branching time relations (bisimulation equivalence, simulation preorder) coincide with the linear time relations
(language equivalence, language inclusion); hence, any algorithm for the bisimulation (simulation) problem
simultaneously also solves the language equivalence (inclusion) problem. For non-deterministic systems, the
branching time relations are strictly finer than the language relations. However, the bisimulation/simulation algorithms
can be used as correct, though incomplete, techniques to prove language equivalence or language inclusion.

In this section, we show that the situation for constraint automata is similar. In the sequel, letAi =
(Qi ,Names,−→i , Q0,i), i = 1, 2, be two constraint automata with the same set of TDS names. Throughout this
section, the state-spacesQi , thedata domain, and the transition relations are assumed to be finite. We now discuss the
algorithmic aspects of the questions whetherA1 andA2 are bisimilar, whetherA1 is simulated byA2, whether the
TDS language ofA1 is contained in the TDS language ofA2, and whetherA1 andA2 are language-equivalent. For all
these questions, standard algorithms for labeled transition systems (and finite automata) can be modified. (We briefly
sketch the main ideas inSections 6.1and6.2.) However, as we must deal with logical equivalence and implication, the
algorithmic treatment of the branching time relations (bisimulation and simulation) is more difficult than for ordinary
labeled transition systems where only the existence of transitions with certain target states is important.

Theorem 6.1 (Complexity (Lower Bounds)). LetA1 andA2 be two finite constraint automata with the same name-
setNames.

(a) The problem of checking whetherA1 ∼ A2 is coNP-hard.
(b) The problem of checking whetherA1 � A2 is coNP-hard.
(c) The problem of checking whetherLTDS(A1) = LTDS(A2) is PSPACE-hard.

Proof. (a) and (b) follow by a polynomial reduction from VALID (the validity problem for propositional logical
formulae). Let f be a propositional logical formula with atomsx1, . . . , xn. We now define two constraintautomata
A1 andA2 with the namesA1, . . . , An as follows. We use the Boolean data domainData = {0, 1} and identify the

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 107

Fig. 26. CoNP constraint automata.

positive literal xi with the atomic data constraintdAi = 1 andthe negative literal¬xi with the data constraintdAi = 0.
Let gf bethe resulting data constraint, and consider the constraint automataA1 andA2 in Fig. 26.

We have:f is valid iff gf is valid iff true ≡ gf iff A1 ∼ A2. Similarly, f is valid iff true ≤ gf iff A1 � A2.
The proof of (c) follows by a polynomial reduction from the language equivalence problem for ordinary non-

deterministic finite automata (NFA) where all states are accepting. This problem is known to be PSPACE-complete
[16].

LetM be an NFA with the alphabetΣ and where all states are accepting. LetL(M) denote the accepted language
of finite words overΣ , i.e.,L(M) is the set of finite wordsσ ∈ Σ∗ that havea run inM starting in an initial state of
M. Similarly, we defineLω(M) to be the set of infinite wordsσ ∈ Σω that havea run inM starting in an initial state
of M. As mentioned above, the problem of whetherL(M1) = L(M2) for NFAs (over the same alphabet) without
non-accepting states is PSPACE-hard [16]. We now show that:

(i) the problem of whetherLω(M1) = Lω(M2) for NFAsM1, M2 with the same alphabet is PSPACE-hard, by a
polynomial reduction from the language equivalence problem for NFAs without non-accepting states; and

(ii) the problem of whetherLTDS(A1) = LTDS(A2) for constraint automataA1 andA2 with the same node-set is
PSPACE-hard, by a polynomial reduction from (i).

Part(i). Given an NFAM where all states are accepting, we defineM̂ as the NFA that results fromM by adding a
new stateq̂, anew input symbolδ, and transitions

q
δ−→ q̂

for every stateq in M andq = q̂. Then, we have

L(M) = {
σ ∈ Σ∗ : σδω ∈ Lω(M̂)

}
, Lω(M̂) = {

σδω : σ ∈ L(M)
}
.

