
Dynamic Consistency in Process Algebra:

From Paradigm to ACP

S. Andovaa,∗, L.P.J. Groenewegenb, E.P. de Vinka

aFormal Methods Group, Department of Mathematics and Computer Science

Eindhoven University of Technology, The Netherlands

bFaST Group, Leiden Institute of Advanced Computer Science

Leiden University, The Netherlands

Abstract

The coordination modelling language Paradigm addresses collaboration between
components in terms of dynamic constraints. Within a Paradigm model, com-
ponent dynamics are consistently specified at various levels of abstraction. The
operational semantics of Paradigm is given. For a large, general subclass of
Paradigm models a translation into process algebra is provided. Once ex-
pressed in process algebra, relying on a correctness result, Paradigm models
are amenable to process algebraic reasoning and to verification via the mCRL2
toolset. Examples of a scheduling problem illustrate the approach.

Key words: branching bisimulation, collaboration, dynamic consistency,
dynamic constraint, Paradigm, process algebra, verification

1. Introduction

Process algebras are becoming an important stepping stone from software archi-
tecture and description formalisms to automated analysis and verification tools.
E.g., see [1, 34, 32, 31, 29]. In this paper, we link the coordination modeling
language Paradigm via the process algebra ACP with the mCRL2 toolset. In
this way, the flexibility of coordination regarding a software system as a loosely
coupled, but structured aggregation of components, is connected to the compu-
tational rigor of process equivalence and model-checking. A systematic transla-
tion of Paradigm collaborations as recursive specifications of systems of parallel
processes is presented. Central to Paradigm is the decomposition of dynamic
constraints along two axes: (i) vertically, restrictions on a component with re-
spect to the roles it fulfills in all collaborations it is engaged in, (ii) horizontally,
coordination and synchronization of subbehaviour enforced upon participants
in a collaboration.

∗Corresponding author, email s.andova@tue.nl.

Preprint submitted to Elsevier April 21, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301649524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The coordination modeling language Paradigm [25, 26] specifies roles and
interactions within collaborations between components. Roles and interactions
are defined in terms of temporary constraints on the dynamics of components.
The constraints can be of two kinds, either purely sequential per component
(vertical) or step-wise synchronizing for an ensemble of components (horizon-
tal). A sequential constraint corresponds to a role of a component within a
protocol, a behavioural view on the component’s underlying, typically hidden
dynamics. A synchronizing constraint corresponds to the distributed execu-
tion of the protocol by the components, a specific parallelization of their roles,
constituting a dynamically consistent coordinated computation.

In particular, via suitable constraint composition Paradigm allows for mod-
eling of evolution and self-adaptation [26, 4, 23, 2]. Translation of Paradigm
into ACP as presented here, is a first step towards the long term research goal
to provide formal underpinnings for originally unforeseen changes of systems.
To give this effort a sound starting point, first of all thorough presentations of
Paradigm and of its semantics are given.

Processes algebras (PAs for short), such as CCS, CSP, LOTOS and ACP [10,
7], provide a powerful framework for formal modeling and reasoning about con-
current systems. Keystone is the notion of compositionality. Each component
of the system is modeled separately, and the complete system is obtained as a
parallel composition of its interacting components. In addition, process algebras
have mechanisms to narrow the interaction possibilities (using restriction) and
to adjust the level of abstraction (using hiding, renaming actions into the in-
ternal action τ). To compare and relate processes in terms of their behaviours,
various equivalences can be built upon process calculi. This paper exploits
branching bisimulation to that aim.

The translation of Paradigm models into PA is first introduced through some
example variants. Basically, the example system consists of n clients who try
to get service from one server exclusively, a critical section problem. The server
chooses the next client in a non-deterministic manner. In later variants this is
done in a round-robin manner, where the server is not necessarily involved in
the coordination. A translation into PA is given and subsequent analysis with
the mCRL2 toolset is discussed.

The state spaces of the systems we consider (including all interleaving and
interaction) grow exponentially and their analysis exceed human capabilities
as the number of clients increases. The toolset mCRL2 enables us to generate
complete state spaces, on which further analysis can be done. For the examples,
correctness of several functional properties is being checked. For instance, as
expected, the non-deterministic server does not guarantee eventual access to
the service, unless fairness is assumed. In contrast, the round-robin manner of
serving guarantees, as is no surprise either, access within one cycle. However,
the main point is, that once translation into ACP has been achieved, formal
methods for analysis of a Paradigm collaboration are within reach. Thus, the
embedding of the collaboration into process algebra brings model-checking and
analysis, together with its rigor, at the abstraction level of the coordination. Our
translation into PA preserves the general structure and dynamics of the original

2

Paradigm model, a property we do not expect to hold when e.g. translating into
Petri-nets.

The paper’s structure is as follows. In Section 2 Paradigm is presented in
detail, illustrated by different example solutions for the same problem situation.
Section 3 then formulates operational semantics for Paradigm and it compares
Paradigm with other such approaches. Section 4 briefly introduces process alge-
bra and gives some pilot translations and verifications. In Section 5 the general
translation of a large subclass of Paradigm models into ACP is given. In view of
Sections 4 and 5, the Appendix provides background material from the process
algebra we rely on. Section 6 concludes the paper.

2. Introduction to Paradigm

This section introduces the coordination modeling language Paradigm. In par-
ticular, it defines and discusses the basic notions in terms of which Paradigm
models are formulated. By means of a coordination model for a concrete collab-
oration among components, basic notions and their usage are explained: notions
for a single component in Subsection 2.1; notions for integration of components
into a collaboration in Subsection 2.2. To illustrate Paradigm’s modeling flexi-
bility, some variants of the example are presented in Subsection 2.3.

2.1. Paradigm, the notions for a single component

The name Paradigm is an abbreviation of PARallelism, its Analysis, Design
and Implementation by a General Method. Paradigm’s subject of interest is
parallelism as arising in collaborations, a constellation of dynamic components
having to achieve a common goal. The dynamicity of the components consists
of their own behaviour and their mutual behavioural influencing. Depending on
domain and fashion, components are also referred to as agents, units, objects
or entities. Within a collaboration, components together behave simultaneously
but not necessarily synchronized. Considered in separation, each component
behaves in a piece-wise strictly sequential manner, thread-like. A component’s
behaviour then might consist of one sequence of steps, one thread, or it might
consist of more of such threads in parallel. Within the collaboration, all such
threads, either from different components or from the same one, have to be
woven, well-integrated, into the larger dynamic outcome of the collaboration.
In view thereof, Paradigm provides special notions as well as special relations
between them, facilitating the modeling of the various kinds of dynamics relevant
for such collaborations. Example collaborations for which Paradigm models
exist, are from operating systems, simulation, software processes, security, self-
adaptation, see e.g. [38, 17, 18, 24, 3, 2].

Similar to modeling languages like UML, Paradigm has a strongly visual
representation, intuitively as well as effectively expressing what any particu-
lar model specifies. In addition, the visual representations are underpinned
by precise mathematical constructs, constituting the formal definitions of the
Paradigm notions and their dependencies.

3

To model coordination solutions for collaborating components, Paradigm
has five basic notions: state transition diagram, phase, (connecting) trap, role
and consistency rule. We shall discuss them with the help of the example of a
critical section problem and a particular solution for it. In this subsection we
shall restrict attention to the first four of Paradigm’s basic notions only, as they
are the structuring notions of Paradigm, each related to a component on its own,
although involved in a collaboration. The last basic notion of consistency rule,
covering integration of component involvement into collaborative effort, will be
addressed in Subsection 2.2. The rigorous treatment of the notions paves the
way towards the operational semantics for Paradigm as given in Section 3.1.

The example collaboration used for explaining the notions, is the following.
In and around a shop, n different potential Clienti, with i = 1, . . . , n, are active.
By entering the shop, Clienti starts competing for a service turn, to be provided
by the one Server present in the shop and exclusively to only one Clienti per
turn. By leaving the shop, Clienti finishes the service turn. We shall refer to
this collaboration as CS, for Critical Section, as Clienti’s activities belonging to
a service turn can be viewed as her critical section.

A Paradigm model, hence each Paradigm model for the CS collaboration too,
is built from state transition diagrams, component descriptions in terms of se-
quential, possibly non-deterministic, behaviours.

• An STD or state-transition diagram Z is a triple Z = 〈ST, AC, TR〉 with
ST the set of states of Z, AC the set of actions of Z and TR ⊆ ST×AC×ST the
set of transitions of Z. A transition (x, a, x′) ∈ TR is denoted as x

a→ x′.

An STD is a step-wise description, from state to state, of possible behaviours
a component can have, like a simple, purely sequential state machine in UML,
with the above mentioned thread-like behaviour. An instance of an STD Z then
has one realization or concrete behaviour

x0
a0→ x1

a1→ . . .
an−1→ xn

an→ . . .

being a finite or infinite sequence of steps xi
ai→ xi+1 of Z, where x0 is the starting

state.
An STD is visualized as a directed graph, where nodes are states and where

action-labeled directed edges are transitions, pointing to the next state. In
addition, if all instances of the STD have the same initial state, this is graphically
indicated by a black-dot-and-arrow pointing from the dot to the initial state.

Figure 1 gives the STD for any Clienti, i = 1, . . . , n, in and around a shop.
As the figure suggestively expresses, any Clienti starts in state Out where she
is supposed to be outside the shop. By taking action enter, she reaches state
Waiting: being in the shop while waiting for a service turn. By taking action
explain, she reaches state Busy where she spends her service turn, until she
takes thank. She then reaches AtDoor from where taking leave let her return to
Out. Thus, each Clienti clearly has purely sequential behaviour: infinitely often

4

Waiting

Busy

Out

AtDoor

leave
thank

explain
enter

Figure 1: STD of Client i.

repeating the cycle of these four steps. Per cycle her critical section consists of
an explain-step followed by sojourning in Busy and closed by a thank-step.

In view of coordinating whatever collaboration between STDs, Paradigm spec-
ifies behavioural influencing between STDs by means of temporary behavioural
constraints of two kinds. The first kind of constraint is, a behavioural constraint
imposed on an STD from “elsewhere”, called a phase of the STD. As we shall see
later, the semantical effect of the phase as constraint is: it restricts the choice
there is of taking steps within the STD.

• A phase S of STD Z = 〈ST, AC, TR〉 is an STD S = 〈st, ac, tr〉 such that
st ⊆ ST, ac ⊆ AC and tr ⊆ TR.

Please note, phase S being an STD S = 〈st, ac, tr〉 implies, any step ϑ ∈ tr

of S is a triple ϑ = (x, a, x′) ∈ st × ac × st ⊆ ST× AC× ST. So, a phase of an
STD is itself a subSTD of the larger STD. As such, a phase S of an STD Z is a
STD-wise description of subbehaviours of the behaviours of Z. Precisely these
subbehaviours exhaustively specify, in which part of its state space the larger
STD Z has to stay and which steps STD Z is allowed to take there. Thus the
dynamics of Z is restricted, but only as long as phase S of Z remains constraint
in force, remains imposed. Any decision which phase of Z is constraint in force,
comes from “elsewhere”, therefore we say, a phase of an STD is a temporarily
valid constraint to be imposed on the STD it is a phase of.

Interrupt

Waiting

AtDoor BusyAtDoor

WaitingWaiting

leave

Out

thank

explain

leave

AtDoor

Out
enter With

Without

Figure 2: Phases of each Client i.

Visualized, a phase of STD Z is a fragment of Z preserving the form of Z
in the fragment. See Figure 2 for three phases of each Clienti, viz. Without,
Interrupt, With. The three phases have been purposely chosen in view of the
coordination solutions we are after for the CS collaboration. Phase Without
prohibits Clienti to be in state Busy as well as to take the explain-step and the
thank-step, thus keeping Clienti out of her critical section. Contrarily, phase
With allows going to state Busy, staying there and leaving it, all this only once.
Finally, the intermediate phase Interrupt is an interrupted form of Without, as
action enter cannot be taken, but being in state Waiting is allowed, though.

5

So, phase Without specifies the behavioural freedom any Clienti has, when not
having the permission to enter her critical section. Phase With specifies the be-
havioural freedom any Clienti has, when having the permission. Phase Interrupt
then specifies a behavioural freedom of Clienti even further restricted than by
phase Without, useful when not having the permission yet but being under con-
sideration for getting it: Clienti is not allowed to start waiting for a permission
when already under consideration. Please note, defining phases of a given STD
is a matter of modeling choice, to be guided by the collaborative problem and
the way one wants to solve it, not unlike programming a solution for a certain
problem.

In view of enabling whatever “elsewhere” to impose phases as constraints on an
STD, the same “elsewhwere” is to be informed about certain progress within
a phase. To this aim Paradigm has the notion of a trap of a phase of an
STD. A trap of a phase of a larger STD constitutes Paradigm’s second kind of
behavioural constraint, committed to by the larger STD towards “elsewhere”.

• A trap t of phase S = 〈st, ac, tr〉 of STD Z is a non-empty set of states

t ⊆ st such that x ∈ t and x
a→ x′ ∈ tr imply x′ ∈ t. If t = st, trap t is

called trivial, denoted as triv(S). A trap t of phase S of STD Z connects
phase S to a phase S′ = 〈st′, ac′, tr′〉 of Z if t ⊆ st′. Such trap-based
connectivity between two phases of Z is called a phase transfer and is

denoted by S
t→ S′.

A trap of a phase of an STD is a subset of the states of the phase, such that once
entered, the subset cannot be left according to the dynamics of the phase. So,
within a phase, the entering of a trap is irrevocable, thus marking the beginning
of a final stage of the phase. Within the phase of an STD, the entering of a
trap of it can serve as commit from the STD not to leave the trap. Such a
commit can be used as guard for imposing a new phase. In that case the states
of the trap are shared between the phase it is a trap of and the newly imposed
phase (of the same larger STD): from whatever state the larger STD is in, it
can continue in a sufficiently smooth manner according to the new constraint

imposed. Note, the definition allows for phase transfers S
t→ S, as each trap t of

an arbitrary phase S connects S to itself. This is useful for observing irrevocable
progress within a phase without imposing a new phase yet.

