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Abstract We consider a model for to evaluate performance of streaming me-
dia over an unreliable network. Our model consists of a tandem of two fluid
queues. The first fluid queue is a Markov Modulated fluid queue that models
the network congestion, and the second queue represents the play-out buffer.
For this model the distribution of the total amount of fluid in the congestion
and play-out buffer corresponds to the distribution of the maximum attained
level of the first buffer. We show that, under proper scaling and when we
let time go to infinity, the distribution of the total amount of fluid converges
to a Gumbel extreme value distribution. From this result, we derive a sim-
ple closed-form expression for the initial play-out buffer level that provides a
probabilistic guarantee for undisturbed play-out.

1 Motivation and literature

Over the past few years, the tremendous popularity of smart phone end devices
and services (like Youtube) has boosted the demand for streaming media ap-
plications offered via the Internet. One of the key requirements for the success
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Fig. 1: Streaming video through an IP-network represented by a tandem of
fluid queues.

of providers of such services is the ability to deliver services at competitive
price-quality ratios. However, the Internet provides no more than best-effort
service quality. Therefore, the packet streams generated by streaming media
applications are distorted by fluctuations in the available bandwidth on the
Internet, which may be significant over the duration of a typical streaming ap-
plication (whose duration may range from a few minutes to tens of minutes).
To cope with these distortions, play-out buffers temporarily store packets so
as to reproduce the signal with a fixed delay offset. Fig. 1 clarifies the con-
nection of the model with the application to video streaming. The upper part
of the figure depicts the network setting, whereas the lower part displays the
abstract queueing model. The content of the first queue represents the part
of the video that flows through the network and the second queue models the
play-out buffer. For smooth reproduction of the packet stream the play-out
buffer should not empty, as the stream will stall whenever packets do not ar-
rive in time. For that reason, it is beneficial to start the play-out of a streaming
media application only when the play-out buffer content exceeds some safety
threshold value. In this context, our main goal is to determine a proper choice
for the initial play-out buffer level bmin, providing a given probabilistic guar-
antee on undisturbed play-out. Our objective in this paper is to contribute
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to the understanding of the performance implications of the play-out buffer
settings for streaming applications over unreliable networks such as the In-
ternet, by relating the proper buffer level to network variability parameters.
Our approach relies on a queueing-theoretical fluid model analysis. This work
extends [6] by allowing multiple network throughput rates.

Buffer dimensioning for streaming video over variable rate networks has al-
ready received considerable attention in literature over the past two decades.
Most work focused on balancing play-out buffer overflow and underrun proba-
bilities, and develop dimensioning rules for the play-out buffer at the receiver
end using analytic models. A particular large collection of work emerged in the
1990s. For example [15,5] determine the probability of overflow at the play-out
buffer. This metric is particularly relevant for interactive video with stringent
delay requirements, but less so for non-interactive streaming. More recently,
play-out buffer engineering regained interest in the context of Voice over IP
(VoIP), with popular examples such as Skype and Google Talk [23]. Again,
VoIP play-out buffer dimensioning must balance between conversational in-
teractivity and speech quality. Proper dimensioning of the play-out buffer is
known to have a decisive impact on conversation quality [23]. The real time in-
teractive character of VoIP, however, poses again stringent restrictions on the
buffer size, making the trade-off very different from non-interactive (video)
streaming, which is the objective of our paper. A third such example is in the
context of closed-loop control for wireless streaming: [11], for example, investi-
gate dynamic rules for play-out buffer management to avoid both the overflow
of the play-out buffer and stalling of the streaming application. Of these pa-
pers, the setting studied in [14] is closest in nature to that in our paper. Their
approach, however, builds on a “square root” formula to approximate the
throughput of TCP and the stalling probability is obtained through a fixed-
point solution. Somewhat tangent to the above mentioned literature, there are
works that concentrate on dynamic deterministic optimization, e.g. [18,24].
In our model, network unreliability is captured by a stochastic (Markovian)
process and buffer dimensioning is tailored to the variability of the network.

Despite the large volume of literature devoted to play-out buffer dimen-
sioning, the problem is still highly timely because of tremendous popularity of
video streaming services such as YouTube. This popularity is catalyzed by two
main developments. One is the continuing rise of streaming media usage on
mobile devices, who suffer from highly unpredictable channel conditions, mak-
ing an accurate buffer dimensioning rule crucial for viability of such services.
Cisco’s global mobile data traffic forecasts predict that mobile video will make
up for 66% of all mobile data traffic in 2017, amounting to an approximate
monthly 7 Exabytes of mobile video worldwide, from less than 1 Exabyte in
2013 [9]. Second, the market for video traffic over the Internet shows tremen-
dous growth as well, in terms of numbers of users as well as in traffic volume.
Cisco [8] predicts that in 2017, every second, nearly a million minutes of video
content will cross the global IP network, making up for 69% of all consumer
Internet traffic (from 57% in 2012). This number further increases to nearly
90% if video exchanged through peer-to-peer file sharing is included. Particu-
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larly relevant is Internet video to TV, which doubled in 2012 and continues to
grow at a rapid pace, increasing fivefold by 2017.

Both in the context of wireless streaming and video on demand, a natural
performance metric is the probability of uninterrupted video play out. The
non-interactive nature of these services and the fact that memory is not the
limiting factor on modern devices (naturally, mobile devices have much less
memory, but videos played on mobile devices are streamed at a much lower
bit rate also), make the memory usage a secondary consideration. The fore-
most important tradeoff is then between the initial play-out delay and the
probability of stalling. We therefore set off to determine the smallest initial
play-out delay (i.e. initial size of the play-out buffer) that gives a probabilistic
guarantee on uninterrupted play out.

The above mentioned papers all focus on an engineering perspective. From
a theoretical angle there is a considerable volume of related research too. Our
modeling approach was already depicted in Fig.1: We will use a tandem of
fluid queues (one with variable rate) to capture the most essential ingredients
that determine the stalling probability (a detailed model description follows
later). Fluid queues have proven to be a powerful modeling paradigm in a
wide range of applications and have received much attention in literature.
On one hand fluid model often capture the key characteristics that determine
the performance of e.g. communication networks with complex packet-level
dynamics (hiding largely irrelevant details), while on the other hand they re-
main mathematically tractable. Many analytic results have been obtained,
and we refer to Scheinhardt [20] and Kulkarni [16] for excellent overviews of
results on fluid queues that are directly relevant to our analysis. Asmussen
and Bladt [3] propose a sample-path approach to study mean busy periods in
Markov Modulated fluid queues, and derive a simple way of calculating mean
busy periods in terms of steady-state quantities. In [1], Asmussen shows that
the probability of buffer overflow within a busy cycle has an exponential tail,
gives an explicit expression for the Laplace Transform of the busy period and,
moreover, derives several inequalities and approximations for the transient be-
haviour. Boxma and Dumas [7] study the busy period of a fluid queue fed by
N ON/OFF sources with exponential OFF periods and heavy tailed activity
durations (more specifically, with regularly varying activity duration distri-
butions). Scheinhardt and Zwart [21] study a two-node tandem with gradual
input, and compute the steady-state joint buffer-content distribution using
martingale methods. Kulkarni and Tzenova [17] study a fluid queuing systems
with different fluid-arrival rates governed by a CTMC and constant service
rate. For this model, they derive a system of first-order non-homogeneous lin-
ear differential equations for the mean passage time. Sericola and Remiche [22]
propose a method to analyse the maximum level and the hitting probabilities
in a Markov driven fluid queue for various initial condition scenarios, allowing
for both finite and infinite buffers. Their analysis leads to matrix differential
Ricatti equations for which there is a unique solution. Asmussen [1] investigates
a more general setting than the one considered in this paper, which focuses on
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the streaming video setting. In our work we use an alternative matrix-theoretic
analysis technique that is better suited for standard computational methods.