Hence,L(M1) = L(M2) iff Lω(M̂1) = Lω(M̂2).
Part(ii). Given two NFAsM1 andM2 over the samealphabetΣ , we construct two constraint automataA1 and

A2 with a single name, sayA, and the datadomainData= Σ as follows.Ai arises fromMi by replacing every edge

q
a−→ p in Mi by the edgeq

{A},dA=a−−−−−−→ p in Ai .

Then, we haveLTDS(A1) = LTDS(A2) iff Lω(M1) = Lω(M2). �

In the following two subsections, we sketch how standard algorithms for solving the bisimulation/simulation and
language equivalence/inclusion problems in ordinary finite-state labeled transition systems can be modified to deal
with constraint automata.

6.1. Checking bisimilarity and similarity

Essentially, we can use the well-known partitioning-splitter technique for ordinary labeled transition systems [16,
3,24,13,25,6].

For the comparison of two constraint automatonA1 andA2 via bisimulation equivalence or the simulation preorder,
we first build the “large” constraint automatonA = A1 # A2 which arises through the disjoint union of the state

108 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

spaces ofA1 andA2. (The initial states ofA are irrelevant.) Then, we calculate the bisimulation equivalence classes
[q] = {q′ : q ∼ q′}, or respectively, the simulator setsq ↑= {q′ : q � q′} of A. Finally, we check whetherA1 ∼ A2
or, respectively,A1 � A2 by investigating the initial states ofA1 andA2. Note thatA1 ∼ A2 iff, for any bisimulation
equivalence classP in A, we have either (P ∩ Q0,1 �= ∅) ∧ (P ∩ Q0,2 �= ∅) or (P ∩ Q0,1 = ∅) ∧ (P ∩ Q0,2 = ∅).
Here,Q0,i denotes the set of initial states inAi . To check whetherA1 is simulated byA2, wecan use the observation
thatA1 � A2 iff, for any initial stateq ∈ Q0,1 of A1, we haveq ↑ ∩Q0,2 �= ∅.

6.1.1. Computing the bisimulation quotient
In the following, letA = (Q,Names,−→, Q0) be a constraint automaton. The idea of computing the bisimulation

equivalence classes ofA is to generatea sequenceΠ0,Π1,Π2, . . . ,Πk of partitions of the state-spaceQ suchthat
Πi is strictly coarser thanΠi+1 and finer than the bisimulation quotientQ/ ∼. As we assumeQ to be finite, we get
Πk = Q/ ∼ for somek ≤ |Q|.
Notation 6.2 (Partition, (Super-)block, Splitter). A partition for Q denotes a setΠ = {P1, . . . , Pn} of pairwise
disjoint, non-empty subsets ofQ suchthat Q = P1 ∪ . . . ∪ Pn. The elements of a partition are called blocks. By
a super-block ofΠ , we mean any (non-empty) union of blocks inΠ . A splitter forΠ denotes a pair(N, P) consisting
of a non-empty subsetN of Namesand a super-blockP for Π . �

Note that there is a one-to-one correspondence between partitions forQ and equivalences onQ. Given an
equivalenceR, the quotient spaceQ/R is a partition. Vice versa, ifΠ is a partition, thenRΠ = {

(q1, q2) :
q1, q2 belong to the same block ofΠ

}
is an equivalence withΠ = Q/RΠ .

The initial partition identifies all states (i.e.,Π0 = {Q}). Given the partitionΠi , thenext partition Πi+1 is obtained
by refiningΠi according to a splitter(N, P) of Πi , which means that we identify exactly those states of each block
B ∈ Π where thedata constraintsdc(q, N, P) coincide up to logical equivalence.

Notation 6.3 (Refine, Stability). Let Π bea partition for Q, (N, P) a splitter for Π , andB be a block ofQ. Then,
we define

Refine(B, N, C) = B/ ≡(N,P)

where the equivalence≡(N,P) is defined such thatq1 ≡(N,P) q2 iff dc(q1, N, P) ≡ dc(q2, N, P). B is calledstable
with respect to(N, P) if Refine(B, N, P) = {B}, i.e., if the data constraintsdc(q, N, P), q ∈ P, fall into the same
logical equivalence class. We put

Refine(Π , N, P) =
⋃

B∈Π
Refine(B, N, P).