BusyAtDoor

Waiting

thank
done

explain

With

Waiting

AtDoor

Interrupt

leave

Out

notYet

request

Waiting

Without

leave

AtDoor

Out
enter

triv

Figure 3: Phases and their traps, of each Client i.

Visualizing traps is done by drawing a polygon around the states of a phase
belonging to the trap. Figure 3 adorns the phases from Figure 2 with some traps.

6

Like the phases, also the traps have been chosen on purpose, in view of the
coordination we want to establish for the CS collaboration. In the figure, phase
Without has trap triv, the trivial trap of it. It expresses trivial progress within
the phase towards a next phase to be imposed. In other words, while being
within phase Without and hence being prohibited to enter the critical section,
every progress is good enough for Clienti, even no progress, as the progress is
not so much towards being fit for the critical section, but only towards being
checked for being fit. Phase Interrupt has two traps notYet and request, indicating
different kinds of progress towards being fit for the critical section: trap notYet
for not enough progress yet and trap request for being fit indeed. Phase With
has trap done; as during this phase Clienti is permitted to enter her critical
section, progress is towards giving-up the permission; thus trap done indicates
being fit for granting the permission to another Clientj , j 6= i, so withdrawing it
from Clienti.

To enable smooth consecutive imposing of phases on a Clienti, the following
connectivity of traps is needed. Trap triv is connecting from Without to Interrupt,

so phase transfer Without
triv−→ Interrupt is well-defined. It actually means, once

Without is constraint in force, the phase transfer from Without to Interrupt can
occur unconditionally, at any moment, as trap triv means that every progress
within Without is good for being interrupted. Similarly, two phase transfers,

Interrupt
notYet−→ Without and Interrupt

request−→ With, are well-defined on the basis of
two different connecting traps of Interrupt: towards two different next phases
for smooth continuation, exactly according to the actual progress made. Also,

phase transfer With
done−→ Without is well-defined and it only occurs after necessary

progress has been made.

As the above informal explanation suggests for any separate Clienti in the CS
collaboration, suitably modeled phases and their connecting traps of one un-
derlying larger STD have their own dynamicity in terms of constraints in force:
subsequently imposed phases, one at a time, alternated with connecting traps
committed to and moreover used as guard for a phase transfer. The Paradigm
notion of role specifies such dynamicity, based on a selection of phases of the
same STD combined with a selection of traps per phase, everything assembled
into a so-called partition.

• A partition π = { (Si, Ti) | i ∈ I } of an STD Z = 〈ST, AC, TR〉, with a
nonempty index set I, is a set of pairs (Si, Ti) of a phase Si = 〈sti, aci, tri〉
of Z and of a set Ti of traps of Si with triv(Si) ∈ Ti.

• The role at the level of a partition π = { (Si, Ti) | i ∈ I } of an STD Z
is an STD Z(π) = 〈ŜT, ÂC, T̂S〉 with ŜT ⊆ { Si | i ∈ I }, ÂC ⊆ ⋃

i∈I Ti and

T̂S ⊆ { Si
t→ Sj | i, j ∈ I, t ∈ ÂC } a set of phase transfers. Z is called the

detailed STD underlying global STD Z(π), the π-role of Z.

Thus, any role of an STD is based on a partition, a particular set of phases of
the STD and of connecting traps between them. Per partition there is exactly

7

one such role. As a role is an STD, always exactly one state of it is current:
the current state of a π-role of STD Z, being a phase from partition π of Z,
is the constraint from π in force on Z. Note, for this paper we can assume for
every partition π of STD Z as defined above,

⋃
i∈I sti = ST ∧ ⋃

i∈I aci = AC ∧⋃
i∈I tri = TR, as coordination within one model remains unchanged. In cases

as self-adaptation [2] however, not addressed here, the assumption is abandoned.
In view of the CS example, we assemble phases and traps from Figure 3

into partition CS of Clienti, and we add to CS the two (not drawn) trivial traps
triv(Interrupt) and triv(With). In line with our above observations concerning
enabling of smooth consecutive imposing of phases on a Clienti, we model role
Clienti(CS) as in Figure 4. Please note, when modeling a role, its steps should

be carefully selected from the set of phase transfers; e.g. Interrupt
request−→ Without

could be considered –by a modeler– as counterproductive for the role’s dynam-
icity, so it is left out. Moreover note, no initial state is indicated.

triv

done

With

Without

Interrrupt

request

notYet

Figure 4: Role STD Client i(CS) of Client i.

In particular, the four phase transfers discussed earlier in the context of con-
nectivity of traps, reappear in role Clienti(CS) as the four steps CS-role behaviour

exists of: Without
triv−→ Interrupt, Interrupt

notYet−→ Without, Interrupt
request−→ With and

With
done−→ Without. Thus, in a pleasantly condensed form, dynamicity of con-

straints imposed on a particular Clienti is as follows: from Without via Interrupt
either directly back to Without or continued via With and then back to Without.
In a more enriched form, with connecting traps in place as guards for phase
transfers, dynamicity of constraints imposed on Clienti alternated with con-
straints committed to by Clienti is as follows: from Without –and after triv-
ial progress within Without– via Interrupt either –after progress as far as trap
notYet– directly back to Without or –after progress as far as trap request– con-
tinued via With and then –after progress as far as trap done– back to Without.
Note how our explanation of role dynamics heavily relies on progress actually
made at the detailed level of the underlying STD. Specifying these and other
behavioural dependencies between different STDs, is determined by Paradigm’s
operational semantics, the topic of the Subsection 3.1.

As a further detail of the example we require, each role STD Clienti(CS)
has as initial state either Without or Interrupt. In the situation of a complete
concrete coordination solution, we still have to indicate the initial state for every
Clienti(CS) role separately. Here too, behavioural dependency between different
STDs is involved.

8

2.2. Paradigm, the notions for architecturing collaborations

Not only for the example role of Figure 4 but for every role in general, a con-
necting trap marks the readiness of a phase to be changed into another phase
within the role. Such readiness expresses that sufficient progress has been made
within the detailed STD underlying the role. In view of behavioural influencing
or dependency between an underlying STD and a role thereof, this means, if a
phase is the imposed constraint in force –the current role state– and if within
the underlying detailed STD the connecting trap has been entered, the condition
is fulfilled to take the transition labeled with that connecting trap.

Such a role transition, with the connecting trap as transition label, estab-
lishes a phase transfer within the global role STD. The idea here is, a role is to
provide a consistent and global view on the ongoing detailed dynamics of the
underlying STD. If phases and traps have been chosen well, such a global view,
through its dynamic character, expresses precisely the dynamics essential for
coordinating the underlying STD via its role.

So far, we have discussed the sequential composition of constraints into a
role: imposed phases, alternated with traps committed to and subsequent phase
transfer. Bringing constraints, as composed into a role STD, into the effect
Paradigm is aiming at, comes down to maintaining dynamic consistency. Ar-
rived at this point of our introduction into Paradigm, we summarize the part
of such dynamic consistency specifying the behavioural dependencies between
any underlying STD and every role STD of it. As we shall point out, this part
of dynamic consistency, based on the notions for a single component as given in
Subsection 2.1, makes up a solid half of Paradigm’s behavioural dependencies
or behavioural influencing.

On the one hand, the current state of any role STD, being a phase, constrains
the actions that can be taken by the underlying STD in its current state, to
those belonging to the current phase. The same holds if two or more role STDs
dynamically constrain their common, underlying STD. On the other hand, the
current detailed state belonging to a particular trap, is a commit towards the
role STD at the level of the partition the trap belongs to: the detailed STD
shall stay within the trap until a next phase is imposed by that role STD.

(b)

. . .
(a)

Participant Clienti

Collaboration1

Role1 Rolem Clienti(CS)

CS

Rolen

Collaborationk

Figure 5: Vertical consistency between participant and its roles: (a) general, (b) CS case.

In the structural, architectural style of UML’s component and collaboration dia-
grams (version 2.0 and higher), Figure 5 visualizes such behavioural dependency
between a single component participating in various collaborations through its
different roles. Part (a) depicts the general situation and part (b) specializes

9

this for the CS collaboration with respect to a single Clienti and its Clienti(CS)
role.

The figure is structural only, lacking all dynamical dependency details be-
tween a participant and its roles. But the above description of the half of
Paradigm’s behavioural influencing, through phase constraints imposed by a
role and trap constraints committed to towards a role, complements precisely
these dynamical dependency details. In this manner –i.e. the way Paradigm
defines its constraints as well as their constraining effects– any role remains dy-
namically consistent with the underlying detailed STD and any detailed STD
remains dynamically consistent with every role of it. By assuming that a start-
ing state of an underlying STD belongs to every phase being starting state of
a role of the underlying STD, it then follows: at any later moment the current
detailed state of the underlying STD belongs to any of its current phases too.
This is particularly true, at the very moment a step is taken and the new state
is reached: a detailed step cannot leave the trap of the current phase already en-
tered, Paradigm’s trap feature; a global step cannot lead to excluding any state
belonging to the connecting trap labeling the global step, Paradigm’s connectiv-
ity feature. This is Paradigm’s dynamic consistency between an underlying STD
and all of its roles, also called vertical dynamic consistency: defined in terms of
the Paradigm notions of phases and traps and without any further synchroniza-
tion. See Figure 5b for a declarative, structural announcement where in the CS
collaboration the vertical consistency is to be found. Thus, maintaining vertical
consistency is fully non-synchronous, as it only depends on what phase or trap
constraints are in force already, on the moment a decision on a next step has to
be taken.

The vertical consistency only partially covers dependencies between the vari-
ous STD behaviours within and around a collaboration: between one underlying
detailed STD and each of its own roles. So, no dependencies have been addressed
as yet, between different underlying STDs or between roles of different under-
lying STDs. To provide a clear and complete overview of underlying STDs
participating in the same collaboration and their relevant dependencies, Fig-
ure 6 complements the overview from Figure 5 with the dependencies between
all roles contributed to one collaboration.

(b)(a)
.

CS

Client1(CS) Clientn(CS)

Collaboration

RolekRole1

Figure 6: Horizontal consistency between all roles in a collaboration: (a) general, (b) CS case.

The control of actually taking a role step, being a phase transfer, is governed
by the consistency rules. Via a consistency rule different roles can be taken into
account, relating the behaviours of individual components via their roles only
and, moreover, relating these behaviours in view of the coordination one wants to
achieve. Thus, consistency rules govern horizontal dynamic consistency. Other
than with vertical consistency which is communicated asynchronously, consis-

10

tency rules establish communication between roles via synchronization only.
In more detail, a consistency rule synchronizes single steps of arbitrarily many
global steps from different role STDs. In addition, the ensemble of synchronized
roles steps as occurring in a single consistency rule, can be extended with at
most one step of a detailed STD, involved in the synchronization of the ensem-
ble too. Such a single detailed step synchronized with one or more roles steps,
is not conceived as participation in the collaboration, but as conducting of the
collaboration. Such guidance was not yet expressed in Figure 6, so Figure 7
repairs this as follows. For one collaboration additional detailed STDs can be
involved, not as Participants but as so-called Conductors, meaning that at least
one detailed step of a Conductor is synchronized with one or more role steps of
Participants. To that aim, roles involved are grouped inside a so-called protocol
box and a Conductor is connected to that protocol box, not via a role, but via
itself: one or more single detailed steps of itself, at most one per ensemble of
synchronized role steps. Graphically the involvement of a Conductor is expressed
via a thin box at the border of the protocol box, so the involvement is positioned
within the collaboration. The thin box is connected to the Conductor component
contributing the involvement, which like the Participants is positioned outside
the collaboration.

. . .

. . .

(b)(a)

.

. . .Participant1 Participantn Client1 Clientn

Conductor1 Conductorm

Client1(CS) Clientn(CS)

NDetServer

Role Role

Collaboration
CS–NDetServer

Figure 7: Paradigm’s collaboration architecture: (a) general, (b) CS–NDetServer case.

Although part (a) of the figure is general for a single collaboration, it does
not express cases where a Conductor and a Participant actually coincide with
one component. In such cases in the context of a single collaboration, the
component is connected to its role(s) as well as to its thin box. Note, more than
one role per component within one protocol box is possible although not very
common. Part (b) of Figure 7 announces the existence of a not yet specified
component NDetServer involved in the CS collaboration as a Conductor only.

Via consistency rules, horizontal consistency is achieved by synchronizing
role steps and by never synchronizing two or more detailed steps. As general
consistency rule format we use:

detailed state change ∗ phase transfer , . . . , phase transfer

with the various phase transfers taken from different roles. Consistency rules can
have rather different appearances. We use the following additional requirements
for their format: at least one phase transfer is present; commas are omitted if
one phase transfer is present; the detailed state change may be omitted, but the

11

“∗” is present.
To single out a particular consistency rule or parts thereof on the basis of its
format, we use the following terminology (cf. [37]).

• protocol step: a synonym for consistency rule;

• orchestration step: a protocol step with a detailed state change;

• choreography step: a protocol step without a detailed state change;

• protocol : a set of protocol steps covering all steps of the roles involved;

• choreography: a protocol with choreography steps only;

• orchestration: a protocol with at least one orchestration step;

• conductor : a detailed STD of which a state change occurs in the protocol;

• participant : a detailed STD with a role covered by the protocol.

Moreover, in [24] it is mentioned how to add so-called change clauses for incor-
porating data updates into consistency rules. In this paper however, we shall
not use change clauses.

The terminology implies, every consistency rule or protocol step is recogniz-
able by the ∗, followed by a non-empty series of phase transfers; choreography
steps are recognizable by the ∗ in front; orchestration steps are recognizable
by the conductor step in front. When developing a Paradigm model, it can
be very useful to have the disposal of an easy to understand sequentialization
of protocol steps, either sequentialized completely or at least piece-wise. The
taking of the various protocol steps then can be considered as the execution of
one or more threads: one thread if the sequentialization is complete and if the
sequentialization is piece-wise, then one thread per sequential piece. To achieve
such an easy to understand sequentialization, it is often useful to have compo-
nents involved for conducting the various protocol steps, commonly one such
conducting component per collaboration. It then is as if a particular conductor,
specifically developed to that aim, takes the initiative in performing each pro-
tocol step separately, thus realizing the sequentialization as wanted, exactly in
accordance to the thread-like structure of the conductor’s detailed behaviours
specified through its detailed STD. Precisely this happens to be the case for the
CS example in this subsection. But as we shall see in Subsection 2.3, for this
example we can get rid of the conducting steps, by turning our orchestration
steps into choreography steps, thereby making the one conductor of the example
superfluous.