Our analysis was strongly motivated by the classical papers of Berman [4]
and Iglehart [13]. Berman [4] studies the limiting distribution of the maximum
in sequences of random variables satisfying certain dependence conditions.
Iglehart [13] derived asymptotic distributions for the extreme value of the
buffer content and the number of customers in the GI/G/1 queue. We refer to
Asmussen [2] for an excellent survey on extreme-value theory for queues.

The precise object of study in this paper is a fluid model for streaming
media applications in the presence of bandwidth that varies over time. More
precisely, we consider a tandem model consisting of two fluid queues. The
first queue is a Markov Modulated fluid queue that models the congestion in
the network caused by bandwidth fluctuations. The second buffer represents
the play-out buffer. For this model, we first show that the distribution of the
total amount of fluid in the congestion and play-out buffer corresponds to
the distribution of the maximum level of the first buffer. We then show that
the distribution of the total amount of fluid converges to a Gumbel extreme
value distribution. Based on this result, we derive an explicit expression for
the initial level of the play-out buffer at which the play-out can best be started
so as to guarantee undisturbed play-out with sufficient certainty.

In our model the input rate into the first queue and the play-out rate are
constant. This directly connects with constant bit rate streaming services, but
can equally well describe variable bit rate services – which are more realistic
from an application perspective – if the unit of transmission is interpreted as
time rather than number of bits or packets. We will come back to this in our
final discussion in Section 5, but for the purpose of the theoretical develop-
ment and clarity of exposition we will focus on constant bit rate streaming
throughout the analysis.

Our analysis proceeds as follows: We use results from [22] for the analysis
of the maximum in a busy period. Furthermore, we show that the busy period
maximum has an exponential tail and the maximum grows logarithmically. We
apply a result from [17] on mean busy periods to obtain the mean expected
cycle time. Next we apply an approach similar to [13]. This leads to our main
result, as stated in Theorem 1 (Section 3.2):

Let M∗(t) := sup0≤s≤tX(s) be the supremum of first fluid queue level process

X(t). The limiting distribution of κM∗(t)− log( btc ) when t→∞ converges to
the standard Gumbel extreme value distribution where b, c and κ are constants
that will be determined in our analysis in Section 3.

Using this result the correct initial play-out buffer level can be estimated.
As mentioned previously, our paper shows strong similarities with [1]. Like
us, Asmussen shows, that the maximum fluid level grows logarithmically over
time and under proper scaling converges to random variable with a Gumbel
extreme value distribution. In this paper we independently establish this result
in a more direct manner using spectral analysis. Furthermore we provide an
explicit recipe to calculate the asymptotic behaviour of the maximum level in
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the Markov Modulated fluid queue. This can directly be applied to dimension
the initial play-out buffer size.

The organization of the remainder of this paper is as follows. In Section 2
we describe the mathematical model followed by a fluid-queue analysis in
Section 3. Moreover, in Section 3 we translate the results to derive a rule
for the proper value of the initial buffer content at which the play-out should
be started. In Section 4, we provide a numerical validation of the proposed
dimensioning rule by means of simulations. Section 5 contains a discussion of
the results, particularly in the context of variable bit rate streaming and looks
out to future work.

2 Model

We consider a video stream with fixed data rate Rplay (see Section 5 for use
of the model for variable bit rate applications). Video is transported (through
an IP network) with fluctuating speed. From the IP network packets arrive
to the play-out buffer with rate si. The behaviour of rate si is determined by
a stochastic process ϕ(t) that is modelled by a n-state CMTC (Continuous
Time Markov Process). The CTMC has generator matrix T and state-space
S = {1, . . . , n}. States are arranged in increasing order such that s1 > · · · >
sn. State-space S can be separated into three subsets S↓, S0 and S↑, where
n− := |S−|, n0 := |S0|, and n+ := |S+| and n↓ + n0 + n↑ = n:

S↓ = {i : si > Rplay} = {1, . . . , n↓},
S0 = {i : si = Rplay} = {n↓ + 1, . . . , n↓ + n0},
S↑ = {i : si < Rplay} = {n↓ + n0 + 1, . . . , n↓ + n0 + n↑}.

In short, S↓ represents the states with decreasing number of packets in flight,
S0 represents the states with stable number of packets in flight, and S↑ states
with increasing number of packets in flight. We assume that ϕ(t) can modeled
such that there exists a stationary distribution π. We partition the generator
matrix T as a (n↓ + n0 + n↑)× (n↓ + n0 + n↑) matrix according to:

T =

T↓↓ T↓0 T↓↑T0↓ T00 T0↑
T↑↓ T↑0 T↑↑

 . (1)

As illustrated by Fig. 1, the combination of network congestion and play-out
buffering is represented by a tandem of two fluid queues. The first fluid buffer
models the network congestion (packets on flight), and has corresponding fluid
level X(t). The second fluid buffer models the play-out buffering process at the
client with corresponding fluid level Y (t). Process V (t) represents the video
play-out rate that is achieved from the play-out buffer. For the first fluid buffer
when ϕ(t) = i we define rates of change by ri := Rplay − si, i = 1, . . . , n.
Whenever i is not explicitly specified, we use the value i = ϕ(t). For the
second fluid buffer the rate of change is directly proportional to the rate of
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change of the first fluid buffer whenever Y (t) > 0, so that V (t) can sustain
play-out at rate Rplay. However when Y (t) = 0 and si < Rplay the rate
of change for the play-out buffer equals 0 and so V (t) = si. In this case
video has a disturbed play-out. In practice the video may be stalled instead of
continuously buffering and playing back. In that case the disturbed playback
period in our model may be seem as a measure for the severity of distortion.
We define the rate of change matrix that is partitioned like generator matrix
T , i.e. a (n↓ + n0 + n↑)× (n↓ + n0 + n↑) matrix:

R :=

R↓ 0 0
0 R0 0
0 0 R↑

 . (2)

The entries are defined by:

R↓ := diag(ri), i ∈ S↓,
R0 := diag(ri) = 0 and i ∈ S0,

R↑ := diag(ri), i ∈ S↑.

In order for the first buffer to be stable the average potential throughput Sres
must satisfy:

Sres :=

n∑
i=1

siπi > Rplay. (3)

The drift of the process is expressed in terms of rates of change ri and is
defined as:

d :=

n∑
i=1

riπi = Rplay − Sres. (4)

Stability condition (3) is equivalent to having a negative drift d < 0.
Due to congestion the play-out buffer level Y (t) fluctuates. When the play-

out buffer is empty video play-out will be disturbed as only a rate of V (t) <
Rplay is supported. We consider a video stream of length t = Tplay. Although
we assume Sres > Rplay due to fluctuations in traffic the bitrate Rplay cannot
be guaranteed at all times t (0 ≤ t ≤ Tplay) during Tplay. At periods with
high traffic, congestion in the network builds up resulting in a temporary
throughput O(t) = si < Rplay. Therefore the video needs to be buffered at
play out. When the play-out buffer is empty video play out will be disturbed
as a play-out rate of Rplay can not be sustained. The result is that the video
is alternating between buffering and play-out. This is commonly experienced
as being very disturbing. In our analysis we assume in that case there will
be a (disturbed) play out at a rate si < Rplay such that Y (t) remains equal
to 0. We want to guarantee a certain Quality of Service (QoS) on the video
play-out. The QoS objective is to find an initial buffer level bmin such that the
probability of disturbed play-out during Tplay is smaller than pempty:

P{∃s ∈ [0, t] : V (s) < Rplay | X(0) = 0, Y (0) = bmin} < pempty. (5)
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Of course the probability that play-out will be disturbed equals zero if a stream
is fully buffered. However the larger the play-out buffer the longer the loading
time. Therefore, we want the play-out buffer to have a minimal size. In order
to minimize the initial buffer level bmin while meeting the QoS requirements,
we develop a procedure that maps video parameters Tplay, Rplay, network
characteristics and QoS objective pempty onto a initial buffer level bmin.

