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ABSTRACT
We propose a modelling framework for risk-neutral stochastic
processes nested in a real-world stochastic process. The framework
is important for insurers that deal with the valuation of embedded
options and in particular at future points in time. We make use of
the class of State Space Hidden Markov models for modelling the
joint behaviour of the parameters of a risk-neutral model and the
dynamics of option market instruments. This modelling concept
enables us to perform non-linear estimation, forecasting and
robust calibration. The proposed method is applied to the
Heston model for which we find highly satisfactory results. We
use the estimated Heston model to compute the required capital
of an insurance company under Solvency II and we find large
differences compared to a basic calibration method.
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1. Introduction

In post-crisis risk management, both high-quality real-world and risk-neutral scenario
models are required. Obviously, when a real-world model (Steehouwer 2005) is not able
to model tail behaviour properly, the Solvency Capital Requirement (SCR) under
Solvency II for insurance companies may be under- or over-valued. An advanced
risk-neutral model (Brigo and Mercurio 2007; Hull 2006) is required to model relevant
empirical facts in option market data.

We present a modelling framework to compute values of options in insurance
that start at a future point in time. Such a modelling framework is important for ex-
ante risk management for insurance companies (Zenios and Ziemba 2007).
Insurance products such as unit-linked, variable-annuity and profit sharing contain
guarantees that are valued using risk-neutral valuation techniques. Since valuation
via Monte Carlo simulations (Glasserman 2004) is the market standard, this gives
rise to a so-called nested Monte Carlo simulation problem, see Figure 1. Nested
simulations for valuation recently gained increased interest in risk management
applications of insurers (Bauer, Reuss, and Singer 2012). Instead of solving the
nested simulation problem (Bauer, Bergmann, and Kiesel 2010; Cramwinckel,
Singor, and Varbanescu 2015; Bauer, Bergmann, and Reuss 2010), here we propose
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a different modelling framework for the risk-neutral models to compute future
option values. In order to compute future option values at given monitoring dates,
we need a risk-neutral model that is consistent with the generated real-world
dynamics of interest rates and implied volatility (IV) at each monitoring date.

In Bauer, Reuss, and Singer (2012), a mathematical framework is provided for the
derivation of the required risk capital under the European regulatory framework
Solvency II. Different alternatives for the numerical implementation based on nested
simulations are reviewed. The model parameters should vary in each scenario in order
to obtain consistency with the real-world scenarios. The calibration to the simulated
real-world dynamics of option market prices would be too time consuming to per-
form for each real-world scenario set and hence avoiding such calibrations is desired
in practice. We specify and calibrate a simulation model for the model parameters, so
that calibration time is reduced.

In Feng et al. (forthcoming) and related articles (Stein, 2013; Stein, 2014), the
computation of exposure distributions at a future point in time is discussed. These
distributions are required for the computation of a credit valuation adjustment
and potential future exposure, that are relevant for banks. Nested simulations are
avoided by deriving an efficient approximation technique based on regression.
First, risk-neutral scenarios are generated, that are used to calculate option values
via regression. Second, real-world scenarios are generated and linked to the earlier
regressed option values for the risk-neutral scenarios. Our methodology is differ-
ent, we directly forecast the model parameters under the real-world measure and
hence we embed the risk-neutral measure dynamics in the real-world measure
dynamics.

The problem of modelling the dynamics of equity index option prices (often in terms
of IV) has been investigated intensively in the academic literature. The focus is however
typically on the empirical facts in IV surfaces and not on the link with an underlying

Figure 1. The dark grey lines refer to risk-neutral scenarios and the black (and light grey) lines refer
to real-world scenarios. The challenge is to specify a risk-neutral valuation model, i.e. the model
parameters Θ, in each real-world node.
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risk-neutral model that can be used for out-of-sample valuation. The latter is relevant to
be able to determine the future value of embedded options and is therefore considered
in this article. In Homescu (2011), a survey of methodologies is carried out for
constructing IV surfaces at a certain time t. In Gatheral and Jacquier (2014), the
Stochastic Volatility Inspired (SVI) parametrization method for equity option IVs is
discussed. In Cont and Da Fonseca et al. (2002), a study to the dynamics of the IV
surfaces is performed and it is shown that they are driven by a small number of random
factors. A factor model is proposed, which is compatible with the empirical observa-
tions. In Carr and Liuren (2010), a partial differential equation (PDE) approach is
presented to model the dynamics of IVs.

We make use of the class of the well-known State Space Hidden Markov (SSHM)
models (Doucet and Johansen, 2009), that provide us a general modelling frame-
work. SSHM models gained interest in the last 20 years due to the increased
computational power and the improved estimation techniques. SSHM models are
applied in many applications like navigation, time series analysis or robotic motion
planning and control. By using the class of SSHM models, we can connect the
dynamics of the model parameters of a risk-neutral model to the dynamics of the
option market prices. By modelling the model parameters as stochastic processes
under the real-world measure, we enforce consistency with the option market price
dynamics and the risk-neutral model can be used for (out-of-sample) valuation at a
monitoring date.

During the calibration of the SSHM models, we reduce the dimension of the
calibration problem to improve the numerical stability of the model parameters with
respect to the option market data, i.e. we wish to avoid overfitting issues. Numerical
stability is an important requirement in practice, because stable balance sheet valuations
are desired. We reduce the dimension by distinguishing static and dynamic model
parameters, where static model parameters do not change over time. This is also
beneficial for present value calibrations (and valuations) because only the dynamic
part needs to be calibrated.

We apply the proposed framework to the risk-neutral Heston model (Heston,
1993), which is popular in practice due to its flexibility in modelling IV structures,
and use S&P-500 index option data for calibration. Although the Heston model can
be well calibrated to market option data, we show that some industry standard
numerical techniques suffer from numerical instability, which results in undesired
noisy calibrations. Using the proposed modelling framework, we reduce the 5 risk
factors, i.e. the mean reversion, initial variance, long-term variance, volatility of
variance and correlation, of the Heston model to one single hidden-risk factor. The
calibration fit to the market data is highly satisfactory with respect to accuracy and
stability.

The remainder of this article is organized as follows. In Section 2, we outline
the problem and formulate the mathematical framework. In Section 3, we propose
the modelling framework for predicting the risk-neutral model parameters under
the real-world probability measure. In Section 4, we apply the proposed metho-
dology to the Heston equity model and we show the impact of the proposed
methodology by valuing a unit-linked insurance product. We conclude the study
in Section 5.
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2. Methodology

2.1. Risk management context

In risk management, insurance companies are required to compute present and future
embedded option values (Bauer, Bergmann, and Reuss, 2010). Embedded options are
rights in (life) insurance policies or pension contracts that may provide a profit to policy
holders, but never a loss. The preferred valuation method is by means of risk-neutral
Monte Carlo simulations (Glasserman, 2004). Computing option values at present time
t ¼ 0 is straightforward, but the computation of future time option values is more
involved. At present time, we can download option market data, calibrate the model

parametersΘ 2 RdΘ and compute the embedded option values. The calibration step, i.e. to
determine the model parameters given the option market data, is more complicated at a
future time. Future option values are relevant for ex-ante risk management. In risk
management, one forecasts the balance sheet using real-world scenarios and in each
time step one determines the option value using risk-neutral Monte Carlo simulations,
see Figure 1. The combination of these two simulations is called a nested simulation.

2.2. Mathematical framework

2.2.1. Risk-neutral valuation
Let ðΩ;F ;Q Þ be a probability space, where Ω represents the space of all possible states
in the financial market, Q is the so-called risk-neutral probability measure and the
filtration F uf gu2½0;Tu� represents all information about the financial market up to time u

where Tu 2 Rþ is the maturity of the longest-term option in the option portfolio. We
assume that investors can trade continuously in a frictionless financial market. We
introduce a dZ-dimensional Markov process Zu;Θ

� �
u2½0;Tu�, to model the uncertainty in

the financial market required for option valuation, where Zu;Θ evolves under Q accord-
ing to the stochastic differential equation (SDE) in Equation (1) and is parametrized by

a dΘ-dimensional vector Θ 2 RdΘ ,

dZu;Θ ¼ μZ;ΘðZu;ΘÞduþ σZ;ΘðZu;ΘÞdWZ
u ; Z0;Θ 2 RdZ ; 0 � u � Tu

� �
: (1)

Here, μZ;Θ : RdZ 7!RdZ denotes the drift process, σZ;Θ : RdZ 7!RdZ�dZ the volatility pro-
cess and WZ are (correlated) standard Wiener processes.

We consider the valuation of tradable options in the market and embedded options
in insurance liabilities. We let V denote a set of dV tradable options and analogously we
let ~V represent a set of d~V embedded options that are part of the balance sheet of an

insurance company. We are interested in the valuation of V and ~V given the risk-
neutral model Zu;Θ with model parameters Θ. For notational convenience, we define the

valuation mapping of V as η : RdΘ 7!RdV . That is, the function η gives the values of the
options in V with respect to the risk-neutral model Zu;Θ, given a set of model
parameters Θ. Analogously, we define the mapping ~η as the valuation function of the
embedded options ~V . We note that prices for V are observable in the market, but this is
not the case for the embedded options ~V .