So, before formulating the orchestration steps of the Paradigm model for
the CS collaboration, we introduce NDetServer first, in view of its involvement
as a conductor. In view of the clarity of understanding the sequentialization
of the consistency rules, we let NDetServer conduct every phase transfer of the
CS role of every Clienti. So the detailed behaviours of NDetServer are to mirror
the separate global behaviours of every Clienti(CS) role. Moreover, in view of

12

the critical section requirement, composition of role behaviours thus mirrored,
has to guarantee: at most one role at a time is in its global state (phase)
With (mutual exclusion). For this subsection we shall not take fairness into
account, as we shall be sufficiently content with meeting the mutual exclusion
requirement. But in Subsection 2.3, we shall improve our coordination solution
in that respect.

continue

. . .
refuse refuse refuse

permit continue permit continue permit

Idle

NDHelping1 NDHelpingn

NDChecking1 NDCheckingn

NDHelping2

NDChecking2

check2check1 checkn

Figure 8: STD of the non-deterministic server NDetServer.

The STD of the non-deterministic server NDetServer is drawn in Figure 8.
The NDetServer component starts in Idle where neither it allows any Clienti to
do anything critical nor it checks any Clienti for having a wish to do so. In
NDCheckingi it checks Clienti only, where a negative result of the checking leads
to taking action refuse back to Idle and where a positive result of the checking
leads to taking action permit, thus proceeding to NDHelpingi. In NDHelpingi

the permission for doing anything critical is given exclusively to Clienti. Only
after Clienti does no longer need the permission, action continue is taken back
to Idle again. Having explained NDetServer’s initial state Idle as disallowing all
critical activity without so much as checking for wishes to do so, we moreover
choose global state Without as initial state of each Clienti(CS) role.

The above informal explanation is exactly so covered by the following four
consistency rules, each being an orchestration step, and moreover synchronizing
the one detailed conductor step with no more than one phase transfer. Remem-
ber we have 1 ≤ i ≤ n.

NDetServer : Idle
checki−→ NDCheckingi ∗ Clienti(CS) : Without

triv
−→ Interrupt (1)

NDetServer : NDCheckingi

refuse
−→ Idle ∗ Clienti(CS) : Interrupt

notYet
−→ Without (2)

NDetServer : NDCheckingi

permit
−→ NDHelpingi ∗ Clienti(CS) : Interrupt

request
−→ With (3)

NDetServer : NDHelpingi

continue
−→ Idle ∗ Clienti(CS) : With

done
−→ Without (4)

The above four rules are all protocol steps we have in the CS example, so they
specify all horizontal consistency we have in our coordination solution. In view
thereof it is worthwhile to make the following observations. According to rule 1,
NDetServer checks the Clients in an arbitrary order, as in Idle it selects its action
checki non-deterministically. In this manner, rule 1 is immediately applicable
if NDetServer is in state Idle for any of the n different values of i. Contrarily,
according to rules 2 and 3, NDetServer chooses deterministically between its two

13

actions in every state NDCheckingi, as the choice is being determined by the two
disjoint connecting traps notYet and request of phase Interrupt of Clienti. Also in
rules 2 and 3 there is immediate applicability, in this case either of rule 2 or of
rule 3; but choosing between the two rules has to be done before, as distinction
between the two traps has to be established first, on the basis of which of the two
traps has indeed been entered. According to rule 4, in every state NDHelpingi,
only one action, continue, can be chosen and will be chosen eventually, but only
after progress within phase With has gone so far as entering trap done. So, there
is no immediate applicability of rule 4, but there is eventual applicability under
mild progress assumptions.

The above four rules constitute the protocol of our unfair coordination so-
lution: unfair as the nondeterministic action selection in state Idle is not neces-
sarily fair. As can be verified straightforwardly, the protocol does cover indeed
all four phase transfers in every Clienti(CS) role.

In the next subsection other, in some senses better solutions of the same
critical section situation will be presented. These examples will in addition
cover the case of a choreography. What will not be addressed however, is “con-
ducted conducting”: when a component is involved in a collaboration both as
participant being conducted and as conductor doing conducting. Hence, also
self-conducting will not be discussed here.

2.3. More Paradigm model examples

In this subsection we present two variant Paradigm models for the same problem
situation as sketched by the CS collaboration given in Figure 6b. Where we
introduce new model details or where we encounter not yet illustrated Paradigm
features, we shall clarify them. For the rest we keep our discussions short. As
we shall reuse the above model, we first summarize the above model very briefly,
by listing model fragments in Figure 9. Note, the supplementary collaboration
diagrams given do not belong to Paradigm, but they are borrowed from UML
for being useful as architectural overview.

Model 1: collaboration diagram CS–NDetServer
CS-solution with NDetServer, see Figure 7b

1.1 participants Clienti with i = 1, . . . , n, see Figure 1
1.2 partition CS of Clienti, see Figure 3
1.3 role Clienti(CS), see Figure 4
1.4 each Clienti(CS) role has Without as initial state
1.5 conductor NDetServer, see Figure 8
1.6 rules 1–4, see Subsection 2.2

Figure 9: Collaboration CS–NDetServer

Compared with model 1, the difference of model 2 lays in the new conductor
RoRoServer. The difference is architecturally announced in Figure 10 (cf. 7b)
and it is worked out in more detail in Figures 11,12 (cf. 8,9). Based on Figure 11
one can see how sequentialization of the application of the new consistency rules

14

. . .

. . .Client1 Clientn

Client1(CS) Clientn(CS)

RoRoServer CS − RoRoServer

Figure 10: Model 2’s collaboration architecture: CS example with a round robin conductor.

is done in view of new policy for allowing a Client to perform its critical activities:
a round robin policy. Please note, Clients and their partitions and roles for CS
remain unchanged. The idea is, the actual permission is given by RoRoServer

proceed proceed proceed
grant grant grant

pass

passpass pass

proceed

. . .

RRHelpingn

RRChecking1 RRChecking2 RRCheckingn

RRHelping1 RRHelping2

Figure 11: STD of the round-robin server RoRoServer.

to a specific Clienti through being in state RRHelpingi, whereas the preceding
checking whether it makes sense to give such permission, is done while being
in state RRCheckingi. This informal description is formally underpinned by the
following three consistency rules, referred to as rule 5–7.

RoRoServer : RRCheckingi

grant
−→ RRHelpingi ∗

Clienti(CS) : Interrupt
request
−→ With (5)

RoRoServer : RRHelpingi

proceed
−→ RRCheckingi+1 ∗

Clienti(CS) : With
done
−→ Without, Clienti+1(CS) : Without

triv
−→ Interrupt (6)

RoRoServer : RRCheckingi

pass
−→ RRCheckingi+1 ∗

Clienti(CS) : Interrupt
notYet
−→ Without, Clienti+1(CS) : Without

triv
−→ Interrupt (7)

Note the difference with the non-deterministic protocol. For instance, in rule 6,
the synchronization between RoRoServer’s step proceed with the global step done
of Clienti(CS) and the global step triv of Clienti+1(CS), exactly expresses the
simultaneous events of Clienti no longer being allowed to do her critical section
activities and Clienti+1 being interrupted to be checked. In contrast, in the
non-deterministic case, analogous coordination is split in two consistency rules,
rules 4 and 1, viz. first a return of NDetServer to idling after helping Clienti,
followed by a check of a next Client not necessarily being Clienti+1. Model 2 is
summarized in Figure 12.

15

Model 2: collaboration diagram CS–RoRoServer
CS-solution with RoRoServer, see Figure 10

2.1 participants Clienti with i = 1, . . . , n, see Figure 1
2.2 partition CS of Clienti, see Figure 3
2.3 role Clienti(CS), see Figure 4
2.4 the Client1(CS) role has Interrupt as initial state,

every other Clienti(CS) role has Without as initial state
2.5 conductor RoRoServer, see Figure 11
2.6 rules 5–7, see below

Figure 12: Collaboration CS–RoRoServer

According to the round robin strategy, checking whether a Clienti wants to do
its critical activities, is occurring in cyclic order i = 1, . . . , n, 1, Moreover,
upon checking, permission is given if asked for only. Intuitively, this solution is
fair.

. . .

. . .Client1 Clientn

Client1(CS) Clientn(CS)

CS − RoRoChoreography

Figure 13: Model 3’s collaboration architecture: CS example of round robing choreography.

Compared with models 2 and 1, the main difference of model 3 lays in having
no conductor at all, in particular it has no RoRoServer at all, see Figures 13,14
(cf. 10,12). Please note, Clients and their partitions and roles for CS remain
unchanged once more. The consistency rules from model 2 do change necessarily,
as the conducting steps have to be omitted. But apart from that, we can really
reuse them (the parts behind their ∗-es), as the same sequentialization as in
model 2 emerges from these parts, see the rules 8–10 below.

∗ Clienti(CS) : Interrupt
request
−→ With (8)

∗ Clienti(CS) : With
done
−→ Without, Clienti+1(CS) : Without

triv
−→ Interrupt (9)

∗ Clienti(CS) : Interrupt
notYet
−→ Without, Clienti+1(CS) : Without

triv
−→ Interrupt (10)

It is noted, for model 1 it is possible to formulate a choreography too, be it with
some slightly more complex details in the rules. Figure 14 presents model 3 in
brief.

3. Paradigm: operational semantics and general positioning

This section strengthens Paradigm’s formality in view of analysis. It does so in
isolation, by introducing operational semantics for Paradigm in Subsection 3.1.

16

Model 3: collaboration diagram CS–RoRoChoreography
CS-solution with round robin choreography, see Figure 13

3.1 participants Clienti with i = 1, . . . , n, see Figure 1
3.2 partition CS of Clienti, see Figure 3
3.3 role Clienti(CS), see Figure 4
3.4 the Client1(CS) role has Interrupt as initial state,

every other Clienti(CS) role has Without as initial state
3.5 rules 8–10, see below

Figure 14: Collaboration CS–RoRoChoreography

It moreover does so in relation to other coordination approaches, by clarifying
–for readers familiar with these approaches– Paradigm’s position amidst them
in Subsection 3.2. Paradigm’s operational semantics expresses the effects com-
ponent dynamics have on each other; the positioning underlines the structure
these effects have, being so characteristic for Paradigm.

3.1. Paradigm: operational semantics

To formulate operational semantics for all behavioural dependencies relevant
for collaborations, we introduce the following Cartesian product space for a
Paradigm model: any single dimension of the product space consists of the
state space of a single STD, detailed or global, every STD its own dimension.
Formally, assume a collaboration Coll consisting of n, (n ≥ 1) participants, each
having a detailed STD, Zi = 〈STi, ACi, TRi〉, i = 1, . . . , n. Assume that the ith
component has mi roles (mi ≥ 0). Role Zi(πij) = 〈ŜTij , ÂCij , T̂Sij〉 is at the
level of a partition πij , for j = 1, . . . , mi. The state space of the entire system
Coll is the Cartesian product of the state spaces of each STD, detailed or global,

CollST = 〈si, 〈sij〉mi

j=1〉ni=1 (11)

for si ∈ STi and sij ∈ ŜTij . According to the definition, thus, sij = 〈stij , acij , trij〉
is a phase of Zi and stij ⊆ STi, acij ⊆ ACi and trij ⊆ TRi. Note that for the
collaboration Coll we do not distinguish between conductors and participants
unless it is explicitly stated.

Due to vertical consistency and consistency rules, reflecting as such the hor-
izontal consistency, the dynamics of separate components are consistently in-
tegrated in the collaboration behaviour. Thus, to determine which transitions
are possible for the overall collaboration, Coll, current states and/or enabled
transitions of the STDs of the relevant components need to be checked. This
information can always be extracted from a current state of Coll.

As explained earlier, the vertical consistency is demonstrated in two ways.
On the one hand, the current state of any role STD, being a phase, constrains the
actions that can be taken by the underlying detailed STD. The same holds if two
or more role STDs dynamically constrain their common, underlying STD. We
illustrate the effect of the phase constraint on the CS–NDetServer collaboration
involving only one Client. A system with only one client is simple but sufficient

17

to illustrate the consistency between the detailed and the global dynamics. (Be-
havioural influencing between more clients is part of the horizontal consistency
discussed later.) The state space of CS collaboration with one Client is the set of
all triplets 〈s, cl, cg〉 where s ranges over the states of NDetServer, cl ranges over
the (local) states of the Client STD and cg ranges over the (global) states of the
Client(CS) STD. Note that this is the total state space, and some states may
not be reachable from the initial one 〈Idle, Out, Without〉. Now consider possi-
ble behaviour of the collaboration CS in state 〈Idle, Out, Without〉. The current
phase Without allows the Client to take the enter transition, as enter belongs to
Without. Other phase constraints are not imposed on enter, therefore

〈Idle, Out, Without〉 enter−→ 〈Idle, Waiting, Without〉.

In state 〈Idle, Waiting, Without〉, however, the collaboration CS cannot take tran-
sition explain. Although this transition is enabled in the current local state
Waiting of Client, the current phase Without imposes a constraint on this tran-
sition, explain does not belong to Without, hence

〈Idle, Waiting, Without〉
explain

6−→ .

On the other hand, again due to the vertical consistency, a phase transfer can
occur only if the local dynamics of the component corresponding to that phase
has progressed far enough, and the corresponding trap has been entered. Such
checking has to be taken into account too, when defining the collaboration
transitions. Consider again the CS collaboration with one Client. Assume state
〈NDHelping, Busy, With〉 to be current. According to the CS role of the client,
Figure 4, global transition done might be taken in phase With. However, being
currently in the local state Busy means that the client has not entered the trap
done yet, Busy 6∈ done. Thus in the current state the done transition cannot
be taken yet: Client has not progressed far enough locally. Assume now state
〈NDChecking, Waiting, Interrupt〉 to be current. According to the CS role of the
client, two global transitions might be taken: notYet and request. However,
the current local state of Client imposes a constraint, and determines which
transition is possible. Namely, being in the local state Waiting for Client means
that in the phase Interrupt the trap request has been entered but not the trap
notYet. Thus, the phase transfer can happen only from Interrupt to With by
taking the global transition request, but not notYet. Stated slightly differently,
Waiting ∈ request but Waiting 6∈ notYet.

