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We investigate the semantics of the procedure concept, and of one of the main techniques 
introduced by E. W. Dijkstra in his article Recursive Programming to implement it, namely 
the “static link,” sometimes also called “access link” or “lexical link.” We show that a 
confusion about that technique persists, even in recent textbooks. Our analysis is meant to 
clarify the meaning of that technique, and of the procedure concept. Our main contribution 
is to propose a better characterization of the “static link.”

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

One of the first concepts introduced in the development of programming languages is the procedure concept. Its first 
precise definition appears in the ALGOL 60 Report, together with the static (or lexical) scope rule. Its implementation poses 
a number of difficulties, and the now classical solution to solve these difficulties, for ALGOL-like languages, was proposed 
by Dijkstra in his article Recursive Programming [1]. The central elements of this solution are the execution stack, and what 
is now known as the “static link”; they were embodied a few months later in the first ALGOL 60 system, designed and 
implemented by Dijkstra and J. A. Zonneveld. A close study of the Report, of that article, and of that system, revealed a 
common misunderstanding, on one specific aspect, of that article.

Specifically, we show that the “static link” cannot be described independently of the program execution, and we propose 
a definition of the “static link” that is better than those found in the literature (§ 4). We also show that the procedure 
concept was originally dynamic and was not identified with the subroutine concept (§ 7). A subroutine can be defined 
as a program text, that can be called with a number of parameters, and that eventually returns to the point immediately 
following that from which it was called; the procedure concept includes an additional dynamic element, and will be defined 
later (in § 7). These results are certainly known to experts in the field, and perhaps even totally obvious for some of them. 
We believe, however, that they should be more largely known, and we observe that they were often presented ambiguously 
in the literature (§ 3 and § 6). In fact, we do not pretend to solve a real problem, but rather to dissolve a false one.

The article is organized in six parts. We start by presenting an apparently anecdotal problem (§ 2), we show that it 
has led to unclear or incorrect explanations, and sometimes to incorrect implementations (§ 3), and we give its solu-
tion (§ 4). We then examine how this solution can be implemented (§ 5), and we show that this problem is not at all 
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anecdotal, and is actually ubiquitous in ALGOL 60 (§ 6). We conclude by discussing the meaning of the procedure con-
cept (§ 7).

2. A problem

It is well-known that ALGOL 60 introduced the “static scope” of identifiers, and that it differs from the “dynamic scope” 
of identifiers used, for example, in LISP. The difference between these two scoping mechanisms can be illustrated with the 
following program:

begin
real procedure sqrt (r); value r; real r; sqrt := r ↑ (1/2);
integer procedure fibonacci (n); value n; integer n;
fibonacci := ((1 + sqrt (5))/2) ↑ n/sqrt (5);
begin

real procedure sqrt (r); value r; real r; sqrt := exp(ln(r)/2);
outinteger (1,fibonacci (3))

end
end

(1)

In ALGOL 60 and its descendants, the identifier sqrt in the body of fibonacci refers to the procedure defined with the 
exponentiation operator, whereas in LISP the execution of fibonacci would use the procedure sqrt defined with the exp
and ln procedures. This difference can, at first sight, be explained as follows. With static scoping, one only needs to read 
the program text to find the declaration that corresponds to an identifier at a given program point: one first looks at 
the declarations in the block in which that program point resides, then at the declarations in its parent block, et cætera. 
With dynamic scoping, one needs to take the program execution into account: the relevant declaration is the last one 
that was met, that is, the last one through which the execution flow passed. This is, however, not a completely correct 
explanation of static scoping: if a declaration appears in a procedure that is activated recursively, then it gives rise to 
multiple instances of the declared object, and the above statement does not specify to which of these instances the identifier 
refers.

Dijkstra’s article gives an indication that seems to answer that question. After having introduced the concept of an 
execution stack, divided into frames, each frame corresponding to an activation of a subroutine, he notes that each procedure 
of an ALGOL 60 program text can be translated into a subroutine, and points out that in that case it is necessary to record 
an additional frame pointer value in the link [1, pp. 317–318]:

When a subroutine is called in, the link contains two [frame] pointer values [. . . ]. Firstly, the youngest [frame] pointer 
value corresponding to the block in which the call occurs [. . . ], secondly, the value of the [frame] pointer corresponding to 
the most recent, not yet completed, activation of the first block that lexicographically encloses the block of the subroutine 
called in.

In this explanation, the word “block” is used to mean generically a procedure block or a non-procedure block; we will 
follow that convention. One could conclude from this reading that the object instance to which an identifier refers is 
always the one that was created in the “most recent activation” of its parent block, given that the “static link,” that is 
used to locate global objects, points to that “most recent activation.” This understanding is indeed correct, even with the 
following quite complex program, in which all identifiers always refer to their declaration in the “most recent activation” of 
fibonacci:

begin
integer procedure fibonacci (n); value n; integer n;
begin integer f m;

integer procedure f a;
f a := f m := if f m > 0 then f m else fibonacci (n ÷ 2);

integer procedure f b; f b := fibonacci (n ÷ 2 − 1);
integer procedure f c; f c := f a × f b;
integer procedure f d; f d := f a + f b;
f m := 0;
fibonacci := if n < 2 then n else f a↑2 + ( if even (n) then f c × 2 else f d↑2)

end ;
outinteger (1,fibonacci (3))

end

(2)
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However, twelve years after Dijkstra’s article, C. L. McGowan published an article entitled The “most recent” error, claiming 
that the description given by Dijkstra is not correct. He calls Dijkstra’s frames “activation records” and the two frame pointer 
values the “dynamic link” and the “static link” of these activation records [2, pp. 193 and 194]:

