-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by CWI's Institutional Repository

Available online at www.sciencedirect.com

scmncs@mnscr@ ?:coll'enr[l;l?t:rf
sl Programming
ELS R Science of Computer Programming 61 (2006) 75-113

www.elsever.com/locate/scico

Modeling component connectors in Reo by constraint automata

Christel Baie?*, Marjan Srjani®, Farhal Arbab™&f, Jan Riten®9

@|nstitut fiir Informatik 1, University of Bonn, &herstralRe 164, D-53117 Bonn, Germany
b Department of Electrical and Computer Engineering, Wity of Tehran, Karegar Avenue, Pardis #2, Tehran, Iran
¢School of Computer Science NP Niavaran Square, Tehran, Iran
d Department of Software Engineering, Centrum voor Wiskunde en Informatica, Kruislaan 413, P.O. Box 94079,
1090 GB Amsterdam, The Netherlands
€Leiden Institute for Advanced Computer Science, Leidervérsity, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
fSchool of Computer Science, University of Waterloo, @@versity Avenue West, Waterloo, ON N2L 3G1, Canada
9Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

Received 30 January 2004; received in revised form 24 May 2005; accepted 10 October 2005
Available online 30 March 2006

Abstract

In this paper we introduceonstraint automatand propose them as an operational model for Reo, an exogenous coordination
language for compositional construction angponent connectors based on a calculushannels. By providing composition
operators for constraint automata and defining notions of equivalence and refinement relations for them, this paper covers th
foundations for building tools to address concerns such as the automated construction of the automaton for a given componer
connector, equivalence checking or containment checking of the behavior of two given connectors, and verification of coordination
mechanisms.

(© 2006 Elsevier B.V. All rights reserved.

Keywods: Constraint automata; Reo; Timed data streams; Coordinatiomp@oents; Composition; Bisimulati; Simulation; Verification

1. Introduction

Coordination models and languages emerged in the 1890 linguistic counterpart of the so-caltadidle-ware
layer of ©ftware that consisted of ad-hoc libraries of functions providing higher-level inter-process communication
support in parallel and, especially, distributed applicasi. Coordination models and languages close the conceptual
gap between the cooperation model used by the constituastqfan application and the lower-level communication
model used in its implementation. They provide a clean separation between individual software components and thei
interactions within their overall software organization. This separation, together with the higher-level abstractions
offered by coordination models and languages, improvessoé productivity, enhance maintainability, advocate
modularity, promote reusability, and lead to software orgditira and architectures thate more tractable and more
amenable to verification and global analysis.

* Corresponding author.
E-mail addresseshaier@cs.uni-bonn.dg. Baier), msijani@ut.ac.ir(M. Sirjani), Farhad.Abab@cwi.nl(F. Arbab),Jan.Rtten@cwi.nl
(J. Ruten).

0167-6423/$ - see front matt@ 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico0.2005.10.008

https://core.ac.uk/display/301649544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/scico
mailto:baier@cs.uni-bonn.de
mailto:msirjani@ut.ac.ir
mailto:Farhad.Arbab@cwi.nl
mailto:Jan.Rutten@cwi.nl
http://dx.doi.org/10.1016/j.scico.2005.10.008

76 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

The current interest in constructing applications outrafependent software cqronents necessitates paying
attention to the so-calledlue-code The purpose of glue-code is to compose a set of components by filling the
significant interface gaps that naturally arise among themmply because they are not (supposed to be) tailor-made
to work with one another. Using components thus means understanding how they interact individually with their
environment, and specifyirhow they should engage in mutual, cooperatieractions in order for their composition
to behave as a coordinated whole. Many of the coreessvolved in component composition have already been
identified and studied as key concerns in work on coordination. Coordination models and languages address ke
issues in Component Based Software Engineering suclpedfisation, interactin, and dynamic composition of
components. Specificallgogeious coordination models and languagesich enable third-party entities to wield
coordination control over the interaction behavior of mutually anonymous entities involved in a collab@tion
outsideof its participants, provide a very promising basis for the development of effective glue-code languages.

Constraint automataln this paper, we introduce constraint automata as a formalism to describe the “behavior” and
possible data flow in coordination models that connect an@mgnomponents to enable their coordinated interaction.
The theory of constraint automata thus yields a basis for the formal verification of coordination mechanisms (e.g.
model checking against temporal-logical specifications or equivalence checking). Constraint automata can be thoug
of as conceptual generalizations of probabilistic automata where data constraints, instead of probabilities, influenc
applicable state transitions. We show that constraint automata can serveerational modefor the coordination
language Reo, introduced ifi]] Reo is a channel-based exogenous cootatinanodel wherein complex coordinators,
called connectors, are compositionally built out of simpler ones. The simplest connectors in Reo are a set 0
channels with well-defined behavior supplied by users. The emphasis in Reo is on connectors, their behavior, ar
their composition, not on thenéties that connect, communicate, angoperate through them. The behavior of
ewvery connector in Reo imposes a specific coordinatiatigon on the entities thatepform normal input/output

(I/O) operations through that connectaithout the knowledge ofhose entities. This makes Reo a powerful “glue
language” for compositional construction of connectorsdmbine component instances into a software system and
exogenously orchestrate their mutual interactions.

Using constraint automata as an opienaal model for Reo connectors, the automata states stand for the possible
configurations (e.g., the contents of the FIFO channels cd@d®nnector) while the automata transitions represent
the possible data flow and its effect trese onfigurations. In fact, the operational semantics for Reo presented in
[1] can be reformulated in terms of constraint automata. él@w in this @per we follow a different approach and
define the constraint automaton of a given Reo connectocangositionalvay. For this, we introduce composition
operators for constraint automata corresponding to the Reo connector primitives, and thus provide the basis for tt
algorithmic construction of constraint automata for Reo connectors.

The paper 2] presents a calgebraic formal semantics for Reo connectors that assigns to any Reo connector a
relaion over infinitetimed data streamgalled TDS languages in this paper). In fact, many interesting properties of
Reo onnectors, as well as notions of equivalence or refinement for Reo connectors, can be formulated in terms of TD
languages. To reason about TDS languages, we may regard constraint autoatapasrdor timed data streams.

The rough idea behind the use of constraint automataragiage acceptors is that such an automaton observes the
data occurring at certain input/output of components and either changes its state according to the observed data
or rejects it if there is no corresponding transition in theomaton. From this point of view, constraint automata
save as a formalism for describing TDS languages, in a similar way that ordinary finite automata (or, alternatively,
w-automata) can be used as a formalism to describe languages of finite (respectively, infinite) words (s&é, e.g., [
26)). In particular, they can serve as a specification formalism for a coordination mechanism that is yet to be designec
or as interface specifications for the component instances that are (to be) glued together.

To solve ypical verification problems, e.g., checkinghether a given Reo connector meets its automata
specification or whether two Reo connectors are language-equivalent (in the sense that they induce the same TL
language), the fact that constraint automata are close to both ordinary finitexaomata and labeled transition
systems allows us to modify known methods for the analyfiseactive systems (modeled by labeled transition
systems) or formal languages (represented by finitexa@utomata) to work with congtimt automata. As checking
language equivalence or language inclusion for non-detéstiirautomata is computationally hard, we introduce
notions of bisimulation equivalence and a simulation relation for constraint automata. Being refinements of the
language relations with simpler decision algorithms, these branching time relations provide sound (but incomplete
proof methods for checking languagguévalence or language inclusion.

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 77

Related modelsOf course, the use of automata-based models (including variants of labeled transition systems) as
operational models for coordination principles is not newr @ation of constraint autonta is most in the spirit of

I/O automata17], timed port automatalll] and irterface automat&8]. We briefly summarize the major differences

and similarities:

¢ While transitions in /0O automata are labeled with action names, transitions in timed port and constraint automata
are data-dependent. However, timed port automata label the transitions with specific data values, whereas we use
symbolic representation by mesaf data onstraints (Boolean expressions for the data values).

e Unlike I/O or timed port automata, we do not follow a strictly time-synchronous approach, which becomes
important when we compose constraint automata. The composition of constraint autdmaia .4, allows
transitions when data occur at the input/output ports that the resulting automaton inherits from only one of the
automatad;, without involving the transitions or states thatntierits from the other automaton (because, at that
point in time, there is no suitable data on any of itsresponding ports). Such transitions do not exist in the
“one-to-many composition” of timed port automata.

e As for interface automata, we do not assume input enabledness, as is the case for I/O or timed port automata. |
fact, in our setting, there is no need to distinguish between input and output ports, unlike in interface automata.

e Constraint automata, like 1/0O-automata, are based on transition systems. Interface automata are based on gan
theory, and their main purpose is to allow automatic checking of compatibility between interfaces.

Used as acceptors for TDS languages (e.g., to specifyldgal® data flow of a coordination mechanism that is
yet to be designed or for an interface specification of a component), constraint automata are in the spirit of ordinary
finite automata and-automata. For the purposes of this paper, where we do not consider finite behavior — which
may occur, for example, if configurations are reached wldata flow at certain ports is blocked — there is no need
for final states. Thus, acceptance of a timed data streacobgtraint automata requires only the existence of an
infinite run in the automata. However, this difference between standard automata and constraint automata cannot b
understood as an advantage of the latter, as it can be explained by our decision not to consider finite behavior. T
reason about finite timed data streams or assuming fairness for certain Reo-connector primitives, constraint automat
would have to be extended with final states, leading to a diffemotion of acceptance. Te&p the presentation of the
basic concepts of constraint automata simple and clear and to avoid overloading with notation, we decided to restric
ourselves in this paper to infinite behavior, without fairness assumptions.

In summary, constraint automata are close to various other automata models, which yields the advantange the
known validation technique can be adapted for our purposes. The characteristics of constraint automata are chosen
a way that fits best in the Reo framework where the focus is on reasoning about the observable data flow at nodes i
a chanel network by means of the relation of timed data streams. This is in contrast to other automata models that
were designed for slightly different tasks and rely on concepts (such as action names for the activities of individual
agents, input enabledness, and cotilyily checking) that are not relew for Reo component connectors.

Organization of the papeiThe rest of this paper is organized as follows.Saction 2 we recall the definition of
timed data streams and introduce some notatioisdation 3 we present the definition of constraint automata and
their accepted TDS languages. The use of constraintraattoas an operational semantics for Reo connectors is
explained inSection 4 This sction starts with a brief overview of Reo. We then provide the definition of composition
operators (join and hiding) on constraint automata @poeding to the Reo connector primitives and demonstrate
the compositional construction of constraint automata for given Reo connectors through a series of examples. In
Section 5 we introduce notions of bisimulation and simulation for constraint automata, discuss their relationship
to the language-based relations, and provide comgriessults for the composition operators define8dation 4
Section 6is concerned with algorithms for ebking the equivalence of two constraint automata and whether one
automaton can be viewed as a refinement of another. We concl&geiion 7 hinting at our curent and future work

on model checking and automated tools for reasoning about constraint automata and Reo connectors.

2. Timed data streams

In this section, we recall the definition of timed data streams (TDS for short) and explain our notations.

StreamsLet V be any set. We define the sét of all streams (infinite sequences) owrasV® = {a | «a :
{0,1,2,...} — V}. For convenience, we consider only infinite behavior and infinite streams that correspond

78 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

to infinite “runs” of our automata, omitting final states including deadlocks. We denote individual streams as
a = a(0),a(l),a(?),... (ora = a(0),a(l),a?),...). We calla(0) theinitial value of «. The (stream) deivative

o of a streamw is defined ag’ = «(1), «(2), «(3), We write « V) for thei -th derivative ofx, which isdefined as

@ =g anda*D = (@)’ Note hate’ (k) = a(k + 1) anda® (k) = «a(i + k), forallk,i > 0.

Timeddata streamsWe now recall the definition of timed data streams frod). In the sequelData s a fixed, non-
empty and finite set of data that can be sent (and received) via charFteésset of all (infinite) timed data streams
overDatais given by:

TDS= {(a, a) € Data” x IR} : Vk > 0: a(k) < a(k+ 1) andklim a(k) = oo}.
—> 00

Thus, a timed data streafn, a) consists of adata streamx e Data” and atime stream ac IR consisting of
increasing positive real numbers that go to infinity. The time straamdlicates, for each data iteatk), the manent
a(k) at which it is being input or output.

TDS-uples.To formalize the input/output behavior of a coordination model by means of timed data streams, we use
namessay A1, ..., A, for the input or output ports that connect the component instances with other component
instances or the environment of the whole system. With each/gorte assocate a timed data stream. That is, for a
given name-set/ames= {Aq, ..., An}, we define

TDSVAMeS= { (a1, &), ..., (@n, @) : (@i, &) € TDS i =1,...,n]

as the set of all TDS-tuples consisting of one timed data stream for each port. When writing the elemBEYBres
as tuples of timed data streams, we assume a fixed enumeration of the port nAfaesdgsayAs, ..., An, such hat
thei-th timed data stream of the TDS-tuglestands for the timed data stream of th¢h port A;. If no enumeration
of the port names is given, then we use a family notatien (8| o) acAramesfor the elements oTDSVames \whered | A
stands for the timed data stream for paxt

Data assgnmentsBy a data asginment, we mean a functioh: N — Datawherey # N C ANames We use
notations like

§=[Ar8a: AeN]

to descrbe the data assignment that assigns to any TDS rfaméN the valuesp € Data

Notations for TDS-tupledf 6 = ({(a1, a1), ..., {(an, @n)) € TDSVames then we wiite 6.timeto denote the time stream
obtained by merging the timed data streaans . ., a, in increasing order. That is,

0.time0) = min{g;(0):i =1,...,n},
0.time(1) = min{a; (k) : g (k) > 6.time(0), i =1,...,n, k=0,1,2,...},
6.time(2) = min{a; (k) : aj(k) > 6.time(1), i =1,...,n, k=0,1,2,...},

Next we defin®d.N = 0.N(0), 0.N(1), 6.N(2), ... as a stream over/‘éamesby
6.N(k) = {Ai € Names: a; (¢) = 6.time(k) for somet € {0,1,2,...} }.

Intuitively, 8.N (k) is the name-set consisting of the pofts= N'amesat which a data item is observed at time point
0.time(k). Moreover, we defin®.s = 6.5(0), 6.6(1), 6.5(2), ... as a stream over the set of data assignments where
0.5(k) represents the observed data flow at time p@ititne(k). Formaly,

0.8(k) = [A — i) : A € 6.N®K)]
wheret; € {0, 1, 2, ...} is theunique index withg; (¢;) = 6.timek).