Note, the client in its current configuration of local state Waiting and global
state Interrupt can only contribute the transition request to a collaboration step
of CS. “Contributing” a transition to a collaboration step does not straight-
forwardly mean that the transition, by default, is allowed to be taken by the
collaboration, since, as we discuss below, further checks involving the other
components (e.g. the server) are needed.

For vertical consistency we define two collaboration transitions. To ease the
notation, we use as shorthand: if s = (x1, . . . , xk) is a k-tuple, then s[xi: = yi]

18

denotes the k-tuple obtained from s by substituting the ith entry xi by yi and by
keeping all other entries unchanged, s[xi: = yi] = (x1, . . . , xi−1, yi, xi+1, . . . , xk).
The notation can be extended for more substitutions accordingly.

Let s = 〈si, 〈sij〉mi

j=1〉ni=1 be a state in CollST.

• (Detailed transitions) If for some i, 1 ≤ i ≤ n,

1. si
a→ s′i for some state s′i in Zi, and

2. for all j = 1, . . . , mi, si
a→ s′i ∈ trij

then s
a→ s[si: = s′i] is a transition in collaboration Coll. This transition is

called a consistent detailed transition.

• (Contributed transitions to collaboration) If for some i, 1 ≤ i ≤ n, and
some j, 1 ≤ j ≤ mi,

1. sij
trap→ s′ij is a global transition (a phase transfer via trap trap) of the

role Z(πij) with the underlying detailed STD Zi, and

2. for state si of the detailed STD Zi it holds: si ∈ trap

then the role Z(πij) contributes transition sij
trap→ s′ij to the collaboration

Coll in state s.

Note that the first aspect of the vertical consistency directly yields a transition
of the collaboration. The notion of “contribution to a collaboration step”, which
reflects the second aspect of the vertical consistency may not lead to a collabora-
tion step: the contribution check is required, as we see later, for all global steps
that synchronize into a collaboration steps (specified in the Paradigm model
via a consistency rule). The notion of a contributed transition enables us to
reason not only about the overall collaboration but also about the behaviour of
its subsystems. For instance, we may reason and derive the dynamics of a single
component, as a new STD. This new STD combines the detailed STD and all
global STDs of the considered component in a Cartesian product space with
all consistent detailed transitions and all transitions that the component con-
tributes to the collaboration. This construction will be exploited in Sections 4
and 5 to establish a relation between STDs and their translations in process
algebra in a component-wise way, rather than for the overall collaboration.

The horizontal consistency imposes certainly additional constraints on the be-
haviour of Coll. As already mentioned, several phase transfers (for different
global STDs) may occur simultaneously. In the Paradigm language this sce-
nario is specified as a consistency rule that synchronizes all involved global
transitions. This synchronization may be conducted by a local conductor step
in which case we have an orchestration step, or may not be conducted by any
local transition, in which case we have a choreography step.

19

Recall that the consistency rules 1–4 and 5–7 define orchestration steps for
the CS collaborations, the first with NDetServer and the second with RoRoServer.
To prepare for the formal definition, we consider again the dynamics of col-
laboration CS–NDetServer, this time taking the consistency rules into account.
Moreover, as the ways components influence and restrict each other (via the
consistency rules) are the main focus, we consider a CS collaboration of two
clients. Now, assume that 〈NDHelping2, Waiting1, Without1, AtDoor2, With2〉 is
the current state of the CS collaboration. As discussed above, Client1 can con-
tribute transition request1 to a collaboration step in this state. According to
the consistency rule 3 (page. 13) this step of Client1 must be executed simulta-
neously with permit1 step of NDetServer. However, NDetServer cannot perform
permit1 at its current state, therefore, this contribution of Client1 does not yield
a collaboration step. At the same state, on the other hand, the second client
contributes done2. The NDetServer in its current state NDHelping2 (Figure 8)
can perform continue2. Note that no vertical constraint is imposed on this tran-
sition as NDetServer has no roles (partitions) in collaboration CS. Finally, we
find that consistency rule 4 (page 13) binds these two transitions in one synchro-
nized collaboration step. By putting all together, we obtain that CS–NDetServer
collaboration can make the following step

〈NDHelping2, Waiting1, Without1, AtDoor2, With2〉
cr4i=2

orch−→
〈Idle, Waiting1, Without1, AtDoor2, Without〉

where cr4i=2
orch is a newly introduced action name to denote the synchronization of

done1 and continue1, uniquely identifying consistency rule 4 for i = 2. Formally,

• (Orchestration transitions) Let s = 〈si, 〈sij〉mi

j=1〉ni=1 be a state in CollST.
If p components i1, . . . , ip (p ≥ 1) synchronize on phase transfers via their
roles Z(πitjt

), for 1 ≤ t ≤ p and 1 ≤ jt ≤ mit
, conducted by the detailed

step of the conductor C = 〈sc, 〈scj
〉mc

j=1〉 for some 1 ≤ c ≤ n, such that

1. sc
man−→ sc′ is a consistent detailed transition of the conductor C in

local state sc

2. the role Z(πitjt
) of the it-th component, 1 ≤ t ≤ p, contributes

transition sitjt

trapt−→ s′itjt
to a collaboration in state s, and

3. the following consistency rule is defined for the collaboration Coll:

sc
man→ sc′ ∗ si1j1

trap1→ s′i1j1
, si2j2

trap2→ s′i2j2
, . . . , sipjp

trapp→ s′ipjp

then s
crorch−→ s[sc: = sc′ , sitjt

: = s′itjt
]pt=1 is a transition in collaboration Coll.

Here crorch is a newly introduced action name uniquely identifying the
particular combination of the involved actions of the synchronizing com-
ponents and the consistency rule.

Note that the vertical consistency on the detailed step of the conductor is im-
plicit in condition “detailed transitions”.

To illustrate dependencies between components’ dynamics that lead to a
choreographic transition at the level of collaboration, we use the third criti-
cal section solution from Section 2.3, CS–RoRoChoreography, corresponding to

20

Figure 13. As intended, this solution does not make use of any server (con-
ductor) but the critical section is solved by a proper synchronization of the
participants via choreography. Obviously, the choreography steps for the col-
laborations are simpler than the orchestration steps, from the aspect of the
consistency checks. Consider the CS–RoRoChoreography collaboration involving
two clients only. Following the same line of reasoning as in the earlier examples,
we observe that Client1 can contribute triv1 and Client2 can contribute done2 to
a collaboration step in state 〈Waiting1, Without1, AtDoor2, With2〉. The consis-
tency rule 9 (page 16) binds these two transitions into a synchronizing action.
Therefore, we conclude the following transition can be taken

〈Waiting1, Without1, AtDoor2, With2〉
cr9i=2

chor→ 〈Waiting1, Interrupt1, AtDoor2, Without2〉

where cr9i=2
chor is a newly introduced action denoting the synchronization of done2

and triv1, uniquely identifying consistency rule 9 for i = 2. Formally,

• (Choreography transitions) Let s = 〈si, 〈sij〉mi

j=1〉ni=1 be a state in CollST.
If p components i1, . . . , ip (p ≥ 1) synchronize on phase transfers via their
roles Z(πitjt

), 1 ≤ t ≤ p, such that

1. the role Z(πitjt
) of the itth component, 1 ≤ t ≤ p, contributes tran-

sition sitjt

trapt−→ s′itjt
to the collaboration in state s, and

2. the following consistency rule is defined for the collaboration Coll:

∗ si1j1

trap1→ s′i1j1
, si2j2

trap2→ s′i2j2
, . . . , sipjp

trapp→ s′ipjp

then s
crchor→ s[sitjt

: = s′itjt
]pt=1 is a transition in collaboration Coll. Here

crchor is a newly introduced action name uniquely identifying the particular
combination of the synchronizing components and the consistency rule.

The operational semantics presented in this section captures all dependencies
between detailed component dynamics and the overall coordination dynamics.
We opt for this approach as its advantages are twofold: first, it gives better
understanding of Paradigm and reveals that its underlying semantics is heav-
ily based on synchronization of components working in parallel, and second,
it brings the Paradigm language and Paradigm models to a level close to pro-
cess algebraic reasoning. As the underlying semantics of process algebra is also
based on STDs (usually referred to as LTSs), establishing a relation between a
Paradigm model and its process algebraic representation boils down to relating
STDs. Thus, translating Paradigm into process algebra comes very naturally.
Also note that no restriction has been assumed on the hierarchical structure
of Paradigm models. The way the operational semantics is defined is general
enough to capture the behaviour of a component that appears in the collabora-
tion both as a conductor and as a participant, possibly in the same protocol.

3.2. Paradigm positioned as coordination modeling language

In Section 2 we have introduced Paradigm. In Subsection 3.1 we have formulated
Paradigm’s operational semantics, actually by shaping the constraining effect of

21

both phases and traps in the more usual format of step dependencies between
all STDs involved. In this Subsection 3.2 we relate Paradigm to the framework
for coordination models and languages as presented in [15] as well as to the
architectural description language Wright from [1]. As we shall point out,
Paradigm fits well into both. Moreover, the well-fitting underlines the special
character and key relevance of Paradigm’s constraint notions of phases and of
traps. These dynamic constraints and the dynamic compositions thereof are
clarifying for Paradigm’s position amidst other coordination languages.

According to [15] coordination models should be built from coordination en-
tities, coordination media and coordination laws. A coordination language then
should allow for describing coordination models orthogonally combined with se-
quential computation models. For Paradigm this is indeed the case, as can be
argued as follows. Detailed STDs of Participants are the coordination entities,
the thread-like units to be coordinated. By their step-wise behaviours these
STD descriptions moreover provide the computational model for the intra-unit,
algorithmic actions. Roles or global STDs are Paradigm’s coordination media.
A particular role then serves as the means of asynchronous communication for
a coordination entity in view of coordination: communication sent in the form
of traps committed to, as well as communication received in the form of phases
imposed. The coordination laws are the consistency rules. They synchronize
role steps of different roles, thus regulating, via their roles as coordination me-
dia, the coordination entities in the context of such roles only, exactly according
to the coherence expressed by a consistency rule for a single synchronized step.
In case of a choreography, this is all there is. In case of an orchestration step
however, an additional detailed STD step from a Conductor is involved in syn-
chronizing the role steps too: such an additional Conductor step then regulates,
as it were more explicitly componentized, the more distributed, more anony-
mous regulating exerted by and among the synchronized roles steps together,
i.e. witin the anonymous collaboration. But if such a detailed Conductor STD is
to be coordinated too, this can happen only via the actual coordination medium
of a role of it, subject to the coordination law of suitable consistency rules.

For a reader acquainted with [15], it might be interesting to see how Paradigm
combines coordination models and computation models. First of all, coordina-
tion entities and coordination media are STDs. Moreover, as has been clarified
by the operational semantics, the coordination laws together induce STD-like
behaviour through the product state space spanning all STDs together. So,
in terms of the coordination model ingredients from the framework in [15],
Paradigm models consist of STDs only. Second, and most characteristic for
Paradigm, the vertical consistency, i.e. the step dependency between a coordi-
nation entity and all of its coordination media, is defined via special language
constructs: the phases and the traps thereof, grouped into a partition. This is
special syntax of the modeling language Paradigm, specifically geared towards
semantically achieving vertical consistency in whatever Paradigm model: the se-
mantical effect is the constraining character. In view of horizontal consistency,
the language introduces nothing special at all, straightforward synchronization
of steps from different coordination media, i.e. from role STDs; possibly, such

22

synchronization between steps is extended with a detailed Conductor step. But,
in the context of a protocol, the semantical effect of a protocol step is a suitable
overview of the resulting phase configuration for the protocol’s participants. It
is the quality of modeling phases, traps and roles in view of the coordination
goals to be achieved, that determines the quality of the (consecutive) phase
configurations when taking the protocol steps and that hence determines the
quality of the coordination.

According to the approach in [1] and embodied in the architectural descrip-
tion language Wright, an architectural description consists of components and
connectors. A component comprises the ports of that component and a be-
havioural component specification. The ports define the logical points of in-
teraction the component is involved in. A connector comprises the roles it
expects to connect and the glue according to which the expected roles are to be
coordinated. When binding components to connectors, component ports and
connector roles that should correspond, are attached to each other. A reader
familiar with Wright will agree, Paradigm’s Participants are the components
and Paradigm’s detailed STDs are the behavioural component specifications.
Paradigm’s role or global STD of a Participant is (dynamic) interaction the
Participant is involved in, which is to be conceived as being provided at a spe-
cific port serving as the scene of action for that interaction –cf. [23] where
such ports are explicit parts of the UML collaboration diagrams as given for
the Paradigm models discussed. The glue as occurring in a connector, con-
sists of Paradigm’s consistency rules. The connector itself then boils down to
a protocol in Paradigm. This also means, the roles in a Wright connector
are precisely the Paradigm roles involved in the Paradigm protocol: they have
the same (global) STD description, be it that when comparing them in more
detail, send actions in a port role (at the component) are mirrored as receive
actions in the corresponding connector role (at the protocol) and similarly, re-
ceive actions in the port role are mirrored as send actions in the connector role.
Wright-like attachments thus are superfluous in Paradigm. As mentioned
above, the Paradigm language introduces nothing special for the glue: horizon-
tal consistency is achieved via synchronization per protocol step. Contrarily, the
Paradigm language introduces its characteristic behavioural constraint notions
of phases and traps, per port of a component grouped into a partition. Per
partition then a role is constructed, being per definition vertically, dynamically
consistent with the component’s internal behavioural specification. Moreover,
if well chosen, via the phases and traps it is built from, such a role together
with other such roles facilitates the step-wise construction of a good protocol,
expressing coordination through which a given collaborative goal aimed at, is
reached indeed. Thus, Paradigm’s dynamic constraints, its phases and traps,
serve as language structures guaranteeing vertical consistency. Choosing the
right shape of these structures, then facilitates role construction and protocol
construction and hence the coordination.