4 S. N. SINGOR ET AL.
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Let us denote the pay-off functions of V and ~V , respectively, by pV : RDZ � R 7! R

and p~V : RDZ � R 7! R , so that the future cash flows of the options are given by,
respectively,

Cu;V ¼ pVðu;Zu;ΘÞ; Cu;~V ¼ p~Vðu;Zu;ΘÞ:

The most well-known example is an equity put option with pay-off function
Cu;V ¼ max K � STu ; 0ð Þ, where K denotes the strike level, Tu the option maturity and
Su the equity index. The cash flows Cu;~V are in practice generated by the actuarial system

of an insurer. Under Q , option payments can be computed as expected discounted cash
flows with respect to a chosen numéraire process, e.g. the bank account Bu;r

� �
u2½0;Tu�,

with Bu;r ¼ e�
u
0 rv dv, where ruf gu2½0;Tu� is the risk-neutral risk-free interest rate process. We

furthermore define the discount factor by B�1
u;r ¼ 1

Bu;r
(the inverse bank account). In the

risk-neutral world, all individuals are indifferent to risk and expect to earn on all assets a
return equal to the instantaneous risk-free short rate. The risk-neutral option value is
then computed as the expected value under the risk-neutral measure:

ηðΘÞ ¼ EQ

ðTu

0
B�1
u;r Cu;V du

" #
; ~ηðΘÞ ¼ EQ

ðTu

0
B�1
u;r Cu;~V du

" #
:

Given a set of observed option prices V , we would like to find the parameters Θ such

that ηðΘÞ is the best approximation of V . We define the calibration function χ :

RdV 7! RdΘ by

χðVÞ ¼ arg min
Θ2DΘ

k V � ηðΘÞ k; (2)

where DΘ � RdΘ denotes the relevant domain of Θ. So, Θ ¼ χðVÞ is the best fit to V
with respect to norm k � k. We will use the Euclidean norm, which in particular means
that all option values are weighted equally, but note that it can be useful to apply
weights for extreme in or out of the money options. This calibration function is
computed using numerical optimization techniques, because closed form solutions
usually do not exist.

Once we have fitted the model parameters to the data, i.e. when we have computed
χðVÞ, the values of the embedded options readily follow from

~ηðχðVÞÞ ¼ EQ

ðTu

0
B�1
u;r Cu;~V du

" #
: (3)

In Section 3.4, we discuss the numerical stability of this function, and in particular how
it relates to η.

2.2.2. Nested simulation
We let P denote the real-world (physical) probability measure and Ytf gt2½0;Tt � with Tt 2
Rþ be a dY-dimensional Markov process to model the uncertainty of the real-world
financial market. We let Tt denote the horizon of the real-world simulation and t
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denotes time in the real-world simulation. The market variables, i.e. the interest rate
curve R and option instruments V , that are required for calibrating Θ follow hence
stochastic processes: Rtf gt2½0;Tt � and Vtf gt2½0;Tt �. Since the model parameters Θ of Zu;Θ

are connected to these stochastic market variables as shown in Equation (2), they
cannot be fixed given the uncertainty of the real-world market. Therefore, we model
them by a stochastic process Θtf gt2½0;Tt �.

This means that at each time t 2 ½0;Tt� a risk-neutral model is parametrized, as

Θt 7! Zu;Θt

� �
u2½0;Tu�:

By modelling the stochastic process Θt , we generalize the nested simulation framework
in Bauer, Reuss, and Singer (2012) because we also take the IV risk factor into account.
In Bauer, Reuss, and Singer (2012), the parameters in Θ are kept constant during the
real-world scenario simulation. The proposed modelling framework leads to a more
realistic modelling of market IVs and model parameters of a risk-neutral model. We
note that the embedded option values also follow a stochastic process ~Vt

� �
t2½0;Tt � given

the link with Θ in Equation (3), and the IV of an equity index option is obtained by
solving for the volatility parameter of the Black-Scholes formula.

During numerical computation, we simulate a stochastic process given a dis-
cretization in the time domain t 2 ½0;Tt�; the random sample is called a scenario
set. This can be applied to generate NP independent paths of the real-world

variables Yj
t with j ¼ 1; . . . ;NP. However, in order to calculate ηðΘtÞ using NQ

Monte Carlo simulations given a scenario set for Θt , we have in turn to simulate

Z
u;ΘðjÞ

t

n o
u2½0;Tu�

for each t 2 ½0;Tt� and scenario j ¼ 1; . . . ;NP of Θt . This is a nested

simulation. The scenarios for Z
u;ΘðjÞ

t

n o
u2½0;Tu�

are the inner scenarios, those for Yt

the outer scenarios. In the nested modelling structure in Figure 1, the dark grey
lines refer to the stochastic process Zu;Θt

� �
u2½0;Tu� given a scenario set of Θt and the

black (and light grey) lines refer to the real-world stochastic process Ytf gt2½0;Tt �.

There are two procedures that make nested simulations expensive. First, analytic
formulas often do not exist to compute the option values Vt . Applying analytic
formulas is advantageous regarding the computation time, but restrictive when
expanding the model set-up to hybrid models (Grzelak and Oosterlee, 2011), that
are generally required to obtain a high quality-of-fit with the data. In other words,
analytic formulas can only be derived for specific cases, such as the Black-Scholes and
Heston models for call/put options, but are often not available for hybrid models such
as the Heston Hull-White model. Therefore, Monte Carlo simulations (Glasserman,
2004) are often used to compute the risk-neutral option values Vt, which makes the
mapping η expensive to evaluate. Second, the calibration of the model parameters Θt

(see Equation (2)) for each time t and scenario j ¼ 1; . . . ;NP can generally not be
done in closed form. Numerical optimization techniques that can be used for calibra-
tion are generally expensive and they will be more time consuming in case of using
Monte Carlo simulations.

6 S. N. SINGOR ET AL.
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We do not aim to improve computation times by approximating η by an inexpensive
function. A relevant approximation method is the Least-Square Monte Carlo (LSMC)
(Bauer, Bergmann, and Reuss, 2010; Jain and Oosterlee, 2015). Another way to reduce
computation time is to make use of High Performance Computing (HPC). In
Cramwinckel, Singor, and Varbanescu (2015), a GPU framework for accelerating nested
simulations is proposed for simulating equity index option values.

In the proposed modelling framework, which we discuss in Section 3, we avoid the
numerical calibration procedure to obtain Θt given the market variables Yt , see
Equation (2). We make use of the class of SSHM models to directly model the stochastic
process Θt. The observable process Vt is subsequently modelled via the valuation
mapping ηðΘtÞ. We also discuss numerical stability of the model parameters with
respect to changes in the market option data for calibration.

3. Modelling framework

In this section, we explain the proposed modelling framework. In Section 3.1, we first
elaborate on the SSHM models. In Section 3.2, we discuss the estimation of SSHM
models. In Section 3.3, we discuss our proposed modelling framework. An important
requirement is to improve numerical stability of the model parameters Θ with respect
to the option market data, which we discuss in Section 3.4.

3.1. SSHM models

SSHM models provide a general and flexible framework for modelling time-series in a
broad range of applications. A thorough introduction into the field can be found in the
books (Doucet and Johansen, 2009; Cappé, Moulines, and Tobias, 2009). These models
provide a flexible framework in financial modelling for stochastic processes. The most
popular SSHM model is the linear Gaussian model, which can be estimated in closed
form using the well-known Kalman filter (Durbin and Koopman, 2012). However, in
most cases, the Kalman filtering method cannot be applied due to the non-linear
behaviour of the observable process.

For notation1, we let Xn :¼ Xtn and X1:n :¼ Xkf gtnk¼t1
(and similar for V). In an SSHM

modelling structure, we consider a hidden state process Xn 2 X that evolves accord-
ing to

X1 , f1;X;ψðX1Þ; Xn j Xn�1 ¼ xn�1ð Þ , fX;ψðxn jxn�1Þ; (4)

where Xn is the state at time tn, f1;X;ψ a probability density function (PDF) and fX;ψ
describes the transition from xn�1 to xn, where xn is a realization of Xn, with unknown

parameters ψ 2 Ψ � Rdψ . The hidden states are conditionally independent.
We are interested in the hidden states X1:N , but in our case we can only observe the

Vn 2 V process for n ¼ 1; . . . ;N. Conditional on X1:n, the observations Vn are assumed
to be independent and their marginal densities are given by

Vn j Xn ¼ xnð Þ , fV;ψðvn j xnÞ; (5)
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where fV;ψ describes the transition from xn to vn, with vn a realization of Vn. The non-
linear relation between xn and vn makes the SSHM model involved. In general, the
PDFs fX;ψ and fV;ψ are chosen to be well-known distribution functions. We assume that
all information in the observed data is explained by the underlying hidden process X1:N ,
so that specification of the correlation between Xn and Vn is redundant. Such an
assumption is standard in classical state space models. An overview of alternative
representations is provided in Murphy (2002).

3.2. Estimation

State inference given the observed process V1:N ¼ v1:N and fixed parameters ψ, we are
interested in inferring the states X1:N ¼ x1:N . In a Bayesian framework, inference of X1:n

given a realization v1:n of V1:n relies on the posterior distribution fψðx1:n jv1:nÞ:

fψðx1:n jv1:nÞ ¼
fψðv1:n; x1:nÞ
fψðv1:nÞ

¼
fψðv1:n jx1:nÞ fψðx1:nÞ

fψðv1:nÞ
; (6)

with fψðv1:n jx1:nÞ the likelihood, fψðx1:nÞ the prior, fψðv1:nÞ the evidence and fψðv1:n; x1:nÞ
is often referred to as the complete data likelihood. The prior, likelihood and evidence
(also known as the marginal likelihood) are defined by

fψðx1:nÞ ¼ f1;X;ψðx1Þ
Yn
k¼2

fX;ψ xk jxk�1ð Þ; (7)

fψðv1:n jx1:nÞ ¼
Yn
k¼1

fV;ψ vk jxkð Þ; (8)

fψðv1:nÞ ¼
ð
fψðv1:n; x1:nÞdx1:n: (9)

For the linear Gaussian model, the posterior distribution is a Gaussian distribution
whose mean and covariance can be computed in closed form (Durbin and Koopman,
2012). For most non-linear non-Gaussian models, it is not possible to compute these
distributions in closed-form and we need to employ numerical methods.