Π is called stable with respect to(N, P) if Refine(Π , N, P) = Π . Π is called stable ifΠ is stable w.r.t. any splitter
for Π . �

Note thatRefine(B, N, P) is a partition for blockB, while Refine(Π , N, P) is a partition for the whole state
spaceQ which is finer thanΠ (i.e., any blockB′ of Refine(Π , N, P) can be written as a disjoint union of blocks in
Π) and which is stable with respect to(N, P). For instance, refinement ofΠ0 = {Q} according to the splitter(N, Q)

yields the partitionΠ1 = Q/ ≡(N,Q), where≡(N,Q) is as inNotation 6.3.
The idea of the bisimulation algorithm (sketched inAlgorithm 1) is to stabilize the current partitionΠ with respect

to a splitter(N, P). (In Algorithm 1, we use thenotationsdc(q, N) anddc(N, P), which stand fordc(q, N, Q) and∨
q∈Q dc(q, N, P), respectively.) The correctness of the algorithm follows from the following observations:

• The initial partitionΠ0 = {Q} is coarser than thebisimulation quotientQ/ ∼.
• WheneverΠ is coarser thanQ/ ∼, thenRefine(Π , N, P) is coarser thanQ/ ∼ and finer thanΠ for any splitter

(N, P) of Π .
• Π is stable iff the induced equivalence is a bisimulation. Hence, ifΠ is strictly coarser thanQ/ ∼, then there is a

splitter(N, P) suchthatΠ is strictly coarser thanRefine(Π , N, P). Moreover,such a pair (N, P) is contained in
Splitters.

• WheneverΠ is a stable partition that is coarser thanQ/ ∼, thenΠ = Q/ ∼.

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 109

Hence, our algorithm generates a “decreasing” sequence of partitionsΠ0,Π1,Π2, . . . that are all coarser thanQ/ ∼.
As we assumeQ to be finite, we getΠk = Q/ ∼ for some indexk.

Algorithm 1 Partitioning splitter algorithm

Π := Q; Splitters := {
(N, Q) : N ⊆ Names,

∨
q∈Q

dc(q, N) �≡ false
}
;

WHILE Splitters �= ∅ DO
choose(N, P) ∈ Splitters and remove(N, P) from Splitters;

(* Π := Refine(Π , N, P) *)
FOR ALL B ∈ Π DO

calculate the logical equivalence classesD1, . . . , Dr of the data constraintsdc(q, N, P), q ∈ B;

(* If r = 1 thenB is stable w.r.t.(N, P) andRefine(B, N, P) := {B}. *)

IF there is more than one logical equivalence class (i.e., ifr ≥ 2) THEN

Refine(B, N, P) := {B1, . . . , Br }, whereBi = {q ∈ Q : dc(q, N, P) ∈ Di };
Π := (Π \ {B}) ∪ Refine(B, N, C);
insert all pairs(Ñ, Bi) where∅ �= Ñ ⊆ Namesanddc(Ñ, Bi) �≡ false into Splitters;

FI
OD

END WHILE
returnΠ (* Π is stable, and hence,Π = Q/ ∼ *)

As for labeled transition systems, withappropriate data structures that support the choice and organization of the
splitter candidates (and the blocks in the current partition), the schema sketched inAlgorithm 1can be implemented
such that the number of iterations of the WHILE-loop is polynomial bounded in the size (number of states and
transitions) ofA. More precisely, ignoring the cost to calculate the logical equivalence classes, the time complexity is
bounded byO(|Q| · | −→ |), as in theKanellakis/Smolka algorithm [16].9

The critical part ofAlgorithm 1 is the calculation of the logical equivalence classes of data constraints. Recall
that the problem of logical equivalence for propositional logical formulae iscoNP-complete. A na¨ıve possibility
for calcaluting the logical equivalence classes is to consider all data assignments and the truth-values of the data
constraintsdc(q, N, P), and thento identify exactly those states that yield the same truth-values for all data
assignments. Of course, this methodis extremely inefficient, because|Names||Data| data assignments have to be
considered, which is infeasible for largedata domains.