1 The firiteness oDatais irrelevant in most of this paper. In a few examples, we also consider infinite data domains.

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 79

We wiite 8’ for the TDS-tuple that is obtained by the first derivatives of the timed data sti&ganfsr A € §.N(0)
together with the timed data streafig, for A ¢ 6.N(0). For insaince, ifd.N(0) = {A1, A2}, then

0" = ((ay, @y), (a5, @), (@3, @3), . .., (an, @)).
The(i + 1)-st derivatie is given by 1+1 = 9Dy,

Remark 2.1 (Infinite Data Flow at all Port}. The requirement that all timed data streams &) in a TDStuple

0 = ({a1,a1), ..., {an, an)) areinfinite (together vith the assumption on time streamgshat limk_, o, a(k) = o0o)

implies that, for any porA € A'ames there arerifinitely many indicesk with A € §.N(k). Herce, we assume that
atanyport A there is an infinite data flow. This assumption simplifies the notations but, on the other hand, lacks the
possibility to describe, e.g., deadlock situations where a certain coordination mechanism blocks the data flow at por
A O

Remark 2.2 (Distinguishing Inputs and OutpytsTimed data streams, as defined here, do not distinguish between
input and output actions; instead, they merely report the “observed” data at A,dmrt not whether it is a write

or read operation that occurs At Howewer, we can assume a fixed classification of the ports into input or output
ports and — using this classifitan — derive the information whether an observed data iteat port A stands for
“readingd” or “writing d”.2 Alternatively, we can deal with a data domain that distinguishes between written and
read values. O

A TDS language (forA'ame$ denotes any subset oTDSVames Fdlowing the gproach of] where a
compositional semantics for Reo circuits is provided using coinductive reasoning with timed data streams, we shall use
TDS languages as a formalism to describe the possibéeftdat of a coordination model. For instance, the language
for a 1-bounded FIFO channel (viewed as a connector that sends values from inpAitgorttput portB) equalsthe
TDS language

{({e, @), (B,b)) e TDSx TDS| e =B ra<b<a}

where, for time streams andb, theordering< is given bya < biff a(k) < b(k) forall k > 1.
3. Constraint automata

Constraint automata use a finite 8étof namese.g, V' = {A1, ..., An} whereA; stands for the -th input/output
port of a connector or component. Thansitions of constraint automata are labeled with pairs consisting of a non-
empty subseN of {As, ..., Ap} and a data constraigt Data ®nstraints can be viewed as a symbolic representation
of setsof data assignments. Formalljata constraintsare propositional formulae built from the atomdy* = d”,
where data itend is assignd to portA. Data onstraints are given by the following grammar:

g :=true ‘ da=d ‘ g1V g2 ‘ -9

where A € N is a nane andd € Data. In the sequel, we writetDC(N, Data), for a non-empty subsétl of N,
to denote the set of data constraints using only atowhs = d” for A € N. We useDC as an abbreviation for
DC(N, Data). The Boolean connectors (conjunction)® (exclusive or)— (implication), <> (equivalence), and so
on, can be derived as usual. We often use derived data constraints siici%ad or da = dg, which stand for the
data constraints:(da = d) and\/4cpaia ((da = d) A (d = d)), resgectively.

Remark 3.1 (Some Comments ohe DataDomaing. We assume a global data domaldata for all names.
Alternatively, we can assign a data dom&iataa to every nameA and require type-consistency in the definition
of data constraints.
The assumption thabatais finite allows us to derive data constraintsdg = dg” or“da € D" or“(da, dg) € E”
for D C DataandE C Datax Data. However, as long as we do not speak about algorithmic aspects, we can allow for

2 |n the context of Reo, some input and output ports can also be ahtiera component instance. Any data flow at such an internalfsténds
for the transmission of data inside the corresponding component instance via pids, observing data itechat A has the meaning of “writing
d” and “readingd”.

80 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

an infinite data domain as well. In this case, to derive data constraints as above, we enrich the syntax of data constrail
by infinite disjunctions/conjunctions, or simply addix'= dg”, “da € D" etc., asatomic data constraints.CJ

The symbol= stands for the obvious satisfaction relation which results from interpreting data constraints over data
assignments (which were introduced3action 3. For instance,

[AHdl,Bi—)dz,Ci—)dl] = da=dc,
[Ai—)dl,BHdz,Ci—)dl] - da=dp

if d1 # da. With this satisfaction relation, we may identify any data constrawntth the sets of all data assignments
wheres = g holds.
Satisfiability and validity, logical equivaleneg, and bgical imdication < of data constraints are defined as usual,

e.g.

01 =0y iff forall dataassignments § =01 <=8 Q
g1 < gy iff forall dataassignments § = g1 = § E 0o

3.1. Definition of constraint automata

We now present the definition of constraint automata which can be viewed as acceptors for TDS-tuples (see
Section 3.2 and which can serve as an operational modetfuannel-based coordination languages &eetion 3.

Definition 3.2 (Constraint Automatpa A constraint automaton (over the data domdlata) is a wuple A =
(Q, Names —, Qo) where

e Qs a set of states,

o Namesds a finite set of names,

e —> is a sibset ofQ x 2Vamesy DC x Q, called the transition relation of,
e Qo C Qs the set of initial states.

. N, . "
We wiite =9 p instead of(g, N, g, p) e—. Wecall N the name-set angltheguard of the transition. For every
transition

N,
q—=p

we requirethat: (1)N # @, and (2)g € DC(N, Data). A is called finite iff Q, — and the underlying data domain
Dataare finite. O

We donot generally assume that is finite, because modeling conneddhnat use chanrg with unbounded
capacity leads to constraint automaith an infinite state-space. In fackeept for algorithmic aspects (s8ection §,
assuming that is finite is not important. (Even the requirement thats finite can be relaxed.)

The intuitive meaning of a constraint automatdnas an operational model for connectors of a coordination
language is similar to the interpretation of labeled siton systems as formal models for reactive systems. The
stakes represent the configurations of the connector, the transitions, the possible one-step behavior where the mean
of

q 2
is that, in configuratiom, theports A € N have the possibility of performing 1/O operations that meet the guard
and that lead from configuratianto p, while the other portsA; € A'ames\ N do not perform any I/O operation.

Example 3.3 (1-Bounded FIFO ChannglFig. 1 shows aconstraint automaton for a 1-bounded FIFO channel with
input portA and output porB. Here, we assume that the data domain consists of two data items 0 and 1. Intuitively,
the initial stateqp stands for the configuration where the buffer is empty, while the stpteand p; represent the
configurations where the buffer is filled with one of the data items.

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 81

Fig. 1. Constraint automaton for a 1-bounded FIFO channel.

The intuitive behavior of a constraint automatdrviewed as an acceptor for TDS-tuples is as follows. We assume
that the autmaton gets a TDS-tupke e TDSVamesys input and tries to find out wheth@idescribes a possible data
flow of A viewed as an operational model, in a 8anway that a finite automaton (es-automaton) obtains a finite
(infinite) word as input and tries to find an accepting run. (lda@v, as constraint automata do not have final states,
accepting runs are always infinite.) Thatisstarts in one of its initial stateg. If the curent state ig|, then.4 waits
until data items occur at some of the input/output pdktse A'ames Suppose that data iteml occurs atA; and
dataitem dy occurs atAz, while (at this moment) no data @bserved at the other porfss, ..., An. This triggers the
automaton to check the data constraints of the outgping Ax}-transitions of state to choose a transition

q {A1,A2}.9 D
Where[A1 — di, Ap > dz] = g and move to state. If there is no{ A1, Az}-trandtion from g whose data constraint
is fulfilled, then.A rejects. In general, if data occur exactly at the input/output plarts N, thenonly N-transitions
(but noN’-transitions, wheré\’ is a sibset or superset &) where the dta constraint is fulfilled can fire.

Having this behavior in mind, the intuitive meaning of conditions (1) and (2péfinition 3.2is as follows.
Condition (1) stands for the requirement that automata transitions can fire only if some data occurs at one or more
of the portsAg, ..., An, while condition (2) formalizes that the behavior of an automaton may depend only on its
observed data (and not on data that will occur sometime in the future).

The constraint automaton for the FIFO1 chanr®tgmple 3.3 is deterninistic, in the sase that (1) there is a
unigueinitial state and (2) for every statg every non-empty subsel of A'amesand every data assignmenthere
is at mostonetransition

q Ny g suchthats = g.

As for ordinary finite orw-automata, deterministic constraint automata have a “unique” behavior (formalized as a
“run” in the next section) for a given input streamHowever,Definition 3.2allows fornon-deterministiconstraint
automata since, for a fixed stagie a non-empty subsell of A'ames and a gien data-assignme#t there may be
severatranstions:

N, N,))
q—giql, q—giqz, ... withé=g,i=12,....

Later, inRemark 3.9we e that (as for ordinary finite automata) for any constraint automaton there exists a language-

equivalent deterministic constraint automaton.

Example 3.4 (Non-deterministic Behavior of Constraint Automiat®ihe constraintautomaton inFig. 2 can be
viewed as an operational model for a connector with pértand B that allows A first to mnsume an arbitrary

(but finite) number of data items without any effect for the current configuration (represented by the self-loop with
name-sefA} at the initial stateyp), followed by an IO operation atA that leads to enfigurationqy in which A and

B are forced to synchronize (e.g., in a handshakimgnanism via a synchronous channel). Recall that we assume
infinite data flow at all ports (sei@emark 2.]. Here and in the sequel, valid guards are skipped in the pictures for
constraint automata.

82 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

{A} {A.B}
d_A=d_B

Fig. 2. A non-deterministic constraint automaton.

We now consider the same automaton as an acceptor for TDS¢ar§DS* B}, The autanaton sarts in the
initial stateqo and waits there until data flow & and/orB is observed. If there is only some data valuefathen
the automaton has the non-deterministic choice to move to sgate to stay in its initial state. 1f4 is in gp and data
flow is observed simultaneously atand B, theautomaton finds no matching transition and rejects. The same holds
for the case where, in statp, data flow @curs only atB, and fa stae g1, when data flowoccurs at only one of the
ports A or B, or different data values are observedaand B.

As for ordinary non-deterministic finite automata @rautomata, the accepted language — which is formally
defined inSection 3.2— covers all input streams that have at least dseccessful’ (non-rejecting) run in the
automaton. Hence, the existence of a rejecting run doesiean that the input stream is not included in the accepted
language. Thus, for the above automaton in a situation where the current sgptaibdata flow is observed &t the
“correct choice” for an input streath = ((«, a), (8, b)) with (8, b) = (¢, a®) for somei > 1 requires an oracle
thatknows the index in advance. O

3.2. From automata to streams

In this section, we give the formal definition of the aceebTDS language of a constraint automaton which was
informally described in the previousstion. In the sequel, we consider coagtt automata as acceptors for TDS-tuple
that get an “input-streant) ¢ TDSVamesand (try to) generate an infinite run fori.e., a sequenceg, g, g, . . . of
automaton states that can be obtained dagitions whose name-sets and guards match

We first look at a simple yet representative exaeplle consider a constraint automaténr= (Q, Names—, Qo)
that models the behavior of connector or component instance through which data elements flow from infatib port
output portB. Thus, we sefVames= {A, B} and we associate with andB timed data streami, a) and{(g, b) in
TDS We define théanguage accepted hy as follows:

Lros(A) = | J Lros(A, @)
a€Qo

whereLtps(A, q) denotes the language accepted by the sigteewed as thestarting state) of automatos which
is defined as the set of all TDS-tuplég, a), (8, b)) that have an infinite run it starting in statey. Intuitively, the
data streams andg in the input strean® = ((«, a), (8, b)) contain the data elements that are being input and output
by the portsA andB. Thetime streams andb contain, for each of them, the time moments at which these input and
output actions take place. The relevance of this timing mftion is restricted to the particular connector at hand:
what matters is only the relative order of the initial vala€8) andb(0), which determines which channel ends will
be active next. Ther({«, a), (8, b)) € L1ps(A, q) if, at anymoment.time(k), both the set of names of active ports
(the name-se&t.N(k)) and the vales of their incoming and outgoing data items (given by the data assigAmén?)
“match” the name-sets and constraints of the subsequent transitigns of

The formal definition ofLtps(.A,) can be given by means of a recursive equation syst&ims(.A4, q) consists
of all TDS pairst = ({«, @), {8, b)) such that there exists a transition

qg—>4q

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 83

that satisfies the following condition:

a(0) <b(O) AN ={A}A[A a(0)] EgA (o, &), (B, b)) € L1ps(A,),
or b0 <a@ AN ={B}A[B— BO)]E gA (o, a), (',b) € L1ps(A, §),
or a(0) =bO)AN={AB}A[A a(0), B~ BO)]EgA (&, a), (B.0)) € L1os(A,).

Although the above definition oftps(.A, q) is circular (i.e.,g may be equal t@), it can be formally defined by
means of the greatest-fixed-point of a suitably chosen monotone operator.

Definition 3.5 (Fixed-point Definition of the Accepted TDS languader a given constraint automatod =
(Q, Names —, Qp), we define tie operator

24 (Q — 2TngameS> — (Q — 2TDSMameS>

as follows. LetL : Q — 2TDSVA™ e a function andy € Q. Then, 24(L)(q) consists of all TDS-tuples
6 € TDSVaMestor which there exists a transition

Ng _

q-24
with 6’ € L(G), 8.N(0) = N andd.5(0) = g. We then defineLtps(A, -) as the greatest-fixed-point &4. As bebre,
L1ps(A) denotes the union of the TDS languagas(A, qo) for theinitial statesgg € Qo. O

The above fixed-point definition of the accepted TDS lamguis often useful for providing simple proofs for
language-based properties of automata. However, in some cases, it is easier to reason with the accepted langua
characterized by means of the (standard) notion of runs:

Definition 3.6 (Runs in Constraint AutomataGiven a TDS-tupl® € TDSVames the set binfinite g-runs foro in
A is the greatest set of streaps= qo, g1, - . . over Q suchthatgo = q and there is a transition
N.g
Go— Q1

with N = 6.N(0), 6.5(0) = g andq’ is an infiniteg;-run for 0’ in A. By a repctingqg-run foré in A, we mean a
finite sequace of automaton stateg, . . ., g, suchthat

e (o=4qQ,
e if N > 1, then there is a transitiogy N, g1 with N = 6.N(0), 6.§(0) = g andq, ..., O is a rejectinggz-run
fore’,

e if N = 0, then there is no transitiogy ﬂ g1 with N = 6.N(0), 6.5(0) &= g.