We are interested in the filtering and marginal likelihood computations, i.e. the
sequential approximation of the distributions fψðx1:n jv1:nÞ

� �
n�1 and marginal likeli-

hoods fψðv1:nÞ
� �

n�1, because directly solving Equation (6) is problematic due to the

high dimensionality. In this sequential computation, one often relies on the so-called
prediction and update equations (Doucet and Johansen, 2009); the recursion satisfies
the marginal distribution fψðxn; v1:nÞ. The prediction and update equations are respec-
tively given by

Prediction : fψðxn jv1:n�1Þ ¼
ð
fX;ψðxn jxn�1Þ fψðxn�1 jv1:n�1Þdxn�1; (10)

Update : fψðxn jv1:nÞ ¼
fV;ψðvn jxnÞ fψðxn jv1:n�1Þ

fψðvn jv1:n�1Þ
; (11)

8 S. N. SINGOR ET AL.
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where

fψðvn jv1:n�1Þ ¼
ð
fV ;ψðvn jxnÞ fX;ψðxn jxn�1Þ fψðxn�1 jv1:n�1Þdxn�1:n: (12)

If we can compute fψðx1:n jv1:nÞ and thus fψðxn jv1:nÞ sequentially, then the evidence
fψðv1:nÞ can also be evaluated recursively using

fψðv1:nÞ ¼ fψðv1Þ
Yn
j¼2

fψðvn jv1:n�1Þ;

where the fψðvn j v1:n�1Þ are computed by Equation (12).
Once the filtering stage is completed, one may smooth the filtered state process.

Filtering is the estimation of the distribution of the current state xn based upon the
observations received up until current time v1:n. Smoothing implies estimating the
distribution of the state xn given all observations up to some later time v1:N , i.e.
fψðxn jv1:NÞ. In general, smoothing is computationally more challenging than filtering.
The trajectory estimates obtained by such methods, as a result of the additional
information available, tend to be smoother than those obtained by filtering.

3.2.1. Non-linear Hidden Markov models
Unfortunately, in most applications the SSHM model is non-linear and non-Gaussian.
Therefore, various numerical approximations were developed over the years. The well-
known Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) were
introduced shortly after the Kalman Filter. In general, the UKF can acquire more
accurate estimation results than the EKF, but can lead to serious errors for non-
Gaussian distributions (Simon et al., 2001; Simon, 2006). Since we want our approach
to be as general as possible, we make use of so-called Sequential Monte Carlo (SMC)
methods.

SMC methods represent a set of flexible and powerful simulation-based methods which
provide samples distributed approximately according to posterior distributions and facil-
itate the approximate calculation of fψðv1:nÞ. The main idea behind SMC methods is to
obtain a large collection of weighted random samples, named particles, whose empirical
distribution converges to the distribution we wish to sample from, the posterior distribu-
tion fψðx1:n jv1:nÞ. For this reason, SMC methods are also referred to as Particle Filters in
the filtering context. They have become a popular class of methods for inference in non-
linear non-Gaussian state space models. An overview of the theory and applications of
different SMC methods can be found in Doucet and Johansen (2009).

3.2.2. Combined state and parameter inference
Because the transitional PDFs in Equations (4) and (5) are parametrized by ψ, we are
also interested in inferring these parameters given the observed process V1:N ¼ v1:N .
The Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977) is
an efficient method for combined state and parameter inference. The EM is an iterative
method for maximizing the likelihood fψ v1:nð Þ in Equation (9). This method is useful
when it is not possible to evaluate and optimize this likelihood directly. The method can

APPLIED MATHEMATICAL FINANCE 9

D
ow

nl
oa

de
d 

by
 [

19
3.

17
3.

35
.5

] 
at

 0
3:

01
 0

1 
D

ec
em

be
r 

20
17

 



be used for combined state and parameter inference in SSHM models. The algorithm is
based on the insight that the auxiliary function

Qðψ;ψ0Þ ¼
ð
log fψðv1:n; x1:nÞ fψ0 ðx1:n jv1:nÞdx1:n; (13)

may be used as a surrogate model for fψðv1:nÞ, because increasing Qðψ;ψ0Þ forces an
increase of fψðv1:nÞ (Cappé, Moulines, and Tobias, 2009). The EM algorithm is initi-

alized by ψ0 2 Ψ and xð0Þ1:N and iterates between an expectation (E) step, which facilitates
state inference, and a maximization (M) step for parameter inference:

E� step : Conditional on ψk�1 compute Qðψ;ψk�1Þ; (14)

M� step : Conditional on xðkÞ1:N compute ψk ¼ argmax
ψ2Ψ

Qðψ;ψk�1Þ: (15)

This EM-algorithm generates a sequence ψk; x
ðkÞ
1:N

n oNEM

k¼0
, which converges to a stationary

point of the likelihood for NEM ! 1, with the number of iterations NEM 2 Nþ. We
solve the M-step of the EM algorithm using optimization techniques from the Matlab
library. In particular, we use the fmincon algorithm in Matlab, which is a constrained
nonlinear optimization algorithm. The advantage of this Matlab function is that one
can impose constraints on the parameters to be optimized. One can choose between a
number of algorithms, but we have used the interior point algorithm.

Note that since the computation of the E-step includes a complicated multi-dimen-
sional integral, we can approximate it by using Monte Carlo integration. Assuming we
can sample from fψk�1

ðx1:N jv1:NÞ using a particle filtering method, we replace the E-step

by the simulation of Npar 2 Nþ realizations Xj
1:N

n oNpar

j¼1
from fψk�1

ðx1:N jv1:NÞ and the
computation of

~Qk ψð Þ ¼ 1
Npar

XNpar

j¼1

log fψðXj
1:N ; v1:NÞ:

This leads to the Monte Carlo EM algorithm (MCEM). Unfortunately, a drawback of
this approach is that it requires the number of particles Npar to grow with each new
iteration of the algorithm k � NEM (Cappé, Moulines, and Tobias, 2009). Besides
this, we need to sample a whole new set of realizations of the hidden states

Xj
1:N

n oNpar

j¼1
at each iteration, that are not re-used in later iterations. The Stochastic

Approximation EM (SAEM) algorithm (Delyon, Lavielle, and Moulines, 1999) makes
more efficient use of the simulated variables by replacing ~Qk θð Þ with a stochastic
averaging procedure

Q̂k ψð Þ ¼ ð1� γkÞQ̂k�1 ψð Þ þ γk
1

Npar

XNpar

j¼1

log fψðXj
1:N ; v1:NÞ

 !
; (16)
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where γk
� �

k � 0 is a decreasing sequence of weights that satisfy
P

γk ¼ 1 andP
γ2k < 1. As k ! 1, the SAEM algorithm converges to a local maximum of the

likelihood function (Delyon, Lavielle, and Moulines, 1999). The computational advan-
tage of the SAEM algorithm is especially significant in problems where maximization is
much cheaper than simulation.

The MCEM and SAEM methods cannot be applied directly, because for non-linear
non-Gaussian SSHM models it is not possible to directly sample from the posterior
distribution. Using a particle filter method for sampling from the posterior distribution
leads to an SMC-analogue of the previous methods, the PSEM method described in
Schön, Wills, and Ninness (2011). If we take the SAEM approach, it is sufficient to
generate a single sample each iteration.

In Kuhn and Lavielle (2004) it is shown that for convergence of the SAEM algorithm, it
is not necessary to sample exactly from the posterior distribution. We can also sample from
a family of so-called Markov kernels fMψðx1:N jx01:NÞgψ2Ψ on XN that leaves the family of
posterior distributions invariant. Assume that we have such a family and let in iteration
k � NEM of the SAEM method x1:N ½k� 1� be the previous draw from the Markov kernel.

We then sample X1:N ½k�,Mψk�1
ðx1:N jx1:N ½k� 1�Þ and update Q̂ according to

Q̂k ψð Þ ¼ ð1� γkÞQ̂k�1 ψð Þ þ γk log fψðX1:N ½k�; v1:NÞ: (17)

The next approximation of ψ is then obtained bymaximizing this quantity w.r.t. ψ 2 Ψ (the
M-step) using conditional particle filters (CPF) as the required Markov kernel. We use the
SAEM method using CPF, which is referred to as CPF-SAEM (Lindsten, 2013; Lindsten,
Jordan, and Schön, 2014). In this method, the Markov kernel is constructed by running a
SMC sampler in which one particle trajectory x01:N is specified a priori, a so-called CPF. We
can think of this reference trajectory as guiding the simulated particles to a relevant region
of the state space. The path x01:N is ensured to survive all re-sampling steps.

3.3. Modelling concept

In Section 2, we discussed the concept of nested simulation. The process Yt models the
uncertainty of the real-world financial market, and consists amongst others of the
processes Rt and Vt . To avoid a numerical calibration procedure to obtain Θt, see
Equation (2), we model the process Θt directly. Given the process Θt, we compute the
observable process by Vt ¼ ηðΘtÞ and the embedded option values by ~Vt ¼ ~ηðΘtÞ.

Modelling the joint behaviour of possibly a large number of variables in Θt without
any constraints is generally problematic, because estimating an underlying model may
result in a high-dimensional problem. To reduce the dimension of the problem, we
assume the dΘ-dimensional process Θtf gt2½0;Tt � to be generated by a latent (hidden)

dX-dimensional process Xtf gt2½0;Tt � 2 X , with

Θt ¼ ΥðXtÞ; Υ : RdX 7! RdΘ : (18)

The dimension of the calibration problem is controlled by dX � dΘ. We aim to vary the
model parameters that are most significant with respect to the calibration fit, hence by
keeping dX as small as possible. The parameters of Υ (including Xt) are still determined
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by maximizing the calibration fit to the option market data Vt . This is beneficial for
interpretation and can improve numerical stability.

When dX � dΘ, we achieve an effective dimension-reduction, since the model para-
meters Θt are then driven by a lower-dimensional process Xt. Several ways of defining
the mapping Υ exist and three requirements for Υ should be taken into account. First,
the mapping should lead to a satisfactory fit to the market data. Second, the mapping
should lead to a realistic representation of the model parameters. Third, the mapping
should lead to numerically stable results. A basic assumption is a linear mapping
between Xt and Θt in Equation (19), i.e.

Θt ¼ ΥðXtÞ :¼ aΥXt þ bΥ; aΥ 2 RdX�dΘ ; bΥ 2 RdΘ
� �

; (19)

where aΥ and bΥ are unknown parameters. The mapping in Equation (18) can be split
into a dynamic part Xt and static part aΥ; bΥf g. That is, the static part does not change
over time and is calibrated once. Calibration to available market data then only takes
place with respect to the dynamic part (while the static part is kept fixed). This reduces
computation times of calibration, because (by construction) the parameter space is
smaller. In Section 4, we estimate these dynamic and static parts for the Heston model.