3 Analysis

We are interested in a mapping from network, video characteristics and distor-
tion probability pempty to a minimal buffer level bmin such that the condition
in Equation (5) is satisfied. To this end we analyze the interaction between
the network congestion buffer level X(t) and the play-out buffer level Y (t). In
our analysis four different scenarios can be identified. These are depicted in
Fig. 2. Each scenario is represented by a time interval ti:

1. During interval t1 the network achieves a transfer rate lower than the video
bit-rate si < Rplay (ri < 0), while the play-out buffer level is positive
Y (t) > 0. In this case the level of X increases while the level of Y decreases.

2. Within interval t2 the network transfer rate is lower than video bit-rate
si < Rplay (ri < 0), while the play-out buffer level is zero Y (t) = 0.
Now the video playback will be disturbed and the play-out buffer level will
remain zero Y (t) = 0 while the network content X(t) continues to grow.

3. Next, in interval t3 we have a network transfer rate higher than the video
bit-rate si > Rplay (ri > 0), while the network content is positive X(t) > 0.
The level of X decreases while the level of Y increases.

4. Finally, during interval t4 there is a network transfer rate higher than the
video bit-rate si > Rplay (ri > 0), without any backlog in the network,
X(t) = 0. Although higher transfer rate ri > 0 is supported, an effective
rate of Rplay will be achieved as the fluid entering X directly flows to the
play-out buffer Y .

Observe in Fig. 2 that within intervals t1, t3 and t4, X(t) + Y (t) remains
constant. Therefore, in these cases an artificial symmetry axis can be drawn
between X(t) and Y (t). Moreover, within these intervals V (t) = Rplay and the
CTMC determines how the constant level X(t) + Y (t) is distributed over the
first and second fluid buffer. In scenario 2 (corresponding to t2 in Fig. 2) the
second buffer remains empty (Y (t) = 0) while the first buffer continues to grow.
In that case X(t) attains a new maximum, and obviously X(t) = X(t) + Y (t)
since Y (t) = 0. Each time X(t) attains a new maximum, X(t)+Y (t) grows. We
can conclude that the total fluid buffer contents X(t)+Y (t) is not a stationary
process. However the growth of the maximum becomes an increasingly rare
event each time a new maximum level is reached.

Lemma 1 Let
(
X(t), Y (t)

)
be the stochastic process describing fluid levels in

the tandem system. Then, if Y (0) = 0,

X(t) + Y (t) = sup
0≤s≤t

X(s) = M∗(t). (6)
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Fig. 2: Different phases of the stochastic processes X(t) and Y (t).

Proof Obviously, the initial conditions ensure that M∗(0) = X(0) + Y (0).
We will show that the maximum and the sum remain equal throughout time,
because the maximum can only increase when Y (t) = 0. From the construction
it is clear that, unless Y (t) = 0 and ϕ(t) ∈ S+, the total amount of fluid in
X(t) + Y (t) remains equal. Only the partition of fluid over X(t) and Y (t)
changes as the rates of change for both buffers only differ in sign. On the
contrary, when Y (t) = 0 and ϕ(t) ∈ S+ the amount of fluid in X(t) will
grow while the the second buffer remains Y (t) = 0 (because the inflow into
the second buffer is below Rplay). Beyond this point, both the maximum level
M∗(t) for X(t) and X(t) itself increase, as long as Y (t) remains empty. We
can conclude that the total amount X(t) + Y (t) must always be equal to the
maximum level M∗(t). ut

In equation (5) we use an initial buffer level of Y (0) = bmin, while in Lemma 1
we assume Y (0) = 0. However, setting Y (0) = bmin and X(0) = 0 corresponds
to the case where X(0) has a virtual (initial) supremum equal to bmin. Thus
we are interested in the probability that new supremum M∗(t) > bmin is
attained in time interval [0, t] given that the initial supremum level is set to
M∗(0) = bmin. Using the connection of the initial buffer level bmin to the
supremum level M∗(t) and Lemma 1 we can rewrite equation (5) to:

P{M∗(t) > bmin} < pempty. (7)

This corresponds to the probability that M∗(t) exceeds bmin when no initial-
buffering is applied. We assume here and throughout the remainder of the
paper the initial condition to be X(0) = Y (0) = 0.

Lemma 1 targets our problem on identifying the maximum level of packets
on flight. Therefore we consider the process X(t). The process is driven by a
CTMC and the process has negative drift. This results in a behaviour where
semi regenerative busy cycles are formed each consisting of a busy period with
X(t) > 0 that is followed by an idle period.
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We first will analyse in Section 3.2 the asymptotic behavior of the busy
cycles leading to an extreme value distribution in Lemma 8. In Section 3.1 we
analyse the mean busy cycle length E[C] in order to map the extreme value
analysis of Section 3.1 from busy cycles to time.

3.1 Maximum over busy cycles

In Sericola and Remiche [22] the distribution of the maximum level reached in a
busy period is derived using matrix exponential forms. The resulting equations
are rewritten such that they can be transformed into matrix differential Riccati
equations. For calculation of the distribution of the maximum level in a busy
period, only the rates that change the buffer level (ri, i /∈ S0) contribute to the
solution. Moreover time is not considered in the distribution of the maximum
level in a busy period. Therefore the rates can be uniformised resulting in
(n↓+n↑)× (n↓+n↑) matrix Q that implicitly takes in account the states that
are in S0:

Q =

(
Q↓↓ Q↓↑
Q↑↓ Q↑↑

)
,

and where the entries are defined by:

Q↓↓ = R−1↓ (T↓↓ − T↓0T−100 T0↓),

Q↓↑ = R−1↓ (T↓↑ − T↓0T−100 T0↑),

Q↑↓ = R−1↑ (T↑↓ − T↑0T−100 T0↓),

Q↑↑ = R−1↑ (T↑↑ − T↑0T−100 T0↑).

Definition 1 With Ψi,j(x) we define the joint distribution for M+, the max-
imum level in a busy period, given that a busy period starts in state ϕ(0) =
i, (i ∈ S↑) at level X(0)=0 and finishes in state ϕ(τ0) = j, (j ∈ S↓):

Ψi,j(x) := P
{
ϕ
(
τ0
)

= j,M+ ≤ x | ϕ(0) = i,X(0) = 0
}
, i ∈ S↑, j ∈ S↓ (8)

τ0 := inf{t > 0 : X(t) = 0},
M+ := M∗(τ0).

The joint distribution of the maximum in a busy period Ψi,j(x) is calculated
by solving a matrix differential Riccati equation [22]. Function Ψi,j(x) can be
expressed in terms of the matrix exponential form of matrix Q:

eQx = exp

[(
Q↓↓ Q↓↑
Q↑↓ Q↑↑

)]
=

(
A(x) B(x)
C(x) D(x)

)
. (9)

The expression for Ψ(x) is given by:

Ψ(x) = C(x)A(x)−1. (10)
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In general we are interested in the distribution of the busy cycle β(x) which
we describe in Definition 3 below. First we introduce some further notation.

Definition 2 Matrix U is the transition matrix from an empty system to the
start of a new busy cycle and is defined by:

Ui,j := P{ϕ(τS↑) = j | ϕ(0) = i, X(0) = 0}, i ∈ S↓, j ∈ S↑,
τS↑ := inf{t > 0 : ϕ(t) ∈ S↑}.

Definition 3 We define βi,j(x) as the joint distribution for the maximum level
M+ in a busy cycle, given that the busy cycle starts in state ϕ(0) = i, (i ∈ S↑)
at level X(0)=0 and finishes in state ϕ(τ0↑) = j, (j ∈ S↑):

βi,j(x) := P
{
ϕ
(
τ0↑
)

= j,M+ ≤ x | ϕ(0) = i,X(0) = 0
}
, i ∈ S↑, j ∈ S↑,

(11)

τ0↑ := inf{t > τ0 : ϕ(t) ∈ S↑},
τ0 := inf{t > 0 : X(t) = 0}.