By an accepting run fof in A we mean an infinitgjo-run for6 whereqq is an initial state. Similarly, a rejecting run
for 6 in A denotes a rejecting-run foré in A whereq € Qgp. O

It is easy to see that
L1ps(A,q) = {6 € TDSVames. there exis an infhite g-run foré in A}

Example 3.7 (Accepted TDS languayyeThe language accepted by the constraint automaton for a 1-bounded FIFO
channel Example 3.3 equalsthe set

{({a, @), (B,b)) e TDSx TDS|a =B ra<b<a'}

Because this automaton is daninistic, any TDS pair has a unique (actieg or rejecting) run. However, this is
not the case for non-deterministic constraint automata. For instance, the non-deterministic constraint automaton ir
Example 3.4vhose accepted TDS language is

(e, a), @V, aV)) : (@, @) € TDSi > 1},

has infinitely many rejecting runs for any input streéfa, a), (¢, a®)) (namely, the runqéﬁk, fork > 1, where
the automaton stays too long in its initial state) and exactly one accepting run, ngjngly 0O

84 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

)
o

{A.B}
{A.B) {AfL_d " d_A<>d_B {AB)
=0 d A=d B
powerset
construction @
—-
(AB}
B A
{B} [A} |B}
{A.B)
nondeterministic ;E:f):?altr:)]l:l"-
automaton {A}

Fig. 3. Example for the powerset construction.

We now show that any non-deterministic constraint audton can be transformed into a language-equivalent
deterministic constraint automaton. For the construction, we need the following notation:

Notation 3.8 (Data Constaints dq. . .)). For a constrait autanaton.4 as beforeq a stde in .4, N € AMamesand
P C Q, we define

dca@. N.Py=\/{g: q 24 pforsomep e P b

If Aisunderstood from the context, we simply write(q, N, P). We usealc(q, N) as an abbreviation fatc(q, N, Q)
anddc(N, P) for \/ dc(g, N, P). O
qeQ
Intuitively, de(g, N, P) is the weakest data constraint that ensures the existenceNotiemstion from stateq to
P. Note hatdc(qg, N, P) = false if there is noN-transtion from g to a P-st&e.

Remark 3.9 (Deriving Deterministic Constraint AutomataAs for standard finitautomata, deterministic constraint
automata are as powerful as their ndeterministic variants, if we are terested only in their accepted stream
languages. More precisely, given a non-deterministic constraint automatos: (Q, Names —s, Qp), one can
use the standard powerset construction to obtain a deterministic constraint automaton

det(A) = (ZQ \ {@}, Names —> get, QO)

where the transition relation— ge; is defined as followé.For P, P’ € 29 with P £ ¢ andP’ # ¢ andN € Names

P4 P iff g=\/ de(p. N, P,
peP

Using similar arguments as in the correctness proof of the powerset construction in ordinary finite automata, it can b
shown thatCtps(A) = Lps(det(A)). Fig. 3shows an example.O

3 Nevertheless, as for ordinary finite automata, using non-determimistinata has the advantage that they may be exponentially smaller than
their deterministic equivalents.

40of course, we can use the same ideas as for standard finite automata and apply an on-the-fly construction of the reachdétie4art ik
may lead to a smaller state-space, but cannot avoid the exponential blowup in the worst-case.

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 85

(a) a 3-way connector (b) a 6-way connector (c) two 3-way connectors and a 6-way connector

Fig. 4. Components and connectors.

4. Constraint automata as oper ational model for Reo cir cuits

In this section, we show how constraint automata can serve as an operational semantics for the coordinatior
language Reol]. We start with a brief introduction to Red&éction 4.] and then define composition operators
for constraint automata that correspond to the Reo connector primiBeesions 4.24.4). Section 4.5llustrates the
compositional construction of the constraint automaton for a given Reo connector through a few examples.

4.1. A Reo primer

Reo is a channel-based exogenous adioation model wherein complex coordinators, caltsmhnectors are
compositionally built out of simpler ones. The simplest connectors in Reo are a geamfielswith well-defined
behavior supplied by user][The emphasis in Reo is on connectors, their behavior, and their composition, not on
the entities that connect, communicatad cooperate through them. The behavior of every connector in Reo imposes
a pecific coordination pattern on the entities that perfaiwnmal 1/O operations throughat connector, without the
knowledge of those ¢ities. This makes Reo a powerful “glue languafyier compositional construction of connectors
to combine component instances into a software system and exogenously orchestrate their mutual interactions.

Reo’s notion of components and connectors is depictelign 4, where component instances are represented as
boxes, channels as straight lines, and connectors are delineated by dashed lines. Each connector in Reo is, in tut
constructed compositionally out of simpler connectors, which are ultimately composed of primitive channels. For
instance, the connector IFig. 4a may in fact be a flow-regulator (if its three constituent channels are of the right
type, as described irl]). Fig. 4a would then represent a system composed of wxiter component instances (C1
and C3), plus aeader component instance (C2), glued together by our flow-regulator connector. Every component
instance performs its 1/0 operations following its own tigniand bgic, independently of the others. None of these
component instances is aware of the existence of the others, the specific connector used to glue it to the rest, or eve
of its own role in the composite system. Nevertheless, the protocol imposed by our flow-regulator glue cotle (see [
and [2]) ensures that a data item passes from C1 to C2 only whenever C3 writes a data item (whose actual value i
ignored): the “tokens” written by C3 thus serve as cueggaolate the flow of data items from C1 to C2. The behavior
of the connector, in turn, is independent of the componédrasit connects: without their knowledge, it imposes a
coordination pattern among C1, C2, and C3 that regulates the precise timing and/or the volume of the data items the
pass from C1 to C2, according to the timing and/or theuwrd of tokens produced by C3. The other connectors in
Fig. 4implement more emplex coordination patterns.

Channels.Reo defines a number of operations for componentsiygnémically) compose, connect to, and perform
I/O through connectors. Atomic connectors ah@nnels Thenotion of channel in Reo is far more general than its
common interpretation. A channel is a primitive coommication medium with exactly two ends, each with its own
uniqueidentity. There are two types of channel ends:

¢ sourceend through which data enters, and
e sinkend through which data leaves a channel.

A channel must support a certain set of primitive operaj such as 1/O, on its ends; beyond that, Reo places
no restriction on the behavior of a channel. This allawsopen-ended set of different channel types to be used
simultaneously together in Reo, each with its own policy farchronization, buffering, @ering, computation, data
retertion/loss, etc.

86 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

e

e e T The ¥
/ " S~ T e e,

b c d e

Fig. 5. Nodes in Reo.

ConnectorsA connector is a set of channel ends organized in a grapb@ésand edges such that:

e zero or more channel ends coincide on every node,

e every channel end coincides on exactly one node,

e there is an edge between two (not necessarily distinct) nodes iff there is a channel, one end of which coincides o
each of those nodes.

A node is an important concept in Reo. Not to be confused with a location or a component, a node is a logica
construct representing the fundamental topological ptygp the coincidence of a set of channel ends, which has
specific implications on the flow of data among and through those channel ends.

The set of channel ends coincident on a néde disjointly partitioned into the se&rc(A) andSnk(A), dending
the sets of source and sinkannel ends that coincide @\ respectively. A nodé\ is called

e asource noddf Src(A) # ¥ A Snk(A) = @,
e asink nodeif Src(A) = @ A Snk(A) # ¢,
e amixed nodeéf Src(A) #£ @ A Snk(A) # @.

Fig. 5a and b show sink nodes with, respectively, two and three coincident channelfégdSc and d sow source
nodes with, respectively, two and three coincident channel &nglsse shows a mixed node where three sink and two
source channel ends coincide.

Reo provides operations that enable components to connect to and perform 1/0O on source and sink nodes only
components cannot connect to, read from, or write to mixed nodes. At most, one component can be connected to
(source or sink) node at a time. A component can write data items to a source node to which it is connected. The writ
operation succeeds only if all (source) channel endscodémt on the node accept the data item, in which case the
data item is transparently written to every souecel coincident on the node. A source node thus actgedieator.

A component can obtain data items from a sink node to which it is connected through destructive (take) and non
destructive (read) input operations. A take operation sucaady if at least one of the (sink) channel ends coincident

on the node offers a suitable data item; if more than one coincident channel end offers suitable data items, one
sdected non-deterministically. A sink node thus acts as a non-determimistger A mixed node is a self-contained
“pumping station” that combines the behavior of a sink node (merger) and a source node (replicator) in an atomi
iteration of an endless loop: in every iteration, a mixed node non-deterministically selects and takes a suitable dat
item offered by one of its coindent sink channel ends and replicates it into all of its coincident source channel ends.
A data item is suitable for selection in an iteration orilitican be accepted by all source channel ends that coincide
on the mixed node.

It follows that every channel represents a (simple) connector with two nodes. More complex connectors are
constructed in Reo out of simpler ones usingjitsn operation. Joining two nodes destroys both nodes and produces
a new node on which all of their coincident channel ends cae. This single operation allows construction of
arbitrarily complex connectors involving any combination of channels picked from an open-ended assortment of usel
defined channel types. The semantics of a connector is defined as a composition of the semantics of its (1) constitue
channels, and (2) nodes. The semantics of each channel is defined by the user who provides it. Reo defines t
samantics of its three types of nodes, mentioned above.

Fig. 6a and b how two Reo connectors. We consider these connectors in more dekathmples 4.6and 4.7,
respectively, inSection 4.3Here, we use them to introduce our visual syntax for presenting Reo connector graphs
and some frequently useful channel types. The enclosing thick boxes in these figures réydasgrhe topologies
of the nodes (and their edges) inside the box are hidddrcannot be modified, yielding a connector with a number
of input/outputports represented as nodes on the border of the bawgniddx, which can be esl by other entities
outside the box to interact with and through the connector.

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 87

F

t{ i
A A FIFO2 E _
i Y in [}— =4 Exclusive
s i % Router
B 7 \ — »
Mé N i
WU P,
CLE
[§] out
D B
E B
a b

Fig. 6. Exclusive router and shift-lossy FIFO1.

The simplest channels used in these connectors are synchrddyus ¢hannels, represeat as simple solid
arrows. A Sync channel has a source and a sink end, and no buffer. It accepts a data item through its source end iff
can simultaneously dispense it through its sink. A lossy synchrohass¥syng channel is similar to a Sync channel,
except that it always accepts all data items through its sourdelgit is possible for it to simultaneously dispense the
data item through its sink (e.g., there is a take operatioew@dpg on its sink), the channel transfers the data item;
otherwise, the datitem is lost. LossySync channels are depicted as dashed arrows, &ig.,6a. The edge BD in
Fig. 6b represents an asynchronous channel with the bounded capacitlfI6f1(), with the small box in the middle
of the arrow representing its buffer. This type of channel can have an initially empty buffer or-&g @b, contain
an initial data value (in this case, the “0” in the bmpresenting its buffer). Analogously, the edge AR-ig. 6b
represents an asynchronous FIFO channel with the bounded capacityl&32], with its obvious semantics.

An example of the more exotic channels permitted in Reo is the synchronous drain cl&medi@ain, whose
visual symbol appears as the edges XZ and AEim 6a andb, respectively. ASyncDrainchannel has two source
ends. Because it has no sink end, no data value can ewdtéi@ed from this channel. It accepts a data item through
one of its ends iff a data item is also available for it to simultaneously accept through its other end as well. All data
accepted by this channel are lost. A close kinSyhcDrainis the asynchronous drainAsyncDrair) channel (not
shown inFig. 6): it has two source ends through which it accepts and loses data items, but never simultaneously.
SyncSpouandAsyncSpoudre dual to the drain channel types, as they have two sink ends.

In this pgoer, as in §], we do not consider the dynamic behavior of components in creating and composing
connectors. Our focus is on the Reo circuits, built from basic connectors (channels and merger) via join and hide
operations, without considering the spperation, which may abolish the effaxftprevious join-operations and can
be followed by futher join-operations (yielding a network of Reo circuits).

We now &plain how constraint automata can be used to model the possible data flow of a given Reo circuit. The
nodes of a Reo circuit play the role of the ports in the constraint automata.

The operational semantics presented 1h describes the configurations in which a set of I/O operations for
certain nodes can take place and which successor coafiigns can be reached. Hence, we can reformulate the
semantics presented iri][in terms of a onstraint automaton whose states are the configurations and whose
transitions correspond to the possible I/O operations. Instead, we follow another approach in this paper and provide
compositionakemantics for Reo circuits. Thus, we need constraitbmata for each of the basic channel connectors
and automata operations to mimic the behavior of the Reo operations for join and hiding.

4.2. Constraint automata for the basic channels

Fig. 7 shows the constraint automata for some of the staddazasic channel types: synchronous channels with
sourceA and sinkB (or vice versa), (a)synchronous drain with the soueB, (a)synchronous spout with the sinks
A, B, and lossy synchronous channels with soufcend sinkB. In everycase, one single state is sufficient. Moreover,
the automata are deterministic.
A constraint automaton for the FIFO1 channel was showlxample 3.3For FIFO channels with capacity 2,
similar constraint automata can be used. However, the number of states grows exponentially with the capacity. Fo

88 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

synchronous channel synchronous drain
or synchronous spout

OO Oy

dA=dB {AB)

lossy synchronous channel asynchronous drain
or asynchronous spout

OO ObO

d_A=d_B (A) (B}

Fig. 7. Deternmistic constraint automata for some basic connectors.

instance, for a FIFO2 channel with the data doni@irl}, we reed seven states representing the configurations where
the huffer is empty or the buffer contains one element (0 or 1) or is full (00, 01, 10 or 11). For unbounded FIFO
channels, we even get constraint@uata with an infinite state-space.

Of course, for compositional reasoning, we must assuraé d@ther user-defined basic channel types are also
specified by appropriate constraint automata.

4.3. Join: Merge and product

As constraint automata do not distinguish between input ports (source nodes in Reo) and output ports (sink node
in Reo), we cannot expect a general join operator on constraint automata that covers both the replicator semantics
joining source nodes and the merge semantics of joining sink nodes.

Since we restrict our attention to (static) Reo circuits, we may assume that a given Reo circuit is built out of some
basic channels via the join and hiding operations whieegidin operations are performed in an order such that any
mixed node of the final circuit arisesrtiugh first joining certain sink nodesdthen joining the resulting node with
certain source nodes. On the automata level, the join of a source node with another (sink, source or mixed) node w
be realized by @roductconstruction, while joining sink nodes will be modeled with the help ofeaget

We first consider the join operation for node paiB, B) where, in each pair, at most one of the nodes is a sink or
mixed node (while the other is a source node). In this case, the effect of join is that all data flow at the modds
agree.

In the sequel, let us assume that two Reo circuits with nodeAgetand N> are given for which we want to
perform a join operation for node-paif8;, Bj) € N1 x N2,i = 1,...,k, where, br anyi, a least one of the nodes
B or Bj is a ource node. We may assume that the constraint autodatnd A, for both circuits have already
been constructed. To simplify the notation, we assuragéttie names of the nodes are renamed in such a way that
By = By,..., Bx = By and that the two circuits/automata do not contain other common nodes. That is, we have
to join all common node8 € N; N N2. On the language level, join (under the above conditions) can be viewed
as an analogue to the natural join (denoteylfor relational data bases. For instance, given two TDS languages
L1 = L1(A, B)andLy = L»(B, C),° the TDSlanguage(L1 < L2)(A, B, C) is given by

Lis< Lz = {((@ a), (B, b), (y,0)) : (@, @), (B,b)) € Lrand((B, b), (v,) € L2 }.