More efficient is asymbolic approachbased on variants of binary decision diagrams; see e.g. [5,22,12,9,20,
27]. Most appropriate for our purposes seems to be a multi-branching variant such as MDDs [15] that support the
representation of functionsf : (V → D) → {0, 1}, whereV and D are finite. Note that the semantics of a data
constraint can be viewed as a function of this type (where we putV = Namesand D = Data∪ {⊥}). A detailed
description of such an MDD-based implementation of the partitioning splitter algorithm goes beyond the scope of
this paper. Instead, we briefly sketch to which extend such decision diagrams support the calculation of the logical
equivalence classes for data constraints.

As with other ordered decision diagrams, MDDs enjoy the property to providecanonical representations. As is
standard for implementations of decision diagram algorithms (see, e.g., [23,9,20]), here we assume an implementation
that supports the representation of several functions by nodes in a so-calledshareddecision diagram. Each nodev
of such a shared decision diagram can be identified withthe subdiagram consisting of the nodes that are reachable
from v. In this sense, any nodev stands for a decision diagram (MDD in our case) and, thus, represents a function

9 It seems to be hard to meet the boundedO(| −→ | · log |Q|) of the Paige Tarjan algorithm [24]. The reason is that, ifP̃ ⊆ P and
dc(q1, N, P) ≡ dc(q2, N, P) anddc(q1, N, P̃) ≡ dc(q2, N, P̃), then wecannotconclude thatdc(q1, N, P \ P̃) ≡ dc(q2, N, P \ P̃). Hence, in
our setting, all new sub-blocks (rather than “all but one”) must be considered as splitter candidates.

110 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

fv. The canonicity yields that two functions that are represented by nodesv, w of a shared diagram agree iffv = w.
In our case, this means that two data constraintsdc(q1, N, P) anddc(q2, N, P) fall into the same logical equivalence
class if and only if they are represented by the same name in a shared MDD. Thus, the equivalence-checking problem
reduces to the comparison of nodes and, thus, can be performed in constant time. Hence, the calculation of the logical
equivalence classes reduces to the construction of the MDD representations for the data constraintsdc(q, N, P) as
nodes of a shared diagram. As the data constraintsdc(q, N, P) can be regarded as propositional formulas with the
atoms “dA = d”, we may apply standard algorithms for the Boolean operators (such as conjunction, negation, and so
on) to generate their MDD representations.

6.1.2. Calculating the simulator preorder
We can use essentially the same schema as for the computation of the simulator setsq ↑= {q′ : q � q} in labeled

transition systems.Algorithm 2shows the main ideas which comprise the computation of a “decreasing” sequence of
sets

Sim0(q) ⊇ Sim1(q) ⊇ . . . ⊇ Simk(q) = q ↑ .

Here, also, several improvements are possible, e.g., following the techniques suggested in [13]. Using appropriate
data structures, the number of iterations can be contained within the bound ofO(poly(size(A))). However, the major
difficulty is the treatment of logical implication. As for bisimilarity checking, the use of variants of binary decision
diagrams seems to be promising.

Algorithm 2 Schema to calculate the simulation preorder
FOR ALL stateq ∈ Q DO

Sim(q) := {
q′ ∈ Q : dc(q, N) ≤ dc(q′, N)

}
OD
Splitters := {

(N, p) ∈ 2Names× Q : ∨
q∈Q

dc(q, N, p) �≡ false
}
;

WHILE Splitters �= ∅ DO
choose a pair(N, p) ∈ Splitters and remove(N, p) from Splitters;
FOR ALL statesq ∈ Q with dc(q, N, p) �≡ false DO

FOR ALL statesq′ ∈ Sim(q) with dc(q, N, p) �≤ dc(q′, N, Sim(p)) DO
Sim(q) := Sim(q) \ {q′};
Splitters :=

Splitters ∪ {
(N′, q′) : N′ ⊆ Names, q′ ∈ Q,

∨
r∈Q

dc(r, N′, q′) �≡ false
}

OD
OD

END WHILE
(* Sim(q) = q ↑ for all statesq *)

6.2. Language equivalence checking

Given two bounded constraint automataA1 andA2 over a fixed setNames, the question of whetherA1 and
A2 are language-equivalent can be answered by checking language inclusion in both directions. To check whether
LTDS(A1) ⊆ LTDS(A2), we may apply the same techniques as for regular languages (and finite automata) using the
observation that

LTDS(A1) ⊆ LTDS(A2) iff LTDS(A1) ∩ LTDS(A2) = ∅.
The main steps are as follows. First, we turnA2 into an equivalent deterministic constraint automatondet(A2) (see
Remark 3.9). Then, we construct an automatondet(A2) for its complement language, and build the product automaton
A1 �� det(A2) (which represents the intersection languageLTDS(A1)∩LTDS(A2); see part(b) ofLemma 4.2). Finally,
we check whetherLTDS(A1 �� det(A2)) is empty.