Activation records in the stack must be linked both for purposes of control and for purposes of accessing. [. . . ] For ac-
cessing, the static link of the program block B is a pointer to a stack activation record allocated for the block B ′ in which 
B is immediately (textually) enclosed. [. . . ] To achieve accessing of identifiers non-local to [a procedure P declared in 
the immediately enclosing block B], the [activation record] is (statically) linked to an activation record corresponding 
to the enclosing block B in the program. It is tempting to [statically] link [the activation record] to the “most recent” 
record corresponding to B in the stack. This strategy is usually correct [. . . ], but not always. This error in stack im-
plementation of block structured programming languages is a persistent and recurrent one. [. . . ] Dijkstra in his classic 
paper incorrectly describes the static link of an activation record for a procedure to be a pointer “to the most re-
cent, not yet completed, activation of the first block that lexicographically encloses the block of the subroutine called 
in.”

The author claims that it is not correct to describe the “static link” as a pointer to the “most recent activation” of the 
enclosing block, and he proposes to describe it as pointing to “an activation record corresponding to the enclosing block in 
the program” (his emphasis), which is of course correct, but only by lack of saying anything specific. McGowan then gives a 
two page long semi-formal description of an abstract interpreter for a simplified ALGOL-like language, based on the contour 
model introduced earlier by J. B. Johnston [3], to characterize the values taken by the “static links” during execution of a 
program written in that language. Finally, he identifies and proves the correctness of two complex “compile-time decidable 
conditions” under which Dijkstra’s description, which has seemingly the advantage of being easy to understand and to 
implement, is correct [2, pp. 199]1:

[Definitions:] If procedure Q contains within its body a call statement with procedure name R, then Q can call R. If R
is a formal parameter of Q and [the program] contains a call of Q with identifier F in the R-position of the argument 
list, then Q can call F. Let can call – * be the transitive closure of can call. We say a procedure Q is potentially recursive if
Q can call – * Q. [. . . ]

Conditions: A program must have [1] no potentially recursive procedure R which contains (within its body) the decla-
ration of a procedure P and [2] a call of some procedure Q having P as one of its arguments, where Q can call – * R.

It is already clear from the above that the problem identified by McGowan is related to procedural parameters in the 
presence of nested procedure declarations and of recursion, but the precise meaning of his claim, and of these conditions, 
can be best explained with an example ALGOL 60 program that does not fulfill them:

begin
integer procedure fail; fail := fail;
integer procedure fibonacci (n); integer n;
begin

integer procedure aux (m,n1,n2);
integer m; integer procedure n1,n2;

begin
integer procedure p; p := if m < 2 then m else n1 + n2;
aux := if m = n then p else aux (m + 1,n2, p)

end ;
fibonacci := aux (0, fail, fail)

end ;
outinteger (1,fibonacci (3))

end

(3)

After four calls to aux, procedure p has been declared four times (as, say, p0, p1, p2, p3), each time in terms of the two 
previous definitions of p or of fail; for instance, p3 is defined in terms of p1 and p2. When procedure p3 is finally called, in 
the fourth call to aux, it recursively uses the three other procedures p0, p1 and p2 to perform its calculations and to yield 
the correct result.

This program indeed does not fulfill the conditions mentioned earlier, because procedure aux is recursive and contains 
within its body both the declaration of a procedure p and a call of procedure aux having p as one of its parameters. 
Dynamically this implies the following. When p is called, the execution stack can be depicted as follows:

1 These conditions have been studied in detail in [4], [5], and [6]: they are decidable but PSPACE-complete, and necessary but not sufficient for the 
problem to actually show up (in the example program (3), if the argument of the call to fibonacci is 0, the problem does not arise).
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The values of the second frame pointers saved in the links are figured on the right of the stack. As one sees, the second 
frame pointer in the link of this activation of p points to the sixth frame on the stack, which is evidently the “most recent” 
activation of the block in which p is declared in the program text, namely, procedure aux. To evaluate p (that is, p3), it is 
necessary to consult the value of m, which is global to that procedure. In this case, the contents of the sixth frame indicates 
that m = 3, and p therefore asks for the evaluation of procedural parameter n1, that is, for the evaluation of the procedure 
p that has been passed by the second call of aux to the third call of aux, that is, for the evaluation of p1. When p1 is called, 
the execution stack can be depicted as follows:

In this case, the second frame pointer in the link of the activation of p must point to the fourth frame of the stack, 
which is evidently not the “most recent” activation of the block in which p is declared in the program text, which would 
have been again the sixth frame on the stack. Had it pointed to the sixth frame, then evaluation of p1 would again find 
the value m = 3, and the program would again ask for evaluation of p1, that is to say, it would enter an infinite recursion 
loop.

3. Its permanence

McGowan states that the error he identified is a “persistent and recurrent one,” but gives a single example, namely an 
“early version of PL/I from the IBM Hursley Laboratory.” It seems thus necessary to give more substance to his claim.