In a similar way, we may define the natural join for TD&dmages with other name-sets. Thus, join as an operator for
TDS languages can be regarded as a generalization of intersection. It is realized on the automata level by a prodt
construction.

Definition 4.1 (Product automaton The product automaton of the two constraint autorpdéda= (Q1, Names,
—>1, Qo,1) and A2 = (Q2, Names, —>2, Qo 2) is:

Az A2 = (Q1 x Q2, Nameg U Names, —, Qo 1 x Qo,2)

5ThenotationL(A, B) suggests thak is a TDS language for the name-g¢ét= { A, B}.

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 89

where— is defined by the following rules:

N1, N2,
=21 p1 g 2P p2. NpNANames = Np N NVames

N1UNo,
(G, G2) ——=25 (1, pa)

and

01 M& p1, NN ANames =0

N,
(a1 G2) —> (pr. G2)
and the latter’s symmetric rule.C]

The following lemma shows the correctness of the product construction, in the sense that the product automator
realizes the (natural) join of the TDS languages of its arguments:

Lemma 4.2 (Correctness of the ProdyctLet.A; and. A, be two constraint automata as above. Then:

(@) L1ps(A1 p< A2) = L1ps(A1) b< L1ps(A2),
(b) if Nameg = Names thenLtps(A1 s A2) = L1ps(A1) N Lps(A2). O

Proof. (b) follows by (a). We provide the proof for (a). In the sequel N&ames= A ameg U N'ames.

“2" We show that, for all stateg; € Q1, g2 € Qo, the unctionQ; x Q; — gTpsVames (01, a2) — L(g1, 02)
where

L (01, 02) = L1ps(A1, Q1) >< L1ps(Az2, O2)
is a post-fied-point off24,.. 4, (as defined irDefinition 3.9, i.e.,
LAz, g2) € 24,004, (L) (01, 02).
Recall that the greatest-fixed-point@fmonotonic operator in a lattice is the grest post-fixed-point; see, e.gr] [
Letd € L(q1, o), thatis,d is the “join” of two timed data streants € L1ps(Ai, i), i = 1, 2, with 01|a = 62| a
for all A e N1 N N2. (By the ‘join” of 8; andd,, we mean the unique TDS-tuple for the name-sewith 8] a = 6;|a
if AeMN.)
o If 6.time(0) = 01.time(0) < O2.time(0), then there exists a transitiorny; —I\iil p1 in Az suchthat
N =6.N(0) =61.N(0), 6.5(00)=61.800) =g and 6; € Lps(A1, p1).
Hence,N € N7 \ N> and the above transition can be lifted to a transition

N,
gz, 02) =5 (pP1, 92)-

Moreover, we hav®’ = (07, 62) € L(p1, 02), andhencef € 24,..4,(L) (1, 02).
e The casé#.timg(0) = 6,.time0) < 61.time(0) is symmetric.
o If 0.time(0) = 01.time(0) = 62.time(0), then here exist transitiong; Mi pi in A4j,i =1, 2, such that

Ni =6i.N(0), 6.8(00 =g and 6 € Ltps(Ai, pi)-

Hence, the above transitions can be lifted to a transitignoy) ﬂ {p1, p2) whereN = N1UN2 andg = g1AQp.
We then have:

N=6.N©), 0.0 g and 0 = (6.0 € L(p1 p2).
We oonclude that € 24,..4,(L)(q1, 02).

90 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

constraint automata

\ ~ " for the merger

A

C isviewed as C \, —

/'B' 2 < b
(ACT N/ /BC)
dA=dC d B=d.C

Fig. 8. The merger.

“C"If 0 € L1ps(A1 p< A2, (01, 02)), thenb = (0] a) acn; € LTDs(Ai, 0i) because, for any accepting run

(0o,1, 9o,2), (01,1, 01,2), (02,1, O2,2), - - -

for 6 in Ay 0« Az, the projection to thed; states yields an accepting run férin A; when the stategj,1; are
removed, wherg is any index such that, for the taken transition

Nj.gj
(9j,1, 0j,2) — {dj+1i>qj+1.2)

the name-sell; has an emfy intersection with\j. X

It remains to explain how the join of two sink nodes, #agndB, is realzed with constraint automata. To capture
the merge semantics of the resulting (new) n@jeve use amerger as shown irFig. 8 which we tten join (via
the product operatog<) with the constraint automata that contdéirand B, resgectively. We can then again apply the
product construction to join the resultingrestraint automaton (that contai@sn its name-set) witlanother constraint
automaton that contain@ as a source node. In a similar way, a merger can be defined as a connector with three or
more “input” nodes.

Examples for realizing join via merge and product appe&sdntion 4.5

4.4. Hiding

The effect of hiding a node that is internal to some connector in a Reo circuit is that data flow at that node is no
longer observable from outside. To obtain this effect for TDS languages, the hiding of a nameQriade)IDS
languagd._(C, Ay, ..., Ap) is realized by existential quantification over ecomponent; e.g., fot = L(C, A, B):

3CIL] = {({a, @), (B, b)) : ITDS (y, c) with ((y,), (@, @), (B, b)) € L}.
In constraint automata, the hiding operator removes all information &hout

Definition 4.3 (Hiding on Constraint AutomajalLet A = (Q, Names—, Qo) be a constraint automaton and
C € Names The ®nstraint atbmaton

is defined as follows. Let-* be the fransition) relation such that~~* p iff there exists a finite path

C}, C}, C}, C},
Chg, ©le ©e Clo

wheregn, = p andgs, ..., gn are satisfiable (i.eg; # false). (Note that thegis deend only onC.) The setQq ¢ of
initial states is

Qoc =QoU{pe Q:0o~"* pforsomeqo € Qo}.
The transition relatior— ¢ is given by:

N, .| —
q~*p, p—3r, N=N\{C}#0, g=3C[g]
N.g
q—cr

where3C[g] = \/ycpata 9ldc/d]. Here, we writeg[dc/d] to denote the data constraint obtained by syntactically
replacing all occurrences ot in g with d. More piecisely, we replace the atords = d’ with true if d = d’ and
withfalseifd #d’. O

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 91

%/) hiding B Q>/)
{AC) “~{B,C} {AC) ~c)

d_A=d_C dB=dC d_A=d_C
Fig. 9. Hiding a node of the merger.

For instance, if Amergerdenotes the merger automatorfiig. 8, thenEIC[Amerger] is the same as the automaton for
the asynchronous drain shown iRig. 7.

Unfortunately, the equality1ps(3C[A]) = IC[L1ps(A)] does not hold in general (only thec” relation, as
shown in @rt (a) ofLemma 4.4 holds). For instance, hiding in the merger atomaton inFig. 8yields a constraint
automaton shown ifig. 9, with a single state, onfA, C}-transition, and ongC}-transition.

Hence, any TDS paif{e, @), (y, ¢)) with « = y anda = ¢ belongs to the accepted languag&Bf.Amerged. ON
the ather hand, none of the pai(éx, a), (y, c)) with a = cis in the language&l B[L1ps(Amerged] because, in every
TDS-tuple accepted bylmerger it infinitely often happens that gasimultaneously occur oB andC butnot A. To
remedy the situation in general, we need to &aithessconditions that declare whiciutomata transitions must be
taken infinitely often (similar to BEhi or otherw-automata). Instead, here we show the correctness of hiding under
certain conditions:

Lemma 4.4 (Correctnes®f Hiding). (a) EIC[ETDS(A)] C L1ps(AC[A)).

o . N, Nz, Nk,
(b) If A is finite and does not contain a cycle ¢ Lo a1 2%, Tk

sdisfiable and C¢ N U - - - U N, then
AC[L1ps(A)] = L1ps(ACLA)).

In part (b), we may also assume an infinite constraintmaton without infinite pathsuilt by transitions that do
not containC in their name-set and that have satisfiable guards.

Ok = qowhere k> 1, g1,..., gk are

Proof. Part(a). With arguments that are similar to those used in the prdoéfma 4.2wecan show that the function

L : Q— 2™05"™ \whereL(q) = 3C[L1ps(A. 9)]

is a post-fixegpoint of the operaton?scy4;. From this, weconclude that, for any state, EIC[LTDS(A, q)] -
L1psEC[A], @).

Part(b). Letd € TDSV\(C) pe a TDS-tuple inCrps(AC[.A]) and letq = qo, 01, G, . . . be an infitite run ford in
3AC[.A] with go € Qo,c. By our assumption, there are infiely many transitions taken in that run which are obtained
from transitions in4 that contairC in their name-set.

We now etendq by inseting states and define a timed data stréant) such that the extended run is an infinite
run for the TDS-tupld€d, (y, c)) € TDSV in A.

e Asqo € Qo.c, we havey, ~* qo for someq, € Qo. Herce, there exists a sequence®bfransitions vith satisfiable
data constraints id that leads frongy to go, say

{Clg {Chg {Clg
Gy ——> p1 —> .- — pn = qo.

Then, we replacg by go = g, P1, - - -, Pn, 41, G2, We choose real values(k) with

O<c0) <c(l) <---<c(n—1) < 0.timeg0)

and data valueg (k) suchthat[C — y(K)] E gk, k=0,1,...,n—1.
e We now @sume thatjj € Q® andy (0), ..., y(¢) € Data, an inceasing sequenag0), ..., c(¢) of time points
are defined (such that¢) < 6.time(j)). We then consider the transition

N,h
gj —>c gj+1
which was takenn thegiven runq for 6 in 3C[.A]. That is,we have

0.N(j)) =N,0.8()) =0

92 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

\ A \ {Ct

o@ic

{Cr~ .- {B}

v 1
1 product automata 1
1

\ \ \

{A)
{B) (€ |ysy
[A.B)
{A] @

hiding

Fig. 10. Composition of two FIFO1 channels.

and there are transitions

{C}.hy {C}.hz {Chh N,h
j ri xx S I'm dj+1

in A wherehy, ..., hy # false andN = N\ {C}, h = 3C[h]. Hence, we may choose real numbe¢k) for

k=¢+1,...,£+m+ 1, with
c)<c(l+1) <---<cl+m+1) <otimegj+ 1)

and data valueg(k) € Datawith [C — y (£ +1)] = hi and$ = h, wheres is a data assignment for the name-set
N that agrees with.5(j) for all A € N and possibly contains a suitable data assignmer for

In this way, weobtain an infinite rurg for (8, (y, ¢)) in A. (Here, it is mportant to notice that, by our assumptign,

andc are infinite.) Hence@, (y, c)) € L1ps(A) and thug € EIC[ETDS(A)]. X

4.5. Examples for the construction of constraint automata via join and hiding

We now preoide some simple examples to demonstrate g constraint automaton of a Reo circuit can be

obtained in a compositional way.

Example 4.5 (Composition of Two 1-Bounded FIFO ChannelBig. 10 shows how a 2bounded FIFO channel can
be obtained from two 1-bounded FIFO channétseo1(A, C) and Arro1(C, B) via product and hiding:

AriFo2(A, B) = 3C[ArFo1(A, C) m AriFo1(C, B)].

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 93

dXdM d_X=d_N d_Z=d_U d_Z=d_W
{XM} i j}\)x (X.2} uz) {WZ
lussy sync lossy sync sync drain merger
d_F=d_X =d_U d_M=d_W d_M=d_E _7deB
% {F.X) 8) {NU} } {M,W} 2) INB}
sync sync sync sync sync
- *
Al ,
e product automata P
\“ "l
R #

{F,X.Z,M,W,E} {FX,ZN,UB)
d_F=d_X d_F=d X
d_Z=d_W dzZ=d U
d_X=d_M d_X=d_N
d_M=d_W d_N=d_U
d_M=d_E d_N=d_B
{F.E} {F.B}
d_F=d_E d_F=d_B

exclusive router

Fig. 11. Exclusive router obtained through composition of basic Reo channels.

For simgicity, we deal with a singleton data domdata = {d} which allows us to skip the data constraints of the
transitions. Nag that he statgqs, p2) is not reachable igr02(A, B). The rason is thafgs, p2) is entered through
C when the data element moves from the buffer of the first channel to that of the second. As we abstract away from

the activities ofC, stae (qi, p2) can be skipped itdgiro2(A, B) (or, alternatively, it carbe iderified with the state
(p1, G2)). O

Example 4.6 (Exclusive Routdr Fig. 6a shows the Remetwork for anexclusive routerconnector. A data item
arriving at the input port F flows through to only one of the output ports B or E, depending on which one is ready to

consume it. If both output ports are prepared to consumeetéen, then one is selected non-deterministically. The
input data is never replicated to more than one of the output ports.

Fig. 6a shows thathe exclusive router isbtained by composing twoossysyncchannels (XM, XN), é&SyncDrain
(XZ) channel, a merger (inherent in the mixed node of Z), andSigecchannels (FX, MW, NU, ME, NB):
AXRouten(F, E,B) =3M,N,U, W, X, Z[ALossySynEX, M) < ALossySynEX, N) >
-ASyncDrair(X, Z) p< Amerger(U, W, Z) < -ASyn((F, X) <

Fig. 11 shows how the mnstraint automaton for our exclusive router is obtained as the product of the constraint
automata of its constituent channels followed by hiding of its internal transitidns.

Example 4.7 (Shift-lossy FIFO1 ChannglFig. b shows a Remetwork for a connector that behaves as a lossy
FIFO1 channel with a shift loss-policy. Thidiannel is called shift-lossy FIFOS{iftFIFOL). It behaves as a normal

6 The kehavior of this connector is the counterpart of the primitive non-detéstic selection inherent in the merge that a Reo (sink or mixed)
node performs on its multiple input, modeled by the mergétiin 7.

94 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

d_E=d_C d_D=d_C d_F=d_E d_F=d_B i Al
- FE} F.B — {AF)
(ECI ™y _(DC) [_1\\1 _{FB) ?)/ \()/)
(; > L/LJN,) = T S
" merger F)
merger exrouter -
(B} \V {AC) [A)
E}) (@ FIFO2
FIFO1 IBT syncdrain
‘\ product automata /'
\‘q‘ }'
_4P=dC (acp)
& T
T _—"w_/ IACEF)
d_F=d_B {F.B) d_F=d_E
. d_C=d_E
hiding }
A
{A}
el e
= e {A}
{B}

shift lossy FIFO1 channel
Fig. 12. Shift-lossy FIFO1 channel obtaindadugh composition of other Reo channels.

FIFO1 channel, except that, if its buffer is full, then the arrival of a new data item deletes the existing data item in
its buffer, making room for theew arrival. As such, this channel implements a “shift loss-policy” losing the oldest
contents in its buffer in favor of the latest arrivals. This is in contrast to the behavior ofeflow-lossy FIFO1
channel, whose “overflow loss-policy” loses the new arrivals when its buffer is full.

