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Abstract We study a call center model with a postponed callback option. A customer
at the head of the queuewhose elapsedwaiting time achieves a given threshold receives
a voice message mentioning the option to be called back later. This callback option
differs from the traditional ones found in the literature where the callback offer is
given at customer’s arrival.We approximate this system by a two-dimensionalMarkov
chain, with one dimension being a unit of a discretization of the waiting time. We
next show that this approximation model converges to the exact one. This allows us to
obtain explicitly the performancemeasureswithout abandonment and to compute them
numerically otherwise. From the performance analysis, we derive a series of practical
insights and recommendations for a clever use of the callback offer. In particular, we
show that this time-based offer outperforms traditional ones when considering the
waiting time of inbound calls.
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1 Introduction

Call centers serve as the public face in various areas and industries: insurance compa-
nies, emergency centers, banks, information centers, help desks, telemarketing, just to
name a few. The success of call centers is due to the technological advances in infor-
mation and communications systems. The most used form of communication is the
direct telephone contact. However, in the context of highly congested call centers, the
use of alternative options can be proposed to customers so as to better match demand
and capacity. Alternative options could be email, chat, blog, callback service, etc.

The callback offer allows the call center to change the nature of the channel from an
inbound call to an outbound one. For the call center manager, this change is valuable
because it reduces the congestion in the inbound queue. Another important aspect in
call centers is customers’ abandonment (e.g., see Mandelbaum and Zeltyn 2004; Dai
and He 2012). While waiting in the inbound queue, a customer may decide to leave
the system without being served. This customer is then lost for the call center without
possibilities to be recontacted. Instead, an outbound customer can be reached later.
Even with a long delay before being called back, this customer is potentially not lost.
From customers’ perspective, the willingness to accept future processing depends on
the urge to get an answer and the waiting cost. If waiting is painful and getting an
answer is not urgent, then a customer may accept the callback offer.

In practice, several types of callback offers are developed with the same purpose of
changing inbound calls into outbound ones. A large number of patents reflect this wide
variety and the technological challenges to implement this option in the Automatic
Call Distributor (ACD) (Livanos 1994; Metcalf 2006; Rafter et al. 2010; Blaesi 2015).
Nevertheless, from our discussion with our partner INTERACTIVGROUP, the effects
of the callback option are not well understood by managers and the implementation
still needs to be improved to achieve some service level objectives.

In call centers, a percentile of the waiting time is the usually chosen as a service
level objective. This metric is often preferred to the average speed of answer because
the former was perceived to be more informative; see Bailey and Sweeney (2003). It
is therefore important for managers to develop a callback offer which can be adjusted
to this type of service level agreement. At the same time, the callback offer should be
carefully used. Evenwhen the callback offer is accepted by a customer,most customers
would prefer being served directly. So, the callback offer should not be automatically
proposed, but should be proposed in a way which allows the call center to control the
proportion of outbound calls. As mentioned above, the other aspect is abandonment.
In case of a too important use of the callback offer, the proportion of non-abandoning
customers may get too important which in turn may lead to the impossibility to ensure
a sufficiently short delay for callback customers. In summary, an efficient callback
offer should:

– Help the manager to achieve a service level objective for inbound calls;
– Control the proportion of outbound calls;
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– Be easy to implement in the ACD;
– Be sufficiently simple to develop staffing solutions and predict performance.

In the literature on operations research, different callback options have already been
studied and optimized (Armony and Maglaras 2004a, b; Kim et al. 2012; Dudin et al.
2013; Legros et al. 2016). These callback models will be discussed in detail below.
A common element in these models is that the decision to propose a callback offer
is based on the system size. For instance, above a threshold on the queue length, a
callback option is proposed to all arriving customers. Unlike these models, we propose
a new callback option given to the first customer in line when its experienced waiting
time reaches a given waiting time threshold, the service level objective. We call this
callback option the postponed call back offer.

This makes sense both from theoretical and practical points of view, especially for
objectives that are functions of the waiting time such as the percentage of calls that
have waited shorter than a specific threshold. One can imagine, and it is indeed shown
in this paper, that a policy that uses actual waiting time information performs well for
this type of objective.

The motivation to let customers wait before the callback offer in our model is to
avoid giving a callback offer to a customer who could have been served in a reasonable
time. If a callback offer is given at arrival based eventually on the queue size, it may
be possible due to the variability in the service times to encounter a series of small
service times which would have enable to serve this customer in a reasonable time.
By letting the customer wait before the callback offer, the call center gives a chance
to serve the customer without using the callback option. Recall that most customers
prefer being directly served than being called back later.