It is through its phases and traps, we want to clarify Paradigm’s position among
other coordination languages. Coordination languages can be divided into three

23

main regions: data-based, flow-based and transition-based. Examples from the
data-based region are Linda and other tuple-space languages [14]. Examples
from the flow-based region are languages such as Reo and Focus [6, 13], where
components are connected as well as influenced through streams of data / trig-
gers. Examples from the transition-based region are CSP and Manifold [5].
Paradigm belongs to this region too. Also [8]’s vector synchronization in tran-
sition systems is reminiscent of the multi-party synchronization present in our
consistency rules. The much older Petri nets [33] actually are a mix of the
three regions: markings represent data configurations, (some) tokens represent
flows and firings represent step-like transitions, synchronized over many, not
well-separated threads.

Since [5] in particular, the separation of computation and coordination has
been seen as a valuable concept. Less well-separating in that respect are the lan-
guages from the data-based region, although via additional structuring through
different tuple-types and via corresponding discrimination of processes manip-
ulating the tuples, such separation is achievable.

For the transition-based languages the separation is rather diverse. Older
languages in this region, like CSP [35] and team automata [9], are more geared
towards interaction. Thus they are not so well-separating on their own, as their
transition systems have no notions for discriminating easily between computa-
tion and coordination. But newer ones, like Manifold, additionally structure
their behavioural units: special manager-like units for coordination tasks, other
units for computation tasks.

Flow-based coordination languages strictly follow this distinction: compo-
nents comprise computation, streams and manipulations thereof through chan-
nels comprise coordination. So their separation of computation and coordina-
tion is clear. Such clear separation however, causes a consistency gap difficult
to bridge. It is not so clear how dynamics within a component, via the flows
the component brings about, must lead to or cannot lead to certain dynamics
within a different component. The new problem then becomes, how to guaran-
tee that component dynamics and the flows between them are coupled rightly,
consistently indeed. Nevertheless, both Reo and the variant of Focus discussed
in [12] underline the temporarily restrictive effect a flow must have on a compo-
nent. But an algorithm for coordination is not so straightforwardly expressed in
terms of stream handling; moreover, the behavioural effect of a flow on a com-
ponent, though being restrictive, is rather declarative instead of operational, as
component behaviours are outside the scope of the flow-based languages.

The temporarily restrictive effect of a flow on a component actually attempts
to provide a concrete solution to the consistency issue raised through separating
coordination and computation: coordination and computation must influence
each other consistently over time. Thus they mutually allow and disallow parts
of their activity, i.e. they mutually vary their dynamic freedom through restrict-
ing the freedom temporarily by dynamically adjusting the restrictions.

The transition-based coordination language Paradigm has the separation of
coordination and computation. Moreover, it solves the consistency issue raised
by such separation as follows. As a language it offers the notions of phase

24

and trap, to build roles from. In this manner the language guarantees vertical
dynamic consistency between a component and any role of it. A well-designed
Paradigm model then, like a well-designed program, achieves the purpose of
the collaboration through coordination, specified as protocols in the model and,
apart from possible conducting steps, in terms of roles only.

4. Specifying critical section solutions in process algebra

In this section we translate the three CS examples into process algebra. We
use the process algebra ACP [10, 7] as vehicle of analysis. For convenience, the
Appendix recalls the basic definitions and relevant results of process algebra. In
Subsection 4.2 the examples prepare the understanding of the general translation
from Section 5. The last subsection reports on the verification results established
for the specific CS solutions.

4.1. Preliminaries: process algebra

Process Algebra (PA) is a formal framework used for modeling and analyzing
systems of concurrent processes. Basic ingredients of any PA are a set of op-
erators, a set of equations, also called axioms or laws capturing relationship
between the operators, and equivalences of processes. A PA is typically pa-
rameterized by a set of atomic actions A, the atomic activities that a process
can perform. In a PA, actions are usually represented by constants. Other ba-
sic operators common to most process algebras are action prefix or sequential
composition ‘·’, non-deterministic choice ‘+’ and parallel composition ‘‖’. The
process algebra ACP has encapsulation ‘∂H ’ as an additional operator. The
encapsulation operator ‘∂H ’ is used to block actions from the set H ⊆ A, gen-
erally to avoid unmatched synchronization actions. Action synchronization is
predefined by a communication function | . In addition, a special action τ is
used to denote internal activity. In a number of situations action τ is usually
treated differently from observable actions in A.

Processes are described by algebraic expressions. Infinite processes can be
expressed by recursive specifications. For instance, the process Clienti, (1 ≤ i ≤
n), considered as a process in isolation, is described by the following recursive
specification.

Clienti = Outi
Outi = enteri · Waitingi

Waitingi = explaini · Busyi

Busyi = thanki · AtDoori
AtDoori = leavei · Outi

It reads as: process Clienti behaves like process Outi; process Outi executes
action enteri and continues to behave like process Waitingi afterwards; etc. Note,
process Clienti exhibits deterministic behaviour without any branching; non-
deterministic choice does not occur in the description. From the example it is
obvious that process expressions and recursive specifications can be graphically
represented as STDs. In fact, the same STD in Figure 1 is obtained from

25

the algebraic specification of process Clienti above by means of the underlying
operational semantics of ACP.

Once components are modeled, they can be composed into more complex
specifications, specifying more complex processes. Composition is built by
means of the operators. Concurrency and interaction of separate processes that
run in parallel are captured by the parallel composition operator and commu-
nication function. The behaviour of the parallel composition of two processes
is obtained by interleaving their separate behaviours. In addition, processes
can synchronize on specific actions. In ACP, synchronization of actions is user-
defined via the so-called communication function. The communication func-
tion may involve two or more arguments, enabling multi-party synchronization.
As we will discuss in Section 4.2, via a well-chosen communication function
Paradigm’s consistency rules can be naturally expressed in ACP. This will not
come as a surprise, as both communication function and consistency rules are
meant for specifying synchronization between behaviours.

Once systems are modeled algebraically, their behaviours can be compared.
Comparison is typically done by means of equivalence relations, chosen appro-
priately to preserve certain properties. More precisely, given a notion of equiva-
lence and its associated logic, two systems are equivalent iff they have the same
logical properties. For example, strong bisimulation has the same distinguishing
power as Hennesy-Milner logic [30], branching bisimulation identifies the same
processes as the temporal logic CTL∗ without the next operator [16]. Hence,
if two systems are strongly bisimilar than they satisfy or dissatisfy the same
Hennesy-Milner formula. Conversely, if a property expressed in CTL∗ without
the next operator holds for one system, then it holds too for any other system
that is branching bisimilar.

A wide range of equivalence relations have been studied [21, 20]. Some of
them, e.g. strong bisimulation, are appropriate for concrete behaviour, when
every action of the system is observable. However, these relations are often too
fine when part of the behaviour is preferred to be abstracted away and considered
unobservable. Paradigm, as explained in the previous section, heavily exploits
abstraction. In view thereof, we choose for branching bisimulation [22] as the
equivalence relation we apply. Indeed, branching bisimulation is the strongest
in the spectrum of such equivalence relations, but yet weak enough to identify
sufficiently many systems. Moreover, it possesses many other useful properties.

Branching bisimulation, as introduced in [22], is defined as a relation between
states of an STD. Intuitively, two states are branching bisimilar if every action
that can be executed in the one, can be mimicked in the other, possibly after
a finite number of internal actions. Branching bisimulation is lifted to STDs
by considering branching bisimilarity between their initial states, strengthened
with, a so-called root condition. In fact, the root condition forces the initial
states to mimic each other in a strong sense: no preceding internal steps are
allowed. Rooted branching bisimulation, denoted ↔ , in opposite to branching
bisimulation, is compositional, and as such can be used for compositional rea-
soning and compositional manipulation of specifications, a technique frequently
exploited in our translation. Note, however, that for STDs whose initial states

26

do not perform internal actions, branching bisimulation and rooted branching
bisimulation coincide.

As elaborated below, process algebraic descriptions of Paradigm models help us
to treat their dynamics algebraically and, as we will argue, make them amenable
to PA analysis techniques. In part, this is because the process algebraic treat-
ment makes interaction of detailed and global processes precise. In Paradigm,
for instance, the mechanism by which one phase imposes constraints on the de-
tailed STD dynamics is implicit, unless the designer represent the model at a
low abstract level, which is very unlikely and undesirable. In process algebra
this is explicitly specified. Once all components that build the Paradigm model
are translated into process algebra, in principle, the complete behaviour can be
computed. Therefore, various verification techniques can be applied to the sys-
tem obtained. A widely accepted technique for system verification, which we use
as well below, is model checking. In short, model checking provides automated
means to assess the validity of a temporal or modal formula against a model of
the system. For instance, one can verify if the property “at any moment there
is at most one client in the critical section” holds. For our experiments, we
have used the toolset mCRL2 [28, 27].1. Its formal specification language mCRL2

is based on ACP, together with facilities for abstract datatypes.

4.2. The example models translated into ACP

In this section, the various STDs from the example Paradigm models introduced
in Section 2, will be translated into ACP processes. In particular, each STD will
be represented by a set of recursively defined processes, extended with specific
communication details. The translation, first applied to the example, will help
to understand the general translation and results presented in the next section.

Section 2 explains that in a Paradigm model several STDs may belong to the
same component, describing the component’s dynamics either at various levels
of abstraction (detailed vs. global STDs) or describing different roles the com-
ponent has in various collaborations. Thus the structure and hierarchy of the
components is embedded in the Paradigm model. In process algebra, however,
all STDs are considered as different processes. They may perform steps inde-
pendently of each other, and must communicate to exchange information, even
the information that they belong to the same component. In other words, the
architectural appearance nicely present in Paradigm is completely flattened and
more or less lost in the process algebra representation. Therefore, an additional
mechanism needs to be used to “reconstruct” the structural coherence of the
original Paradigm model.

To realize the vertical consistency in the translation, two aspects must be
taken into account. The information about: (1) a current state of a detailed
STD, and (2) the current phases that global STDs reside in and their constrain-

1Available from http://www.mcrl2.org

27

ing effect, both need to be communicated between (involved) processes, even if
they belong to the same component.

The first issue is solved by synchronizing the process algebraic specifications
of the detailed and a global STD of a component, by which the relevant in-
formation is exchanged. For that purpose, we use the complementary actions
at!(.) and at?(.) that take detailed states as their arguments. The detailed
process sends its current state, via at!(), while the global process after receiving
this information, by synchronizing on at?(.), updates its trap information, if
applicable.

For the second issue, we use actions ok!(.) and ok?(.) that take the labels
of detailed steps as their argument. This reflects that transitions of the de-
tailed STD should be consistent with the current phase of the global STD. The
complementary actions synchronize if the step to be taken by the detailed STD
is allowed by the current phase as constraint. Thus, actions ok!(·) and ok?(·)
interchange this permission. The consistency rules defining the horizontal con-
sistency need to be integrated in the translation too. They are embedded in the
communication function defining the synchronization of processes. For the com-
munication within the protocol captured by the consistency rules, here between
the server and its clients, actions man(.) on the side of a conductor are meant
to complement emp(.) actions on the side of the participants. Thus, the pro-
cess algebraic representation of role Client(CS) keeps track of transitions (phase
transfers) contributed to the collaboration. Synchronization leads to execution
of the corresponding consistency rule: a local transition of the conductor, phase
changes for the participants involved. In case of a choreography when no con-
ductor is involved, as in the third example in Section 2.3, synchronization clearly
includes only emp(.) actions.

For the concrete examples this amounts to the following. We adorn the
n processes Clienti with the actions at!(.), conveying state information, and
actions ok?(.), regarding transition eligibility.

Ĉlienti = Outi

Outi = at!(Outi) · Outi + ok?(enteri) · Waitingi

Waitingi = at!(Waitingi) · Waitingi + ok?(explaini) · Busyi

Busyi = at!(Busyi) · Busyi + ok?(thanki) · AtDoori

AtDoori = at!(AtDoori) · AtDoori + ok?(leavei) · Outi

The definition of process Ĉlienti assures, the process really starts in close corre-
spondence to starting state Out from Figure 1. The definition of process Outi
expresses: (1) upon being asked, it can exchange state information while keeping
the process as-is; (2) it can ask for permission to take the analogue of transi-
tion enter from Figure 1, in view of continuing with process Waitingi thereafter.
Note, in the definition of process Busyi the possibility for exchange of state
information is specified, although asking for it does never occur (in Figure 3:
state Busy does not belong to trap done). Therefore, action at!(Busyi) might
be simply omitted.

28

In a similar manner, process Ĉlienti(CS) is defined in close correspondence to

Withouti[triv]. The processes Ĉlienti(CS) is augmented with the actions at?(.)
and ok!(.). The ok!(.)-actions provide the permission answers to requests from

Ĉlienti to take a detailed step. The at?(.)-actions ask for state information
relevant for deciding a trap has been entered. As these global processes are
participant roles in the protocol, the emp(.) actions have been put in place as
well. The emp(.)-actions correspond to a phase change, so they synchronize with
a particular conductor step and/or with other clients. Observe that for every
global state–phase in Clienti(CS) there are more processes defined, one for each
trap of that phase. A phase is always entered via its triv trap. For instance,
after leaving phase Withouti the global process ends as process Interrupti[triv].
While the process resides in triv trap, it exchanges state information with the de-
tailed process and updates its behaviour accordingly, for instance, the summand
at?(Outi) · Interrupti[notYet] in the specification of process Interrupti[triv].