The mapping Υ should be specified in such a way that Θt belongs to domain DΘ �
RdΘ : For example, the correlation matrix should be positive definite, the correlation
parameters should be in ½�1; 1� and volatility parameters should be non-negative. To
ensure that Υ maps values of Xt to the correct domain for Θt , we truncate values that
are outside the domain DΘ, i.e.

Θt 2 DΘ;min;DΘ;max
� �

;

where the minimum and maximum domains are, respectively, denoted by DΘ;min 2 RdΘ

and DΘ;max 2 RdΘ .
Using this approach, we compute the process Vt by the following composite function:

Vt ¼ ηðΥðXtÞÞ; Θt ¼ ΥðXtÞð Þ: (20)

Next, we let the hidden states Xt evolve through time via the transition PDF fX;ψ and
given a realization Xt ¼ xt , the option price Vt ¼ vt is computed via Equation (20). We
model the (calibration) error between the valuation function η and the observed process
Vt as a stochastic process by means of the PDF fV;ψ . This is required because the
underlying risk-neutral model is generally not able to perfectly fit the market option
data. The Black-Scholes model can for example only model flat IV surfaces, whereas the
IV typically varies per strike and maturity. Second, we introduce an error by reducing the
number of degrees of freedom in the risk-neutral model for calibration: dX � dΘ. A basic
assumption for fV;ψ would be a normal distribution. In this case, the error vt � ηðΥðxtÞÞ
is symmetric around zero.

The proposed SSHM model is given by

State : X1 , f1;X;ψðX1Þ; Xn j Xn�1 ¼ xn�1ð Þ , fX;ψðxn jxn�1Þ; (21)

Observation : Vn j Xn ¼ xnð Þ , fV;ψðvn jηðΥðxnÞÞÞ; (22)
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The SSHM model defined in Equations (21),(22) is non-linear due to the non-linearity
of the valuation function η. Hence, analytic solutions do not exist. We condition on the
state xn (as in Equation (5)), but we incorporate the valuation function η in the PDF
fV;ψ , which we highlight by conditioning on ηðΥðxnÞÞ, n � N.

Given the observed process V1:N ¼ v1:N , we wish to infer states X1:N ¼ x1:N and
parameters ψ, where the static part of Υ (i.e. aΥ and bΥ) are part of ψ. We use the EM
algorithm (see Section 3.2) for combined state and parameter inference. That is, the
dynamic part of Υ, the hidden states Xt, is determined via the expectation step and the
fixed model parameters ψ are determined via the maximization step. We aim to keep
the dimension dX as low as possible, but by optimizing the fit to the market data via
maximizing the Q-function in Equation (13).

3.4. Numerical stability

We wish to achieve a satisfactory fit to the option market data V by using as few
parameters as possible, but we also wish to achieve stable valuations of the embedded
options ~V , i.e. we wish to avoid overfitting issues. For notational convenience, we drop
the subscript t in this subsection. Numerical stability is important in practice because
the calibrated model parameters are used by insurers to value the (out-of-sample)
embedded options on their balance sheet. If changes in the market data imply undesired
large changes in the model parameters, this can result in noisy valuations of embedded
options. Overfitting occurs when a model has too many parameters relative to the
number of observations or has an incorrect model structure. Overfitting may lead to
poor predictive performance, as it typically results in excessive reactions to minor
fluctuations in the option market data used for calibration.

On the other hand, a modelling setup that does not react to changes in the market
data at all may be numerically very stable, but will not result in realistic embedded
option values. We therefore also require that our modelling setup fits market prices well
enough. So, there is a trade-off to be made. Below we will focus on the numerical
stability, but we emphasize that the quality-of-fit should also be checked when evaluat-
ing the modelling approach.

In Section 2.2, we have explained that the model parameters are determined via the
calibration function χ in Equation (2). These calibrated model parameters are then used
to compute the embedded option values via Equation (3). By applying the chain rule to
the composite function ~η 	 χ in Equation (3) we have

D~η	χ ¼ D~ηDχ;

where D denotes is the Jacobian matrix. Hence, the sensitivity of ~η to the option market
data V can be decomposed to the sensitivity of ~η to Θ and the sensitivity of Θ to V .

We use the operator norm k �kop to quantify numerical stability, where we recall
that the operator norm is defined as

k Akop ¼ sup
k Ax k
k x k : x 2 Rn; x � 0

� 	
;
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for any linear map A : Rn ! Rm, and any n;m > 0. We use the Euclidean norm to
compute k � k. We also recall that the operator norm equals the largest singular value
of A (Atkinson and Han, 2005).The operator norm quantifies the direction that is
amplified the most by A.

A small change in the market option prices δV will result in a change in embedded
option values D~η	χδV , up to first order. The operator norm therefore provides an upper
bound to how strong embedded option values change as a result of a small change in
observed market prices, and is therefore a measure of numerical stability. Using the chain
rule and the Cauchy-Schwartz inequality, we obtain an upper bound of k D~η	χkop:

k D~η	χkop ¼k D~ηDχkop �k D~ηkop k Dχkop:

The sensitivity of ~η to Θ ¼ χðVÞ follows from the actuarial system of an insurer (see
Section 2.2). We focus on the sensitivity of the calibration function χ in Equation (2), as
we assume the actuarial system of the insurance company as given. More concretely, to
keep k D~η	χkop as small as possible, we require the operator norm k Dχkop to be as
small as possible for stable calibrations of Θ.

Since we have no closed form expression for χ, and numerical calibration of its
derivative is expensive, we relate Dχ to Dη for which we do not have to perform
numerical optimizations. In order to do this, we assume that η is locally an embedding
near Θ, so in particular Dη has maximal rank. This is a very modest assumption because
a zero vector of Dη would be a salient over-parametrization: a change in parameter
would not lead to any change in option values up to first order.

We proceed to decompose the tangent space TηðΘÞ into the image of DηðΘÞ, im DηðΘÞ,

and its ortho-complement, ðim DηðΘÞÞ?. Let us denote the orthogonal projection onto
im DηðΘÞ by πη

πηðim DηðΘÞÞ? ¼ 0; πηðxÞ ¼ x; "x 2 imDηðΘÞ:

Since DηðΘÞ has a trivial kernel, the following defines a pseudo-inverse of DηðΘÞ:

Dþ
ηðΘÞ ¼ ðDT

ηðΘÞDηðΘÞÞ�1DT
ηðΘÞ:

This is also a left-inverse of DηðΘÞ and moreover DηðΘÞD
þ
ηðΘÞ is the orthogonal projection

on the image of DηðΘÞ, i.e.

DηðΘÞD
þ
ηðΘÞ ¼ πη:

We now claim that

DχðVÞ ¼ Dþ
ηðΘÞ; Θ ¼ χðVÞð Þ: (23)

To see this, consider a first-order perturbation δV of the option market data V . This
decomposes into

δV ¼ πηðδVÞ þ ðδVÞ?; ðδVÞ? :¼ δV � πηðδVÞ 2 ðimDηÞ?:

14 S. N. SINGOR ET AL.
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Let us write, δΘ ¼ Dþ
ηðΘÞðδVÞ, so that

DηðΘÞδΘ ¼ DηðΘÞD
þ
ηðΘÞðδVÞ ¼ πηðδVÞ:

Using this, we have up to first order that

χðV þ δVÞ ¼ arg min
Θ2DΘ

k V þ δV � ηðΘÞ k¼ arg min
Θ2DΘ

k

V þ δV � DηðΘÞδΘ� ηðΘ� δΘÞ k þO2ðδVÞ
¼ arg min

Θ2DΘ

k V þ ðδVÞ? � ηðΘ� δΘÞ k þO2ðδVÞ:
(24)

Now, to determine for which Θ the minimum is attained, we observe that

d
dΘ

jΘþδΘ k V þ ðδVÞ? � ηðΘ� δΘÞk2 ¼ � 2 V þ ðδVÞ? � ηðΘÞ
� �

DηðΘÞ

¼ � 2 V � ηðΘÞð ÞDηðΘÞ

¼ d
dΘ

jΘ k V � ηðΘÞk2:

Since the last term equals zero for Θ ¼ χðVÞ, it follows that the minimum in Equation
(24) is attained at Θ ¼ χðVÞ þ δΘ, and so

χðV þ δVÞ ¼ χðVÞ þ δΘþO2ðδVÞ;

which proves Equation (23).
Note that this implies that the singular values of DχðVÞ are equal to the reciprocals of

the singular values of DηðΘÞ (which is a general fact about pseudo-inverses).
Consequently,

k Dχkop ¼ σDχ ;max ¼
1

σDη;min
;

where σDχ ;max and σDη;min are, respectively, the largest singular value of Dχ and smallest
singular value of Dη. We conclude that for numerical stability of the calibration part, we
would like σDη;min to be as large as possible. In Section 4, we compute σDη;min for the
Heston model.

3.4.1. Dimension reduction
We use the parametrization Υ in Equation (18) to reduce the dimension of Θ. More
precisely, we use the following adjusted calibration function

χΥðVÞ ¼ Υ arg min
x2RdX

k V � ηðΥðxÞÞ k;

 �

:

We assume that Υ is an embedding, and therefore η 	 Υ as well, so that we can apply
exactly the same arguments as used above to prove Equation (23), but now applied to
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η 	 Υ instead of η. We omit the points in which derivatives are taken for brevity. This
results in

DχΥ ¼ DΥ D arg min
x2RdX

k V � ηðΥðxÞÞ k;

 �

¼ DΥ ðDη	ΥÞþ:

We argue that using Υ to parameterize Θ generically improves numerical stability. To
this end, observe that Dþ

η Dη ¼ I, and so

DχΥ ¼ Dþ
η DηDΥ ðDη	ΥÞþ ¼ Dþ

η Dη	Υ ðDη	ΥÞþ;
¼ Dχ πη	Υ;

(25)

where we have denoted the orthogonal projection operator onto the image of Dη	Υ by
πη	Υ. Equation (25) can be used to compare the operator norms of Dχ and Dχ	Υ. On the
one hand, we have that

k Dχkop ¼k Dχ 	 πηkop ¼ sup
k Dχ πηx k

k x k : x 2 RdX ; x � 0

� 	

¼ sup
k Dχx k
k x k : x 2 imDη; x � 0

� 	
;

(26)

whereas we also have

k DχΥkop ¼ sup
k Dχ πη	Υx k

k x k : x 2 RdX ; x � 0

� 	

¼ sup
k Dχx k
k x k : x 2 imDη	Υ; x � 0

� 	
:

(27)

Since imDη	Υ 
 imDη, we can conclude from Equations (26) and (27) that

k DχΥkop �k Dχkop: (28)

Since the intention of using Υ is to reduce the dimension of the parameter space, we
can safely assume that imDη	Υ is a strict subset of imDη, in practice in fact of high co-
dimension. Under this assumption, Equation (28) will generically be a strict inequality.
The only case in which this does not hold, is when the right-singular vector of Dχ ,
corresponding to the largest singular value, lies in the image of Dη	Υ. Obviously, this is
generically not the case for a subspace of positive co-dimension.