The connector irfig. 6b is conposed of an exclusive router, XRouter(F,E,B) (showikig. 6a and &plained in
Example 4.8, a merger (inherent in the mixed node of C$@ncDrain(AC), an initially full FIFO1 channel (BD),
and an initially empty FIFO2 channel (AF):

Ashitriro1(A, B) = 3C, D, E, F[Axroute(F. E. B) 0t Amerged E, D, C) =
Asyncpraif A, C) =1 AriFo1(B, D) & AriFoz2(A, F)].

Fig. 12 shows low the onstraint automaton for o8hftFIFO1 channel is obtained from the constraint automata of
its constituents through product and hiding.

4.6. Parameterized constraint automata

In the previous examples, we concentrated on data-abstract coordination mechanisms. In many applications, tl
data-abstract view is too coarse, e.g., for reasoning aheutinctionality of the componenthat are glued together.
Because data dependences often lead to rather complexaiohatitomata, we propose argmeterized notation that
can simplify the picture of constraint automata with non-trivial guards. For instance, the 1-bounded FIFO channe
with arbitrary data domain can be depicted aBiign. 13.

7 The assumption that the FIFO1 channel BD is full, while the FIFO channel AF is initially empty — as depictBayirtb — yields an initially
empty shift-lossy channel.

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 95

{A)
x:=d_A

N
@0

(B}
d B=x

Fig. 13. Parameterized constraint@maton for a 1-bounded FIFO channel.

The automaton ifrig. 13 is not a anstraint automaton, but an intuitive symbolic representation of the constraint
automaton with state-spa€g= {qo} U {q(d) : d € Data}, Qo = {qo}, Names= {A, B} and the transitions
{A},da=d {B}.dg=d
qo ——— q(d), q(d) ——— do
for any dda itemd e Data Formally, to reason about data-dependent coordination mechanisms, we define a
parameterized constraint automataes a tuple

P = (Loc, Var, v, Names ~, Logy, init)
where

e Locis a set of locations,
e Locy C Locis a set of initial locations,

e Varis a set of variables,

e v: Loc— 2¥¥ assigns to any locatiofia (pcssibly empty) set of variables,

e init is a function that assigns to any initial locatiére Locy a condtion for the variables.

v(¢) can be viewed as the parameter list of locatior-or insance, inFig. 13 we useq(x) to denote thatq is a
location with parameter list(q) = {x}, while o is a location with an empty paraeter list. The initial condition for
o is omitted which denotes thatit (qp) = true.

The transition relatior- of a parameterized constrainttamaton is a (finite) set of tuplég, N, h, X, ¢), written
in the form

N7

Here,¢ and/ are locations and\ is anon-empty name-se.is a (parameterized) data constraint fby built out of
atoms of the form da = expr’. The expressiorxpris built from constantsl € Data, the synbolsdg for B € N,
variablesx € v(¢) and operators for the chosen data domain, e.g., Boolean opetatoretc. forData = {0, 1} and
arithmetic operators-, *, etc. forData = N. The sibscriptX of the above transition stands for a function that assigns
to each variabl& € v(¢) \ v(¢) and possibly to some of the variablesvift) N v(£) an expression that is built out
of the symbolsda for nodesA € N, constantd € Data, varieblesx € v(¢), andoperators orData. For instarce,

if Data = N, the irtuitive meaning ofX(X) = da + X is the assignmentX’' := da + x”. For another example, if
Data = {0, 1}, then we @al with assignments likex':= —da A X".

We use pameterized constraint automata assymbolic representatiorof (non-parameterized) constraint
automata. The states of the latter are obtained by augmenting the locations with values for the variables of thei
parametelist. Formally, givenP as above, the induced constraint automadgn= (Q, N'ames —, Qo) is defined
as follows. The state-spad@ of Ap consists of the pairél, n), where¢ € Locis a location and; is a variable
evaludion for the variablex € v(¢), i.e,, is a function fromv(¢) to Data. The sates(¢, n) with £ € Locy and
n [init(¢) are the initial states aflp. Thetransition relation— is derived from ~ by the fdlowing rule:

¢ ™% 2 7= nlX,8llyg. 9= hix/n(X) : X € V(O)] A glo]

.n) =% (@, 7

96 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

Sum b(' -

Im—-mAn
1]

I e

Fig. 14. Reo circuit for Fibonacci series.

{AB]
x:=d_A
\ y:=d_B
{C}
d_C=x+y

Fig. 15. Parameterized constraint automaton for Sum.

wheres = [A — 8a : A € Nx] is an arbitrary data assignment fidl, the set bnames A € N whereX contains

an assignmentX := ...da..."” (in which thesymbol da occurs in the expression on the right) ayid] is the data
constraint
glsl = /\ (da=3sa).
AeNx

The construch[x/n(x) : X € v(¢)] stands for the data constraint obtained fronby syntactically replacing variable
X € v(£) with the valuen(x) € Data. The @nstructy[X, §] denotes the eVaation for the variables ir(¢) U v(£) that
is obtained fromy by executing the assignmentsXf For instarce,

_— _fntyy ifyevo)\ {x}
n[x :==da, A di(y) = {d if y = %,
X §

The construcy[X, 81lyz) denotes the résction of [X, §] to the variables iv(?).

Note that constraint automata areesjal instances of their parameterizegtsion with empty parameter lists for
all their locations. (In this case, there is no difference between locations and states, and wg havd.)

The product constructiorDEfinition 4.1 can easily be modified for parameterized constraint autofRatand
P2 with disjoint variable sets such that the unfolding of the prodeict< P2 into a (hon-parameterized) constraint
automatondp,..p, generates the same TDS language as the prodigct< Ap, of the constrainautomata fofP;
andpPs.

Example 4.8 (A Component connector for the Fibonacci numbek/e consider the Reo circuit iRig. 14, which
uses a component, Sum, in the context of certain chammglsnerate the stream of numbers in the Fibonacci series.
Sum has two input portsA and B and one output po& through which it produces the sum of its input values.

Fig. 15shows a parameteed constraint automatdps,mthat can be viewed as an interface specification for Sum.
(Here, we assume thBata = N.)

JoiningPsymWwith the constraint automaton for the Reo circuitiig. 14 “around” Sum (which can be obtained in
a conpositional way, as in the previous examples), we obtain the parameterized constraint auBgdtoRig. 16.

We may nowunfold Pgjp into a (hon-parameterized) constraint automaton, and hide the nAraas B to obtain
an infinite-state constraint automatdn(with the singleton name-sg@tf}) whose accepted TDS-language is the set of
timed data streami, c), where the dta streany stands for the infinite sequence of Fibonacci numbersaisdan
arbitrary time stream. O

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 97

Fig. 16. Parameterized constraint automaton for Fibonacci series.

powerset @

hldm'j e LUI]\[IULUU[I

A} {A C} A] A [A}
deterministic non-deterministic deterministic
constraint automaton constraint automaton constraint automaton

Fig. 17. Transformation of deterministic @non-deterministic constraint automata.

4.7. Remarks on the constraint automata semantics for Reo

We oonclude our presentation of the constraint automata semantics for Reo with a few remarks.

Deterministic consaint automata.The product of two deterministic constraint automata is always a deterministic
automaton, while hiding can turn a deterministic constraint automaton into a non-deterministic one. In particular,
the constraint automaton for a Reo circuit without hidden nodes is always deterministic, provided that the user-
defined basic channels are specified by deterministic @insautomata. (Recall that the automaton for the standard
basic channels, such as synchronousakeds, drains, spouts and FIFO channels, are deterministic.) For modeling
circuits with hidden nodes, the hiding operator may gialnon-deterministic automaton, as illustrated by the left
transformation irFig. 17.

However, one caderive from3aC[.4] a language-equivalent deterministic automatet(3C[.A]); seeRemark 3.9
Intuitively, the states oflet(3C[.A]) stand forsetsof configurations in the given Reo circuit, as depicted by the right
transformation irFig. 17.

Composition operators in related modeBur product operator relies on the standaonstruction for building finite
automata for intersection and has similarities with composition operators in similar models, e.g., TCSP-like parallel
composition of labeled transition systems with synchronization over common actions and interleaving for the other
actions f] or the oneto-many composition of port automatd {]. On the dher hand, the hiding operator for timed

port automata is totally different from our constructidie former does not change the structure of the automata,
but makes certain output ports invisible. In contrast, our construction removes all information about the hidden
names (similard thedeldion of e-transitions in ordinary non-deterministic finite automata). In interface automata,
composition is complex, because it requires a compatibility check first. Two interface automata are compatible if
errors can be avoided.

Other serantics for Reo.Essentially, our compositional constraint automata semantics of Reo in this paper is
consistent with the operational semantics presentetl]ifahdits derived constraint automata semantics), and with
the timed data stream semantics 2 jn the sense that the diagramHig. 18 commutes.

Because the semantics that we consider in this paper is &éfsiapon of the full operational semantics of Reo, e.g.,
as informally described inl], the left-hand side of the diagram ltig. 18 commutes only modulo certain details. The

98 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

coinductive,
compositional

compositional
(section 4)

TDS-semantics
[ARO02]

operational semantics
[Arb04]

Fig. 18. Relationships amongrious semantics for Reo.

primary smplifications involve (1) the context-sensitive bel@vdf certain channels (most prominently, that of our
lossysynchronous channel), and (2) the fairness of merge. pheification of the behavior of the lossy synchronous
channel requires itotto lose the data item written to its source end, if this data item can be consumed at its sink end.
This type of context-sensitive behavior can be dealt wittanstraint automata by irtducing the notion of priorities

for their transitions. The details of this scheme are beyond the scope of this paper.

Strictly speaking, Reo itsedoes not require fairness: Reo is oblivious to (the fairness or other aspects of) the
behavior of the channels that it composes, and its iateransistency does not depend on assuming that the non-
deterministic merge inherent in the semantics of its sink and mixed nodes is fair. Nevertheless, the expressive pow
of channel composition in Reo and ther@spondence of the formal semantics of Reo connector circuits with the
intuitive interpretation of their behavior break down if this non-deterministic merge is not assumed to be fair. We do
not address a formal treatment of fairness in our consteaittmata semantics for Reo in this paper because, on the
one hand, the fairness assumption can be formally incorporated in our basic model analogously to the way it is treate
in other models. On the other hand, while it involves no real novelty, the additional formal complexity introduced by
fairnessbecomes somewhat distracting.

The right-hand side of the diagramfiig. 18 commutes in the sense that, for any Reo cir&yitve have

L1ps(AR) = LI?(R) (%)

where Ar denotes the constraint automaton fiobtained by the compositional semantics presented in this paper
andR — E[TADEOZ](R) denotes the timed-data-stream semantic2jnThe argument uses the greatest-fixed-point
definition of the accepted TDS language, and requires showing that the equatiaids for the basic channels, and
that

L1ps(A1 < A2) = L1ps(A1) b<iaroz) L1Ds(A2)

wheres<aroz) is the semantic join operator used B.[The argument is the same for hiding.
5. Bisimulation and simulation

As for standard labeled transition systems, branching time relations like bisimulation and simalktibfiner
and Park (see e.g.2]]) can be defined for constraint automata. In the context of Reo, we are interested only
in the TDS languages induced by Reo circuits (or constraint automata) rather than their branching behavior.
Nevertheless, branching time relaticar® important because they yield an altgive characterization of language
equivalencel/inclusion, as well as a simple(r) way to yafifwo automata are language equivalent, or if the language
of one is contained in the language of the other.

5.1. Bismulation

Recall the definition ofic(q, N, P) introduced in Notatior3.8in Section 3.2which weneed to define our notion
of bisimulation equivalence:

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 99

o o
{Al
(A) (A) d_A=d (A
(B) {(c} {B} d_A<>d {B} {ci

Fig. 19. Similaity and bisimilarity.

Definition 5.1 (Bisimulation). Let A = (Q, Names —, Qo) be a constraint automaton and#be an equivalence
reldion onQ. R is called a bisimulation for if, for all pairs(qs, g2) € R, all R-equivalence classd® € Q/R, and
everyN C Names

dc(gz, N, P) =dc(gz, N, P).

Statesq; and g are called bisimulation-equivalent (denotgd ~ qp) iff there exiss a bisimilation R with
Qo) eR. O

As usual, two constraint automatds and .42 with the same set of names are called bisimulation-equivalent
(denotedA; ~ Ay) iff, for every initial stateqp, 1 of A1, there is an initial stateqo 2 of A2 suchthatgo1 andqo,2
are bisimulation-equivalent, and vice versa. Hede,and.4> must be combined to a “large” automaton obtained
through the disjoint union of (the state spaces4f)and.A,.

Example5.2. In the contraint automata oFig. 19, staesq; andqy are bisimilar, whilegs, gz 7 gz. To see whyg:
andqp are bisimilar, it suffices to establish a bisimulation that conté&insgy). In fact, the guivalenceR induced by
the partition

Q/R = {{a1. a2}, {3}, {p1. P2 Pa}. {r1. T2}, {us}}

can be shown to be a bisimulation. Note that, for instance,

do(ay, {A}, {p1, P2, P5)) = true = do(ga, {A}, {p1, P2, Po))-

On the otter hand,q; and gy are not bisimilar togz. The reason is that there o sate reachable from or gz
that is bisimilar tous, becausedc(us, {B}) = dc(us, {C}) = true, while dc(r1, {B}) = dc(ro, {B}) = false and
de(py, {C}) = dc(pz, {C)) = false. O

In Fig. 19, stdesqi, g2, andgz are language-equivalent (i.&£yps(A, q1) = L1ps(A, 02) = L1ps(A, gs)) but
not bisimulation-equivalent. For non-deterministic constraint automata, bisimulation is strictly finer than language
equivalence. However, for deterministic constraint automata, bisimulation and language equivalence coincide, a:
shown n part (b)of the fdlowing theorem.

Theorem 5.3 (Bisimulation Versus Language Equivalepcket A; and A2 be two constraint automata with the
same name-sgtf’ames:

(a) if A1 ~ A, thenLps(A1) = L1ps(A2);
(b) if A1 and.A; are deterministic andtps(A;, q) # ¥ for all states q in4; (i = 1, 2), then

Ay~ Az it L1ps(A1) = L1ps(A2).
Proof. (a) follows from theobservatio tha, if g1 ~ qp, then, for any6 € L1ps(A1, g1) and any infinitegi-run
g1 = 0o.1, 1.1, 02,1, - - - for 0 in Aj1, there exsts agz-runqz = qo.2, 01,2, 02,2, - - . for 6 in Az suchthatgi 1 ~ g2

for all indicesi. To se this, we may use an inductive argument to define thgzuAssume thait > 0 andg; 1 ~ g 2
(where, fori = 0, we putgi 2 = Q). Let

N.g
.1 — U+11

100 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113
{A.B) {A,B}

{A}

{A)

Fig. 20. Language equivalence and bisimilarity.

be the(i + 1)-th taken transition i1 (thatis,N = 6.N(i) and6.5(i) = g). Then,

0.5() =g < dc(di,1, N, [Gi+1,1]) = dc(gi2, N, [dit1,1]).