Ĉlienti(CS) = Withouti[triv]

Withouti[triv] = ok!(leavei) · Withouti[triv] + ok!(enteri) · Withouti[triv] +

emp(trivi) · Interrupti[triv]

Interrupti[triv] = at?(AtDoori) · Interrupti[notYet] + at?(Outi) · Interrupti[notYet] +

at?(Waitingi) · Interrupti[request] + ok!(leavei) · Interrupti[triv]

Interrupti[notYet] = ok!(leavei) · Interrupti[notYet] + emp(notYeti) · Withouti[triv]

Interrupti[request] = emp(requesti) · Withi[triv]

Withi[triv] = at?(AtDoori) · Withi[done] + ok!(explaini) · Withi[triv] +

ok!(thanki) · Withi[triv]

Withi[done] = emp(donei) · Withouti[triv]

As the STDs of the clients are the same for all three Paradigm example mod-

els, we use the same specifications of processes Ĉlienti and Ĉlienti(CS). In the
sequel, we give the complete translation of the three models, by specifying the

server processes ̂NDetServer and ̂RoRoServer for the first two examples, and by
defining the corresponding communication functions ‘|’ for all three examples.
For the communication function in all three examples we put at!(s) |at?(s) = τ
and ok?(a) | ok!(a) = ok(a), for s = Outi, Busyi, Waitingi, AtDoori, and a =
enteri, explaini, thanki, leavei. Note, ACP allows for keeping the resulting action
of a synchronization observable. We exploit this feature and define the synchro-
nization actions ok(a) as observable, as they describe detailed steps taken by
clients, e.g., observation of ok(enteri) specifies a service request made by Clienti.
Detailed steps should be observable, as they are used later to express system
properties. Contrarily, synchronization of at!(.) and at?(.) is only used to up-
date the information of the current local state. The resulting synchronization
actions are neither needed in any further specifications nor in computations.
Therefore, we choose to turn them into unobservable actions.

The non-deterministic server process ̂NDetServer is defined by the following

29

specification. See also Figure 8.

̂NDetServer = Idle

Idle = man(check1) · NDChecking1 + · · · + man(checkn) · NDCheckingn

NDCheckingi = man(permiti) · NDHelpingi + man(refusei) · Idle

NDHelpingi = man(continuei) · Idle

Moreover, in the case of the protocol driven by ̂NDetServer, we assume

man(checki) | emp(trivi) = checki

man(permiti) | emp(requesti) = permiti

man(refusei) | emp(notYeti) = refusei

man(continuei) | emp(donei) = continuei

All actions in the set H = { man, emp, at?, at!, ok?, ok! } will be blocked to en-
force communication. Finally, the process for the collaboration of the non-
deterministic server and the n clients is given by

CSNDet = ∂H(Ĉlient1 ‖ Ĉlient1(CS) ‖ . . .

. . . ‖ Ĉlientn ‖ Ĉlientn(CS) ‖ ̂NDetServer) (12)

The following lemma states that the process algebraic translation is indeed
(rooted) branching bisimilar to the Paradigm model, for the case of CS–NDetServer
collaboration. Let STD(CS–NDetServer) denote the STD of the CS–NDetServer
collaboration obtained by the operational semantics as defined in Section 3.1.

Lemma 1. CSNDet ↔ STD(CS–NDetServer) up to renaming ok(t) actions into
t and emp(p) actions into p.

Proof. First, note that rooted branching bisimulation is a congruence with re-
spect to parallel composition. Second, the definition of the operational se-
mantics of Paradigm in Section 3.1 allows us to consider a Paradigm model
in a compositional manner. Third, observe that without considering at() and
ok() communication, there is one-to-one correspondence between the consis-
tency rules and the synchronization. Therefore, it is sufficient to show that
the two STDs, CSNDet and STD(CS–NDetServer), are component-wise (rooted)
branching bisimilar. The relation to be investigated is between: (i) the client
component in totality, obtained from the detailed STD and the global STD
of Clienti following the semantics of Paradigm, and (ii) the STD of the par-

allel composition of process specifications of Ĉlienti and Ĉlienti(CS), obtained
from the operational semantics of ACP, with synchronization at!(.)|at?(.) and
ok!(.)|ok?(.) only and with the actions H = { at?, at!, ok?, ok! } blocked. Both
STDs are given in Figure 15. It is easy to establish a branching bisimulation
relation. For instance, state 〈Waiting, Interrupt〉 is branching bisimilar to both
〈Waiting, Interrupt[triv]〉 and 〈Waiting, Interrupt[request]〉.

30

With

AtDoor
With

Waiting
Inter[request]

AtDoor

emp(triv)

ok(enter)

ok(thank)

emp(done) emp(notYet)

ok(leave)

Without[triv]

emp(triv)

emp(triv)

ok(leave)

AtDoor ok(leave)
Inter[notYet]Inter[notYet]

leave

With[triv]
emp(request)ok(explain)

enter

Out
leave

AtDoor
Without

triv

triv

(a) (b)

thank

done notYet notYettriv

explain request
Interrupt

Interrupt Interrupt

Without[triv]

With[done]

emp(notYet)

Inter[triv]

Waiting
With[triv]

Busy

With[triv]

AtDoor

AtDoor
Without[triv]

Waiting

Inter[triv]
Waiting

Out

Inter[triv]
AtDoor Out

Out

Without
Waiting

OutAtDoor

Busy
With

Without

WaitingWaiting

τ

τ

τ τ

Figure 15: (Rooted) Branching bisimilar STDs of (a) Paradigm Clienti in totality, (b) Process
algebra Clienti in totality.

For the round-robin case, the translations Ĉlienti of the clients remain the same.
The translation of the global STD, Clienti(CS), needs minor modification only.

We simply adapt Ĉlient1(CS). This is because this global STD will start in phase
Interrupt. More specifically, its starting state is Interrupt[triv]. We put

Ĉlient1(CS) = Interrupt1[triv] and Ĉlienti(CS) = Withouti[triv] for i > 1

The RoRoServer itself is translated in the following specification (see Figure 11):

̂RoRoServer = RRChecking1

RRCheckingi = man(granti) · RRHelpingi + man(passi) · RRCheckingi+1

RRHelpingi = man(proceedi) · RRCheckingi+1

The communication function for the round-robin protocol is defined as

man(granti) | emp(requesti) = granti

man(proceedi) | emp(donei) | emp(trivi+1) = proceedi

man(pass i) | emp(notYeti) | emp(trivi+1) = passi

Again, for the set of blocked actions we have H = { man, emp, at?, at!, ok?, ok! }.
The above results in the collaborative process for the round-robin protocol as
defined by

CSRoRo = ∂H(Ĉlient1 ‖ Ĉlient1(CS) ‖ . . .

. . . ‖ Ĉlientn ‖ Ĉlientn(CS) ‖ ̂RoRoServer) (13)

For the last choreography solution CS− RoRoChoreography, only the communi-
cation is defined differently:

emp(done i) | emp(trivi+1) = donei

emp(notYeti) | emp(trivi+1) = notYet i

31

The set of blocked actions is H = { emp, at?, at!, ok?, ok! }. The above results in
the collaborative process for the choreography protocol as defined by

CSRoRoChor = ∂H(Ĉlient1 ‖ Ĉlient1(CS) ‖ . . .

. . . ‖ Ĉlientn ‖ Ĉlientn(CS)) (14)

The following results can be easily proved. It states that STDs of the col-
laborations CS–RoRoServer, denoted STD(CS–RoRoServer), obtained by the op-
erational semantics as defined in Section 3.1 and its process algebraic translation
CSRoRo are branching bisimilar. And similar for the STD(CS–RoRoChoreography)
collaboration and process CSRoRoChor.

Lemma 2.

(i) CSRoRo↔ STD(CS–RoRoServer) and

(ii) CSRoRoChor↔ STD(CS–RoRoChoreography)
up to renaming ok(t) actions into t and emp(p) actions into p.

4.3. Checking properties of the client-server systems

Having represented the three solutions to the critical section problem in ACP,
the next step is to move to mCRL2 and to illustrate the model checking of a
number of system properties expressed in the modal µ-calculus [11], the logical
language for mCRL2. Translation into the input language of the mCRL2 toolset

from ACP-based specifications of the n clients Ĉlienti, the global Ĉlienti(CS)

and the servers ̂NDetServer and ̂RoRoServer is straightforward2.

We consider the following properties for the three protocols, for clients Ĉlienti

and Ĉlientj with i 6= j:

1. At any moment in time at most one client will be given service. In other
words, never two (or more) clients, will be in the critical section at the
same time. This is expressed as

[true*.ok(explain i).(!ok(thank i))*.ok(explainj)] false

A sequence of actions in which ok(explain i) appears and at some later point
ok(explainj) while no action ok(thank i) appears in between is impossible.
Clearly, we use the detailed steps ok(explaini) and ok(thank i) to detect
entering and leaving the critical section.

2. Two clients may request access to the critical section at the same time. In
other words, more than one client can be in state Waiting in the detailed
STD. Again, relying on the detailed STD, we can express this property
by the following modal µ-calculus formula:

< true*.ok(enter i).(!ok(thank i))*.ok(enterj) > true

2Available on http://www.win.tue.nl/~andova.

32

There exists a sequence of actions in which an occurrence of ok(enter i) is
followed, not necessarily immediately, by ok(enterj) before any occurrence
of action ok(thank i).

3. Under the usual strong fairness assumption, every client who requested a
service, eventually gets served, i.e. enters the critical section. The corre-
sponding formula is:

[true*.ok(enter i).(!ok(explain i))*]< true*.ok(explain i) > true

Once a client requires service, she will eventually be granted access, under
the fairness assumption that any action that is enabled infinitely often will
eventually be taken.

4. Every client who requested service will be eventually served, without fur-
ther assumption. It is expressed by the recursive formula

[true* . ok(enter i)] mu X . [!ok(explain i)] X

Note, the least fixed point of mu X.[!ok(explain i)] X is the set of all
states that have to make the ok(explain i) step, possibly preceded by a
finite number of steps other than ok(explain i). Thus, the formula reads
as, once the ok(enter i) step is made, eventually the ok(explain i) step
will be taken as well.

As expected, the first three properties are valid for the non-deterministic server,

while the fourth one is not, because the ̂NDetServer does not guarantee gen-
eral access to the critical section. This is clear from the specification, as the

̂NDetServer can always ignore a client, even if it has requested a service. On the
other hand, all four properties are valid for the other two solutions based on the
round-robin policy.

5. Translating Paradigm models into process algebra

Based on the three example translations presented above, we proceed by formu-
lating how to express a general Paradigm model in ACP. For clarity, we restrict
to the hierarchical case where a component in a collaboration is either a con-
ductor or a participant [25]. However, participants are allowed to have multiple
roles addressing different conductors. Furthermore, for ease of presentation, we
assume action-determinism, i.e. any two different transitions have different ac-
tion labels. This way, a transition is identified by its label. We further assume
that the initial state of any detailed STD in a Paradigm model is not shared by
two or more non-trivial traps within the same phase. Note that this is not a
restriction on the translation, but it eases the formulation, as the root condition
can be neglected.

Participants synchronize their detailed behaviour with the global behaviour,
while the global behaviour is governed by the consistency rules. The behaviour

33

of a conductor is connected to that of the participants by means of the consis-
tency rules as well. The process algebraic translation of a participant, as seen in
the example of Client in section 4.2, contains “informing” and “performing” ele-
ments. The “informing” part, informing about the detailed STD state towards
one performing role, is modeled by the action at(.). It keeps the participant
process unchanged. In addition, “performing” a local step by a participant is
modeled by the action ok(.) with relevant argument.

After a role process has been informed about the current state of the detailed
STD and has concluded that a new trap has been entered (without changing
the current phase yet), it stores this information as it were, by making a step
to the next corresponding global state: with the same phase as before, but with
the new trap replacing the trap entered earlier.

A participant Z = 〈ST, AC, TR〉 in Paradigm has a number of roles, R1, . . . , Rn

say. For each detailed state s, we define a recursive equation in ACP as follows:

Zs = at!(s).Zs +
∑

s
a
→ s′∈TR ok?(a).Zs′

Thus, Zs can convey state information and can query the eligibility of any
transition s

a→ s′ of the detailed STD for s and continue as the process Zs′

corresponding to the target state s′. For a role Ri = 〈STi, ACi, TSi〉 of the
participant Z, we define a system of recursive equations p[t], for phase p =
〈stp, acp, trp〉 ∈ STi, indexed by the traps t in the phase p, for t ∈ ACi.

p[t] =
∑

s∈t

∑
s∈t′∧t′ 6=t at?(s).p[t′] +

∑
s

a
→ s′∈trp∧s,s′∈t

ok!i(a).p[t] +
∑

{ crγ(man, t1, . . . , t, . . . , tm).p′[triv] |

γ : c
man→ c′ ∗ p1

t1→ p′1, . . . , p
t→ p′, . . . , pm

tm→ p′m }

The equation expresses that the process p[t] is willing to update the trap in-
formation upon synchronizing its at?(s) action with the complementary at!(s)
action of the detailed participant process, for any state s of the current trap t.
The process p[t] subsequently may evolve into any process p[t′], as traps t and
t′ of the phase p both share local state s. The communication function satisfies
at!(s) | at?(s) = τ for s ∈ ST. Furthermore, p[t] allows, by offering synchro-

nization on ok!i(a), each transition s
a→ s′ present in trap t. The one-one corre-

spondence of ok!i(a) and s
a→ s′ relies on our assumption of action-determinism.

A transition s
a→ s′ in the detailed STD can only be made if allowed by all the

roles. Therefore, the single ok?(a) of Zs should be matched with all ok!i(a) in
the current trap t of the current phase p of Ri, for all i, 1 ≤ i ≤ n. In this case,
synchronization is amongst n + 1 parties, the detailed STD and its n roles. So,
we put ok?(a) | ok!1(a) | · · · | ok!n(a) = ok(a). The third group of synchro-
nizations offered by p[t] relates to the consistency rules. For any consistency

rule γ involving a phase transition p
t→ p′ in role Ri from phase p in trap t,

process p[t] contributes transition crγ(. . . , t, . . .) as a synchronization option –
in Section 3.1 called: contribution to collaboration. After synchronization p[t]

34

continues as p′[triv], representing phase p′ in the trivial trap, as no specific state
information is available (yet). Synchronization and communication function for
this are discussed below.