The extent to which k DχΥkop is smaller than k Dχkop, and so the extent to which we
have improved numerical stability using Υ as parametrization, of course depends very
much on the details of the situation. In the special case that we use only a single
dimension to parameterize Θ, i.e. dX ¼ 1, we can make the operator norm k DχΥkop
more explicit. Let us now consider this univariate case.

We use Equation (27) to compute the operator norm, so suppose x 2 imDη	Υ. This
is of the form x ¼ λDηDΥ for some non-zero λ 2 R , so

DχΥx ¼ DΥ ðDη	ΥÞþx ¼ DΥ ðDηAÞþ ðλDηDΥÞ ¼ λDΥ;

16 S. N. SINGOR ET AL.
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because ðDηDΥÞþDηDΥ ¼ 1. It follows that

k DχΥx k
k x k ¼ jλj k DΥ k

jλj k DηDΥ k ¼ k DΥ k
k DηDΥ k ;

for any x 2 imDη	Υ. By Equation (27) it then follows that

k DχΥkop ¼
k DΥ k

k DηDΥ k : (29)

Given the formulation of Υ in Equation (19), we have

DΥ ¼ aΥ 2 RdX�dΘ :

In Section 4, we will use the expression in Equation (29) to quantify numerical stability
of the proposed method.

4. Application

In this section, we perform a calibration to historical equity option market data. We use
the Heston model for numerical experiments. We calibrate by using a basic calibration
method (Basic), wherein we calibrate the full parameter spaceΘ, and the proposed method
(Proposed) in, respectively, Sections 4.1 and 4.2. We compare the results and we also
analyse the numerical stability. In Section 4.3, we compare the calibrated models by
computing the present and future embedded option values of a fictive insurance company.

4.1. The Heston model

Under the Heston model, we model the stock index Su, the variance process νu and the
money market account Bu under the risk-neutral measure Q by

dSu ¼ ðr � qÞSu du þ ffiffiffiffiffi
νu

p
Su dWS

u; S0 ¼ 1;
dνu ¼ κνð�ν� νuÞdu þ σν

ffiffiffiffiffi
νu

p
dWν

u; ν0 � 0;
dBu ¼ rBu du; B0 ¼ 1;

8>><
>>: (30)

with Zu ¼ Su; νu;Buf g and u 2 ½0;Tu�, r denotes the risk-free interest rate, q the
dividend yield, κν the speed of mean reversion, �ν the long-term variance level, σν the
volatility of variance and ρ the correlation between the Wiener processes dWS and dWν.

We consider the dividend yield to be zero and the interest rate r is equal to the
observed interest rate in the market, such that we have Θ ¼ κν; ν0;�ν; σν; ρf g. The
volatility parameter σν affects the kurtosis (peak) of the probability distribution function
of equity (log) returns. The lower the volatility of variance parameter, the higher the
kurtosis (peak). The correlation parameter ρ affects the skewness of the probability
distribution function of equity (log) returns. The lower the correlation parameter
(between the stock index and the variance process), the higher the skewness, i.e.
heavy tails to the left. Hence, these parameters affect the modelling of IVs in the strike
dimension. In equity, ρ is often negative. The Heston model enables semi-analytical
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pricing of equity index put/call options via the so-called COS method (Fang and
Oosterlee, 2008). We use this method for valuation.

4.2. The calibration data

We use IV surfaces of S&P-500 equity index options. Multiple S&P-500 index
options are quoted with different strike levels and maturities, but we use the most
liquid option data. For calibration, we use strikes K ¼ 0:8; 1; 1:2f g and maturities

T ¼ 0:25; 1; 2f g, with dK ¼ 3 and dT ¼ 3 and hence dV ¼ 9. For notation, we use Vi;j
t

with i ¼ 1; . . . ; dK and j ¼ 1; . . . ; dT to refer to the option value with strike Ki and
maturity Tj. We define a discrete set of (historical) times T ¼ t1; t2; . . . ; tNf g for
which we can observe the process Vt for t 2 T , where N denotes the number of
observations. We assume that the index n ¼ 1; . . . ;N refers to time tn 2 T . We use
historical data available from June 2005 until March 2014 with a monthly frequency,
which leads to N ¼ 106 observations.

In the literature, much research has been performed to study the empirical behaviour
of IV surfaces, see for example (Cont and Da Fonseca et al., 2002) and the references
therein. It turns out that for a given maturity, the IVs increase when relative strike
levels decrease.2 Long maturing options are less volatile than short maturing options.
The volatility of the IV is level dependent. That is, the higher the (average) level of the
IV, the more skewed the IV surface and hence more volatile. This may be due to the
fact that investors sell their call options and buy put options for protection in case of
high volatility, i.e. in times of crisis.

Given these empirical facts, IV surfaces tend to dynamically change over time. That
is, the skew or smile in the strike dimension and the term structure of IVs changes
dynamically over time. In times of crisis the (average) IV level is typically higher, the
mean reversion from short-term IVs to long-term IVs is faster and the IV surface is
more skewed. Opposite IV structures hold in less volatile periods. The VIX index is a
popular measure of the IV of short maturing S&P 500 index options. It represents a
measure of the market’s expectation of equity market volatility over the next 30-day
period.

4.3. The basic calibration approach

In the basic calibration approach, we calibrate the full parameter space Θt at each
historical time t by using the calibration function χ in Equation (2). We let ηi;j refer

to the option with strike Ki and maturity Tj with i ¼ 1; . . . ; dK and j ¼ 1; . . . ; dT . We
set the calibration bounds equal to DΘ;min ¼ 0:01; 0:001; 0:001; 0:1;�1f g and
DΘ;max ¼ 5; 0:5; 0:5; 1;�0:1f g. We specify small lower limits for the volatility para-
meters to avoid numerical difficulties and the upper limits are specified based on
expert opinion. We note that for each time we (independently) calibrate 5 para-
meters to obtain the best fit with the market data, so in total we calibrate 5� 106 ¼
530 parameters.
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4.3.1. Quality-of-fit
The Heston model fits well to the available data. The R2 errors are > 0:99 for all times
t 2 T , see Figure 2(a), which is highly satisfactory. To gain insight in the quality-of-fit
of separate parts of the option market data, we show in Table 1 the sum squared errors
(SSE) per option and for all t 2 T .

The fit is worse for shorter maturing options. This is due to the fact that the skew in
the maturity dimension from the Heston model decreases linearly (Gatheral, 2006),
whereas the market data contains more curved behaviour. The Heston model is hence
not powerful enough to model such behaviour.

4.3.2. Numerical stability of Θ
The calibrated model parameters Θ are visualized in Figure 2

The parameters κν and ρ show a constant, but spiky, behaviour around 0:4 and � 0:7,
respectively. The parameters ν0, �ν, σν show common behaviour, see Figure 2(a), with
correlations

1
ρν0;�ν 1
ρν0;σν ρ�ν;σν 1

0
@

1
A ¼

1
0:65 1
0:76 0:90 1

0
@

1
A: (31)

The determinant of this correlation matrix is close to zero 0:08. The determinant of a
correlation matrix approaches zero when some of the variables are strongly correlated.
The long-term variance level shows lagged behaviour relative to the initial variance, the
lag one cross-correlation is 0.75.

We recall from Section 3.4 that k Dηkop measures the numerical stability of V to Θ
and k Dχkop measures the numerical stability of Θ to V . The operator norm is equal to
the maximum singular value and, in particular, we have showed that the singular values
of Dχ are equal to the reciprocals of the singular values of Dη. This means that, the

Figure 2. Model parameters Θt .

Table 1. Quality-of-fit of Heston model.
K ¼ 0:8 K ¼ 1:0 K ¼ 1:2

T ¼ 0:25 T ¼ 1 T ¼ 2 T ¼ 0:25 T ¼ 1 T ¼ 2 T ¼ 0:25 T ¼ 1 T ¼ 2

Av. SSE (� 10�5) 0.25 0.15 0.15 0.35 0.26 0.04 0.08 0.09 0.05
Max. SSE (� 10�4) 0.49 0.07 0.11 0.16 0.13 0.02 0.20 0.09 0.09
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higher the minimum singular value ση;min of Dη, the lower the maximum singular value
σχ;max of Dχ and hence the better the numerical stability.

In Figure 3(a), we show the singular values of Dη, where we emphasize the minimum
singular value ση;min in black. In Figure 3(b), we show the singular values of Dχ, where
we emphasize the maximum singular value σχ;max in black. For reference, we show the
VIX index in Figure 3(c). Using the VIX index we gain insight in the dynamic
behaviour of numerical stability.

We find that there is less variation in the Heston model in volatile periods and vice
versa. This means that the Heston model is less sensitive to market changes in volatile
periods. There is a significant negative correlation between the market volatility,
represented by the VIX index, and maximum singular value of Dχ . The Pearson
correlation coefficient over this period is � 0:71.

In times of a low VIX index, the IV surfaces in the market are typically relatively flat.
The Heston model has too many degrees of freedom in this case and is therefore
sensitive to changes in the market data, (Heston, 1993). In times of a high VIX index,
the IV surfaces are typically not flat. In this case, more degrees of freedom in the
Heston model are used to obtain a good fit. Therefore, in times of high values of the
VIX index, the Heston model is less sensitive to changes in the market data.