In addition, we assume that customers have a probabilistic reaction to the callback
offer and that a non-preemptive priority is given to inbound calls since these ones are
more urgent. A precise definition of the queueing model is given in Sect. 2. Another
value of this callback model is that it is completely tractable. Without abandonment,
closed-form expressions of the performancemeasures can be obtained. This allows for
workforce management solutions and a simple implementation of the callback offer.

In Sect. 3, we determine the proportion of customers who have waited less than the
waiting time objective and the proportion of callback customers. In order to differenti-
ate between inbound and outbound customers, we are also interested in their respected
expected waiting times. Closed-form expressions of these performance measures are
derived without abandonment, and a numerical method is developed with abandon-
ment. The difficulty to compute these metrics is that the decision to change a high
priority customer into a low priority one does not depend on a classical state definition
like the number of high priority customers, but on the experienced waiting time of a
given customer. To overcome this difficulty, we propose the following approach:

1. Wedevelop an approximatingmodel, inwhich thewaiting timeof thefirst customer
in line is modeled by a succession of exponential phases. The number of waiting
phases and the elapsing of time rate per phase are the control parameters of the
approximation.

2. Since this new model is a Markov chain, the transitions rate can be obtained and
the stationary probabilities can be derived.
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3. Finally, as the control parameters of the approximating model tend to infinity, we
show that this model converges to the exact one which in turn leads to the exact
performance measures.

The key operational findings derived in Sect. 4 are that (1) the callback offer can
be used as a tool to reduce a waiting time percentile, (2) the value of a callback option
is more apparent under intermediate loaded situations, with abandonment, for small
call center, or when customers react mostly positively to the callback option, (3) two
rational strategies are possible for customers; either they all accept or they all reject the
callback offer, (4) the time atwhich the callback offer is proposed should be sufficiently
postponed, especially when the abandonment is significant or when customers do not
have a rational reaction to the callback offer, and (5) compared to a non-postponed
callback option, a postponed offer improves the waiting time of inbound calls and the
proportion of abandonment, especially in highly loaded situations.

In what follows, we discuss the related literature.

Literature review There is an extensive and growing literature on call centers. We
refer the reader to Gans et al. (2003) and Akşin et al. (2007) for an overview. The
main topics encountered in call center studies are routing decisions (e.g., see Helber
and Henken 2010; Robbins and Harrison 2010; Legros 2016), staffing (e.g., see Cezik
and L’Ecuyer 2008; Liao et al. 2012), or performance evaluation (e.g., see Koole and
Mandelbaum 2002; Stolletz and Helber 2004; Shumsky 2004). Our article focuses on
performance evaluation based on a particular routing mechanism defined through a
callback offer.

There are a few papers on different callback options in call centers. Armony and
Maglaras (2004a) consider a model in which customers are given a choice of whether
to wait online for their call to be answered or to leave a number and be called back
within a specified time or to immediately balk. Upon arrival, customers are informed
(or know from prior experience) of the expectedwaiting time if they choose towait and
the delay guarantee for the callback option. Their decision is probabilistic and based
on this information. Under the heavy traffic regime, Armony and Maglaras (2004a)
develop an estimation scheme for the anticipated real-time delay that is asymptotically
correct. They also propose an asymptotically optimal routing policy that minimizes
real-time delay subject to a deadline on the postponed service mode. Armony and
Maglaras (2004b) develop an asymptotically optimal routing rule, characterize the
unique equilibrium regime of the system, and propose a staffing rule that picks the
minimum number of agents that satisfies a set of operational constraints on the per-
formance of the system.

There are two recent papers by Kim et al. (2012) and Dudin et al. (2013). Kim
et al. (2012) consider a call center model with a callback option where the capacity
of the queue for the inbound calls is finite. Customer balking and abandonment are
allowed. They provide an efficient algorithm for calculating the stationary probabilities
of the system. Moreover, they derive the Laplace–Stieltjes transform of the sojourn
time distribution of virtual customers. Dudin et al. (2013) consider a slightly different
model, where agents make outbound calls to those lost customers. There are two agent
teams: one that handles in priority inbound calls and another that handles in priority
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outbound calls. They compute the stationary probabilities and deduce from that some
performance measures. They also numerically address the staffing issue of the two
teams.