Observation 1 The function β(x) can be written as β(x) = Ψ(x)U where
Ψ(x) is the joint stationary distribution of the maximum level in a busy period
from Definition 1. Matrix U is the transition matrix from start of an idle period
to start of a busy period from Definition 2 and is given by (see for example [19,
Example 1.4.4]):

U = −
(
I 0
)(T↓↓ T↓0,

T0↓ T00

)−1(
T↓↑
T0↑

)
. (12)

We show that the expression for the distribution of the maximum in a busy
cycle has an exponential tail. Moreover we can derive an explicit expression
for the asymptotic tail. In the expression for Ψ(x) from (10) function C(x) is
a n↑×n↓ matrix and A(x) is a n↓×n↓ matrix. For the case n↓ > 1 we have to
take the inverse of a matrix that contains exponential terms with exponents
corresponding to the eigenvalues of Q. However using Sylvester’s formula [10,
Page 87] the matrix exponential eQt can be decomposed as:

eQx = eλ1xQ̃1 + . . .+ eλn↓+n↑xQ̃n↓+n↑ , (13)

where the eigenvalues λ1, . . . , λn↓+n↑ of Q are the solution of

det[Q− λI] = 0, (14)

and the matrices Q̃i, i = 1, . . . , n↓ + n↑ are the Frobenius covariants. Let φli
and φri be the normalised left and right eigenvector corresponding to eigenvalue
λi:

φliQ = λiφ
l
i and (15)

Qφri = λiφ
r
i (16)
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respectively. The corresponding Frobenius covariants are given by Q̃i = φriφ
l
i.

These describe how the exponentials eλix with corresponding eigenvalues λi
contribute to the matrix exponential eQx. If we consider the partitioning of
eQx in Equation (9) then C(x) and A(x) can be represented as:

A(x) = eλ1xÃ1 + . . .+ eλn↓+n↑xÃn↓+n↑ and (17)

C(x) = eλ1xC̃1 + . . .+ eλn↓+n↑xC̃n↓+n↑ . (18)

Now we decompose (10) into:

Ψ(x) =
C(x) adj

[
A(x)

]
det
[
A(x)

] . (19)

As A(x) is n↓×n↓ both determinant of A(x) and the product C(x) adj
[
A(x)

]
will contain terms that are products of n↓ exponentials. The resulting expo-
nential terms have exponents that are sums of n↓ eigenvalues.

Definition 4 Let c be a vector with n elements. In summations we denote
with∑

k∈c

:=
∑
k=ci,
i=1,...,n

that we iterate k over the elements from vector c.

Lemma 2 Let A be an n× n matrix and m ≥ 1:

A =

m∑
k=1

bkAk,

with:

Ak = rTk ck =

rk,1ck,1 · · · rk,1ck,n...
. . .

...
rk,nck,1 · · · rk,nck,n

 .
Then the following holds:

adj [A] =
∑
c∈C

(∏
k∈c

bk

)
adj

[∑
k∈c

Ak

]
,

where C is the set with all combinations of length n−1 from the set {1, 2, . . . ,m}.

Proof The proof can be found in Appendix A where the preliminaries can be
found in Appendix A.1 and the actual proof can be found in Appendix A.2.
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Lemma 3 Let

A(x) = eλ1xÃ1 + . . .+ eλn↓+n↑xÃn↓+n↑ and

C(x) = eλ1xC̃1 + . . .+ eλn↓+n↑xC̃n↓+n↑ ,

with:

Q̃k = φrkφ
l
k =

 φrk,1φ
l
k,1 · · · φrk,1φ

l
k,n↓+n↑

...
. . .

...
φrk,n↓+n↑φ

l
k,1 · · · φrk,n↓+n↑φ

l
k,n↓+n↑


=

[
Ãk B̃k
C̃k D̃k

]
,

where Ãk is n↓×n↓, B̃k is n↓×n↑, C̃k is n↑×n↓ and D̃k is n↑×n↑. Furthermore,
let C be the set of combinations of length n from the set {1, . . . , n}. Then the
following holds:

C(x) adj [A(x)] =
∑
c∈C

(∏
k∈c

eλkx

)∑
k∈c

C̃k adj

[∑
k∈c

Ãk

]
. (20)

Proof By applying Lemma 2 we obtain:

C(x) adj [A(x)] =

n↓+n↑∑
j=1

eλjxC̃j
∑
c∈C

(∏
k∈c

eλkx

)
adj

[∑
k∈c

Ãk

]
,

with C the set of combinations of n↓−1 elements from the set {1, . . . , n↓+n↑}.
From (9) and Observation 1 we find that both Ãk and C̃k share the same row

vector. As all sums of n↓ − 1 matrices Ãk have rank n↓ − 1 the following is
true:∑

k∈c

C̃k adj

[∑
k∈c

Ãk

]
= 0, ∀c ∈ C. (21)

Using (21) we can rewrite:

C(x) adj [A(x)] =

n↓+n↑∑
j=1

eλjxC̃j
∑
c∈C

(∏
k∈c

eλkx

)
adj

[∑
k∈c

Ãk

]

=
∑
c∈C

∑
j /∈c

eλjxC̃j

(∏
k∈c

eλkx

)
adj

[∑
k∈c

Ãk

]

=
∑
c∈C

∑
j∈c

eλjxC̃j

 ∏
k∈c\j

eλkx

 adj

 ∑
k∈c\j

Ãk


=
∑
c∈C

(∏
k∈c

eλkx

)∑
j∈c

C̃j adj

 ∑
k∈c\j

Ãk

 .
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By using again (21) we obtain:

∑
c∈C

(∏
k∈c

eλkx

)∑
j∈c

C̃j adj

 ∑
k∈c\j

Ãk


=
∑
c∈C

(∏
k∈c

eλkx

)∑
k∈c

C̃k adj

[∑
k∈c

Ãk

]
.

ut

Observation 2 There are m =
(
n↓+n↑
n↓

)
unique combinations of n↓ eigenval-

ues from n↓ + n↑ eigenvalues.
Let c ∈ C be the set of combinations of n↓ indices from the set {1, 2, . . . , n↓ +
n↑}. We define the sums of eigenvalues λk1 , . . . , λkn↓ corresponding to combi-

nation ck with index k by:

λ̂k :=
∑
j∈ck

λj , k = 1, . . . ,m, ck ∈ C,

where the set C is ordered in decreasing order according to the real parts of
λ̂k such that:

Re
(
λ̂1
)
≥ Re

(
λ̂2
)
≥ . . . ≥ Re

(
λ̂m
)
.

Lemma 4 Equation (19) can be rewritten as:

Ψ(x) =
Ĉ1e

λ̂1 + Ĉ2e
λ̂2 + . . .+ Ĉme

λ̂m

Â1eλ̂1 + Â2eλ̂2 + . . .+ Âmeλ̂m

, (22)

with values λ̂k as defined in Observation 2, and

Ĉk :=
∑
j∈ck

C̃j adj
[ ∑
j∈ck

Ãj

]
, ck ∈ C,

and

Âk := det
[ ∑
j∈ck

Ãj

]
, ck ∈ C,

where the elements ck from set C are ordered according to Observation 2 such
that:

Re
(
λ̂1
)
≥ Re

(
λ̂2
)
≥ . . . ≥ Re

(
λ̂m
)
.