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 111

6.2.1. Complementing
For the construction of a constraint automaton for the complement language, we switch to a more general class of

constraint automata with accepting states. For constraint automatonA augmented with a setF of accepting states, let
LTDS(A, F) denote the language consisting of all TDS-tuples that have infinite runs inA, each involving infinitely
often visits to many states inF . (In other words, we use a variant of B¨uchi automata.) We now assume that we are
given a deterministic constraint automatonA = (Q,Names,−→, q0) for which we aim to construct a constraint
automaton with B¨uchi acceptance for the complement language ofA. We first extend the state spaceQ by a new state
qacceptand add transitions

q
N,g−→ qaccept if g = ¬dc(q, N), q ∈ Q and∅ �= N ⊆ Names.

Moreover, we add transitionsqaccept
N,true−−−−→ qaccept for each non-empty subsetN of Names. Let A bethe resulting

constraint automaton. Then,

LTDS(A) = LTDS(A,
{
qaccept

}
).

6.2.2. Checking emptiness
For the language inclusion problem, we build the productÃ = A1 �� det(A2) as inDefinition 4.1, which we

augment with the setF = {〈q, qaccept〉 : q ∈ Q1
}

of accepting states. (Q1 denotes the state space ofA1.) We need to

explain how to check whetherLTDS(Ã, F) is empty. For this, we first remove all transitions iñA with an unsatisfiable
data constraint. Then, we check, using standard graph algorithms, whether there is an initial state inÃ from which a
cycle

p̃0
N1,g1−→ p̃1

N2,g2−→ · · · Nr,gr−→ p̃r = p̃0

is reachable such that{ p̃0, p̃1, . . . , p̃r } ∩ F �= ∅ andN1 ∪ · · · ∪ Nr = Names.
Note that the requirement{ p̃0, p̃1, . . . , p̃r } ∩ F �= ∅ is needed to ensure that the B¨uchi acceptance condition can

be fulfilled. The requirementN1 ∪ · · · ∪ Nr = Namesis needed for the time-divergence condition for timed data
streams.

The complexity of the language inclusion test is dominated by the construction ofdet(A2) (which is exponential in
the size ofA2) andthe time needed to solve the satisfiability problem for the data constraints (which is NP-complete).
The remaining steps (complementing, construction of the product, and checking emptiness) can be performed in time
polynomial insize(A1) andsize(det(A2)).

7. Concluding remarks

In this paper, we introduced constraintautomata, defined operators for their composition, and presented notions
of bisimulation equivalence and language equivalence as well as refinement relations (simulation and language
inclusion). Constraint automata allow us to model subtle timing and input/output constraints of Reo connectors,
specifically their combined mix of synchronous and asynchronous transitions. This is reflected in our definition of
constraint automata and shown in our examples.

Connector construction in Reo is conceptually analogous to the design of asynchronous electronic circuits. Among
other things, this analogy emphasizes the importance of visual environments for design, analysis, verification, and
optimization of Reo connectors, as counterparts of tools and facilities available in modern electronic computer-
aided design (CAD) systems. In this context, issues such as whether two Reo connectorsR1 and R2 have the same
observable behavior (in the sense that their induced TDS languages agree) orR1 can be viewed as a refinement
of R2 (in the sense of TDS language containment) arise naturally and frequently. To treat such questions in an
algorithmic way, our compositional semantics can serve as basis for an algorithm that automatically generates a
constraint automatonAR for a given Reo circuitR. To solve the language problems mentioned above (the questions
of whetherLTDS(AR1) = LTDS(AR2) or LTDS(AR1) ⊆ LTDS(AR2) for given Reo circuits R1 and R2), we suggest
modifications to known methods for finiteautomata and labeled transition systems to deal with constraint automata.