Here, we writg] p] to denote the bisimulation equivalence classpoHence, there exists a transition

N.h
G2 — Gi+1,2

whereqi+1.2 € [Qi+1.1] (i.e., wheregi+1,1 ~ Qi+1,2) ando.s() = h.
Part(b). Let A = (Q, Names —, Qo) be a deterministic constraint automaton whéigs(A, q) # @ for all
staesq € Q. We show hat the réation

R ={(1.d2) € Q x Q: L1ps(A, 1) = L1ps(A. d2) }

is a bisimulation. Le{(q1, g2) € R, N anon-empty subset of’amesand P an R-equivalence class. To prove the
logical equivalence ofdc(qz, N, P) anddc(gp, N, P), it suffices to show that, for any data assignm&fdr N with
8 Edc(qz, N, P), there exists a transition

N,h
02 — P2

in Awith§ =handp, € P.

If § = dc(gy, N, P), then thereis a transitiongp —N—’i p1 with § = g andp; € P. We now choose an arbitrary
TDS-tupled € L1ps(A1, p1) and real numberwith

0 <t < 6.timg0).

We defined = (6] a) acAamesas the TDS-tuple with
6.time(0) =t,0.N(0) = N, 6.5(0) =46

and wheré|a = 04 if A € Names\ N and, forA e N'amesthe firstderivative ofd|a is 6| a. Then,
6 € L1ps(A1, Q1) = L1Ds(Az2, 02).

Hence, there exists a transitigp N—h> p2 with § = 6.8(0) = h andd = 6’ € L1ps(A, p2). As A is deterministic,
we have

Ltos(A, pi) =1{0":0 € Lrps(A, 4), 6.N(O) =N, §.500) =6}, i=12

As L1ps(A, 1) andL1ps(A, 02) agree, we obtaiftps(A1, p1) = L1ps(Az2, p2), andhence thek-equivalence of
p1 andpy. Thus,pp € P. X

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 101

Bl B2 B3 B4
Al o . * :
—& Sender Receiver
¢ »
DI D2 D3 D4

Fig. 21. ABP: components involved.

To see why impart (b) of Theorem 5.3he assumptiorftps(Ai, q) # @ is necessary for all states considerthe
deterninistic constraint automatd; and.4 in Fig. 20, with initial statesgs anddg, resgectively.

We haveLtps(A1, r) = @, because of the time-divergeaassumption which forcels and B to have infinite data
flow. Thus,.A; and A, are language-equivalens both accept the TDS Ianguag{]e(a, a), (8,hb)) :a= b}. On the
other hand,A; and.A> are not bisimulation-equivalent, becawk®q:, { A}) = true while dc(gz, {A}) = false.

Example 5.4 (Alternating Bit Protocal. The alternating bit protocol (ABP) is a method for ensuring successful
transmission of data through a faulty communication medium. Here we follow the description of ABP as suggested
in [10]. The transmission success is based on the assumptibdataacan be re-sent an unlimited number of times,
if necessaryFig. 21 shows the components that are involved in this protocol. Data elements from ldsgpare
communicated between $enderand aReceiver One the Senderreads a message from its pa@kf it sends ths
datum through the communication medilvh to the Receiver which sends the message out through its @rt
The communication mediuril; is faulty, thus a message sent through this medium can turn up as an error message
(represented d3. Everytime theReceivereceives a message Wy, it sends an acknowledgment to tisendenia
the communication mediutdl,. The comnunication nediumM; is also faulty and may change the datum it conveys.
The ABP protocol is applied to establi€orrect communication between tt8enderand theReceiverover the
faulty communication medidl; andM». TheSendemttaches a 0 or 1 bit (alternately) to the message, when it sends
it throughMs. Thus, the data sent by ti&enderor received by th&Receiverare pairgd, 0) or (d, 1) with d € Msg
The Receiversends back the attached bit vy, to acknowledge the reception. If theceivereceives a corrupted
message, then it sends the previous acknowledgment t8ehderonce more. As long as th®enderreceives a
corrupted (i.e.}) or wrong acknowledgment (i.e., one whose value it is not expecting), it repeats sending the previous
message-bit paiAlternation of the attached bit enables theceiveto determine whether the received datum is really
new, and alternation of the acknowledgment enableS#releito determine whether it acknowledges reception of a
datum or that of a corrupted message.
The parameterized constraint automata showing the behavior 8etheerthe Receiverthe two @mmunication
mediaM; and M2, and the synchronous channels contiveg these components, namdby B, Bz B4, D1 D2, and
D3 Dy, are shown irFig. 22. Our ABP pioblem involves the following data domain:

Data= MsgU (Msgx {0, 1}) U {1} U {0, 1}.

For (d, b) € Msg x {0, 1}, we definemsgd, b) = d. At portsA andC, we dlow only data items fronMsg At ports
B1, B2, B3, andB4, all data items are froisg x {0, 1} U {!}, while the channels connectifg; to D, can transmit
dataitems in{0, 1, !} and channels connectirigg and D4 can transmit data items i), 1} only. These assumptions
can be formalized by data constraints. For simplicity in the figures, we skip these data constraints.

The parameterized product automata, which is the result of applying the join and hide operations to all the
components in ABP, are shown Fig. 23. As mentoned earlier, the specification of the protocol requires that the
data received by th8endethrough its portA is correctly sent out through po@t of the Receiver This ecification
is shown inFig. 24. By conparing the unfoldings of the two parameterized automatféds. 23and24 into proper
constraint automata, it can be seen that the constraint automaton that results from applying product and hiding
operations to the constraint automata of the components in the ABP is bisimilar to the constraint automaton for
the specification of the ABP.OI

5.2. Simulation

We now provide an alternative characterization of language inclusion by means of the simulation preorder which
can be viewed as a uni-directional version of bisimulation:

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

102
Sender
{B1}.d_Bl=(d,0)
Ty
{A}di=d_A @
w
d_DI=lord _DIl=!
(D1},d_DI=I {D1},d_D1=0
[Bl},d_Bl=(d,1)
/\ I [Aldi=d_A
(D1}
d_D1=0ord_D1=!
Receiver

{B4}.d_B4 in Msg#{0}
d:=msg(d_B4) m (C).d_C=d
out(d,0) i ack(0)

(B4) (B4
{(D4},i_Da=1 o Bio d B4< {D4),d_D4=0

|B4 }.d_B4 in Msg*{1]

d:=msg(d_B4)

communication medium M2

{B2,B3}) (D2,D3}
d_B2in Msg * [0,1) and d_D3in{0,1} and
((d_D2=d_D3) or d_D2=!)

((d_B2=d_B3)ord_B3=!

communication medium M1

synchronous channels

{B1.B2} {B3,B4} (D1,D2}
d_Bl=d_B2 d_B3=d_B4 d_Dl=d_D2 d_D3=d_D4

Fig. 22. ABP: constraint automata of components.

Definition 5.5 (Simulaion). Let A = (Q, Names —, Qo) be a constraint automaton aRda binay relation onQ
R is called a simulation far if, for all pairs (g1, g2) € R, all R-upward closed set8 C Q, and everyN € ANames

de(gi, N, P) < dc(az, N, P).
P is calledR-upward closed ifffor all satesp € P and(p, p’) € R, we havep’ € P. A stateq; is simulated
by another statep (andgy simulatesy;), denoted asj; < qp, iff there exiss a simiation R with (g1, g2) € R. A
constraint automatogl, simulates anditer constraint automatad; (denoted asd; < Ay) iff every initial state of

Az is simulated by an initial state o8 O

8 Here, we assume that, and. A, rely on the same set of names.

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 103

Product — —
wait(d,0)ack(1), send(d,0rec(1)
{B1,B2,B3.B4) " (D1D2,D3,D4) (D1,D2,D3,D4)

— d_Bl=d_B2=(d,0),d_B3=d_B4=! d_Dl=d_D2=d D3=d_D4=1 g p3=d_D4=0,d_DI=d_D {B1,62,83,54)
or d_Bl=d_B2=(d,0), d_B3=d_Bd=!
d_D3=d_Dd=1,d_Dl=d_D2=! or

”‘\ — — ___|d_Bl=d_B2=d_B3=d_B4=(d,0)
- . {AlLdi=d_A / {B1,B2,B3,B4} X {C}d C=d
in(O)rec(0) =tsend(d,Orec(0)|——————— = wait-out(d.0) |——————=|waii(d0)ack(0)
d_Bl=d_B2=(d0)
- d_B3=d_B4=(d,0)
(D1,D2,D3,D4} (D1,D2,D3,D4}
d_Dl=d_D2=1 d_D1=d_D2=0
d D3=d D4=1 d_D3=d_D4=
. o
(C)d C=d / (B1.B2,B3,B4} [A}di=d_A
= wait-out(d,1) = lsend(d, Dree(1) in(1ree(1)
\ d_Bl=d_B2=(d.1)
{D1,D2,D3,D4) e d_B3=d_B4=(d,1) -
d_D3=d_D4=1.d_Dl=d_D2=!
= = (D1.D2,D3.D4) BI1,B2,B3.B4)
{B1,B2,B3B4} d_Bl=d_B2=(d,1).d_B3=d_Bd=!
d_Dl=d_D2=d_D3=d_D#=0 - -1).d_Bi=d_Bd=
d_Bl=d B2=(d,1),d_B3=d_Bd=! "
or
d_Bl=d B2=d_B3=d/B4=(d,1) d_D3=d_D4=1,d_Dl=d|D2=!
send(d, rec(() ait(d, ack(0)
Hiding
(A)di=d A /
in(Mrec(0) ,Qll—oul(d,())
(C}.d_C=d {C)d_C=d

Aldi=d_A .
Gi[mut(dy‘- (Al in(Drec(1)

Fig. 23. ABP: product of automata.
As the bgical or () is idenpotent, we have thaR is a simulation iffdc(g1, N, p) < dc(gz, N, p 1) for all
pairs(qi, g2) € R, stdesp € Q, andN C NamesHere, p 1 denotes thék-upward closure of p}, i.e., the set
{p e Q:(p p)eR}:

Example 5.6. Stateqs in Fig. 19 simulates stateg andqp in the same figureDther ekamples include, iifrig. 7:

104 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

Specification

(A}, di=d_A

GHD receive(d)

{C}d C=d —

Fig. 24. ABP: specification of the protocol.

bQ(@fQ@

{A.B)

Fig. 25. Data-abstract constrainttamaton for a 2-bounded FIFO channel.

o the automaton for the synchronous drain which simulates the automaton for the synchronous channel,

o the automaton for the asynchronous drain which simulates the automaton for the 1-bounded dazameié 3.3,
and

e the automaton for the synchronous channel which is simulated by the automaton for the lossy synchronous
channel. O

As for ordinary transition systems, simulation is the keyion for any abstraction method. For instance, simulation
coversdata abstractiorin a quite simple way. We will explain thisfithe exanple of the constraint automatodxron
for ann-bounded FIFO channel. Recall thdtron has a state-space whose size is exponentiahimen the data
domainData contains two or more elements. When we abstract away from the data values, all states (configurations
where the buffer contairselements (for somk with 0 < k < n) can be collapsed into a single state. In this way, we
obtain a constraint automaton that imas 1 reachable states and simulates thiginal constraint automatadrron.
For instance, forn = 2, Fig. 25 shows the data-abstract constraint automaton for 2-bounded FIFO channels (with an
arbitrary data domain).

Using analogous arguments as in the proofldfeorem 5.3we obtain that the simulationrporder is fictly finer
than language inclusion:

Theorem 5.7 (Simulation Versus Language Inclusjoihet A; and A2 be two constraint automata with the same
name-sef\V’ames.

(a) If A1 < A2, thenLtps(A1) € L1ps(A2).
(b) If A3 and.A; are deterministic such thattps(.A1, q) # @ for all states g in41, then

Ay = Ay iff Lyps(Ar) S L1ps(Az).

As for ordinary labeled transition systems, bisimulation equivalence is strictly finesttradation equivalencge
the kernel of the simulation preorder which identifies dlyathose automata that simulate each other. Formally,
Az and Ay are simulation-equivalent iffl; < A> and.A> < A;. However, bignulation equivalence and simulation
equivalence agree for deterministic automata. Given deterministic constraint automata with non-empty TDS language
for all their states, the latter follows from the observation that simulation equivalence agrees with language equivalenc
(part (b) ofTheorem 5.ywhich, in turn, agrees with bisimulation equivalence (part (bybéorem 5.3 In the second
part ofLemma 5.8we provide the proof for the general case.

Lemma5.8 (Bisimulation Versus Simulation Equivalefcéa) If A1 ~ Ay, thenA; < Ay (and Az < Aj).
(b) If A; and.A; are deterministic, then

A1 <A and Ay < A iff A~ A

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 105

Proof. (a) follows from the fact that anyisimulation is a simulation. We prove (b) by showing that, for a given
deterninistic automaton4, simuldion equivalences a bisimuation.

Let g1, g2 be two gates withg; < g2 andgz < g and letN be a non-empty name-set aRdbe a simuation
equivalence class. To show the logical equivalence of the data constteigisN, P) anddc(qgp, N, P), it suffices
to prove that, for any transition

N.g
g — P1

wherep; € P and any data assignmehwith § = g, there exists a transition

N.h
dQ2 — P2

with p2 € P ands = h. (This agument shows thatc(qi, N, P) < dc(gz, N, P). The synmetry yields the logical
equivalence.)

Letqp —N—’i p1 bea trandtion with p; € P and$ a data assignment with= g. As g1 < g, we have

g < dc(qi, N, p1) < dc(gz, N, p1 1).
(Here, we writep 1 for the set éstates p with p < p.) Henceg = dc(gp, N, p1 1). Tha is, there exists a transition

N,h
02 — P2

with p2 € p1 1+ and$ = h. We now usetie fact thaty; simulatesy,. Herce,
h <dc(gz, N, p2) < dc(@i, N, p2 1).

Thus, there exists a transitiap N p1 with § = g and p2 < p1. The asumption thatd is deterministic yields
g =gandp; = p;. Herce,
p1 < P2 X p1= p1,

i.e., p1 and pz belong to the samearaulation equivalence class, namdty X
5.3. Compositionality

The following lemma provides a congruence result forrbigation equivalence and the simulation preorder for
the operators hiding and join (product). This result allows us to replace a “large” constraint automaton by a “small”
bisimulation-equivalent automaton during the construction of constraint automaton with the help of join and hiding
without affecting the accepted TDS language.

Lemma 5.9 (Compositionality of Join and Hiding

(@) If Ap < A] and Az < A, thenAy b< Az < A) ba AS.
(b) If A1 ~ A} and Az ~ A5, thenAy b Ap ~ A < A
(c) If A1 < A2, then3aC[A;] < IC[A2].