Finally, Legros et al. (2016) consider in their callback model, a probabilistic cus-
tomer reaction to the callback offer. They show using a Markov decision process
approach that the optimal reservation policy for inbound calls is of switch type. There-
after, the system performance measures are computed under the optimal policy. It
appears from this study that the value of the callback offer is apparent for congested
situations and that the benefits of a reservation policy are more apparent in large call
centers, while they almost disappear in the extreme situations of light or heavy work-
loads. Moreover, if balking and abandonment are very high or if the overall treatment
time spent to serve an outbound call is very large compared to that of an inbound one,
there is a value in delaying the proposition of the callback offer.

Another stream of literature less closely related to our article deals with the analysis
of queueing multi-channel call center models with blending. This can be related to
callback models by assuming an infinite amount of customers to callback at the next
working period. Some papers focus on performance evaluation, and others address the
analysis of blending policies or staffing decisions. Deslauriers et al. (2007) develop
various continuous Markov chain models for a call center with inbound and outbound
calls. The authors consider a threshold policy and characterize the rate of outbounds
and the waiting time distribution of inbounds. Other call center papers address the
analysis of blending policies. Gans and Zhou (2003) and Bhulai and Koole (2003)
prove that a threshold policy on the number of idle agents is optimal to maximize
the outbound throughput under a service level constraint on the inbound waiting time.
Similar results are also found in Legros et al. (2015), for a non-stationary model where
inbound calls arrive according to a non-homogeneous Poisson process. Pang and Perry
(2014) consider a large call blending model and propose a logarithmic safety staffing
rule, combined with a threshold control policy to ensure that agents’ utilization is
always close to one with always idle agents present.

2 Setting

In this section, we define the queueing model and present an approximation model
which can be studied through a Markov chain analysis.

2.1 Queueing model

We consider a multi-server single queue with s identical, parallel servers. The arrival
process of customers is Poisson with rate λ. Service times are independent and expo-
nentially distributed with rate μ. When a customer calls, if at least one agent is
available, then this customer is directly served; otherwise, he/she is routed to a first-
come first-served queue called Queue 1. After having waited K time units, the first
customer in line waiting in Queue 1 hears a voice message, proposing to be called
back later. We assume that a proportion r of customers accepts the callback offer and
becomes then outbound calls. These calls are routed to another queue called Queue
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Fig. 1 Queueing model

2. Since inbound calls are more urgent, a non-preemptive priority is given to Queue
1. Another reason for the priority of inbound calls is the cost of waiting. In many call
centers, inbound customers pay per waiting time unit, whereas an outbound customer
would not pay. A priority for inbound calls would then help to reduce their waiting
cost.

Moreover, customers’ patience is limited.We assume that the patience of a customer
in Queue 1 is exponentially distributedwith rate β. Customers in Queue 2 are infinitely
patient since they are outbound calls. Our queueing model is equivalent to a particular
V-queueing model with two queues: Queue 1 and Queue 2, where customers in Queue
1 have a non-preemptive priority over customers in Queue 2. The arrival process in
Queue 1 is Poisson with parameter λ, and the arrival process in Queue 2 is generated
by customers in Queue 1 who have waited exactly K time units without being served
and accept the callback offer. This equivalent queueing model is depicted in Fig. 1.
For this queueing model, we are interested in the proportion of callback customers,
Pc, the proportion of abandonment, Pa , the expected waiting time of customers served
from Queue 1, E(W1), the expected waiting time of callback customers, E(W2) (it
includes the time also spent in Queue 1), and the probability of waiting less than the
instant at which the callback option is proposed, P(W < K ), where W is the waiting
time of an arbitrary customer. Note that without abandonment, this queueing model
can be seen as an M/M/s queue where the queue discipline has been modified.

2.2 An approximating model

In order to have aMarkov chain, onemay only have exponential durations between two
successive events. Yet, the time at which the callback offer is given is deterministic.
To overcome this difficulty, we develop here an approximating model in which all
durations are exponential. The resulting Markov chain will be studied in Sect. 3 to
obtain the performance measures of the exact model.

The approximation is based on aMarkov chain where the states constitute a discrete
representation of the waiting time of the first customer in line (FIL) in Queue 1 when
one or more customers are waiting. The waiting time of the FIL in Queue 1 is modeled
by a succession of exponential phases with rate γ per phase as proposed in Koole
et al. (2012). Instead, Queue 2 is modeled as in most queueing models by its number
of customers. The number of waiting phases in Queue 1 after which the callback offer
is proposed to the FIL is denoted by n. After leaving this waiting phase, a customer—if
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not served—is routed toQueue 2with probability r or stays inQueue 1with probability
1 − r . The queue discipline in both queues is still FCFS.