Before Dijkstra’s solution became standard, a number of other implementation strategies were proposed and imple-
mented. For example, the solution presented by E. T. Irons and W. Feurzeig resembles a typical early LISP implementation. 
It does not use stack frames and frame pointers, and therefore does not use a “static chain.” However, as D. E. Knuth and 
J. N. Merner already indicated [7, p. 269], their method to handle label parameters suffers from the problem identified 
above: their “go to interpreter” repeatedly performs the operations to return from a block or procedure until an activation 
of the block in which the label is declared has been found and restored [8, p. 69].

Likewise, those who followed the principles laid down by Dijkstra sometimes considered that the second frame pointer 
values saved in the links were an unnecessary optimization in his solution: it was thought that their values could be 
recalculated during the execution of the program, with the help of the chain of the first frame pointer values saved in the 
links. For instance, in their classical work ALGOL 60 Implementation, B. Randell and L. J. Russell present the two frame pointer 
values as follows (our emphasis) [9, p. 65]:

The record of previous values of [the frame pointer (that is, the first frame pointer values saved in the links)] is also 
used to find the actual address [. . . ] of a variable in the stack. However, within a block the only variables that can be 
used are those which are currently accessible. Thus only the values of [the frame pointer] for blocks which are currently 
accessible will be needed to find the addresses of variables. It is therefore preferable to keep two separate records of 
values of [the frame pointer]. The first record gives the start of the stacked working storage of each block that has been 
activated and not yet left. It is this record that would be used to reset [the frame pointer value] each time a block is left. 
The second record contains only the values of [the frame pointer] which can be used, in the current block, to find the 
actual address of a variable.
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This is stated even more explicitly a few pages later [9, p. 74]:

[The static link of a block with a block number of n] is the value of [the frame pointer] for the last activation of a block 
with [a block number of n − 1]. This could be found by working back down the dynamic chain [provided that, as it is 
the case in the implementation strategy they present, block numbers are stored in the links] [. . . ].

This faulty scheme was indeed used in some implementations of ALGOL 60, for instance by P. A. Samet [10]. His short 
article concentrates on the handling of label parameters, which are essentially parameterless procedural parameters. His 
solution, namely to follow the “dynamic chain” until the “most recent activation” of the block in which the label is declared 
has been found, clearly suffers from the problem identified above.

These three additional examples are, however, half a century old, and could probably be dismissed as being, at best, 
part of the minutiæ of programming languages history. It is also true that this error is not anymore present in any major 
programming language implementation, but for a long time, imperative programming languages have often ruled out either 
nested procedure declarations or procedural parameters. For instance, C, C++ (before its 2011 revision), and FORTRAN 77 al-
low procedural parameters but do not allow nested procedure declarations, and Ada 83 allows nested procedure declarations 
but not procedural parameters. In Wirth Pascal (as opposed to the later Standard Pascal), nested procedure declarations and 
procedural parameters are both allowed, with the restriction that a procedural parameter may not itself have a procedural 
parameter; however, most of the following Pascal implementations (for instance, P1 to P4, Pascal-S and UCSD Pascal) did not 
support procedural parameters at all. Standard Pascal and Ada 95 both allow nested procedure declarations and procedural 
parameters, without restrictions, but again, most subsequent Pascal implementations (for instance, Borland Pascal and Free 
Pascal) did not support them.

However, we claim that this error still affects the contemporary literature. On this specific point, most current textbooks 
on programming languages fall in one of the following three categories: (a) those who remain unspecific on the value of 
the “static link,” (b) those who use Dijkstra’s description, and (c) those who use McGowan’s description.

(a) Some authors present the static link by explaining its purpose, but are not explicit about its value. For example, 
W. M. Waite and L. R. Carter (1993) explain that “each activation record contains the address of the memory used for local 
storage by the activation of the containing routine” [11, p. 205], or that the second frame pointer value saved in the link is 
“the address of the activation record for the enclosing procedure” [11, p. 250]. Likewise, N. Wirth (1996) writes that “the 
static link of a procedure p points to the activation record of the procedure which contains p” [12, p. 92]. These descriptions 
are not incorrect, but they are clearly insufficient to understand what happens in cases like the example program (3) above.