(d) If A1 ~ Ap, thenaC[A1] ~ IC[A2].

Proof. To prove (a) andb), consider the relations

Rsim = {((a1. G2), (4. Gp)) : 01 < O, G2 =< Gy},
Rbis = {((q1, G2), (A1, Gp)) = G ~ 01, G2 ~ Gp}.
Then,Rsim can be shown to be a simulation aRgjs a lisimulation on the product automata.
We now praide the proof for (c) and observe that the proof for (d) is similar. To prove (c), it suffices to show

that, given a constraint automatgh= (Q, N'ames —, gp), any simuation R for A is a simulation foBC[A]. By
considering th¢C}-transitions inA4, we obtain:

(*) (01, d2) € R A QL ~* 0] = 02 ~* @ for some stde g, with (q;, g) € R.

106 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

Let (g1, g2) € R, let N be a non-empty subset &fames\ {C}, and letP be anR-upward closed subset 6. Then,
for all stateq) € Q:

descra)(@. N, P) = \/ (dca(@’. N, P) vdca(g', NU(C}, P))
q/eq*

wheregq* = {q’ € Q : g ~* ¢'}. From {), we obtain that, for every stat§ € q;, there exits a statey, € g with
(g1, Gp) € R. Because

dca(ay, N, P) < dcg(ay, N, P),
dca(qy, N U{C}, P) < dca(g). N U{C}, P),

we getdcscpay(de, N, P) < dcgepa(dz, N, P). K
6. Equivalence and refinement checking

Problems like the question of whether two constraint automata have the same observable behavior or whether one
behavior is a refinement of the other one arise naturally and frequently. For instance:

e The replacement of a quite coteg Reo circuit by a simpler one (e.g., igh uses fewer and/or cheaper connectors)
can be justified by showing that their induced constraint automata accept the same TDS language.

e Having a certain coordination mechanism in mind, it is often quite easy to depict a constraint autgithtin
describes the allowed behavior (i.e., which rejects all timed data streams that should not occur). In thid sense,
can serve as a specification for a Reo circuit that is todségthed. The correctness of a design can then be defined
by language inclusion: a Reo circuitis viewed to be correct (with respect to specificatidhiff all timed data
streams that are accepted by the constraint automagpfor G are also accepted by.

For ordinary labeled transition systepmhecking language equivalence ondguage inclusion is computationally
hard (PSPACE-complete in the case of labeled transition systa®}, jwhile checkirg bismilarity or checking
whether one system simulates another can be done in polynomial 1i&®4[L3]. For determiniic systems, the
branching time relations {gimulation equivalence, simulation preorder) coincide with the linear time relations
(language equivalence, language inclusion); hence, any algorithm for the bisimulation (simulation) problem
simultaneously also solves the language equivalence (inclusion) problem. For non-deterministic systems, th
branching time relations are strictly finer than the language relations. However, the bisimulation/simulation algorithms
can be used as correct, though incomplete, techniques to prove language equivalence or language inclusion.

In this section, we show that the situation for constraint automata is similar. In the sequel; let
(Qi, Names —i, Qq,i), i = 1,2, be two constraint automata with the same set of TDS names. Throughout this
section, the state-spac€k, thedaa domain, and the transition relations are assumed to be finite. We now discuss the
algorithmic aspects of the questions whetlgrand A, are bisimilar, whether; is simulated byA,, whether the
TDS language ofd; is contained in the TDS languagedp, and whether.A; and.4; are language-equivalent. For all
these questions, standard algorithms for labeled transition systems (and finite automata) can be modified. (We brief
sketh the main ideas iBectbns 6.1and6.2) However, as we must deal with logical equivalence and implication, the
algorithmic treatment of the branching time relations (bisimulation and simulation) is more difficult than for ordinary
labeled transition systems where only the existence of transitions with certain target states is important.

Theorem 6.1 (Compexity (Lower Boundy. Let.4; and. A, be two finite constraint automata with the same name-
setNames.

(a) The poblem of checking whethet; ~ A2 is coNRhard.
(b) The poblem of checking whethet; < A is coNRhard.
(c) The poblem of checking whethé&¥rps(A1) = L1ps(A2) is PSPACEhard.

Proof. (a) and (b) follow by a polynomial reduction fromAVID (the validity problem for propositional logical
formulae). Letf be a propositional logical formula with atomss, . . ., x,. We now define two @nstraintautomata
A1 and Ay with the namedA, .. ., Ay as follows. We use the Boolean data dom@ata = {0, 1} and identify the

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 107

Fig. 26. CoNP constraint automata.

postive literal x; with the atomic data constraidj, = 1 andthe negative literat-x; with the data constrairmts, = 0.
Let g; bethe resulting data constraint, and consider the constraint autofaaad.A; in Fig. 26.

We have:f is valid iff g¢ is valid iff true = g5 iff A7 ~ A». Similarly, f is valid iff true < gs iff A1 < A».

The proof of (c) follows by a polynomial reduction frothe language equivalence problem for ordinary non-
deterministic finite autorrta (NFA) where all states are accepting. This problem is known to be PSPACE-complete
[16].

Let M be an NFA with the alphabef and where all states are accepting. L&t1) denote the accepted language
of finite words over?, i.e., L(M) is the set of finite words € X* that havea run in M starting in an initial state of
M. Similarly, we definel,, (M) to be the set of infinite words € X~ that havea run in M starting in an initial state
of M. As mentoned above, the problem of wheth@(M1) = L(M>) for NFAs (over the same alphabet) without
non-accepting states is PSPACE-h&kf]]We now show that:

(i) the problem of whethet,,(M1) = L, (M2) for NFAs M1, M3 with the same alphalbés PSPACE-hard, by a
polynomial reduction from the langgea equivalence problem for NFAs without non-accepting states; and

(ii) the problem of whetheCtps(A1) = L1ps(A2) for constrant autanata.4; and.A; with the ame node-set is
PSRACE-hard, by a polynomial reduction from (i).

Part(i). Given an NFAM where all states are accepting, we defivieas the NFA that results fronwt by adding a
new gateq, anew input symbob, and trasitions

5
qa—q
for every state) in M andq = §. Then, we have
LM) = [o€Z*:08”€ Lo(M), LoM)={08":0 e LM}

Hence,L(M1) = L(MD) iff L,(M1) = L,(M).
Part(ii). Given two NFAs M and M3 over the samalphabetY, we mnstruct two constraint automats and
Az with a single name, sa, and the datdomainData = X' as follows.A; arises fromM; by replacing every edge

q-2 pinM; by the edga —2%=2 nin 4.
Then, we hav<ps(A1) = L1ps(A2) iff L,(M1) = L,(M2). X

In the following two subsections, we sketch how standard algorithms for solving the bisimulation/simulation and
language equivalence/inclusion problems in ordinarigdistate labeled transition systems can be modified to deal
with constraint automata.

6.1. Checking bisiitarity and similarity

Essentially, we can use the well-known partitioning-splitter technique for ordinary labeled transition syldiems [
3,24,1325,6].

For the comprison of two constraint automatot and.A; via bisimulation equivalence or the simulation preorder,
we first build the “large” constraint automatoh = .41 W A> which arises through the disjoint union of the state

108 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

spaces of4; and.A;. (The initial states of4 are irrelevant.) Then, we calculate the bisimulation equivalence classes
[l ={q’ : g ~ d'}, or resgectively, the simulator sets 1= {q’ : q < g’} of A. Findly, we check whether; ~ A3

or, respectivelyd; < A by investigating the initial states of1 and.A. Note hat.A; ~ A iff, for any bisimulation
equivalence clasP in A, we hae dther (PN Qo1 # #) A (PN Qo2 # W) or(PN Q1= A(PNQgz2=0).
Here,Qo,; denotes the set of initial states idj. To check whether4; is simulated by4,, we can use the observation
thatA; < A iff, for any initial stateq € Qg 1 of A1, we haveq + NQg.2 # 9.

6.1.1. Computing the bisimulation quotient
In the following, let A = (Q, Names —, Qp) be a constraint automaton. The idea of computing the bisimulation
equivalence classes of is to generat@ seuencelly, I11, ID, . . ., Il of patitions of the state-spac® suchthat
1I; is strictly coarser thaiifi 1 and finer than the bisimulation quotie@t ~. As we asumeQ to be finite, we get
Ik = Q/ ~ for somek < |Q|.

Notation 6.2 (Partition, (Supeniblock Sgitter). A partition for Q denotes a setl = {P1,..., Py} of pairwise
disjoint, non-empty subsets @ suchthatQ = P; U ... U P,. The elements of a partition are called blocks. By
a auper-block ofI7, we mean any (non-empty) union of blocksih. A splitter for I7 denotes a paifN, P) consisting
of a non-empty subséN of A’'amesand a super-blocR for I7. O

Note that there is a one-to-one capendence between partitions f@ and equivalences 0. Given an
equivalenceR, the quotient spaceQ/R is a partition. Vice versa, ifll is a partition, therR; = {(ql, a2 :
1, 02 belong to the ame block ofH} is an equivalence withl = Q/R ;.

The initial partition identifies all states (i.dlp = {Q}). Given the partitior/];, the next partition 7,11 is obtained
by refining Il; according to a splitte¢(N, P) of II;, which means that we identify exactly those states of each block
B € II where thadata constraintdc(q, N, P) coincide up to logical equivalence.

Notation 6.3 (Refine, Stability Let IT bea partition for Q, (N, P) a litter for I7, andB be a block ofQ. Then,
we define

Reﬁne(B, N, C) = B/ =(N,P)

where the quivalence=(n, p) is defined such thaly =(n,py Oz iff de(gr, N, P) = dc(gp, N, P). B is calledstable
with respect ta(N, P) if Refine(B, N, P) = {B}, i.e., if the da& nstraintsdc(g, N, P), q € P, fall into the same
logical equivalence class. We put

Refine(/1, N, P) = | J Refine(B. N, P).
Bell

11 is called stable with respect N, P) if Refine(I1, N, P) = II. II is called stable if'7 is stable w.r.t. any splitter
foril. O

Note thatRefine(B, N, P) is a partition for blockB, while Refine(II, N, P) is a patrtition for the whole state
spaceQ which is finer than/7 (i.e., any blockB’ of Refine(II, N, P) can be written as a disjoint union of blocks in
1) and which § stabé with respect taN, P). For insance, refinement aflp = {Q} according to the splitteiN, Q)
yields the partitionlly = Q/ =(n,q), Where=(y, @) is as inNotation 6.3

The idea of the bisimulation algorithm (sketchediigorithm J) is to gabilize the current partitiofl with respect
to a splitter(N, P). (In Algorithm 1, we use thaotationsdc(q, N) anddc(N, P), which sand fordc(q, N, Q) and
\/qu dc(qg, N, P), resgectively.) The correctness of the algorithm follows from the following observations:

e The initial partitionIly = {Q} is coarser thathebisimuation quotientQ/ ~.

e WhereverlII is coarser thaiQ/ ~, thenRefine(II, N, P) is coarser tha)/ ~ and finer than/ for any splitter
(N, P) of II.

e II is stable iff the induced equivaiee is a bisimulation. Hence, if is strictly coarser tha®,/ ~, then here is a
splitter (N, P) suchthat 7 is strictly coarser thaRefine(II, N, P). Moreoversuch a pir (N, P) is contained in
Splitters.

e Wherever/] is a stable partition that is coarser th@i ~, thenll = Q/ ~.

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 109

Hence, our algorithm generates a “decreasing” sequence of partifigri,, Il», . .. that are all coarser thaQ/ ~.
As we assum@) to be finite, we geflx = Q/ ~ for some index.

Algorithm 1 Patitioning splitter algorithm

II := Q; Splitters := {(N, Q) : N € Names \/ dc(q, N) # false};
qeQ

WHILE Splitters # ¢ DO
choose(N, P) € Splitters and removéN, P) from Splitters;

(* Il := Refine(II, N, P) *)
FORALL B e I DO
calculate the logical equivalence clasg®s . . ., Dy of the data constraintic(g, N, P), q € B;

(*If r = 1 thenB is stable w.r.t(N, P) andRefine(B, N, P) := {B}. *)
| F there is morehan one logical equivalence class (i.er, & 2) THEN
Refine(B, N, P) :={B1, ..., B/}, whereB; = {q € Q : dc(q, N, P) € Dj};

1T := (II'\ {B}) U Refine(B, N, C); B
insert all pairgN, B;j) where@ # N € Namesanddc(N, B;) # false into Splitters;

returni/ (* II is stable, ad hence]l = Q/ ~*)

As for labeled transition systems, widippropriate data structures that support the choice and organization of the
splitter candidates (and the blocks in the current partition), the schema sketchigmiithm 1can be implemented
swch that the number of iterations of the WHILE-loop is polynomial bounded in the size (number of states and
transitions) ofA. More precisely, ignoring the cost to calculate the logical equivalence classes, the time complexity is
bounded byO(|Q| - | — |), as in theKanellekis/Smolka algorithm16].°

The critical part ofAlgorithm 1is the calculation of the logical equivalee classes of data constraints. Recall
that the problem of logical equivalence for projiomal logical formulae iscoNP-complete. A naé possibility
for calcaluting the logical equivalence classes is to consider all data assignments and the truth-values of the dat
constraintsdc(q, N, P), and thento identify exactly those states that yield the same truth-values for all data
assignments. Of course, this methisdextremely inefficient, becaugd/ame$®2@ data assignments have to be
considered, which is infedde for largedata domains.

More efficient is asymbolic approachbased on variants of binary decision diagrams; see 8,82,12,9,20,

27]. Most appropriate for our purposes seems to be a multi-branching variant such as Wh)Esaf support the
representation of functions : (V — D) — {0, 1}, whereV andD are finite. Note that the semantics of a data
constraint can be viewed as a function of this type (where wevput NamesandD = DataU {}). A detailed
description of such an MDD-based implementationtad partitioning splitter alg@thm goes beyond the scope of

this paper. Instead, we briefly sketch to which extend such decision diagrams support the calculation of the logical
equivalence classes for data constraints.

As with other ordered desion diagrams, MDDs enjoy the property to providanonical representation#\s is
stendard for implementations of decision diagram algorithms (see, 230,20]), here we assume an implementation
that supports the representation of several functions by nodes in a so-galed decision diagram. Each node
of such a shared decision diagram can be identified thithsubdiagram consisting of the nodes that are reachable
from v. In this sense, any nodestands for a decision diagram (MDD in our case) and, thus, represents a function

91t seems to be hard to meet the boupc[@d\ — |- I~og|Q\) of the Paige Tarjan algorithm24]. Th~e reason is that, iﬂ~5 C P and
dc(qz, N, P) = dc(gp, N, P) anddc(gy, N, P) = dc(gp, N, P), then wecannotconclude thatic(qs, N, P \ P) = dc(gp, N, P\ P). Herce, in
our setting, all new sub-blocks (rather than “all but one”) must be considered as splitter candidates.