Proof Due to the determinant and adjoint matrix in Equation (19), there will
be exponential terms in both numerator and denominator that result from
products of n↓ exponentials eλix with eigenvalues λi, i ∈ S. First consider the

terms in the denominator. Remember that the Frobenius covariants Q̃i (and

also Ãi, C̃i) have rank 1. Therefore only linear combinations of n↓ distinct
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Frobenius covariants, defined by ck ∈ C, will result in positive determinants.
Combination ck ∈ C is element of the set containing al combinations of length
n↓ from the set {1, . . . , n↓ + n↑} as defined in Observation 2. Considering the
numerator, the adjoint matrix of a linear combination of Frobenius covariants
Ãi will only have positive entries when it is a linear combination of n↓ − 1
distinct Frobenius covariants as the adjoint matrix contains minors of degree
n↓ − 1. By applying Lemma 3 we observe that only remaining exponential
terms in the numerator are those that correspond to sums over combinations
ck ∈ C of n↓ eigenvalues. ut

As λ̂k is ordered in decreasing order the leading exponential term is eλ̂1 . Con-
sidering (19) the limiting distribution Ψ∞ becomes:

Ψ∞ := lim
x→∞

Ψ(x) =
Ĉ1

Â1

. (23)

Using this we can derive the tail behaviour of Ψ(x):

Lemma 5 Ψ(x) has an exponential tail that behaves as

Ψ∞ − Ψ(x)→ Ge−κx, x→∞, (24)

where

κ = λn↑ , G =
Ĉ1Â2 − Â1Ĉ2

Â2
1

and κ is the maximal (least) negative eigenvalue of Q.

Proof Subtracting Ψ∞ from the expression of Ψ(x) in Lemma 4 gives:

Ψ∞ − Ψ(x) =
Ĉ1

Â1

− Ĉ1e
λ̂1 + Ĉ2e

λ̂2 + . . .+ Ĉme
λ̂m

Â1eλ̂1 + Â2eλ̂2 + . . .+ Âmeλ̂m

,

=
[Ĉ1Â2 − Â1Ĉ2]eλ̂2 + . . .+ [Ĉ1Âm − Â1Ĉm]eλ̂m

Â1[Â1eλ̂1 + Â2eλ̂2 + . . .+ Âmeλ̂m ]
.

When x→∞ the two leading exponential terms λ̂1 and λ̂2 remain:

Ψ∞ − Ψ(x)→ Ĉ1Â2 − Â1Ĉ2

Â2
1

eλ̂2−λ̂1 , x→∞. (25)

According to Kulkarni [16, Theorem 11.5] the eigenvalues of Q, resulting from
det[R− λT ] = 0 can be ordered as follows:

Re(λ1) ≤ Re(λ2) ≤ . . . ≤ Re(λn↑) < 0 < Re(λn↑+2) ≤ · · · ≤ Re(λn↑+n↓).
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there are n↑ eigenvalues with negative real part, one eigenvalue is equal to
zero and there are n↓ − 1 eigenvalues with positive real part. In Definition 2

we defined λ̂k as the sum of n↓ unique eigenvalues. Consider λ̂1 and λ̂2:

λ̂1 = 0 + λn↑+2 + . . .+ λn↑+n↓ ,

λ̂2 = λn↑ + λn↑+2 + . . .+ λn↑+n↓ .

Observe that λ̂1 consists of n↓ − 1 eigenvalues with positive real part and one

eigenvalue equal to zero. The next λ̂2 is obtained by replacing the eigenvalues
equal to zero with the eigenvalue with least negative real part λn↑ . Therefore

λ̂2 − λ̂1 = max
i∈{i:λi<0}

λi = λn↑ .

Plugging this in (25) gives:

Ψ∞ − Ψ(x)→ Geκx, x→∞,

with

G :=
Ĉ1Â2 − Â1Ĉ2

Â2
1

and

κ := max
i∈{i:λi<0}

λi = λn↑ .

ut

From Lemma 5 we established that Ψ(x) has an exponential tail Ge−κx. Here
G is a matrix while we are interested in the general case averaging over all
transitions. Therefore we define the following transition matrices:

Definition 5

PBI := Ψ∞ =
Ĉ1

Â1

, (26)

PIB := U = −
(
I 0
)(T↓↓ T↓0

T0↓ T00

)−1(
T↓↑
T0↑

)
, (27)

PBB := PBIPIB = −
(
Ψ∞ 0

)(T↓↓ T↓0
T0↓ T00

)−1(
T↓↑
T0↑

)
, (28)

where PBI is the transition matrix from a busy to an idle period, PIB is
the transition matrix from an idle to a busy period and PBB is the transition
matrix between states that initiate busy cycles. In PBI , Ψ

∞ is transition matrix
from a state that initiates a busy period to the state that terminates the busy
period. Recall that U is the transition matrix from Definition 2 for transitions
from idle period states to busy period initiating states.
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We use transition matrix PBB for calculating the stationary distribution
πB over states (i ∈ S↑) that initiate a busy period. The stationary distribution
πB is the solution of:

πBPBB = πB , (29)∑
πB = 1

Corollary 1 The overall expected tail of the distribution on the maximum is
given by:

P{M+ > z} → be−κz, x→∞, (30)

where b = πB
Ĉ1Â2−Â1Ĉ2

Â2
1

e and κ = λn↑ .

Proof The stationary distribution of states that initiate a busy period is given
by πB . The marginal distribution of the maximum in a busy period is given
by Ψ(x) and is conditioned on the states i ∈ S↑ that initiate a busy period.
The overall distribution of the maximum is given by:

πBΨ(x)e.

We have to add the rows and weight the sums according to the stationary
distribution πB . The same holds for the exponential tail parameter G from
Lemma 5:

b := πBGe. (31)

We define the maximum of an arbitrary busy cycle by:

P{M+ ≤ x}

where M+ represents the stochastic variable corresponding to the maximum
of the busy cycle. Similar to Iglehart [13, Lemma 1] we obtain an expression
for

P{M+ > z} → be−κz, x→∞.

In our case b = πB
Ĉ1Â2−Â1Ĉ2

Â2
1

e and κ = λn↑ . ut

Lemma 6 Let M+(k) be the maximum of the kth busy cycle. Then the fol-
lowing holds:

lim
n→∞

P{κ max
1≤k≤n

M+(k)− log(bn) ≤ x} = Λ(x), (32)

where

Λ(x) = exp[−e−x]. (33)
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Proof In Corollary 1 we showed that the maximum of a busy cycle has an
exponential tail according to:

P{M+ > z} → be−κz, x→∞.

Using the same arguments as in Iglehart [13, Lemma 2] we can derive that

lim
n→∞

P{κ max
1≤k≤n

M+(k)− log(bn) ≤ x} = Λ(x)

The following extreme value theorem argument can be used:

P{ max
1≤k≤n

M+(k) ≤ x+ log(bn)

κ
}

= Pn{M+(1) ≤ x+ log(bn)

κ
}

=
[
1− b exp[−(x+ log(x+ bn))]+

o(exp[−(x+ log(n))])
]n
.

ut

3.2 Maximum with respect to time

Rather than the asymptotics for the busy cycles, we are interested in the
evolution of the maximum over time.

For this we use a result in Kulkarni and Tzenova [17]. In this paper an ex-
pression is derived for the joint mean first passage time in a Markov Modulated
fluid queue:

E[τS↓ | X(0) = x, ϕ(0) = i], i ∈ S,
τS↓ := inf{t > 0 : X(t) = 0, ϕ(t) ∈ S↓}.

The joint mean first passage time will be represented by function fi(x):

fi(x) := E[τS↓ | X(0) = x, ϕ(0) = i], i ∈ S. (34)

An expression for the joint mean first passage time can be obtained by solving
a system of differential equations:

R
df(x)

dx
+ Tf(x) + e = 0. (35)

with boundary condition:

fi(x) = 0, ∀i ∈ S↓. (36)

where R = diag(r1, . . . , rn) is the diagonal matrix with rates of change, T is
the generating matrix and where e is a column vector of ones. Here eigenvalues
λj as the solution to

det[R− λT ] = 0 (37)
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and corresponding right eigenvectors φrj for which holds:

λiRφ
r
j = Tφrj . (38)

Note that the eigenvalues are equal to the eigenvalues obtained in (14). Re-
call that the eigenvalues of Q, ordered in increasing order, have the following
property:

Re
(
λ1
)
≤ Re

(
λ2
)
≤ · · · ≤ Re

(
λn↑
)
< 0 < Re

(
λn↑+2

)
≤ · · · ≤ Re

(
λn↑+n↓

)
.