(b) Many textbooks still use Dijkstra’s original description of the second frame pointer value, which stated that it points 
to the “most recent [. . . ] activation of the first block that lexicographically encloses the block of the subroutine called in.” 
For example, D. Watson (1989) writes: “The static chain pointer in any stack frame points back down the stack to the frame 
corresponding to the latest invocation of the next textually enclosing block or procedure. In other words, by following the 
static chain down the stack, the stack frames of all blocks or procedures containing variables in scope are identified, unless 
they are hidden by more recent declarations of the same name” [13, p. 224]. Although he discusses parameters passed by 
name [13, p. 24 and p. 233], he does not explain how procedural parameters should be implemented. T. W. Parsons (1992) 
writes that each static pointer “is aimed at the most recent activation” or “topmost activation” of the enclosing block [14, 
p. 295], and leaves the implementation of procedural parameters as an exercise, without further indications [14, p. 306]. 
S. S. Muchnick (1997) explains that “to set the static link in a stack frame, we need a mechanism for finding the nearest 
invocation of the procedure that the current procedure is statically nested in” [15, p. 114]. Admittedly, he later presents a 
particular (correct) technique to implement procedural parameters, but without explaining if it is a “mechanism for finding 
the nearest invocation” or not, and without giving an example [15, p. 126]. A. W. Appel (1999, corrected first edition) writes 
that the static link of a procedure with static nesting depth i + 1 is “a pointer to the frame of the most recently entered 
procedure whose static nesting depth is i” and that “whenever a function f is called, it is passed a pointer to the stack 
frame of the “current” (most recently entered) activation of the function g that immediately encloses f in the text of the 
program” [16, p. 133 (and p. 146)]. He later presents the same particular technique to implement procedural parameters, 
without linking it with his earlier presentation [16, p. 312]. The exact same words are used by Appel and M. Ginsburg (1999, 
corrected first edition) [17, p. 134 (and p. 148), p. 318], and by Appel and J. Palsberg (2002, second edition) [18, p. 125 (and 
p. 134), p. 301]. A. V. Aho et al. (2006, second edition) explain that “if procedure p is nested immediately within procedure 
q in the source code, then the access link in any activation of p points to the most recent activation of q” and that, when 
a certain object defined in q is to be accessed, the activation of q in which it is located “will always be the most recent 
(highest) activation [. . . ] for q that currently appears on the stack” [19, pp. 445–446 (and p. 449)]. They also present, a 
few pages later, the same technique to implement procedural parameters, but they do not explain if this technique is an 
application of the general rule stated earlier or not. The example program they use to demonstrate the technique is not 
very helpful to answer that question: four procedures are declared, and each one has only one activation [19, pp. 448–449]. 
M. L. Scott (2009, third edition) explains that the “static link in each frame [. . . ] points to [. . . ] the frame of the most recent 
invocation of the lexically surrounding subroutine” [20, pp. 126–127 (and p. 389)]. He also presents the same technique to 
implement procedural parameters, this time with an example program that breaks the rule stated earlier, but without saying 
so explicitly [20, pp. 154–155]. R. W. Sebesta (2012, tenth edition) writes that “the most recent activation record instance 
of the parent scope must be found at the time of the call. This can be done by looking at activation record instances on the 
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dynamic chain until the first one of the parent scope is found” [21, p. 459]. He mentions that this method works “except 
when parameters that are subprograms are involved,” but he does not explain how the “static link” should be calculated 
in the latter case, although he elsewhere presents the general principle behind the technique described by the previous 
authors [21, p. 405 and p. 431].

These explanations are partly correct, especially if one looks benevolently at their context, but they are misleading: 
(1) the “most recent activation” statements are not correct in general, (2) it is not easy to see that they are not correct 
in general, (3) they are inadequate to understand the purpose of “static links,” even if procedural parameters are excluded, 
(4) they are also inadequate to understand how they can be implemented, and finally (5) the words “most recent activation,” 
which can be traced back to Dijkstra’s article, had originally a different meaning than what they now evoke, as will be 
shown in § 4.

(c) Finally, a few authors follow McGowan’s suggestion and describe the “static link” with an expression derived from his 
proposal [22]. For instance, R. Wilhelm and D. Maurer (1995) explain, to introduce the concept, that “the immediate [static] 
predecessor of a [. . . ] procedure incarnation in [the call] tree is the last [or, a few lines earlier, “most recent”] incarnation 
of the immediately surrounding procedure” [23, p. 36], but their presentation of the general rule is much clearer (our 
emphasis): “In every frame created in the stack for the incarnation of a procedure p, the static link points to the stack 
frame of the correct incarnation of the program unit immediately surrounding p. In programs without [. . . ] procedures as 
parameters, this is the youngest living incarnation of the program unit immediately surrounding p” [23, p. 41 (and p. 53)]. 
Of course, this general description of the “static link” as pointing to the “correct incarnation of the immediately surrounding 
program unit” is as vague as McGowan’s proposed description and is true only by lack of being precise.

4. Its solution

We now show that, in spite of the evidence of the example program (3), McGowan’s claim is the result of a misinterpre-
tation of the meaning of the procedure concept, and specifically of the semantics of procedure calls, as they are defined in 
the ALGOL 60 Report. Let us reread Dijkstra’s description of the two frame pointer values saved in the link when a subroutine 
is entered, paying attention to the words “not yet completed” instead of the words “most recent” [1, pp. 317–318]:

Firstly, the youngest [frame] pointer value corresponding to the block in which the call occurs [. . . ], secondly, the value 
of the [frame] pointer corresponding to the most recent, not yet completed, activation of the first block that lexicograph-
ically encloses the block of the subroutine called in.

These three words may seem, at first, to be useless: it is obvious that the second frame pointer value cannot point to an 
activation of a block that is already completed. However, these words could also mean, reciprocally, that the other activations 
of the lexicographically (or lexically) enclosing block are already completed. While this interpretation is grammatically 
possible, it seems absurd: in the two previous pictures of the execution stack, there are clearly four activations of procedure 
aux. Yet it corresponds to the meaning of the procedure concept as it is defined in the Report: the frames numbered 3 to 6 
in these pictures are actually activations of four different blocks.