110 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

f,. The canonicity yields that two functions that are represented by ngde®f a shared diagram agree iff= w.

In our case, this means that two data constralotg:, N, P) anddc(gz, N, P) fall into the same logical equivalence
class if and only if they are represented by the same name in a shared MDD. Thus, the equivalence-checking proble
reduces to the comparison of nodes and, thus, can be performed in constant time. Hence, the calculation of the logic
equivalence classes reduces to the constructioheoMDD representations for the data constraddgy, N, P) as

nodes of a shared diagram. As the data constraicits, N, P) can be regarded as propositional formulas with the
atoms ‘tda = d”, we may apply standard algorithms for the Boolean operators (such as conjunction, negation, and sc
on) to generate their MDD representations.

6.1.2. Calculating the simulator preorder

We can use essentially the same schema as for the computation of the simulaiptsefg’ : q < q} in labeled
transition systemsAl gorithm 2shows the main ideas which comprise thenpaitation of a “decreasing” sequence of
sets

Simp(q) 2 Sim(q) 2 ... 2 Sink(a) =g 1.

Here, also, several improvements are possible, e.g., following the techniques suggedt@d\irsihg appropriate
data structures, the number of iterations can be contained within the bo@goliy(size(A))). However, the major
difficulty is the treatment of logical implication. As for bisimilarity checking, the use of variants of binary decision
diagrams seems to be promising.

Algorithm 2 Schema to calculate the simulation preorder
FOR ALL stateq € Q DO
Simq) := {q' € Q: dc(q, N) < dc(q’, N)}
(0]b]
Splitters := (N, p) € 2Vamesx Q: \/ du(q, N, p) # false};
geQ

WHILE Splitters # ¢ DO
choose a paifN, p) € Splitters and remove&N, p) from Splitters;
FOR ALL staesq € Q with dc(g, N, p) = false DO
FOR ALL staesq’ € Simq) with dc(q, N, p) £ dc(@’, N, Sim(p)) DO
Sim(q) := Sim(a) \ {q'};

Splitters :=
Splitters U {(N", g") : N’ € Namesq' € Q, \/ dc(r, N, q) # false}
reQ
Ob
oD
END WHILE

(* Simg) = q 1 for all stateqq *)

6.2. Language equivalence checking

Given two bounded constraint automaté; and. A4, over a fked setNames the question of whetherd; and
A are language-equivalent can be answered by checking language inclusion in both directions. To check wheth
L1ps(A1) € L1ps(Az), we may apply the same techniques as for regular languages (and finite automata) using the
observation that

L1ps(A1) € L1ps(A2) iff L1ps(A1) N L1ps(Az) = 0.

The main steps are as follows. First, we tutp into an equivalent deterministic constraint automatet(.A>) (see
Remark 3.9. Then, we construct an automaidet(.4,) for its complement language, and build the product automaton
A1 < det(Az) (which represents the intersection languéges(.A1)NL1ps(A2); see parfb) of Lemma 4.2. Findly,

we check whetheftps(A1 =< det(Ay)) is empty.

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 111

6.2.1. Complementing

For the construction of a constraint automaton for the pment language, we switch to a more general class of
constraint automata with acceptingtes. For constraint automatghaugmented with a sét of accepting states, let
L1ps(A, F) denote the language consisting of all TDS-tuples that have infinite ruds @ch involving infinitely
often \sits to many states if. (In other words, we use a variant ofiBfii automata.) We now assume that we are
given a determiistic constraint automatod = (Q, Names—, ¢p) for which we aim to construct a constraint
automaton with Bichi acceptance for the complement languagd .ofVe first extendhe state spac® by a new state
Oacceptand add transitions

q E) Qaccept If g = —dc(g, N), g € Qandy # N € Names

-, N, — .
Moreover, we add transitiortgecept LLLLY accept fOr each non-empty subset of A'ames Let A bethe resulting
constraint automaton. Then,

L1ps(A) = L1ps(A, {Qaccept})~

6.2.2. Checking emptiness

For the language inclusion problem, we build the proddct= A; < det(A,) as inDefinition 4.1, which we
augment with the sdt = {(q, Oaccept : 0 € Ql} of accepting statesQ denotes the state space4f.) We need to
explain how to check whethettps(A, F) is empty. Forlis, we first remove all transitions iA with an unsatisfiable
data constraint. Then, we check, using standard graph algorithms, whether there is an initial dt&tenmwhich a
cycle

Npg1 . N2,g2 Nrgr L

Po— P1— -+ —> Pr = Po
is reachable such th@fo, p1,..., B} NF # B andNy U ---U Ny = Names
Note that the requiremefifo, p1,..., Pr} N F # @ is needed to ensure that thedii acceptance condition can

be fulfilled. The requiremenl; U --- U N; = Namesis needed for the time-divergence condition for timed data
streams.

The complexity of the language inclusion test is dominated by the constructiai©42) (which is exponential in
the size of4,) andthe time needed to solve the satisfiability problem for the data constraints (which is NP-complete).
The remaining steps (complementing, construction of the product, and checking emptiness) can be performed in tim
polynomial insize(A1) andsize(det(A2)).

7. Concluding remarks

In this paper, we introduced constraauitomata, defined operators for their composition, and presented notions
of bisimulation equivalence and language equivalersevall as refinement relations (simulation and language
inclusion). Constraint automata allow us to model subtle timing and input/output constraints of Reo connectors,
specifically their combined mix ofymchronous and asynchronous transitiofsis is reflected in our definition of
constraint automata and shown in our examples.

Connector construction in Reo is conceptually analogous to the design of asynchronous electronic circuits. Among
other things, this analogy emphasizes the importance of visual environments for design, analysis, verification, anc
optimization of Reo connectors, asunterparts of tools and facilities avdila in modern elecbnic computer-
aided design (CAD) systems. In this context, issues such as whether two Reo conRg@ndsR, have the same
observable behavior (in the sense that their induced TDS languages agiegkan be viewed as a refinement
of Ry (in the sense of TDS language containment) arise naturally and frequently. To treat such questions in an
algorithmic way, our compositional semantics can serve as basis for an algorithm that automatically generates «
constraint automatorr for a given Reo circuiR. To olve the language problems mentioned above (the questions
of whetherL1ps(ARr,) = L1ps(AR,) Or L1ps(AR,) € L1ps(AR,) for given Re circuits Ry and Ry), we suggest
modifications to known methods for finisritomata and labeled trsition systems to deal with constraint automata.

Given finite, deterministic constraint automataand.A2, the simplest way to check language equivalence is based
on the observation that language equivalence and bisimulation equivalence agree, provided that none of the states

112 C. Baier et al. / Science of Computer Programming 61 (2006) 75-113

Aj accepts the empty TDS languagééorem 5.3 Thus, we may first remove all states with an empty TDS language
(cf. Section 6.2.2and thercheck the bisimulation equivalence of the modified automates@tion 6.1 Similarly,
language inclusion for two finite, deterministic constraint autorvtand. A, can be checked on the basis of a graph
analysis, followed by an algorithm that calculates the simulation preorder.

Although the deterministic version of constraint automata is as expressive as the non-deterministic version, nor
deterministic constraint automata offer a useful semantidel for Reo circuits which, e.g., avoids the exponential
blowup that may result from applying the powerset construction to an autonz@@A] (which can be non-
deterninistic even if A is deterministic). The algorithms for computing the bisimulation quotient or simulation
preorder in non-deterministic constraint automata can be applied here as a sound (but incomplete) verification methc
to show language equivalence or inclusion.

In contrast to process algebras where notions of weak bisimulation (e.g., Milner's observational equivalence o
congruenceq1]) are used to abstract from non-observable computations, we use the hiding operator that modifies th
given constraint automaton, similar to the deletioms-dfansitions in fiite automata. Thus, in our context, there is no
need for a notion of weak bisimulation.

In this paper, we restricted ourselves to using consteaitdmata in the context of the coordination language Reo.
However, the use ofonstraint automata for an operational semantics model is not restricted to Reo. For instance,
a recent work demonstrates the usefubeb constraint automata for specifit@ns of software architectures in
Alfa [19]. Alfa [18] is aframework for understanding and constructing style-based architectures from a small set
of architectural primitives, based on a constructive and compositional framework for software architectures.

In our future activity, ve will work out the details of a semantics that models Reo circuits by constraint automata
with final states (e.g., to handle deachs), fairness to cover the meaning a#d?s fair merge semantics for sink and
mixed nodes, and priorities (to deal with synghous lossy channels) as mentioned in the enfaation 4 Other
directions for our future work include the development of temporal logics and model checking algorithms based or
constraint automata, optimization algorithms for Reo circuits, and the automated generation of Reo circuits fron
constraint automata specifications.

References

[1] F. Arbab, Reo: A channel-based coordination model for componenpaesition, Mathematical Structures in Computer Science 14 (3) (2004)
1-38.

[2] F. Arbab, J.J.M.M. Rutten, A coinductive calculus of component ectors, in: D. Pattinson, M. Wirsing, R. Hennicker (Eds.), Recent Trends
in Algebraic Development Techniques, Proceedings of 16thratemal Workshop on Algebraic édelopment Techniques, WADT 2002,
in: Lecture Notes in Computer Sciene®). 2755, Springer-Verlag, 2003, pp. 35-5&p://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0216.pdf

[3] T. Bolognesi, S.A. Smolka, Fundamental results for the verificatioobservational equivalence: A survey, in: H. Rudin, C.H. West (Eds.),
Protocol Specification, Testing, @WVerification, VII, North-Holland, Zifich, Switzerland, 1987, pp. 165-178.

[4] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe, A theory of commicating sequential processédsyrnal of the ACM 31 (3) (1984) 560-599.

[5] R. Bryant, Graph-based algorithms for Boolean functicemipulation, IEEE Transactions on Computers C-35 (1986).

[6] D. Bustan, O. Grumberg, Simulation-based minirtima, ACM Transactions on Coputational Logic 4 (2) (2003) 181-206.

[7] B.A. Davey, H.A. Priestley, Introduction to ltiices and Order, Cambridge University Press, 1990.

[8] L. de Alfaro, T.A. Henzinger, Interface automata, in: V. Gruhn (Ed.), Proceedings of the Joint 8th European Software Engeneering Conference
and 9th ACM SIGSOFT Symposium on the Foundation of Software Engege&SEC/FSE-01, 10-14 September, in: Software Engineering
Notes, vol. 26, 5, ACM Press, New York, 2001, pp. 109-120.

[9] R. Drechsler, B. Becker, Binary Decision Diagramsiebry and Implementation, Kluwer Academic Press, 1998.

[10] W. Fokkink, Introduction to Process Algebra, in: Texts in Théoed Computer Science, An EATCS Series, Springer-Verlag, 1999.

[11] R. Grosu, B. Rumpe, Concurrent timed port austa Technical Report TUM-19533, Techn. UniveassitMinchen, 1995.
http://www4.informatik.tu-muenchen.de/reports/TUM-19533.html

[12] G.D. Hachtel, F. Somenzi, LogicySthesis and Verification Algorithms,lwer Academic Publishers, Boston, 1996.

[13] M. Henzinger, T. Henmnger, P. Kopke, Computing simulations on finged infinite graphs, in: Proc. FOCS’95, 1995 pp. 453-462.

[14] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automdheory, Language, and Computatj 2nd ed., Addison-Wesley, 2001.

[15] T. Kam, T. Villa, R.K. Brayton, A. Sangiovanni-Vincentelli, Multi-valuelécision diagrams: Theory and dipptions, Multiple-Valued Logic
4 (1-2) (1998) 9-62.

[16] P. Kannelakis, S. Smolk&CS expressions, finite state processes and three problems of equivalence, in: Proc. 2nd ACM Symposium on the
Principles of Distributed Computing 1983, pp. 2288, Information and Computation 86 (1990) 43—68.

[17] N. Lynch, M.R. Tuttle, An introduction to ingloutput automata, CWI Quarterly 2 (3) (1989) 219-246.

[18] N.R. Mehta, N. Medvidovic, Composing architectural styles from architectural primitives, in: Proceedings of the 9th European Software
Engineering Conference and 11th ACM SIGSOFT Symposium on Fdwndaof Software Engineerg, ESEC/FSE, ACM Press, 2003,
pp. 347-350.

http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0216.pdf
http://www4.informatik.tu-muenchen.de/reports/TUM-I9533.html

C. Baier et al. / Science of Computer Programming 61 (2006) 75-113 113

[19] N.R. Mehta, M. Sirjani, F. Arbab, Effective modeling of softwaarchiectural assemblies using Constraint Automata, Technical
Report SEN-R0309, Centrum voor Wiskunde en Informatica, #aan 413, 1098 SJ Amsterdam, Thestherlands, October 2003.
http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0309.pdf

[20] C. Meinel, T. Theobald, Algorithms and Dat&&tures in VLSI Design, Springer-Verlag, 1998.

[21] R. Milner, Communication and Concurrency, in: Prenticaltthternational Series in Coputer Science, Prentice Hall, 1989.

[22] S. Minato, Binary Decision Diagrams and Aplitions for VLSI Design, Kluwer Academic Press, 1996.

[23] S. Minato, N. Ishiura, SYagjima, Shared binary decision diagram with attributetyes for efficient Boolean function manipulation, in:
Proceedings of the 27th ACM/IEEE Design Automation Conference, DAC, 1990, pp. 52-57.

[24] R. Paige, R.E. Tarjan, Three partition refinemalgorithms, SIAM Journal on Computing 16 (6) (1987) 973-989.

[25] L. Tan, R. Cleaveland, Simulation revisitddzcture Notes in Computer Science 2031 (2001) 480-495.

[26] W. Thomas, Automata on infinite objects, in: J. van Leeuwen (E@ahdbdook of Theoretical Computer Sete, Elsevier Science Publishers
B.V., 1990, pp. 133-191 (Chapter 4).

[27] I. Wegener, Branching Programs and Bindecision Diagrams. Theory and applicats, in: Mongraphs on Disrete Mathematics and
Applications, SIAM, 2000.

http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0309.pdf

	Modeling component connectors in Reo by constraint automata
	Introduction
	Timed data streams
	Constraint automata
	Definition of constraint automata
	From automata to streams

	Constraint automata as operational model for Reo circuits
	A Reo primer
	Constraint automata for the basic channels
	Join: Merge and product
	Hiding
	Examples for the construction of constraint automata via join and hiding
	Parameterized constraint automata
	Remarks on the constraint automata semantics for Reo

	Bisimulation and simulation
	Bisimulation
	Simulation
	Compositionality

	Equivalence and refinement checking
	Checking bisimilarity and similarity
	Computing the bisimulation quotient
	Calculating the simulator preorder

	Language equivalence checking
	Complementing
	Checking emptiness

	Concluding remarks
	References