In Kulkarni and Tzenova [17, Theorem 4.2] the solution for (35) is given
by:

f(x) =

n↓+n↑∑
j=1+n↑

ajφ
r
je
−λjx − ex

d
+ g. (39)

In this expression g a solution of

Tg = −(cR+ I)e. (40)

Note that rank(T ) = n − 1 therefore we have one free variable in g and fix
gn = 0 in order to get a solution to (40). Coefficients aj are obtained from the
solution to:

n↓+n↑∑
j=1+n↑

ajφ
r
ij + gi = 0, ∀i ∈ S↓, ri < 0, (41)

where φrij is the ith entry of eigenvector φrj .
Resulting from the equation (38) we obtain eigenvectors that are parti-

tioned into:

φr =

φr↓φr0
φr↑

 .

For the sake of readability we omit the index j in his expression. There are n0
states with ri = 0 therefore we write:

λ

R↓ 0 0
0 0 0
0 0 R↑

φr↓φr0
φr↑

 =

T↓↓ T↓0 T↓↑T0↓ T00 T0↑
T↑↓ T↑0 T↑↑

φr↓φr0
φr↑


and obtain:

φr0 = −T−100 T0↓φ
r
↓ − T−100 T0↑φ

r
↑. (42)

Plugging in (42) gives:

λ

(
R↓ 0
0 R↑

)(
φr↓
φr↑

)
=

(
T↓↓ − T↓0T−100 T0↓ T↓↑ − T↓0T−100 T0↑
T↑↓ − T↑0T−100 T0↓ T↑↑ − T↑0T−100 T0↑

)(
φr↓
φr↑

)
.
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The resulting eigenvectors will become:

φr =

 φr↓
−T−100

[
T0↓φ

r
↓ + T0↑φ

r
↑
]

φr↑

 . (43)

Observe that this is equivalent using the eigenvalues and vectors from matrix
Q (see Equations 14-16 ) and plugging this into (43).

In order to have a valid solution only positive eigenvalues can contribute to
(39). Let Φ be the matrix consisting of all right-eigenvectors ordered according
to all corresponding eigenvalues with non negative real parts Re

(
λn↑+1

)
= 0 ≤

· · · ≤ Re
(
λn↓+n↑

)
. We now partition matrix Φ into

Φ =

Φ↓
Φ0

Φ↑,

 , (44)

where Φ↓ is n↓ × n↓, Φ0 is n0 × n↓ and Φ↑ is n↑ × n↓.

Definition 6 We define the conditional expected duration of a busy period
and idle period by:

E[CB ] :=
(
E[τS↓ | X(0) = 0, ϕ(0) = i], i ∈ S↑

)
, (45)

τS↓ := inf{t > 0 : X(t) = 0, ϕ(t) ∈ S↓},

E[CI ] :=
(
E[τS↑ | X(0) = 0, ϕ(0) = i], i ∈ S↓

)
, (46)

τS↑ := inf{t > 0 : ϕ(t) ∈ S↑}.

Lemma 7 The mean duration of a busy period starting in state i ∈ S↑ is
given by:

E[CB ] = Φ↑Φ
−1
↓ g↓ + g↑ (47)

where Φ is the block partitioned matrix with right eigen vectors from (44)
corresponding to non negative eigenvalues, g is the solution to:

Tg = −(cR+ I)e

with vector g partitioned in

g =

g↓g0
g↑

 .

Proof The solution for (35) is given by:

f(x) =

n↓+n↑∑
j=1+n↑

ajΦje
−λjx − ex

d
+ g. (48)
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Coefficients aj are obtained from the solution to:

n↓+n↑∑
j=1+n↑

ajΦij + gi = 0, ∀i ∈ S↓, ri < 0, (49)

where Φij is the ith entry of jth eigenvector Φj in eigenvector matrix Φ. We
are interested in the mean first passage time for a busy period started at x = 0.
Therefore we take f(0):

f(0) =

n↓+n↑∑
j=1+n↑

ajΦj + g↑.

Switching to matrix notation gives:

f(0) = Φ↑a+ g, (50)

where

Φ↓a+ g↓ = 0.

Matrix Φ↓ is invertable, therefore we can write:

a = −Φ−1↓ g↓. (51)

Plugging (51) in (50) gives:

f(0) = Φ↑Φ
−1
↓ g↓ + g↑. (52)

ut

Definition 7 We define the expected busy cycle time conditioned on starting
in a state i ∈ S↑ by:

E[CBB ] := E[τB | ϕ(0) = i,X(0) = 0], i ∈ S↑,
τB := inf{t > τS↓ : ϕ(t) ∈ S↑},
τS↓ := inf{t > 0 : X(t) = 0, ϕ(t) ∈ S↓}.

Lemma 8 The overall mean expected busy cycle length is given by:

E[C] = πB

[
E[CB ] + PBIE[CI ]

]
,

where

E[CI ] = −
(
I 0
)(T↓↓ T↓0

T0↓ T00

)−1
e, (53)

resulting in

E[C] = πB

[
Φ↑↓Φ

−1
↓↓ g↓ + g↑ −

(
Ψ∞ 0

)(T↓↓ T↓0
T0↓ T00

)−1
e

]
,

with Ψ∞ = Ĉ1

Â1
as defined in (23).
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Proof In Lemma 7 we obtained an expression for the mean busy period. For
the idle period using standard first passage time calculations for a CTMC we
obtain:

E[CI ] = −
(
I 0
)(T↓↓ T↓0

T0↓ T00

)−1
.

Using E[CB ] and E[CB ] the expected cycle time can be obtained:

E[CBB ] = E[CB ] + PBIE[CI ].

When a busy period is initiated for a given initiating state i ∈ S↑ the expected
passage time is given by E[CB ]. Remember that in Definition 5, Equation (26)
we defined PBI = Ψ∞. From this the expected idle time after a busy period
that has been initiated by state i ∈ S↑ is obtained:

E[τS↑ − τ0 | X(0) = 0, ϕ(0) = i] = PBIE[CI ], i ∈ S↑, (54)

τS↑ := inf{t > τ0 : ϕ(t) ∈ S↑},
τ0 := inf{t > 0 : X(t) = 0}.

This corresponds to taking the expectation over E[CI ] with respect to the
transition matrix PBI . Combining (53) and (54) gives the expected cycle time
given the busy cycle started in state i ∈ S↑:

E[CBB ] = E[CB ] + PBIE[CI ], i ∈ S↑.

In (29) we defined the distribution πB of states that initiate a busy period.
The mean cycle time becomes:

E[C] = πB

[
E[CB ] + PBIE[CI ]

]
= πB

[
Φ↑↓Φ

−1
↓↓ g↓ + g↑ −

(
Ψ∞ 0

)(T↓↓ T↓0
T0↓ T00

)−1
e

]
.

ut

Theorem 1 Let M∗(t) := sup
0≤s≤t

{M(s)}. The limiting distribution of M∗(t)

is given by:

lim
t→∞

P{κM∗(t)− log(
b

E[C]
t) ≤ x} = Λ(x). (55)

where:

b = πB
Ĉ1Â2 − Â1Ĉ2

Â2
1

e,

E[C] = πB

[
Φ↑↓Φ

−1
↓↓ g↓ + g↑ −

(
Ψ∞ 0

)(T↓↓ T↓0
T0↓ T00

)−1
e

]
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and

κ = λn↑ .

Proof The proof is similar to that of Iglehart [13, Theorem 3]. In Lemma 6 we
showed that:

lim
n→∞

P{κ max
1≤k≤n

M+(k)− log(bn) ≤ x} = Λ(x).