To understand this, it is necessary to take a closer look at the semantics of procedure calls. When a procedure is called 
through a (non-formal or formal) identifier, the Report specifies that “the procedure body [. . . ] is inserted in place of the 
procedure statement and executed” [24, § 4.7.3.3]. (Before this insertion happens, the identifiers that appear in the procedure 
heading must be replaced by the text of the actual parameters throughout the procedure body, and the identifiers that 
appear in the procedure body must, if necessary, be renamed to avoid unintended identifications of originally distinct 
identifiers [24, § 4.7.3.2].) The consequence of this rule, for our example program (3), is that the procedure body of aux is 
dynamically inserted four times in place of the occurrences of the identifier aux, as if the procedure statements gave rise to 
a macro expansion. This dynamically creates four different blocks, say, aux0, aux1, aux2 and aux3. Block aux1 is then nested 
dynamically in block aux0, and lexically, like block aux0, in block fibonacci. The same holds for blocks aux2 and aux3: they 
are nested dynamically in blocks aux1 and aux2, and lexically in block fibonacci.

The consequence of this is that four different procedures p0 to p3 are declared, dynamically, in four different blocks: p0
is declared in aux0, p1 in aux1, etc. The first block that lexically encloses block p3 is, therefore, aux3, and when p3 is called, 
the second frame pointer to be saved in the link should point to the “not yet completed,” or current, activation of aux3 . 
Likewise, the first block that lexically encloses block p1 is aux1, and when p1 is called, after having moved around through 
procedural parameters, the second frame pointer to be saved in the link should point to the current activation of aux1.

It should now be clear that the words “most recent activation” do not mean “nth activation among the n current acti-
vations,” because each block is, at any moment, either activated or not activated, but rather “nth activation among the n
successive activations.” With the procedure of example (3), in the loop ‘for i := 3, 3 do fibonacci (i)’ for instance, the same 
four blocks aux0 to aux3 would be activated twice, successively. The two words “most recent” could therefore be replaced 
by the word “current,” like the word “youngest” in the description of the first frame pointer value saved in the link; they 
could also be omitted altogether.

The consequence of the above paragraphs is that:
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Definition. If a block-structured programming language is implemented with Dijkstra’s scheme, then two frame pointer 
values are recorded in the links:

1. the frame pointer value corresponding to the activation of the block in which the block is dynamically entered, and
2. the frame pointer value corresponding to the activation of the block in which the block entered was dynamically 

declared.

This definition, in which block structure implies lexical scope, makes explicit the fact that a procedure block is declared 
anew each time that its declaration is met during the execution of the program.

This definition is correct (a) for programming languages without procedures, (b) for programming languages with pro-
cedures but without nested procedure declarations, with or without procedural parameters, (c) for programming languages 
with procedures and nested procedure declarations, with or without procedural parameters, and even, as we will see later, 
(d) for programming languages with implicit, or anonymous, procedure declarations. (It is also correct (e) for programming 
languages in which procedures can be “stored” or returned by procedures. This case falls, however, outside of the scope of 
this article, because Dijkstra’s implementation scheme cannot be used for those languages. The procedure activations cannot 
be stored in a stack, and although it is possible to use “static links” it is often better not to use them, for efficiency reasons.)

A non-procedure block being entered when it is declared, the two frame pointer values recorded in the link are the 
same. When a non-formal procedure block is entered, the activation of the block in which that procedure was declared is 
either the current block or one of the blocks in which it is lexically nested, and the frame pointer value sought can therefore 
easily be found by following the chain of the second frame pointer values saved in the links; in other words, the block in 
which it was declared is still present in the current environment. When a formal procedure block is entered however, the 
activation of the block in which that procedure was declared may not be present in the current environment anymore, 
either because it is entered in a lexically enclosing block of the block in which it was declared or because the block in 
which it was declared may have been shadowed by another insertion of the procedure body in which it is declared in the 
program text. In this last case, it is only under apparently exceptional conditions, namely, those indicated by McGowan, that 
the activation of the block in which that procedure was declared is not present in the current environment anymore.

5. Possible implementations

It is, of course, possible to object that our interpretation of Dijkstra’s words has the merit of saving his article, but that 
it is far from obvious, and not supported by other substantial evidence. This is, however, untrue. The last paragraph of the 
Recursive Programming article presents a technique which among others solves this problem in an elegant and efficient way 
[1, p. 318]:

One can assign a so-called block number to each block, indicating the number of blocks which enclose it lexicographically: 
the main program therefore has block number = 0. [. . . ] The introduction of block numbers also makes it possible that 
the arithmetic unit has immediate access to all the [frame] pointer values it may need. They can be stored in order of 
increasing block number in a so-called “display”. By tracing the second chain of [frame] pointers one can, when necessary 
(amongst others at the return, in the call of a formal procedure, and at the beginning of the evaluation of a non-trivial 
formal parameter), bring the display up to date.