4.4. The proposed calibration approach

In this section, we apply the proposed methodology in Section 3 to the Heston equity
model in Equation (30). We note that the methodology can be applied to other models
as well. By using the proposed methodology we aim at reducing the number of
parameters in the risk-neutral model to improve stability, but in such a way that the
fit to the option market data is satisfactory.

4.4.1. Model specification
We use the mapping Υ in Equation (19) to reduce the dimension of Θ. We consider a

1-dimensional hidden state process, i.e. dX ¼ 1 and vectors aΥ; bΥ 2 R5. To model the
hidden state process, Xt and the observable process Vt we need to specify the PDFs fX;ψ
and fV;ψ . For both PDFs, we consider a (simple) normal distribution and an (advanced)
non-normal distribution. This results in 4 cases, which we describe below.

Figure 3. Numerical stability.
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We consider the Ornstein-Uhlenbeck (OU) and Cox-Ingersoll-Ross (CIR) models
(Brigo and Mercurio, 2007) for modelling the hidden process X1;t and X2;t, which are,
respectively, presented by the following SDEs:

dX1;t ¼ κ1;X �X1 � X1;t
 �

dt þ σ1;X dWX1ðtÞ; X1;0 2 R ;

dX2;t ¼ κ2;X �X2 � X2;t
 �

dt þ σ2;X
ffiffiffiffiffiffiffi
X2;t

p
dWX2ðtÞ; X2;0 � 0; (32)

where κ:;X 2 Rþ is the speed of mean reversion, �X: 2 Rþ a long-term state parameter
and σ:;X 2 Rþ a volatility parameter (with � ¼ 1; 2). The transitional PDFs for, respec-
tively, the Vasicek and CIR model are known in analytical form:

fX;ψðx1;n jx1;n�1Þ ¼ fnorm x1;n; x1;n�1e
�κ1;XΔt þ

�X1

κ1;X
1� e�κ1;XΔt
 �

;
σ21;X
2κ1;X

ð1� e�2κ1;XΔtÞ
 !

;

(33)

fX;ψðx2;n jx2;n�1Þ ¼
1
C
fnccs x2;n=C; d; λX;t
 �

; (34)

where fnorm denotes the PDF of a normal distribution and fnccs denotes the PDF of a
Non-Central Chi-Squared (NCCS) distribution where

C ¼
σ22;Xð1� e�κ2;XΔtÞ

4κ2;X
; d ¼ 4κ2;X �X2

σ22;X
and λX;t ¼

4κ2;Xx2;n�1e�κ2;XΔt

σ22;Xð1� e�κ2;XΔtÞ ; (35)

with Δt ¼ tn � tn�1 ¼ 1
12 , because we use a monthly frequency of the historical data.

We consider a normal and a skewed normal distribution for modelling the obser-
vable process Vt conditional on the hidden process Xt. The two choices for modelling
the observable process denoted by V1;t and V2;t are given by the following PDFs:

fV1;ψðv1;n jx:;nÞ ¼ fnorm v1;t; ηðΥðx:;tÞÞ; σ1;V
 �

; (36)

fV2;ψðv2;n jx:;nÞ ¼
2

σ2;V
fnorm

v2;t � ηðΥðx:;tÞÞ
σ2;V

; 0; 1


 �
Fnorm αV

v2;t � ηðΥðx:;tÞÞ
σ2;V


 �
; 0; 1


 �
;

(37)

with � ¼ 1; 2 and αV 2 ð�1; 1Þ. The skewed normal PDF equals the normal PDF when
αV ¼ 0. In the normal distribution, the error between the observed option price and the
model option price are centred symmetrically around zero. Under the skewed normal
distribution, we are able to model a skewed distribution of these errors via the para-
meter αV . This is for example relevant if the Heston model is only able to model certain
combinations of K and T of the option market data. We note that negative option
values are truncated to zero.

We consider four cases in which we use either the OU or the CIR model for the
state process, and either the normal or the skewed normal distributions for the
errors of the option prices with respect to the fit. Summarizing, we consider the
following 4 cases:

• Case I: The state process follows the PDF in Equation (33) and the observable
process follows the PDF in Equation (36). The model parameters to be estimated are
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ψ ¼ aΥ; bΥ; κ1;X; �X1; σ1;X; σ1;V
� �

. This results in the estimation of 120 parameters
(including the hidden states for t 2 T ).

• Case II: The state process follows the PDF in Equation (33) and the observable
process follows the PDF in Equation (37). The model parameters to be estimated are
ψ ¼ aΥ; bΥ; κ1;X; �X1; σ1;X; σ2;V ; αV

� �
. This results in the estimation of 121 parameters

(including the hidden states for t 2 T ).
• Case III: The state process follows the PDF in Equation (34) and the observable

process follows the PDF in Equation (36). The model parameters to be estimated are
ψ ¼ aΥ; bΥ; κ2;X; �X2; σ2;X; σ1;V

� �
. This results in the estimation of 120 parameters

(including the hidden states for t 2 T ).
• Case IV: The state process follows the PDF in Equation (34) and the observable

process follows the PDF in Equation (37). The model parameters to be estimated are
ψ ¼ aΥ; bΥ; κ2;X; �X2; σ2;X; σ2;V ; αV

� �
. This results in the estimation of 121 parameters

(including the hidden states for t 2 T ).
In each case, we hence use a much smaller number of parameters than in the basic

calibration method where we used 530 parameters. We reduce the number of para-
meters by a factor � 4:4.

Next, in Section 3.2, we have discussed the estimation of SSHM models. We use the
EM algorithm in combination with particle filtering. We have implemented the numer-
ical methods in Matlab. In particle filtering, the estimation results depend on the EM
iterations NEM , the number of particles Npar and the initial parameter settings.
Unfortunately, it is beforehand difficult to specify NEM and Npar. Ideally, we specify
those values as large as possible to guarantee convergence, but this would slow down
the estimation process. There is hence a trade-off to be made. We take NEM ¼ 50,
Npar ¼ 10 and set the initial parameters equal to:

aΥ ¼ ð0:0; 0:0; 0:0; 0:0; 0:0Þ; bΥ ¼ ð0:35; 0:1; 0:1; 0:4;�0:7Þ;
σ:;X ¼ σ:;V ¼ κ:;X ¼ �X:;X ¼ 0:1; αV ¼ 0;

with � ¼ 1; 2. We find that this parameter setting leads to satisfactory results for all
experiments.

4.4.2. Estimated parameters
The estimated state processes Xt ¼ xt are shown in Figure 4 for Cases I-IV.

We observe similar estimations. The estimated processes for Cases III and IV are
positive due to the underlying CIR process; the NCCS distribution has a positive
domain. It turns out that the state processes are highly correlated with the VIX
index; the Pearson correlations are

Case I ¼ 0:884; Case II ¼ 0:922; Case III ¼ 0:929; Case VI ¼ 0:936: (38)

In Case IV, we find the highest correlation with the VIX index. The estimated
parameters ψ are given in Table 2.

The estimated skewness parameter αV is negative for Cases II and IV, so that the
PDF fV;ψ is negatively skewed. This means that market prices are overestimated by the
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Heston model, i.e. the model prices are (on average) higher than the market prices. The
PDF fV;ψ corrects for this via the negative αV parameter.

The estimated long-term states �X are comparable, but the �X is highest for Case IV.
The speed of mean reversion and correlation parameters are almost constant, i.e. the
corresponding elements in aΥ are approximately zero. The estimated ρ and κν are
comparable although Cases III and IV estimate some higher mean reversion parameters
than Cases I and II. The parameters ν0, �ν and σν change dynamically over time because
the corresponding elements in the vector aΥ are non-negative and hence these para-
meters are directly connected to the dynamic part xt . We observe that the elements in
aΥ of ν0, �ν and σν are all positive which indicates positive correlations between ν0, �ν and
σν. This coincides with the correlations computed in Equation (31).

4.4.3. Quality-of-fit
The R2-error for Cases I–IV and the basic calibration method is visualized in
Figure 5(a,b).

We observe in Figure 5(a) highly satisfactory results, i.e. R2 > 0:93 and by removing
the spike at October 2008 we have R2 > 0:98 for all time points. We note that the data
quality of October 2008 is bad due to illiquidity in the market. These results are

Table 2. Overview of model parameters ψ.
κX �X σX σV αV

Case I 0.8379 0.1048 0.1539 0.0050 –
Case II 0.8813 0.0835 0.1364 0.0039 −0.0991
Case III 0.3600 0.1162 0.3506 0.0043 –
Case IV 0.3387 0.1230 0.3461 0.0039 −0.3450

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5
Case I 0.1210 0.2725 0.3122 0.3625 −0.06300 0.1914 0.0132 0.1232 0.3475 −0.6647
Case II 0.1100 0.3529 0.3631 0.4043 −0.07100 0.2302 0.0114 0.1133 0.3779 −0.6751
Case III 0.1300 0.3182 0.5336 0.3988 −0.06400 0.2678 0.0111 0.0750 0.3970 −0.6780
Case IV 0.1400 0.3852 0.4296 0.6328 −0.09000 0.4584 0.0111 0.0562 0.4132 −0.6820

Jun05 Sep06 Dec07 Mar09 Jun10 Sep11 Dec12 Mar14
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Case I
Case II
Case III
Case IV

Figure 4. Estimated state process.
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obtained for dX ¼ 1. The results typically improve when we increase the dimension dX ;
for dX ¼ 5 the results would be similar to the basic calibration approach since all model
parameters are used in that case.

The largest error is when the VIX index is highest, i.e. when there is turmoil in the
market. In times of market stress, the IV surface is typically more skewed due to
(amongst others) the higher demand for put options for protection. Typically, in
those periods, correlations are different as compared to more quiet periods. In the
proposed methodology, the correlation parameter is estimated by a constant and hence
there is not enough flexibility to model an extreme skew pattern.