Given finite, deterministic constraint automataA1 andA2, the simplest way to check language equivalence is based
on the observation that language equivalence and bisimulation equivalence agree, provided that none of the states in

112 C. Baier et al. / Science of Computer Programming 61 (2006) 75–113

Ai accepts the empty TDS language (Theorem 5.3). Thus, we may first remove all states with an empty TDS language
(cf. Section 6.2.2) and thencheck the bisimulation equivalence of the modified automata (cf.Section 6.1). Similarly,
language inclusion for two finite, deterministic constraint automataA1 andA2 can be checked on the basis of a graph
analysis, followed by an algorithm that calculates the simulation preorder.

Although the deterministic version of constraint automata is as expressive as the non-deterministic version, non-
deterministic constraint automata offer a useful semanticmodel for Reo circuits which, e.g., avoids the exponential
blowup that may result from applying the powerset construction to an automaton∃C[A] (which can be non-
deterministic even if A is deterministic). The algorithms for computing the bisimulation quotient or simulation
preorder in non-deterministic constraint automata can be applied here as a sound (but incomplete) verification method
to show language equivalence or inclusion.

In contrast to process algebras where notions of weak bisimulation (e.g., Milner’s observational equivalence or
congruence [21]) are used to abstract from non-observable computations, we use the hiding operator that modifies the
given constraint automaton, similar to the deletion ofε-transitions in finite automata. Thus, in our context, there is no
need for a notion of weak bisimulation.

In this paper, we restricted ourselves to using constraintautomata in the context of the coordination language Reo.
However, the use ofconstraint automata for an operational semantics model is not restricted to Reo. For instance,
a recent work demonstrates the usefulness of constraint automata for specifications of software architectures in
Alfa [19]. Alfa [18] is a framework for understanding and constructing style-based architectures from a small set
of architectural primitives, based on a constructive and compositional framework for software architectures.

In our future activity, we will work out the details of a semantics that models Reo circuits by constraint automata
with final states (e.g., to handle deadlocks), fairness to cover the meaning of Reo’s fair merge semantics for sink and
mixed nodes, and priorities (to deal with synchronous lossy channels) as mentioned in the end ofSection 4. Other
directions for our future work include the development of temporal logics and model checking algorithms based on
constraint automata, optimization algorithms for Reo circuits, and the automated generation of Reo circuits from
constraint automata specifications.

References

[1] F. Arbab, Reo: A channel-based coordination model for component composition, Mathematical Structures in Computer Science 14 (3) (2004)
1–38.

[2] F. Arbab, J.J.M.M. Rutten, A coinductive calculus of component connectors, in: D. Pattinson, M. Wirsing, R. Hennicker (Eds.), Recent Trends
in Algebraic Development Techniques, Proceedings of 16th International Workshop on Algebraic Development Techniques, WADT 2002,
in: Lecture Notes in Computer Science,vol. 2755, Springer-Verlag, 2003, pp. 35–56.http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0216.pdf.

[3] T. Bolognesi, S.A. Smolka, Fundamental results for the verification of observational equivalence: A survey, in: H. Rudin, C.H. West (Eds.),
Protocol Specification, Testing, and Verification, VII, North-Holland, Z¨urich, Switzerland, 1987, pp. 165–178.

[4] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe, A theory of communicating sequential processes,Journal of the ACM 31 (3) (1984) 560–599.
[5] R. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Transactions on Computers C-35 (1986).
[6] D. Bustan, O. Grumberg, Simulation-based minimization, ACM Transactions on Computational Logic 4 (2) (2003) 181–206.
[7] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 1990.
[8] L . de Alfaro, T.A. Henzinger, Interface automata, in: V. Gruhn (Ed.), Proceedings of the Joint 8th European Software Engeneering Conference

and 9th ACM SIGSOFT Symposium on the Foundation of Software Engeneering, ESEC/FSE-01, 10–14 September, in: Software Engineering
Notes, vol. 26, 5, ACM Press, New York, 2001, pp. 109–120.