The words of special importance here are “when necessary [. . . ] in the call of a formal procedure,” which indicate that 
the execution of a formal procedure must be preceded by a specific operation that “brings the display up to date.” However, 
except for this short mention, the handling of formal procedures is not explained further in the article, and it is necessary to 
look elsewhere for the details. If we assume, for a moment, that procedures can have only two types of parameters, values 
and procedure identifiers, then the passing of an actual parameter to a procedure called in a certain block, say ba , can be 
presented as follows [25, p. 17]:

1. either it is a value, in which case it is recorded in the local variables of the newly allocated stack frame;
2. or it is a non-formal procedure identifier, in which case a triplet (address of that procedure, block number of the 

current block (say, bna), current value of the frame pointer (say, fpa)) is recorded in the local variables of the newly 
allocated stack frame (such a triplet, containing both a procedure and one of the many possible representations of the 
dynamic environment in which it is declared, is now known, following the suggestion of P. J. Landin [26, pp. 316–317 
and p. 320], as a “closure”);

3. or it is an already formal procedure identifier, in which case it suffices to make a local copy of a previously recorded 
triplet, from either the current stack frame at the moment of the call, or from one of the stack frames pointed to by 
the chain of second frame pointers in the links.

When a block, say be , with a certain block number bne , is entered in a block bo with a certain block number bno , a new 
frame is allocated on the stack, its link is filled with the current block number = bno , frame pointer = fpo , and return 
address, the frame pointer is set to the stack pointer value, and only two cases are then possible [25, pp. 13–17]:
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1. either be is a non-procedure block, or a procedure block called through a non-formal identifier, in which case two 
operations have to be performed:
(1) display[bne] ← frame pointer,
(2) second frame pointer value in the link of the new frame ← display[bne − 1],

2. or be is a procedure block called through a formal identifier, in which case an additional operation has to be performed 
before the two of the previous case:
(1) with the help of block number bna and of frame pointer fpa saved in the triplet representing the actual parameter, 

restore the contents of the display that were current at the moment the procedure was passed as parameter (start-
ing with bna and fpa , which is saved into display[bna], the other frame pointers display[bna − 1], . . . , display[0] can 
be found in the links in the execution stack),

(2) display[bne] ← frame pointer,
(3) second frame pointer value in the link of the new frame ← display[bne − 1].

As we have seen, the first operation in this second case is explicitly mentioned in the Recursive Programming article, with 
the rule: “by tracing the second chain of [frame] pointers one can, when necessary [. . . ] in the call of a formal procedure 
[. . . ] bring the display up to date.” And the last operation is a particular case of the rule “the arithmetic unit has immediate 
access to all the [frame] pointer values it may need” in the display.

Finally, as indicated by the rule “by tracing the second chain of [frame] pointers one can, when necessary [. . . ] at the 
return [. . . ] bring the display up to date,” when a block be , previously entered in a block bo , is left, the stack pointer is set 
to the frame pointer value, the contents of the link (block number = bno , frame pointer = fpo , return address) are restored, 
and a single operation needs to be performed:

(1) with the help of block number bno and of frame pointer fpo just restored from the link, restore the contents of the 
display that were current at the moment the block be was entered (starting with bno and fpo , which is saved into 
display[bno], the other frame pointers display[bno − 1], . . . , display[0] can be found in the links in the execution stack).

It is clear that this technique is a correct and general solution to the three possible cases mentioned at the end of § 4. 
A non-procedure block be is entered when it is declared, in bo , and in that case display[bne − 1] contains the value of the 
frame pointer that was current in bo . When a non-formal procedure block be is entered, the value of the frame pointer 
pointing to the current activation of the block in which that procedure was declared is also contained in display[bne − 1]. 
Finally, when a formal procedure block be is entered, display[bne − 1] contains the value of the frame pointer pointing to 
the current activation of the block in which that procedure was declared at the moment it was passed as parameter, which, 
as implied by the previous case, corresponds to the activation of the block in which block be was declared.

This technique can easily be extended to support implicit, or anonymous, procedure declarations, referred to as the 
“non-trivial formal parameters” in the previous quotation. In example program (3), the parameter m + 1 passed to procedure 
aux is a very simple example of one such anonymous procedure: when parameter m is evaluated in procedure p, its value 
is actually not immediately found in the corresponding activation of aux but is recursively recalculated, starting with the 
value 0 passed by fibonacci to the first call of aux. In other words, execution proceeds as if a procedure m plus 1 had been 
defined inside of procedure aux, that is, as if procedure aux had been defined as follows:

integer procedure aux (m,n1,n2);
integer procedure m,n1,n2;

begin
integer procedure p; p := if m < 2 then m else n1 + n2;
integer procedure m plus 1;m plus 1 := m + 1;
aux := if m = n then p else aux (m plus 1,n2, p)

end ;

(4)

This implies that the block number of procedure m plus 1 is one higher than the block number of procedure aux, and, 
more generally, that the parentheses in which the actual parameters of a procedure are enclosed start and end a new block 
level. In other words, when the implicit procedure m + 1 is called, the value of the second frame pointer to be saved in 
the link is also to be found in display[bne − 1], but bne is one higher than the block number of the block in which the 
procedure statement that contains the declaration of that implicit procedure resides. This should, of course, be understood 
recursively, because nothing forbids, in ALGOL 60, that an implicit procedure contains a call to some procedure with a 
number of implicit procedures as parameters.