The Cases I and II perform worst. This is due to the underlying normal distribution
for the state process Xt, which is not capable of modelling the heavy tails in the data.
We find in Figure 5(b) that the Cases III and IV perform better than Cases I and II,
respectively, because the underlying CIR process is able to model the heavy tails in the
data. Case IV performs best given the fit to the available data. The mean R2 ¼ 0:9974 is
slightly smaller than the R2 of the benchmark model R2 ¼ 0:9997. Therefore, we favour
Case IV. We obtain a similar fit as the basic calibration method, but by using a much
smaller parameter space. We recall that we reduce the number of parameters by a factor
of 4:4 (from 530 to 121 in case of Case IV).

To gain insight in the performance of separate parts of the option surface, we show
in Table 3 the sum squared errors (SSE) per option type and for all t 2 T . The results
are shown for Case IV.

The overall fit to the market data is still satisfactory. Since we use a much smaller
parameter space, we obviously lose flexibility with respect to the basic calibration
method. We observe that the model is less capable of calibrating the longer maturing
options.

(a) R2

Jun05 Sep06 Dec07 Mar09 Jun10 Sep11 Dec12 Mar14
0.98

0.985

0.99

0.995

1

1.005

Case I
Case II
Case III
Case IV
Basic

(b) R2 (zoom-in around the spike at October 2008)

Mar09
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Case I
Case II
Case III
Case IV
Basic

Figure 5. Quality-of-fit.

Table 3. Quality-of-fit of the Heston model.
K ¼ 0:8 K ¼ 1:0 K ¼ 1:2

T ¼ 0:25 T ¼ 1 T ¼ 2 T ¼ 0:25 T ¼ 1 T ¼ 2 T ¼ 0:25 T ¼ 1 T ¼ 2

Av. SSE (� 10�4) 0.07 0.09 0.23 0.35 0.10 0.17 0.02 0.13 0.18
Max. SSE (� 10�3) 0.31 0.17 0.21 0.37 0.24 0.10 0.03 0.15 0.21
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From Table 2, we observe that the dynamic part, i.e. the non-zero element of aΥ, is
related to the parameters ν0, �ν and σν. The parameters κν and ρ are approximately
constant. This parametrization of Θ is able to model the height of the term structure of
IVs (via ν0 and �ν), but with approximately a fixed mean reversion κν. This might be
restrictive in extreme market circumstances. We are able to model dynamic skews in
the IV surface via σν, but perhaps not well enough in extreme events since the
parameters ν0, �ν and σν are linked to the same (single) risk driver xt . Since the
correlation parameter is approximately fixed over time, we model fixed skews in the
IV surface. This can be restrictive in extreme cases, because skewness is important in
high volatile periods; see Figures 5a and 5b.

4.4.4. Numerical stability
By using the proposed methodology, we also aim at improving the numerical stability,
see Section 3.4. Since we assume dX ¼ 1 we have 1 singular value (instead of 5 in
Section 4.1). We compute the operator norm of DχΥ by using Equation (29) and is
illustrated in Figure 6. For comparison, we also show the operator norm of Dχ from the
basic calibration method in Section 4.1 denoted by Basic. We show the results of Case
IV, but the results for Cases I–IV are similar.

We observe a major improvement of numerical stability with factors up to 1000 with
respect to the Basic method. Contrary to the basic calibration method, there is more
variation in the Heston model in volatile periods and vice versa. This is due to the lower
number of risk drivers, i.e. dX ¼ 1 � 5 ¼ dΘ. This means that the Heston model under
the proposed method is more sensitive to market changes in volatile periods. There is a
significant positive correlation between the market volatility (represented by the VIX
index) and the (maximum) singular value of DχΥ . The Pearson correlation coefficient
between k DχΥkop and the VIX index over this period is 0:89. Despite the variation in
volatile periods, the Proposed method is for all t 2 T more stable than the Basic
method.
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Figure 6. Numerical stability of the χ and χΥ mappings.
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4.4.5. Matching empirical facts
We use the Υ mapping in Equation (19) to reduce the dimension of the Θ space. As
mentioned in Section 3.3, the mapping consists of a static part and a dynamic part Xt ,
which are estimated as is described in Section 4.2. We have showed that the proposed
method leads to a highly satisfactory fit, obtained with numerical stability. We aim to
get insight in the ability of the proposed method to model the relevant empirical facts in
the data. The results described below are generated using the settings from Case IV.

In Figure 7, we show the IV surfaces belonging to xmin ¼ 0, xav ¼ 0:15 and
xmax ¼ 0:5, i.e. the surface belonging to the minimum, average and maximum values
of the hidden states Xt ¼ xt.

In the market data, we observe that the level of the IV surface is high in times of
turmoil, i.e. in times of a high VIX index. The estimated hidden states are highly
correlated with the VIX index, see Equation (38). We also observe that when the level of
the IV surface is high, then there is more skew for the short-term options. This is also
observed in historical option market data.

To gain more insight in the match with the empirical facts we perform a principal
component analysis (PCA) to the historical S&P-500 equity index IV as seen in the
market and the corresponding IVs generated by the proposed model. We investigate
whether the PCA factors are comparable. PCA factors are orthogonal (zero correlation)
linear combinations of a time series that explain the largest part of the total variance.
These factors are determined by assigning a weight (loading) on each of the input time
series. The weights are determined such that the resulting factors describe the largest
part of the joint movements (correlations) of the input time series.

We perform a PCA to the historical S&P-500 equity index IV market data and to the
IV surfaces calibrated by the Proposed model. We use the option maturities 0:25, 0:50,
1:00, 1:50 and 2:00 years and strike levels 80%, 90%, 100%, 110% and 120%. It turns
out that the first PCA component of the historical data accounts for 97:6% and the first
PCA component of the Proposed model 98:0%. The first components, that account for
most of the variance, are very similar, so that the proposed model is able to model the
dynamics in the historical IV surfaces rather well. The first PCA factors are shown in
Figure 8.

We observe indeed a satisfactory resemblance of the first PCA factor. The most
significant skews are observed for out-of-the-money strike levels (for put options) and
short maturing options. We find an almost flat/linear IV structure for the in-the-money
strike levels (for put options) and long maturing options.
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Figure 7. IV structures in the maturity dimension.
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The second PCA factors account for 1:5% and 1:4% of the total variance of,
respectively, the historical data and the Proposed model. The second PCA factors are
shown in Figure 9.

Although the IV pattern is similar for different maturities and strikes, we observe
some deviations in the second PCA factors. We note however that, the second PCA
factor only contributes for a small part to the total variance, so that these deviations are
less important.

4.5. Impact study

In Sections 4.1 and 4.2, we have calibrated the Basic and Proposed methods to option
market data. We found that the calibration fit is highly satisfactory for both methods.
However, we have showed that for the Proposed method the model parameters are less
sensitive to changes in the option market data. Therefore, we favour the Proposed
method. In this section, we compare both methods by valuing an embedded option of
an insurance company. That is, we compute the composite functions ~η 	 χ and ~η 	 χΥ,
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Figure 8. First PCA factor.
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Figure 9. Second PCA factor.
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which we discussed in Section 3.4. In Section 4.3.1 we focus on computing present
embedded option values, and in Section 4.3.2 we compute future embedded option
values.

We assume a fictive insurer XYZ which sells unit-linked products3 of which we
consider a simplified version. We assume the unit-linked product is of European type,
where policyholders capital is invested in a single equity series. The unit-linked product
then becomes an equity index put option. We consider a 120% in-the-money put
option with maturity equal to 10-years. The embedded option value is relevant to the
insurers’ balance sheet.

4.5.1. Computing present embedded option values
For comparison, we use the Basic and Proposed methods to compute the embedded
option value of insurance company XYZ, which we respectively denote by ~VB and ~VP.
For the proposed method, we use Case IV.

We first consider the computation of present embedded option values, and an option
notional of 500. We use the operator norm to measure numerical stability, see Section

3.4. In Figure 10(a), we compare the embedded option values ~VB and ~VP. We gain
insight in the Basic and Proposed models in Figure 10(b) by computing the maximum
singular values of k D~η	χkop and k D~η	χΥkop (see Section 3.4).

From Figure 10, we observe that differences between the basic and proposed
methods can be substantial. For the embedded option value, we observe differences
up to ∈25, which is around 17% relative difference.

It depends on how large the embedded option value is with respect to the total
liability value to gain insight in the impact to the surplus, for example. The surplus is
the difference between the assets and the liabilities on the insurer’s balance sheet and is
an important quantity of an insurer. The larger the embedded option value with respect
to the total liability value, the larger the impact of the differences between Basic and
Proposed to the surplus. Considering the balance sheet in Table 4, the impact of a 17%
difference in the embedded option value would result in relative difference of 20% in
the surplus value.

(a) Embedded option

Jun05 Sep06 Dec07 Mar09 Jun10 Sep11 Dec12 Mar14
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(b) Numerical stability
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Figure 10. Comparison of the Basic and Proposed models.
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We observe in Figure 10(b) that, as expected, the Proposed method is more stable
than the Basic method.

4.5.2. Computing future embedded option values
We compare the proposed methodology (Proposed) with a basic modelling approach
(Basic), which is often applied in practice, to compute future embedded option values.
The starting balance sheet in Euros of insurance company XYZ is summarized in
Table 4. We assume a perfectly matching asset portfolio for the guaranteed liability
cash flows, an asset portfolio (denoted by A) and an embedded option (denoted by ~V).
The notional of the embedded option is determined in such a way that the embedded
option value is equal to ∈100 for the Basic and Proposed models.

To project the balance sheet for t � 0, the asset process At and the embedded option

process ~Vt are relevant. The surplus (available capital) St is computed by the difference
of the value of the asset and the value of the liabilities:

St ¼ At � ~Vt: (39)

Other balance sheet items are neglected in this simplified example.
We show the impact of the Basic and Proposed methods to the embedded option

value, the surplus of the balance sheet and the required capital. Special attention is
devoted to the t ¼ 1-year horizon because this is important for Solvency II computa-
tions. Under Proposed we again consider the estimated model Case IV from Section 4.2
for the model parameters. Under Proposed, we forecast the model parameters Θt using
the transitional PDF fX;ψ in combination with Equation (19).