The process expression for a conductor Z is simpler, as we have assumed that
no roles are defined in the Paradigm model for the conductor Z. However, all
transitions made by the conductor which are involved in an orchestration step
should match with a consistency rule for the particular collaboration. Let us de-
note this set of transitions of the conductor by TRo. All other (non-conducting)
transitions of the conductor are not matched with any transitions of other com-
ponents. Thus, for a state s ∈ ST of Z, we now have the recursive equation

Zs =
∑{ crγ(a, t1, . . . , tm).Zs′ |

γ : s
a→ s′ ∗ p1

t1→ p′1, . . . , pm
tm→ p′m and s

a→ s′ ∈ TRo }+∑
s

a
→ s′ 6∈TRo

a.Zs′

So, in the collaboration, apart from the conductor Z, m participants are in-
volved. For a consistency rule γ to apply, Z must have reached state s, while
the participants must have reached the traps t1, . . . , tm, respectively. Therefore,
for the communication function we require that m+1 copies of the same commu-
nication action synchronize, one for the conductor and m for the participants,
by putting

crγ(a, t1, . . . , tm) | crγ(a, t1, . . . , tm) | · · · | crγ(a, t1, . . . , tm) = crγ(a).

If we are interested only in a component specification, and the way the verti-
cal consistency restricts its dynamics, but the collaboration and synchronization
with other components is not considered (yet), the recursive specification of p[t],
being relevant for role Ri, is simplified by replacing the last summand of the
specification in the following way:

p[t] =
∑

s∈t

∑
s∈t′∧t′ 6=t at?(s).p[t′] +

∑
s

a
→ s′∈trp∧s,s′∈t

∑
i ok!i(a).p[t] +

∑
p′:p

t
→ p′∈TSi

t.p′[triv]

This allows us to establish a component-wise relation between a Paradigm model
of a single component and its specification in process algebra, later to be easily
extended to a relation between the Paradigm model of the overall collaboration
and its process algebraic translation. The following lemma captures the equiv-
alence between the Paradigm model and the process algebra specification of a
single component.

Lemma 3. Let Z = 〈ST, AC, TR〉 be a participant with an initial state init and
with roles R1 to Rn. Role Ri, for 1 ≤ i ≤ n, has phases pij, 1 ≤ j ≤ ni such
that pij = 〈stij , acij , trij〉 where stij ⊆ STi, aci ⊆ ACi and trij ⊆ TRi of which
pij0 is its initial state. Let STD(Z, R1, . . . , Rn) be the STD of the participant
component Z obtained by the operational semantics in Section 3.1. Let

Ẑ = ∂H (Ẑinit ‖ R̂1 ‖ . . . ‖ R̂n)

35

where R̂i = piji
[triv]. Then STD(Z, R1, . . . , Rn) ↔ Ẑ.

Proof. To simplify notation, by 〈s, s1[t1], . . . , sn[tn]〉 we denote a state in the

state space of Ẑ for s a state of Z, si a phase of Ri and ti a trap of si. We
establish the following relation R between the states of STD(Z, R1, . . . , Rn) and

the states of Ẑ:

〈s, s1, . . . , sn〉R〈s′, s1[t1], . . . , sn[tn]〉 iff s = s′ ∧ ∀i : s ∈ si[ti]

It says that two states are in relation if their current local states are the same
and this local state belongs to all current traps ti of the current phases si of Ri.
Next, we have to show that these two states (each of them in a separate STD)
can mimic each other in making transition, in the way as defined on page 44.
To simplify the notation we reduce the number of roles to 1. We reason as
follows: by first assuming that 〈s, p〉 a→ 〈s′, p′〉, we study all cases how these
transition could have occurred following the operation semantics, and we find a
transition of 〈s, p[t]〉 that matches it. Then we prove the opposite direction, by
matching every transition of 〈s, p[t]〉 to a transition of 〈s, p〉. Below, we assume
that 〈s, p〉R〈s, p[t]〉 for s ∈ ST, p a phase of a role R and t a trap of p. Note,
according to the definition of R, s ∈ t.

(⇒): Assume that 〈s, p〉 a→ 〈s′, p′〉 for some phases p = 〈st, ac, tr〉 and p′ =
〈st′, ac′, tr′〉. According to the operational semantics there are two possible
cases:

local transition: If a is a local transition, namely a ∈ AC of Z, then s
a→ s′ ∈

TR of Z and moreover s
a→ s′ ∈ tr. Then, according to the definition of Zs and

p[t] we have Zs

ok?(a)−→ Zs′ and p[t]
ok!(a)−→ p[t]. Therefore, 〈s, p[t]〉 ok(a)−→ 〈s′, p[t]〉. As

p is a phase that contain transition s
a→ s′, t is a trap of p such that s ∈ t and

therefore s′ ∈ t. Thus, we conclude, 〈s′, p〉R〈s′, p[t]〉.
phase transfer : If a is a phase transfer, then p

a→ p′ is a global transition of
role R, a is a connecting trap of phase p and phase p′ and s ∈ a. Moreover,
s = s′ and s ∈ p′. Consider the state 〈s, p[t]〉, for which we know that s ∈ t.
There are two possibilities:
Case t = a. In this case we obtain 〈s, p[t]〉 a→ 〈s, p′[triv]〉 directly from the def-
inition of p[t]. Furthermore, as s ∈ p′ it also holds s ∈ p′[triv], and therefore,
〈s, p′〉R〈s, p′[triv]〉.
Case t 6= a. In this case we observe the following sequence of transitions is pos-
sible from the state 〈s, p[t]〉: 〈s, p[t]〉 τ→ 〈s, p[a]〉 a→ 〈s, p′[triv]〉 where the τ action
is due to hiding at(s) action. We conclude that: 〈s, p〉R〈s, p[a]〉 (since s ∈ a),
and 〈s, p′〉R〈s, p′[triv]〉, for the same reasons as in the previous case.

(⇐): Assume that 〈s, p[t]〉 a→ 〈s′, p′[t′]〉. According to the definition of Ẑ, this
transition is part of, we distinguish three cases.

a = τ : In this case τ is the result of synchronization on at?(s) and at!(s)
actions. Then, s′ = s, p = p′ and t′ is again a trap of p which contains s.
Therefore, 〈s, p〉R〈s, p[t′]〉 as well.

36

local transition: In this case, a = ok(e), thus a is the result of synchronization
of ok?(e) and ok!(e) actions, for some local transition e ∈ AC. According to the

specifications of Zs and p[t] we have that Zs

ok?(e)−→ Zs′ and p[t]
ok!(e)−→ p[t], and

therefore p = p′ and t = t′. Moreover, this implies that s
e→ s′ ∈ TR and also

s
e→ s′ ∈ trp (meaning phase p allows this local transition). Hence, by the

operational semantics, 〈s, p〉 e→ 〈s′, p〉. We finally conclude that 〈s′, p〉R〈s′, p[t]〉
since t is a trap of phase p which contains s and therefore it must contain s′ as
well.

phase transfer : In this case t = a and 〈s, p[t]〉 t→ 〈s, p′[triv]〉. Hence, t is a
connecting trap from p to p′, thus s ∈ p and s ∈ p′. By the operational semantics

we obtain 〈s, p〉 t→ 〈s, p′〉, and 〈s, p′〉R〈s, p′[triv]〉 since s ∈ triv in phase p′.

The overall conclusion is that relation R is a branching bisimulation relating
the initial states of STD(Z, R1, . . . , Rn) and Ẑ. Therefore these two systems are
branching bisimilar.

The following theorem extends the result of the previous lemma to the case
of overall collaboration. We show that indeed for a collaboration Coll, its two
representations, one being STD(Coll), the STD of Coll induced by the opera-
tional semantics of Paradigm, as defined in Section 3.1, and the other one being

Ĉoll, the process algebra translation of Coll, are branching bisimilar.

Theorem 4. For any Paradigm model of a collaboration Coll: STD(Coll)↔ Ĉoll.

Proof. By Lemma 3 we establish branching bisimilarity of the Paradigm model
and the process algebra translation of each component of the collaboration.
Next, we take the consistency rules and the corresponding synchronization func-
tion into account. The congruence properties of branching bisimulation with
respect to the parallel composition operator of ACP allows us to lift the equiv-
alence from the components to their composition.

From the above outline of the general translation one can see how more compli-
cated Paradigm models can be dealt with. In case of more than one conductor
per protocol there is always at most one conductor per protocol step. The cr
action selected is synchronized with the relevant combination of phase transfers
from different processes for different roles, possibly driven differently.

6. Conclusion

The paper addresses the following issues. It starts by introducing Paradigm
based on formal descriptions. It is pointed out, Paradigm is a language for
specifying coordination models for collaborations between components. Most
characteristic for Paradigm are its dynamic constraints, phases and traps. They
can be dynamically composed into roles and, via the roles, into protocols. The
language Paradigm is transition-based: any Paradigm model consists of STDs,

37

both for components and for the roles they have (as participant); protocols are
specified step-wise too, per protocol step possibly conducted by a component
(as conductor). Within a Paradigm model, vertical dynamic consistency is
maintained syntactically; horizontal dynamic consistency is modeled through
protocols, constituting glue.

The paper also presents complete operational semantics for Paradigm, care-
fully redefining constraining effects of phases and traps in terms of step depen-
dencies across dimensions of a Cartesian product space. Given the operational
semantics, the paper positions Paradigm, relating it to the framework [15], to
Wright [1] and to different types of coordination languages. In addition, on the
basis of the operational semantics, a systematic ACP translation of a large class
of Paradigm models is given. The models covered are those, where components
are either participants or conductors, not both. Participants may have multiple
roles, though. Not yet covered by the systematic translation, are the Paradigm
models where at least one component not only has a role in some protocol,
but also is conductor of a protocol. For models covered, the paper establishes
branching bisimilarity between the Cartesian product STD of the Paradigm
model and the process algebra STD of the translated model (Theorem 4).

The paper moreover presents some example models, thus illustrating lan-
guage and translation. Some verification results established through the mCRL2

toolset have been given too. We could have added other, more interesting exam-
ple models or example models with more flexibility, but that would have made
the long paper even longer.

As future work we want to address the general translation of any Paradigm
model into ACP. Some results in that direction have been achieved already [3, 2],
but translations are as yet case-driven. Future work also is going to address
integrated tooling for graphical editing, visual animation, ACP translation and
mCRL2 verification of general Paradigm models. See [37, 36] for first results.

In the introduction we referred to our translation of Paradigm into ACP,
as a first step towards a formal underpinning of originally unforeseen changes
of systems. Thus, certainly not the least part of our future work is going to
address such changes, particularly changes established through self-adaptation.
As has been recently explained in [2], see also [26, 4, 23], a Paradigm model
(for a regular, foreseen coordination solution) which moreover contains a spe-
cial component McPal, can coordinate its own on-the-fly migration towards an
originally unforeseen way of working. In general, migration coordination should
account for a variety of migration trajectories, even per component. It is for
such forms of self-adaptation, controlled by the model, we want to integrate
formal analysis of coordinating migration trajectories into our investigations.
Topics of interest are for instance, migration patterns, temporary and gradual
relaxation of consistency requirements during migration, cooperation between
several McPals, alignment and co-evolution of systems. In this manner we expect
to gain substantial insight into quite different forms of change and of flexible
control thereof.
Acknowledgement. We would like to thank Rob Nederpelt as well as the three
anonymous reviewers for their most valuable comments.

38

References

[1] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6:213–249, 1997.

[2] S. Andova, L.P.J. Groenewegen, J. Stafleu, and E.P. de Vink. Formal-
izing adaptation on-the-fly. In G. Salaün and M. Sirjani, editors, Proc.
FOCLASA’09, pages 23–44. ENTCS 255, 2009.

[3] S. Andova, L.P.J. Groenewegen, J.H.S. Verschuren, and E.P. de Vink. Ar-
chitecting security with Paradigm. In R. de Lemos, J.-C. Fabre, C. Gacek,
F. Gadducci, and M.H. ter Beek, editors, Architecting Dependable Sys-
tems VI, pages 255–283. LNCS 5835, 2009.

[4] S. Andova, L.P.J. Groenewegen, and E.P. de Vink. System evolution by
migration coordination. In A. Serebrenik, editor, Proc. BENEVOL 2008,
pages 18–22, Eindhoven, 2008.

[5] F. Arbab. The IWIM model for coordination of concurrent activities. In
P. Ciancarini and C. Hankin, editors, Proc. COORDINATION 1996, pages
34–56. LNCS 1061, 1996.

[6] F. Arbab. Reo: a channel-based coordination model for component com-
position. Mathematical Structures in Computer Science, 14:329–366, 2004.

[7] J.C.M. Baeten, T. Basten, and M.A. Reniers. Process Algebra: Equational
Theories of Communicating Processes. Cambridge University Press, 2010.

[8] T. Barros, L. Henrio, and E. Madelaine. Behavioural Models for Hierarchi-
cal Components. In P. Godefroid, editor, Proc. SPIN 2005, pages 154–168.
LNCS 3639, 2005.

[9] M.H. ter Beek, C.A. Ellis, J. Kleijn, and G. Rozenberg. Team automata
for spatial access control. In W. Prinz, M. Jarke, Y. Rogers, K. Schmidt,
and V. Wulf, editors, Proc. ECSCW’01, pages 59–77. Kluwer, 2001.

[10] J.A. Bergstra, A. Ponse, and S.A. Smolka. Handbook of Process Algebra.
Elsevier, 2001.

[11] J. Bradfield and C. Stirling. Modal mu-calculi. In Handbook of Modal Logic,
pages 721–756. Elsevier, 2007.

[12] M. Broy, I.H. Krüger, and M. Meisinger. A formal model of services. ACM
Transactions on Software Engineering and Methodology, 16, 2007.

[13] M. Broy and K. Stoelen. Specification and Development of Interactive Sys-
tems: Focus on Streams, Interfaces, and Refinement. Springer, 2001.

[14] N. Carriero and D. Gelernter. Linda in context. Communications of the
ACM, 32:444–458, 1989.

39

[15] P. Ciancarini. Coordination models and languages as software integrators.
ACM Computing Surveys, 28:300–302, 1996.

[16] R. De Nicola and F.W. Vaandrager. Three logics for branching bisimula-
tion. Journal of the ACM, 42:458–487, 1995.

[17] G. Engels and L.P.J. Groenewegen. SOCCA: Specifications of coordinated
and cooperative activities. In A. Finkelstein, J. Kramer, and B.A. Nu-
seibeh, editors, Software Process Modelling and Technology, pages 71–102.
Research Study Press, 1994.

[18] G. Engels, L.P.J. Groenewegen, and G. Kappel. Coordinated collaboration
of objects. In M.P. Papazoglou, S. Spaccapietra, and Z. Tari, editors,
Advances in Object-Oriented Data Modeling, pages 307–331. MIT Press,
2000.