It is of course possible, should one believe that the display is an inefficient mechanism, to avoid using it. The immediate 
consequence of the rules given above is that the simplest way to pass an actual (explicit or implicit) procedure p as parame-
ter is to pass a pair (address of procedure p, current frame pointer value corresponding to bnp − 1), where bnp is the block 
number of the body of the procedure p, instead of a triplet (address of procedure p, current block number, current value of 
the frame pointer). When the formal procedure is later called, the second value of that pair can then be used immediately 
as the value of the second frame pointer to be recorded in the link. This solution, known as “fat pointers,” is presented in 
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the literature for instance as “when procedures are used as parameters, the caller needs to pass, along with the name of 
the procedure-parameter, the proper access link for that parameter” [19, pp. 448], or as “the standard approach is for the 
caller to compute the callee’s static link and to pass it as an extra, hidden parameter” [20, p. 387 (and p. 154)]. The P5 
implementation of Pascal for example, completed in 2009, more than thirty years after the P4 implementation, essentially 
uses that technique, implemented with three new specific instructions.

More complicated schemes, based on the rules given above, can be used to handle procedural parameters. One of them, 
proposed by T. M. Breuel [27], has been implemented in the second version of the GCC compiler suite. It requires dynamic 
generation of a short segment of code in the stack, which contains the pair (address of procedure p, current frame pointer 
value corresponding to bnp − 1) mentioned in the previous paragraph and records the value contained in the second 
element of that pair in the link of the newly allocated frame, before jumping to the address indicated in the first element 
of that pair. The procedural parameter can then be moved around through a pointer to that segment of code. The advantage 
of this more complex technique, nicknamed “trampoline,” is that it is compatible with C pointers, which makes interfacing 
between multiple languages easier; its main disadvantage is that it requires that the elements in the stack be executable. The 
GNU Pascal compiler, which uses the GCC compiler back-end, correctly handles procedural parameters using that technique.

6. The extent of the problem

It is also possible to object that our interpretation of Dijkstra’s words is not correct by arguing that the above scheme 
solved the problem identified by McGowan only by chance. Our example program (3) is indeed rather complex, and the 
example given by McGowan, in PL/I, is even more intricate than ours; it is derived from an example program used by 
Johnston [3, p. 61] and can be translated as follows into ALGOL 60 [2, p. 196]:

begin
integer b; procedure q; begin end ;
procedure a( f ); procedure f ;
begin

integer x; procedure p;outinteger (1, x);
b := if b = 0 then 1 else 0; x := 5 × b;
if b = 1 then a(p) else f

end ;
b := 0;a(q)

end

(5)

This program should output the integer value “5”; with a faulty implementation it would print “0”. This example pro-
gram, or slight variations or complications thereof, has become the canonical example to demonstrate the problem.2 The 
other classical example to check whether an implementation is correct with respect to this problem is the “Man or boy” 
test program designed by Knuth long before McGowan’s article [32], which was executed correctly on the ALGOL 60 system 
designed by Dijkstra and Zonneveld [33]:

begin
real procedure A (k, x1, x2, x3, x4, x5); value k; integer k;
begin

real procedure B;
begin k := k − 1; B := A := A (k, B, x1, x2, x3, x4) end ;
if k � 0 then A := x4 + x5 else B

end ;
outreal (1, A (10,1,−1,−1,1,0))

end

(6)

This program should print the value “−67”; like our example program (3), it would enter an infinite recursion loop 
with a faulty implementation. Looking at these examples, one might be tempted to conclude that the error arises only in 
exceptional circumstances, and most probably not in an ALGOL 60 program that was not specifically designed to test this 
corner case. If this were true, it would still be imaginable that Dijkstra missed the problem. A much simpler and clearer 
example could, however, be used:

2 Cf. for instance [20, p. 155], [28, p. 116], or [29, p. 37] (itself also based on [30, pp. 108–109]). They are collected and discussed in [31].
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begin
integer procedure fibonacci (n); integer n;
begin

integer procedure n minus 1;n minus 1 := n − 1;
integer procedure n minus 2;n minus 2 := n − 2;
fibonacci := if n < 2 then n else

fibonacci (n minus 1) + fibonacci (n minus 2)

end ;
outinteger (1, fibonacci (3))

end

(7)

This example is especially interesting because there is not a single call, in the eleven calls to n minus 1 and in the six 
calls to n minus 2, in which the “static link” points to the current topmost activation of the procedure fibonacci. For instance, 
during the first call to n minus 1, the execution stack can be depicted as follows:

Had the “static link” pointed to the topmost activation of procedure fibonacci, then evaluating n minus 1 would again 
ask for evaluation of n minus 1, ad infinitum. What makes this example even more interesting is that it is, by virtue of the 
explanations given above (§ 5), strictly equivalent to the following one:

begin
integer procedure fibonacci (n); integer n;
fibonacci := if n < 2 then n

else fibonacci (n − 1) + fibonacci (n − 2);
outinteger (1, fibonacci (3))

end

(8)

Passing a procedure as parameter to another procedure is thus a special case of a more general case, namely passing a 
complex expression by name. This equivalence between a parameter called by name and a procedure is noted by McGowan: 
“call-by-name can be realized by passing an implicit parameterless procedure whose body is the intended by-name argu-
ment” [2, p. 194], but apparently he did not realize that because of this it is impossible that implementers of ALGOL 60 
were not already aware of the problem he identified.