Under the Basic method, valuation is based on a fixed parameter setting (as in
(Bauer, Reuss, and Singer, 2012), (Feng et al., forthcoming)), so independent of t � 0:
Θt ¼ Θ0. For comparison, we use the same parameter settings as the initial parameters
of Case IV:

Θ0 ¼ κν; ν0;�ν; σν; ρf g0 ¼ aΥ x0 þ bΥ ¼ 0:4630; 0:0236; 0:0702; 0:4338;�0:6830f g;

where aΥ and bΥ are found in Table 2. Using the Proposed and Basic valuation models,

we are able to compare the approximation of the embedded option ~VP
t and ~VB

t . Via
Equation (39) we can also compare the surplus values which we denote by SPt and SBt .

In this stylized example, we assume that Yt ¼ At; rt;Xtf g models the uncertainty in
the real-world financial market. Therefore, these processes are modelled under the P

measure, see Section 2.2. We assume that the return equity portfolio At is modelled by a
Black-Scholes Vasicek model. So, we assume a fixed volatility, but stochastic interest

Table 4. Balance sheet of XYZ at t ¼ 0.
Assets Liabilities

Matching portfolio ∈700
Equity ∈200 Embedded option ∈100

Surplus ∈100
Total ∈900 Total ∈900
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rates generated by the Vasicek model (Brigo and Mercurio, 2007). The state process Xt

follows the estimated CIR process of Case IV from Section 4.2.

dAt ¼ μAAtdt þ σAAtdW
A
t ; A0 ¼ 200; μA ¼ 0:06; σA ¼ 0:2

 �
(40)

rt ¼ κrð�r � rtÞdt þ σrdW
r
t ; r0 ¼ 0:02; �r ¼ 0:04; κr ¼ 0:02; σr ¼ 0:01ð Þ (41)

Xt ¼ κXð�X � XtÞdt þ σX
ffiffiffiffiffi
Xt

p
dWX

t ;

X0 ¼ 0:0326; �X ¼ 0:1230; κX ¼ 0:3387; σX ¼ 0:3461ð Þ:
(42)

Since we are interested in computing the embedded option values ~Vt , we only consider
the estimated PDF fX;ψ from Case IV to generate the model parameters Θ via Equation
(19). The PDF fV;ψ is not needed in this experiment.

We remark that the Basic model only depends on the stochastic interest rates,
because the model parameters are kept fixed during the simulation. Besides the sto-
chastic interest rates, IV risk is also taken into account for the Proposed model because
the model parameters follow a stochastic process. We assume the following correlation
matrix � between the Wiener processes ðWA

t ;W
r
t ;W

X
t Þ:

� ¼
1
ρA;r 1
ρA;X ρr;X 1

0
@

1
A ¼

1
0:10 1
�0:60 �0:05 1

0
@

1
A: (43)

The joint modelling of Xt and rt is important, because both risk drivers affect the
embedded option value. We assume ρA;X is negative, because the process Xt is highly

correlated with IV, which in turn are negatively correlated with the asset returns. In the
numerical experiments, we vary the correlation ρr;X between � 0:8 and 0:7 to gain

insight in the impact. We generate NP ¼ 10; 000 real-world scenarios of At; rt;Xtð Þ with
a Tt ¼ 1-year horizon. For each time point, we value the Unit-Linked option under the
Proposed and Basic methods using the Heston pricing formula (Fang and Oosterlee,
2008).

4.5.3. The embedded option process
In Figure 11(a,b), we compare the embedded option process for the Proposed and Basic
methods. In Figure 11(a), density plot is shown. In Figure 11(b), insight is provided in
the (right) tail risk. We compute tail risk by means of Value-at-Risk (VaR), i.e. we
compute the value �V such that P ~V1 � V

 �
¼ α, where we vary α 2 ½0:9; 1� (the right

tail is relevant). The grey-filled area in Figure 11 is computed by varying the correlation
parameter ρr;X between � 0:8 and 0:7.

We observe that the PDF of Proposed has a wider range of embedded option values,
i.e. the embedded option process is more volatile under the Proposed method. This is
due to the extra stochastic process for modelling the equity volatility part of the Heston
model. Due to the wider PDF, the right tail is more heavier in the Proposed method,
which results in differences up to ∈30. Varying the correlation parameter ρX;r results in

different valuations of the Proposed method. The upper line of the filler area belongs to
ρX;r ¼ 0:7 and the lower line to ρX;r ¼ �0:8.
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4.5.4. The surplus process
In Figure 12(a,b), we compare the surplus process St for Proposed and Basic. In
Figure 12(a), a density plot is shown and in Figure 12(b) insight is provided in the
tail risk. We again compute tail risk by means of Value-at-Risk (VaR), i.e. we compute
the value �S such that P S1 � �Sð Þ ¼ α, where we vary α 2 ½0; 0:1� (the left tail is relevant).
The grey-filled area in Figure 12(b) is again computed by varying the correlation
parameter ρr;X between � 0:8 and 0:7.

We again observe that the PDF of the Proposed method has a wider range of values,
although the impact is smaller compared to the embedded option process. Due to the
wider PDF, the left tail is more heavier using the Proposed method, which results in
differences up to ∈25. The choice of the correlation ρA;X is crucial in this case. When At

decreases, then Xt increases due to the negative correlation, so that the value of the
embedded option ~Vt increases. The latter results in a decrease of the surplus.

(a) PDF
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Figure 11. Comparison of the embedded option values.

(a) PDF

−200 −100 0 100 200 300 400

Proposed
Basic

Surplus

(b) Insight in left tail

0 2 4 6 8 10
−80

−60

−40

−20

0

20

40

60

80
Proposed
Basic

Quantile (%)

S
ur

pl
us

Figure 12. Comparison of the surplus.
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4.5.5. The required capital
Last, we analyse the impact of computing the required capital (RC), which is compar-
able to the SCR under Solvency II. Insurers use internal models to compute required
capital for internal steering and/or reporting to the regulator. The required capital is the
amount of capital the insurer must hold against unforeseen losses during a one-year
period. The required capital is the VaR of a loss-function on a certain horizon (often
the 1-year horizon). A common loss function (see (Bauer, Bergmann, and Reuss,
2010)) is

Lt ¼ St�Δð1þ Rt�Δ;ΔÞ � St for Δ ¼ 1; t � Δð Þ;

with Rt�Δ;Δ the Δ-year risk-free rate in year t � Δ. This loss function will be used in our
experiments. Based on a one-year horizon and for a certain confidence level α 2 ½0; 1�,
the RC, RCα, is computed by:

P L1 � RCαð Þ � 1� α; L1 ¼ S0ð1þ R0;1Þ � S1
 �

; (44)

where we set R0;1 ¼ 0:025 is the one-year risk-free rate at t ¼ 0. Hence, the probability
that the loss over one year exceeds the RC is less or equal to 1� α. In practice, this
confidence level is often set to 99:5%.

In Figure 13(a,b), we compare the loss function for Proposed and Basic. In
Figure 13(b), the PDF is illustrated of the loss function. In Figure 13(b), insight is
provided in the right tail of the distribution. The grey-filled area in Figure 13(b) is
again computed by varying the correlation parameter ρr;X between � 0:8 and 0:7.

We again observe that the PDF of the Proposed method has a wider range of values
compared to the Basic method. Due to the wider PDF, the right tail is more heavy in the
Proposed method, which results in differences up to ∈40.

In Table 5, we give an overview of numerical values of the required capital for
different confidence levels. Insurance companies with an higher credit rating are
obligated to compute their required capital with a lower confidence level α. The values

(a) PDF
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Figure 13. Comparison of the loss function.
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in parenthesis are the solvency ratio, i.e. the ratio between the surplus and required
capital.

We observe that the absolute difference in RC between Proposed and Basic becomes
smaller when the confidence value α decreases from 99:5% to 90:0%. For α ¼ 99:5%,
the difference is ∈35, which is 35% of the surplus. The differences in the solvency ratio
is even larger: 81% for Proposed and 116% for Basic.

These differences show the relevance of taking the IV risk factor into account, i.e. to
apply the Proposed method. We note however that the impact of the differences
between Basic and Proposed heavily depends on the initial balance sheet settings and
in particular the value of the embedded option portfolio with respect to the total
liability value, which is in this simplified example 14% (100/700).

5. Conclusions

We presented a method for modelling risk-neutral models in a real-world scenario
model to perform nested Monte Carlo simulations. This is important for ex-ante risk
management applications for insurance companies. In such applications, an insurer is
required to compute their embedded option values at a future point in time. We make
use of the well-known SSHM models, which provide for a flexible modelling frame-
work. By introducing a hidden state process, we are able to reduce the dimension of the
calibration problem. In this way, we reduce the computation time and we improve the
numerical stability of the model parameters with respect to option market data. The
latter is desired in practice for transparency and stable valuations of embedded options.

We apply the proposed method to the well-known risk-neutral Heston model.
Although the Heston model consists of five model parameters, i.e. the mean reversion,
initial variance, long-term variance, volatility of variance correlation parameters, we
show that in our proposed methodology a one-dimensional state process already results
in highly satisfactory calibration results. That is, we obtain a maximum dimension
reduction. We also show that numerical stability of the model parameters with respect
to option market data is greatly improved. We measure numerical stability by means of
the operator norm.

To show the relevance of our method, we compare the estimated Heston model from
the proposed methodology to a basic parameter setting. We use both models to
compute the present and future values of a (simplified) unit-linked product of a fictive
insurer. The results differ substantially and especially the tails of the distributions differ,
which are important in practice. Given the large differences in this simplified case
study, we advice to use the proposed methodology for calibration, valuation and
simulation.

Table 5. Comparison of the required capital (in Euro).
99:5% 97:5% 95:0% 90:0%

Proposed 121(0.81) 92(1.08) 74(1.34) 56(1.78)
Basic 86(1.16) 64(1.53) 51(1.92) 37(2.67)
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Notes

1. We use similar notation as in Doucet 2009 tutorial (Doucet and Johansen, 2009).
2. Possible explanations for this phenomenon are the (see (Kamal and Gatheral, 2010))

negative correlation between asset returns and volatility changes (leverage effect). Big
jumps in the asset (spot) price tend to be downwards rather than upwards.

3. Unit-linked product are guaranteed investment return products.
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