Define {c(t) : t ≥ 0} as the renewal process associated with the length of busy
cycles. Then M∗(t) satisfies:

lim
t→∞

P{ max
0≤k≤c(t)

M+(k) ≤ x} ≤M∗(t) ≤ lim
t→∞

P{ max
0≤k≤c(t)+1

M+(k) ≤ x}.

(56)

From Lemma 8 we know that:

E[C] = πB

[
Φ↑↓Φ

−1
↓↓ g↓ + g↑ −

(
Ψ∞ 0

)(T↓↓ T↓0
T0↓ T00

)−1
e

]
.

Considering c(t) the following weak law of large numbers can be derived:

c(t)

t
→ 1

E[C]
, t→∞. (57)

Using Berman [4, Theorem 3.2] and Lemma 6 the limiting distribution be-
comes:

lim
t→∞

P{κM∗(t)− log(
b

E[C]
t) ≤ x} = Λ(x). (58)

The term 1
E[C] from (57) represents the expected number of busy cycles per

time unit and corresponds to the c in Berman [4, Theorem 3.2]. ut

From Theorem 1 the expression for the asymptotic distribution for the
maximum of fluid queue

P{M∗(t) > bmin} < pempty (59)

can now be used to approximate the tail probabilities:

P{κM∗(t)− log(
b

E[C]
t) > x} ≈ 1− Λ(x), (60)

P{M∗(t) > bmin} ≈ 1− Λ(κbmin − log(
b

E[C]
t)), (61)

whenever we have a sufficiently large bmin such that at least bmin >
log( b

E[C]
t)

κ .
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Define pempty as the maximal allowed probability that a buffer, with initial
contents bmin, will become empty during play-out of a video stream of length
t = Tplay. Given pempty, that represents the maximum probability a video is
disturbed during Tplay, the initial buffer size bmin should be chosen such that:

bmin >
− log[− E[C]

bTplay
log(1− pempty)]

κ
. (62)

This holds when we have Tplay sufficiently large such that

Tplay > − log(1− pempty)
E[C]

b
.

Furthermore M∗(Tplay) represents the limiting distribution on the maximum
congestion over time. Then if we consider M∗(Tplay) there should hold that:

P{M∗(Tplay) > bmin} < pempty. (63)

Using the fact that when t → ∞ the maximum M∗ converges to a Gumbel
distribution the following asymptotic expectation of the maximum level can
be derived:

E[M∗(t)]→
log
(
bt

E[C]

)
+ γ

κ
, t→∞, (64)

where γ ≈ 0.577215665 is the Euler-Mascheroni constant. Observe that E[M∗(t)]
grows logarithmically over time with logarithmic slope 1

κ .

4 Numerical examples

In Section 3 we derived that the combined buffer contents, that is congested
and in the play-out buffer X(t) + Y (t) = M∗(t), equals the maximum of the
congestion process X(t). Moreover the distribution M∗(t) can be approxi-
mated by an extreme value distribution for sufficiently large t. From this we
derived a mapping from the maximum buffer under-run probability pempty
and streaming video duration Tplay to minimal initial buffer level bmin. We
will now run simulations in order to evaluate the accuracy of our mapping.
Our parameter setting is as follows:

T =

[
−α1 α1

α2 −α2

]
,

α1 = 0.1, α2 = 0.2,

s1 = 8Mbps, s2 = 2Mbps,

Rplay = 4Mbps,

r1 = −4, r2 = 2,

R = diag(
[
r1 r2

]
).
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(b) Logarithmic time scale.

Fig. 3: Sample paths of M∗(t) compared to asymptotic mean as expressed in
(64). Sample paths a and b correspond to realisations of X(t) +Y (t) from the
fluid model simulation.

The simulation consists of 1.000.000 sample paths. Examples of realizations
of sample paths are represented in Fig. 3. In these figures we observe that the
sample paths follow the asymptotic mean quite well. Fig. 3b is the logarith-
mic time scale variant of Fig. 3a. On the logarithmic time scale in Fig. 3b
the logarithmic growth behavior of the sample paths with respect to time t,
determined by parameter κ, can be observed.

In Fig. 4 simulations ran for different values of Tplay while keeping Rplay at
a fixed level. On the vertical axis the required buffer (in seconds) is matched
against the corresponding tail probability pempty on the horizontal axis. The
lines indicate for a given Tplay and tail probability what maximal bit rate is
supported such that the QoS requirement is met, as stated in Equation (5).
In addition we determine the required buffer using our asymptotic result. The
marked and unmarked lines thow the comparison of determining the required
buffer using simulation to determining the required buffer using our asymptotic
result. Here we observe that for reasonably long Tplay (minutes) the asymtotic
result gives a good handle for determining the required buffer time.

In Figs. 5a-5i the buffer time is set to a fixed level, while the maximum
supported video bitrate is determined. In this setting the network parameters
remain fixed while the play-out rate Rplay is varied from 2.1 Mbps to 5.9
Mbps. This range is determined by the fact that for the given parameters a
minimal bitrate of 2 Mbps is archieved and the average bitrate is equal to
6Mbps. The maximum supported level determined by simulation is compared
to the theoretical maximum supported bitrate. Using (61) for given parameters
(including Rplay) the empty buffer probability pempty can be approximated.
Note that κ, b and E[C] all depend on Rplay. Finding a supported Rplay using
(61) is done by applying a search method.
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Fig. 4: Required buffer (from simulations) for given Tplay and pempty compared
to theoretical required level given by (62).

5 Discussion and future work

We studied a model where video is streamed over an IP network and buffered
before it is rendered at a client. The network is modelled as a Markov Mod-
ulated fluid queue where a CTMC determines the actual transmission rate
through the network. For the playback buffer an initial buffer level bmin has
to be chosen such that the probability that the video will stop before the end
has been reached will not exceed the agreed service level.

In our exposition, we assumed that the video application was streamed
at constant bit rate. For practical application, however, it is more realistic to
assume that the video produces variable bit rate flows. Our model still applies
to this case, if we take the transport unit to be time rather than bits or packets.
The streaming and play-out rate are then Rplay = 1 (one unit of time is played
each unit of time). To incorporate the variable bit rate into our model, we
modify the network throughput process ϕ(t) as follows. We construct it from
two independent components ϕ(t) = (ϕ1(t), ϕ2(t)). The first component is a
CTMC and again determines the network capacity at time t in bits per time
unit, say speed s1i if ϕ1(t) = i. The second component ϕ2(t) is also a CTMC,
independent of ϕ1(t), and determines the length of time encoded per bit for the
video segments transported through the network at time t, say s2j if ϕ2(t) = j.

Setting the network speeds as si,j = s1i s
2
j whenever ϕ(t) = (i, j), our original

model can be directly used. Of course, exploiting the structure of the process
ϕ(t) (its generator, for example, can be written as the Kronecker product of
the generators of ϕ1 and ϕ2) was not part of the scope of our analysis here.
Incorporating this structure may further enhance efficient computations.

We have shown that the probability of this event corresponds to the event
where maximum congestion level M(t) := sup0≤s≤tX(s) exceeds the initial
buffer level bmin. Moreover we derived that the asymptotic distribution of the



Title Suppressed Due to Excessive Length 27

maximum level M(t), t → ∞ has a Gumbel distribution. For smaller t the
expression of the asymptotic distribution can be used to approximate the tail
probability P{M(T ) > bmin}. From this expression a formula is derived that
maps p0, tplay and the network and video parameters to a minimal buffer level
bmin. Simulation results indicate that the buffer level that is obtained from
the asymptotics is an overestimation of the real necessary buffer level. The
longer the video stream the more accurately the asymptotic distribution of
the maximum corresponds to the real distribution of the maximum.

The convergence to the extreme value distribution depends on the rate
in which transitions (of the CTMC that models throughput) occur. In the
examples we observe that for small timescale the model is less accurate. An
improvement would be adding an approximation for the behavior on shorter
time scale. We know that when t ≈ 0 the distribution quantiles grow linearly
with respect to transmission rate and initial distribution. We expect a mix
of the small timescale linear behavior model and the long time scale extreme
value model to become more accurate.