Let us finally suppose that the parameter n in the example program (8) is a value parameter. Given that parameters are 
by default passed by name in ALGOL 60, the most straightforward method to handle parameters passed by value (and the 
one used in the ALGOL 60 system implemented by the team lead by Dijkstra) is to pass all parameters by name, and to 
assign all parameters passed by value to implicit local variables before executing the procedure body, as if the procedure 
had been declared as follows:

begin
integer procedure fibonacci (n); integer n;
begin

integer nval;nval := n;
fibonacci := if nval < 2 then nval

else fibonacci (nval − 1) + fibonacci (nval − 2)

end ;
outinteger (1,fibonacci (3))

end

(9)

In this example program, the implicit procedures ‘nval − 1’ and ‘nval − 2’ are both evaluated twice, and again in these 
four calls the “static link” never points to the current topmost activation of the procedure fibonacci.

It should now be clear that the description given by Dijkstra of the “static link” and our interpretation of his words given 
in § 4, are, beyond any reasonable doubt, correct.

7. The procedure concept

In spite of the fact that an ALGOL 60 procedure text gives rise, during the program execution, to multiple procedure 
declarations, it can, as Dijkstra showed in his Recursive Programming article, be translated into a single subroutine and 
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appear only once in memory. This is an optimization permitted by the presence of “static links,” but it does not imply that 
the subroutine is equivalent to the procedures declared by that procedure text. In the example program (3), the declaration 
of procedure p inside procedure aux can be translated into a single subroutine, yet during execution of the program four 
different procedures are defined: p0 and p1 can both be described as ‘if m = 0 ∨ m = 1 then m else fail’, p2 as ‘if m = 0
then 0 else 1’, and p3 as ‘if m = 0 ∨ m = 1 then m else 2’. What makes these four procedures different is their dynamic 
environment, in which m, n1 and n2 are defined differently.

The procedure or block concept in ALGOL 60 can therefore be defined as “a program text and its dynamic environment.” 
This is clearly a dynamic concept, different from the subroutine concept, which does not include the notion of dynamic 
environment; it is identical to the closure concept. When a block is declared, a dynamic environment is associated with a 
program text. The result of this association can then be passed around through parameters, containing the program text 
and the environment. When a block is entered, its program text and environment are associated with a portion of memory, 
for instance with a stack frame, and execution of the block starts. When the execution of the block is completed, the 
portion of memory is dissociated from the program text and environment. Finally, when the scope of the block declaration 
is left, the environment is dissociated from the program text. The program text remains in memory, at the disposal of 
other declarations derived from the same program text. Both non-procedure and procedure blocks can go through these five 
states, except the second one for non-procedure blocks, which are immediately entered when they are declared.

This dynamic meaning of the procedure concept is, by the way, in perfect accordance with the Report (our emphasis) 
[24, § 5]:

Dynamically [the presence of declarations in the head of a block] implies the following: at the time of an entry into a block
[. . . ] all identifiers declared for the block assume the significance implied by the nature of the declarations given. If these 
identifiers had already been defined by other declarations outside they are for the time being given a new significance. 
[. . . ] At the time of an exit from a block [. . . ] all identifiers which are declared for the block lose their significance again.

This rule means, in particular, that when a procedure is dynamically declared, the procedure body depends in general on 
the identifiers that were dynamically declared when its lexically enclosing blocks were entered. Put another way, with lexical 
scoping identifier bindings depend on the program execution, as with dynamic scoping, but at the moment a procedure is 
declared, the identifiers it contains are bound to the current environment.

Describing the “static links” independently of the program execution, as if they were only dependent on the program 
text, is therefore incorrect. The purpose of the static links is to implement the dynamic implications of lexical scoping, and 
to allow blocks to be translated into a single subroutine. In such a subroutine, references to variables or procedures must in 
general depend, dynamically, on their values. It is thus wrong, even to introduce the concept, to explain that “the [dynamic] 
link depends on the dynamic behavior of program whereas the [static] link depends on only the static form of the program 
text” [34, p. 180].

One possible alternative would have been to generate a new piece of code each time a block is declared; to generate 
such a piece of code it would be necessary to consult the current environment, but references to variables could then be 
made static. This implementation scheme, which relies on the possibility for a program to modify itself during its execution, 
might seem improbable nowadays, but it is the basis of the implementation of ALGOL 60 by Irons and Feurzeig: whenever 
a parameter is passed to a recursive procedure activation, a segment of code is dynamically created, in which the references 
to variables are static, and it is passed to the procedure as a pointer [8, p. 68]. Breuel’s solution, presented above in § 5, can 
be seen as an intermediate between the two approaches: procedural parameters are passed around through simple pointers 
to a dynamically created short segment of code, which executes a constant code after setting the “static link.”

8. Conclusion

Although it was correct (albeit, in retrospect, ambiguous and misleading) for ALGOL 60, Dijkstra’s description of the 
“static link” should be abandoned. It was correct because the semantics of procedure calls are, in ALGOL 60, defined by the 
copy rule, which implies that each procedure call dynamically creates a different block. In languages in which this rule is 
not used, this description becomes incorrect. At best, it describes one of its accidental characteristics, but it is unhelpful, 
both to understand its purpose and to understand how it can be implemented. A definition akin to our proposal should be 
favored (§ 4). Finally, the procedure concept is, as it was originally conceived, different from the subroutine concept, with 
which it should not be identified; it was identical to what is now known as the closure concept (§ 7).
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