[19] W. Fokkink. Introduction to Process Algebra. Springer, 2000.

[20] R.J. van Glabbeek. The linear time–branching time spectrum II: the se-
mantics of sequential systems with silent moves. In E. Best, editor, Proc.
CONCUR’93, pages 66–81. LNCS 715, 1993.

[21] R.J. van Glabbeek. The linear time–branching time spectrum: The se-
mantics of concrete, sequential processes. In Handbook of Process Algebra,
pages 3–99. Elsevier, 2001.

[22] R.J. van Glabbeek and P. Weijland. Branching time and abstraction in
bisimulation semantics. Journal of the ACM, 43:555–600, 1996.

[23] L.P.J. Groenewegen and E.P. de Vink. Dynamic system adaptation by con-
straint orchestration. Technical Report CSR 08/29, Technische Universiteit
Eindhoven, 2008. 20pp, arXiv:0811.3492v1.

[24] L.P.J. Groenewegen, N. van Kampenhout, and E.P. de Vink. Delegation
modeling with Paradigm. In J.-M. Jacquet and G.P. Picco, editors, Proc.
COORDINATION 2005, pages 94–108. LNCS 3454, 2005.

[25] L.P.J. Groenewegen and E.P. de Vink. Operational semantics for coordi-
nation in Paradigm. In F. Arbab and C. Talcott, editors, Proc. COORDI-
NATION 2002, pages 191–206. LNCS 2315, 2002.

[26] L.P.J. Groenewegen and E.P. de Vink. Evolution-on-the-fly with Paradigm.
In P. Ciancarini and H. Wiklicky, editors, Proc. COORDINATION 2006,
pages 97–112. LNCS 4038, 2006.

[27] J.F. Groote, A.H.J. Mathijssen, M.A. Reniers, Y.S. Usenko, and M.J. van
Weerdenburg. The formal specification language mCRL2. In E. Brinksma,
D. Harel, A. Mader, P. Stevens, and R. Wieringa, editors, Methods for
Modelling Software Systems. IBFI, Schloss Dagstuhl, 2007. 34 pages.

40

[28] J.F. Groote and M.A. Reniers. Algebraic process verification. In Handbook
of Process Algebra, pages 1151–1208. Elsevier, 2001.

[29] N. Kokash, C. Koehler, and E.P. de Vink. Data-aware design and verifi-
cation of service composition with Reo and mCRL2. In Proc. SAC 2010,
Sierre, March 21–26, 2010, pages 2399–2407. ACM, 2010.

[30] R. Milner. Operational and algebraic semantics of concurrent processes. In
Handbook of Theoretical Computer Science, Volume B: Formal Models and
Sematics (B), pages 1201–1242. Elsevier/The MIT Press, 1990.

[31] M. Möller, E.-R. Olderog, H. Rasch, and H. Wehrheim. Integrating a formal
method into a software engineering process with UML and Java. Formal
Aspects of Computing, 20:161–204, 2008.

[32] M.Á. Pérez-Toledano, A.N. Mart́ınez, J.M. Murillo, and C. Canal. A safe
dynamic adaptation framework for aspect-oriented software development.
Journal of Universal Computer Science, 14:2212–2238, 2008.

[33] W. Reisig. Petri Nets: an Introduction, volume 4 of EATCS Monographs
on Theoretical Computer Science. Springer, 1985.

[34] N.F. Rodrigues and L.S. Barbosa. Architectural prototyping: From CCS
to .Net. In A. Mota and A.V. Moura, editors, Proc. SBMF 2004, pages
151–167. ENTCS 130, 2005.

[35] A.W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.

[36] J. Stafleu. UML description of Paradigm. Master’s thesis, LIACS, Leiden
University, 2009. Technical Report 09–16.

[37] A.W. Stam. Interaction Protocols in PARADIGM: Extensions to a Mod-
eling Language through Tool Development. PhD thesis, LIACS, Leiden
University, 2009.

[38] M.R. Steen, L.P.J. Groenewegen, and G. Oosting. Parallel control pro-
cesses: Modular parallelism and communication. In L.O. Hertzberger, edi-
tor, Proc. Intelligent Autonomous Systems, pages 562–579. North-Holland,
1987.

A. ACPτ Process Algebra

The presentation in this appendix follows the textbooks [19, 7].
Process algebra (PA) is an equational theory used to specify and verify pro-

cesses. As the name says, PA finds its mathematical foundation in (universal)
algebra. And so, compared with other formal methods developed for the same
purposes, in PA, processes and their behaviour are written as algebraic ex-
pressions, and the relations between them are written in the form of algebraic

41

equations. In that way, manipulations of processes become manipulations of
equations in the algebraic sense.

Every PA is defined by its language (or signature) and a set of axioms (or
equations). The language contains the basic constructors: constants and oper-
ators. Constants, usually, stand for atomic actions that processes can execute.
Thus, every PA is parameterized by a fixed, finite set of designated atomic ac-
tions A. The axioms determine which processes are considered equal. They are
of the form t = t′ where t and t′ are expressions in the language.

Given a set of axioms of a certain PA, it is possible to construct a model, in
which every process expression has a semantics. A model, in fact, is a mathe-
matical structure in which (i) all operators are given semantical interpretation,
(ii) the equality between process expressions is interpreted as an equivalence
relation on the domain of the model, and (iii) all axioms are sound with respect
to this equivalence relation. Though different models can be defined for a given
PA, there is a tendency to use models based on structural operational semantic
(SOS) rules, the so-called operational semantics, because they describe process
functionality (or process dynamics) as step-wise execution of atomic actions.
Namely, by means of the operational semantics, each process expression can be
represented as a state transition diagram (in the formal methods community
often referred to as a labelled transition system).

In a properly defined system of, on the one hand, a PA which allows us
to reason syntactically about processes, and on the other hand, operational
semantics which allows us to reason about process semantics, the correspondence
between process specifications and process STDs is one-to-one.

In this paper we use an ACP-style process algebra [7], ACP extended (only)
with the internal action τ , denoted as ACPτ . The presentation of the axioma-
tization of ACPτ is fairly lengthy, and as equational reasoning is not exploited
explicitly in this paper, we do not include the set of axioms here. The inter-
ested reader can find the complete set of axioms in [7]. Instead, we focus on and
discuss in some more detail the operational semantics, which in fact, is used to
establish the translation of Paradigm into PA.

Let A denote a set of (observable) atomic actions and τ the internal action
(τ /∈ A). Let Aτ = A ∪ {τ}. The syntax for ACPτ is given by the following
grammar:

S:: = δ | a | τ | S · S | S + S | S ‖ S | ∂H(S) | X

for a∈A, H ⊆ A and X ∈ V , where V is a set of recursion variables. The
constant δ denotes a process that does not execute any action. The sequential
composition · is used to express that two processes are executed one after the
other (sequentially). The choice between two alternatives is specified by the
non-deterministic choice operator +. The parallel composition operator ‖ is
used to describe a process that executes two processes in parallel, generating
all possible interleavings and all possible communications of the two compo-
nents. Communication is defined by means of a partial function | : An → Aτ

(n ≥ 2) that indicates which atomic actions communicate. For this presenta-
tion, for the sake of simplicity, we restrict to a binary communication function

42

| : A×A → Aτ which is assumed to be commutative and associative. Note that
for a finite axiomatization of the ‖ operator two auxiliary operators are needed,
but we do not discuss them here since they are not essential for the definition
of the operational semantics. The encapsulation operator ∂H is parameterized
by a set of atomic actions H (H ⊆ A). The ∂H operator is a renaming operator
which replaces all actions from H into δ. It is used to block asynchronous exe-
cution of atomic actions which are intended to synchronize. Process expressions
of ACPτ are defined in the usual way. Process expressions that do not contain
any variables are called closed expressions, otherwise they are called open ex-
pressions. We assume the following binding strengths: · > ∂H > ‖ > +, i.e. ·
binds strongest and + binds weakest.

A recursive specification is a set of equations of the form X = sX(V), where
X is a variable from V and s is an ACPτ expression containing variables from
V . We consider guarded recursive specifications only, in which every occurrence
of a variable X is guarded, i.e. X occurs in a subexpression of the form a.t
for some action a ∈ A, a 6= τ (see also [7]). By means of guarded recursive
specifications we are able to define infinite processes.

A.1. Operational semantics of ACPτ

The operational semantics of a process specified by a process expression or a
recursive specification is usually given by an STD, describing the activities that
this process can perform. Operational semantics of ACPτ is defined on the set
of process expressions P(ACPτ) consisting of the set of closed expressions, and
a set of new constants: for each guarded recursive specification E and for each
equation X = sX(V) of E, a constant 〈X |E〉 is added denoting a solution for X
in E. The equivalence relation on which the operational semantics is constructed
is a rooted variant of branching bisimulation. Note that a special termination
process

√
and termination predicate ↓ are needed in order to define branching

bisimulation on P(ACPτ) (see also [19]). The SOS rules for the bisimulation
model of ACPτ are given in Table 1 and Table 2, where a ranges over Aτ , b and
c range over A, s, t, s′ and t′ are ACPτ process expressions, and H ⊆ A.

In Table 1 the first rule says that process a can only execute action a after
which it terminates. The second rule says that the specially added process

√

only terminates; note that no other process terminates. The third rule on the
left, for instance, reads as: if process s can perform a and afterwards behaves as
s′, then process s+ t, for any t, can perform a as well and afterwards it becomes
s′. The deduction rules for the ‖ operator express the interleaving character
of the parallel composition. If one component of the parallel composition can
perform an action a then the same holds for the entire process. If the compo-
nents can synchronize on an atomic action a then the parallel composition can
perform a a transition.

In the SOS rules for recursion, given in Table 2, by 〈sX |E〉 we denote the
process expression in P(ACPτ) obtained from sX by replacing each recursion
variable Y , that occurs in sX , by 〈Y |E〉. These SOS rules express that the
process specified by the recursion variable X behaves exactly as the process
represented by the right-hand side of the equation of X in E.

43

a
a→√ √↓

s
a→ s′

s · t a→ s′ · t
s

a→√

s · t a→ t

s
a→ s′

s + t
a→ s′, t + s

a→ s′
s

a→√

s + t
a→√

, t + s
a→√

s
a→ s′

s ‖ t
a→ s′ ‖ t, t ‖ s

a→ t ‖ s′
s

a→√

s ‖ t
a→ t, t ‖ s

a→ t

s
b→ s′, t

c→ t′, b | c = a

s ‖ t
a→ s′ ‖ t′

s
b→ s′, t

c→√
, b | c = a

s ‖ t
a→ s′

s
b→√

, t
c→ t′, b | c = a

s ‖ t
a→ t′

s
b→√

, t
c→√

, b | c = a

s ‖ t
a→√

s
a→ s′, a /∈ H

∂H(s)
a→ ∂H(s′)

s
a→√

, a /∈ H

∂H(s)
a→√

Table 1: The SOS rules for the ACPτ operators.

〈sX |E〉 a→ s′

〈X |E〉 a→ s′
〈sX |E〉 a→√

〈X |E〉 a→√

Table 2: The SOS rules for recursion.

Definition 5. For two STDs Z = 〈ST, AC, TS〉, Z ′ = 〈ST′, AC′, TS′〉 a relation
R ⊆ ST × ST′ is called a branching bisimulation relation if for all s ∈ ST and
t ∈ ST′ such that R(s, t), the following conditions are met:

1. if s
a−→ s′ in Z, then either

– a = τ and R(s′, t), or

– for some n ≥ 0, there exist t1, . . . , tn and t′ in ST′ such that t
τ−→

t1
τ−→ . . .

τ−→ tn
a−→ t′ in Z ′, R(s, tn) and R(s′, t′);

2. if t
a−→ t′ in Z ′, then either

– a = τ and R(s, t′), or

– for some n ≥ 0, there exist s1, . . . , sn and s′ in ST such that s
τ−→

s1
τ−→ . . .

τ−→ sn
a−→ s′ in Z, R(sn, t) and R(s′, t′);

44

3. if s↓ in Z, then, for some n ≥ 0, there exist t1, . . . , tn in ST′ such that
t

τ−→ t1
τ−→ . . .

τ−→ tn in Z ′, R(s, tn) and tn↓;

4. if t↓ in Z ′, then, for some n ≥ 0, there exist s1, . . . , sn in ST such that
s

τ−→ s1
τ−→ . . .

τ−→ sn in Z, R(sn, t) and sn↓.

For Z and Z ′, two states s and t are called branching bisimilar, notation s ↔bb t,
if there exists a branching bisimulation relation R for Z and Z ′ such that R(s, t).

Two STDs Z and Z ′ are called rooted branching bisimilar, notation Z ↔ Z ′,
if and only if there is a branching bisimulation relation R which relates their
initial states, (init , init ′) ∈ R and

1. for each state s′ such that init
a−→ s′ in Z, there exists a state t′ such that

init ′
a−→ t′ in Z ′ and R(s′, t′);

2. for each state t′ such that init ′
a−→ t′ in Z ′ there exists a state s′ such that

init
a−→ s′ in Z and R(s′, t′);

3. init↓ iff init ′↓.

The most relevant properties and the correspondence of the ACPτ process al-
gebra and its operational semantics are collected in the following theorem. For
full proofs and detail we refer to [19, 7].

Theorem 6.

(Congruence) Rooted branching bisimulation is congruence on P(ACPτ) with
respect to the operators of ACPτ .

(Soundness) The quotient algebra P(ACPτ)/ ↔ is a model of ACPτ .

(Completeness) ACPτ is a ground-complete axiomatization of P(ACPτ)/ ↔ .

(Unique solutions) Every guarded recursive specification in ACPτ has a unique
solution in P(ACPτ)/ ↔ .

The following properties of rooted branching bisimulation can be used to gen-
eralize the results in Section 5 on Paradigm models without restrictions on the
initial states of the detailed STDs.

Theorem 7. Let s, t ∈ P(ACPτ). Then

1. τ · s ‖ τ · t ↔ τ · (s ‖ t);

2. if s ↔bb t then τ · s ↔ τ · t;

3. if τ · s↔ τ · t then s↔bb t.

45