For practical purposes it may be difficult to estimate the transition prob-
abilities of the modulating process ϕ(t). In principle, this can be done using
the classical maximum likelihood estimators as described for example in [19,
Section 1.10]. For the choice of the state space it is natural to let the state
of the modulating process coincide with the measured network rate; the gran-
ularity then determines the dimension of the transition matrix. In practice,
one may however not want to go into estimation of the network characteris-
tics, but rather try to adapt the coefficients κ and E[C]/b in the dimensioning
rule formulated in relation 62. Through live measurements, one may decide
on adapting the estimates for these coefficients so as to improve quality when
the stall probability is too large, or reduce the initial delay, when the buffer is
never close to empty.
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A Proof of Lemma 2

A.1 Preliminaries

Definition 8 Let A be a n×m matrix:

A =


a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...
...

. . .
...

an,1 an,2 · · · an,m

 .
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Then any order–p minor of A will be denoted as:

A

(
i1 i2 · · · ip
k1 k2 · · · kp

)
:= det



ai1,k1

ai1,k2
· · · ai1,kp

ai2,k1
ai2,k2

· · · ai2,kp

...
...

. . .
...

aip,kp aip,k2
· · · aip,kp


 ,

provided that

1 ≤ i1 < i2 < · · · < ip ≤ m,

1 ≤ k1 < k2 < · · · < kp ≤ n,

p ≤ m,n.

The Binet-Cauchy formula on minors [12](Page 12):
Let A be an m × n matrix, B be a n × q matrix and C be an m × q matrix and C = AB.
Then any minor of C of order p is the sum of the products of all possible minors of A with
order p and corresponding minors of the same order of B:

C

(
i1 i2 · · · ip
j1 j2 · · · jp

)
=

∑
1≤k1<k2<···<km≤n

A

(
i1 i2 · · · ip
k1 k2 · · · kp

)
B

(
k1 k2 · · · kp
j1 j2 · · · jp

)
.

Lemma 9 Let A be a n× n matrix:

A =

m∑
k=1

Ak

with:

Ak =

ak,1,1 · · · ak,1,n...
. . .

...
ak,n,1 · · · ak,n,n

 .

Define A as a n×mn matrix with:

A =
[
A1 A2 · · · Ak

]
,

and I is a mn× n matrix (consisting of m n× n identity matrices In) defined by:

I =
[
In In · · · In

]T
.

Let V be the set of subsets with exactly n− 1 elements from the set {1, 2, . . . ,mn} which is
defined by:

V = {(k1, k2, . . . , kn−1) : 1 ≤ k1 < k2 < · · · < kn−1 ≤ mn}.

Then the following holds:

adj(A) =
∑
v∈V

adj
(
FC(A, v)FR(I, v)

)
,

with operators:

FC(A, v) =


a1,v1 · · · a1,vn−1

...
. . .

...
an,v1 · · · an,vn−1

 ,
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FR(I, v) =

 iv1,1 · · · iv1,n
...

. . .
...

ivn−1,1 · · · ivn−1,n

 ,

Operator FC(A, v) selects the columns from A according to vector v, while operator FR(I, v)
selects rows from I according to vector v.

Proof We write
m∑

k=1
Ak = AI =

[
A1 A2 · · · Ak

] [
In In · · · In

]T
. Using the Binet-Cauchy

formula on minors, this can be rewritten to:

adj [A] = adj [AI] =



∑
v∈V

a1,1(v)
∑
v∈V

a1,2(v) · · ·
∑
v∈V

a1,n(v)∑
v∈V

a2,1(v)
∑
v∈V

a2,2(v) · · ·
∑
v∈V

a2,n(v)

...
...

. . .
...∑

v∈V
an,1(v)

∑
v∈V

an,2(v) · · ·
∑
v∈V

an,n(v)



=
∑
v∈V


a1,1(v) a1,2(v) · · · a1,n(v)
a2,1(v) a2,2(v) · · · a2,n(v)

...
...

. . .
...

an,1(v) an,2(v) · · · an,n(v)


=
∑
v∈V

adj
(
FC(A, v)FR(I, v)

)
,

with:

ai,j(v) = A

(
1 · · · i− 1 i + 1 · · · n
v1 · · · vi−1 vi · · · vn−1

)
I

(
v1 · · · vj−1 vj · · · vn−1

1 · · · j − 1 j + 1 · · · n.

)
.

ut

A.2 Proof of Lemma 2

Proof Let V be the set of subsets with exactly n − 1 elements from the set {1, 2, . . . ,mn}
which is defined by:

V = {(k1, k2, . . . , kn−1) : 1 ≤ k1 < k2 < · · · < kn−1 ≤ mn}.

We define P as the set containing all k-permutations of n−1 elements from the set {1, . . . , n}.
Furthermore we define C as the set with all combinations of n − 1 elements from the set
{1, . . . ,m}. For each combination c ∈ C we define:

Ac =
[
Ac1 Ac2 · · · Acn−1

]
,

Ic =
[
In In · · · In

]T
,

and thus:

AcIc =
∑
k∈c

Ak.

Next we apply Lemma 9:

adj[A] =
∑
v∈V

∏
k∈v

bdk/ne

 adj
(
FC(A, v)FR(I, v)

)
,
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with

A =
[
A1 A2 · · · Ak

]
,

and

I =
[
In In · · · In

]T
.

Because all matrices Ak have rank 1 the only adjugates that remain are those where there
are n− 1 columns, at n− 1 different positions, from n− 1 different Ak matrices. All other
combinations of columns result in a matrix with rank < n− 1 for which the minors of order
n− 1 are zero. Thus the only elements from V that contribute are those that correspond to
any k-permutation of n − 1 columns from the set {1, . . . n} where each column is selected
from a distinct matrix Ak, k = 1, . . . ,m. Note that each selected column remains exactly
on its originating column position in the Ak matrix. As the only combinations consisting of
n−1 columns at unique positions from n−1 unique matrices contribute to non-zero minors
it holds that:

∑
v∈V

∏
k∈v

bdk/ne

 adj
(
FC(A, v)FR(I, v)

)

=
∑
c∈C

∑
p∈P

∏
k∈c

bk

 adj
(
FC(Ac, vp)FR(Ip, vp)

)
,

where vp is the vector that selects the pith column from matrix Aci :

(vp)i := n(i− 1) + pi, i ∈ {1, . . . , n− 1}, p ∈ P.

We now define Vc as be the set of subsets with exactly n − 1 elements from the set
{1, 2, . . . , n(n− 1)} which is defined by:

Vc = {(k1, k2, . . . , kn−1) : 1 ≤ k1 < k2 < · · · < kn−1 ≤ n(n− 1)}.

For each combination c ∈ C we can do the opposite: add again the terms (corresponding to
zero valued minors) from the set Vc corresponding to columns of Ac =

[
Ac1 · · · Acn−1

]
:

∑
c∈C

∑
p∈P

∏
k∈c

bk

 adj
(
FC(Ac, vp)FR(Ip, vp)

)
,

=
∑
c∈C

∏
k∈c

bk

 ∑
v∈Vc

adj
(
FC(Ac, v)FR(Ic, v)

)
,

=
∑
c∈C

∏
k∈c

bk

 adj

∑
k∈c

Ak

 .

ut
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(a) Tplay = 60s, buffer= 10s.
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(b) Tplay = 120s, buffer= 10s.
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(c) Tplay = 600s, buffer= 10s.
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(d) Tplay = 3600s, buffer= 10s.
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(e) Tplay = 120s, buffer= 30s.
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(f) Tplay = 600s, buffer= 30s.
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(g) Tplay = 3600s, buffer= 30s.
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(h) Tplay = 600s, buffer= 60s.
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(i) Tplay = 3600s, buffer= 60s.

Fig. 5: Supported bitrate for given Tplay and initial buffer level (in seconds)
with respect to pempty.
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