[9] R. Drechsler, B. Becker, Binary Decision Diagrams: Theory and Implementation, Kluwer Academic Press, 1998.
[10] W. Fokkink, Introduction to Process Algebra, in: Texts in Theoretical Computer Science, An EATCS Series, Springer-Verlag, 1999.
[11] R. Grosu, B. Rumpe, Concurrent timed port automata, Technical Report TUM-I9533, Techn. Universit¨at München, 1995.

http://www4.informatik.tu-muenchen.de/reports/TUM-I9533.html.
[12] G.D. Hachtel, F. Somenzi, Logic Synthesis and Verification Algorithms, Kluwer Academic Publishers, Boston, 1996.
[13] M. Henzinger, T. Henzinger, P. Kopke, Computing simulations on finiteand infinite graphs, in: Proc. FOCS’95, 1995 pp. 453–462.
[14] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Language, and Computation, 2nd ed., Addison-Wesley, 2001.
[15] T. Kam, T. Villa, R.K. Brayton, A. Sangiovanni-Vincentelli, Multi-valueddecision diagrams: Theory and applications, Multiple-Valued Logic

4 (1–2) (1998) 9–62.
[16] P. Kannelakis, S. Smolka, CCS expressions, finite state processes and three problems of equivalence, in: Proc. 2nd ACM Symposium on the

Principles of Distributed Computing 1983, pp. 228–240, Information and Computation 86 (1990) 43–68.
[17] N. Lynch, M.R. Tuttle, An introduction to input/output automata, CWI Quarterly 2 (3) (1989) 219–246.
[18] N.R. Mehta, N. Medvidovic, Composing architectural styles from architectural primitives, in: Proceedings of the 9th European Software

Engineering Conference and 11th ACM SIGSOFT Symposium on Foundations of Software Engineering, ESEC/FSE, ACM Press, 2003,
pp. 347–350.

http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0216.pdf
http://www4.informatik.tu-muenchen.de/reports/TUM-I9533.html

C. Baier et al. / Science of Computer Programming 61 (2006) 75–113 113

[19] N.R. Mehta, M. Sirjani, F. Arbab, Effective modeling of software architectural assemblies using Constraint Automata, Technical
Report SEN-R0309, Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, October 2003.
http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0309.pdf.

[20] C. Meinel, T. Theobald, Algorithms and Data Structures in VLSI Design, Springer-Verlag, 1998.
[21] R. Milner, Communication and Concurrency, in: Prentice Hall International Series in Computer Science, Prentice Hall, 1989.
[22] S. Minato, Binary Decision Diagrams and Apllications for VLSI Design, Kluwer Academic Press, 1996.
[23] S. Minato, N. Ishiura, S. Yajima, Shared binary decision diagram with attributed edges for efficient Boolean function manipulation, in:

Proceedings of the 27th ACM/IEEE Design Automation Conference, DAC, 1990, pp. 52–57.
[24] R. Paige, R.E. Tarjan, Three partition refinementalgorithms, SIAM Journal on Computing 16 (6) (1987) 973–989.
[25] L. Tan, R. Cleaveland, Simulation revisited,Lecture Notes in Computer Science 2031 (2001) 480–495.
[26] W. Thomas, Automata on infinite objects, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Elsevier Science Publishers

B.V., 1990, pp. 133–191 (Chapter 4).
[27] I. Wegener, Branching Programs and Binary Decision Diagrams. Theory and applications, in: Mongraphs on Disrete Mathematics and

Applications, SIAM, 2000.

http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0309.pdf

	Modeling component connectors in Reo by constraint automata
	Introduction
	Timed data streams
	Constraint automata
	Definition of constraint automata
	From automata to streams

	Constraint automata as operational model for Reo circuits
	A Reo primer
	Constraint automata for the basic channels
	Join: Merge and product
	Hiding
	Examples for the construction of constraint automata via join and hiding
	Parameterized constraint automata
	Remarks on the constraint automata semantics for Reo

	Bisimulation and simulation
	Bisimulation
	Simulation
	Compositionality

	Equivalence and refinement checking
	Checking bisimilarity and similarity
	Computing the bisimulation quotient
	Calculating the simulator preorder

	Language equivalence checking
	Complementing
	Checking emptiness

	Concluding remarks
	References