After giving a state definition and the transition rates, we will explain how this
approximation converges to the real model.

State definition The system is modeled using a two-dimensional continuous-time
Markov chain. We denote by (x, y) a state of the system for x ≥ −s and y ≥ 0,
where x represents the servers state or the waiting time in Queue 1 and y represents
the number of customers in Queue 2. More precisely, states with −s ≤ x ≤ 0 corre-
spond to an empty Queue 1 and s + x busy agents. States with x > 0 correspond to
the phase at which the FIL in Queue 1 is waiting and all agents are busy.

Transitions Wenext describe the seven possible transitions in theMarkov chain.When
the FIL changes, because of a service completion or an abandonment (see transition
Type 5), or because of the current FIL moving to Queue 2 (see transition Type 8), the
waiting time phase changes from x > 0 to x − h with probability qx,x−h . This means
that either the new first in line is in waiting phase x − h > 0 or that Queue 1 is empty
if x − h = 0, for 0 ≤ h < x . The probabilities qx,x−h are given in Theorem 2 of
Legros et al. (2017) by

qx,x−h =
⎛
⎝1 −

[
1 + λ

γ

(
γ

γ + β

)x−h
]−1

⎞
⎠ ·

x∏
k=x−h+1

[
1 + λ

γ

(
γ

γ + β

)k
]−1

for 0 ≤ h < x and

qx,0 =
x∏

k=1

[
1 + λ

γ

(
γ

γ + β

)k
]−1

.

Moreover, the probability of abandonment after a given waiting phase is β
γ+β

(see
Table 1, Line 3 in Legros et al. 2017)

1. An arrival with rate λ while Queue 1 is empty (−s ≤ x ≤ 0, y = 0), which
changes the state to (x + 1, 0). If x < 0, then the number of busy servers is
increased by 1. Otherwise, if x = 0, then the FIL entity is created.

2. A service completion with rate (s + x)μ while Queues 1 and 2 are empty (−s <

x ≤ 0, y = 0), which changes the state to (x − 1, y). The number of busy servers
is reduced by 1.

3. A service completion with rate sμ while Queue 1 is empty, Queue 2 is not empty
and all servers are busy (x = 0, y ≥ 1), which changes the state to (0, y − 1). The
number of customers in Queue 2 is reduced by 1.

4. A service completionwith rate sμqx,x−h or an abandonment with rate γ
β

γ+β
while

Queue 1 is not empty (x > 0, y ≥ 0), which changes the state to (x − h, y), that
is, the new FIL is in waiting phase x − h.

123



B. Legros et al.

5. A phase increasewithout abandonmentwith rate γ
γ

γ+β
whileQueue 1 is not empty

and the FIL is not in waiting phase n (0 < x < n, y ≥ 0), which changes the state
to (x + 1, y). The waiting phase of the FIL is increased by 1.

6. A phase increase with rate (1 − r)γ while the FIL is in waiting phase n (y ≥ 0),
which changes the state to (n + 1, y). The waiting phase of the FIL is increased
by 1.

7. A phase increase with rate rγ qx,x−h while the FIL in Queue 1 is in waiting phase
n (x = n, y ≥ 0), which changes the state to (x − h, y+ 1), that is, the new FIL is
in waiting phase x − h and the number of customers in Queue 2 is increased by 1.

Convergence to the real system We approximate the deterministic duration before
giving the callback offer by an Erlang random variable with n phases and rate γ per

phase. We choose n and γ such that n
γ

�= K . The Laplace transform of the Erlang

distribution with parameters n and γ is
(

γ
γ+s

)n
. We have

(
γ

γ + s

)n

= en ln((1+s/γ )−1) ∼
γ→∞ en ln(1−s/γ ) ∼

γ→∞ e−ns/γ = e−sK ,

where we write f (a) ∼
a→a0

g(a) to express that lim
a→a0

f (a)
g(a)

= 1, for a0 ∈ R. Applying

the Levy continuity theorem for Laplace transforms, this result ensures that as n and
γ go to infinity, the considered Erlang random variable converges in distribution to
the deterministic duration K .

The other approximation is the transition from Queue 1 to Queue 2. It is assumed
in our modeling that after one γ -transition from state x = n, only one customer is
routed to Queue 2. However, more than one customer could be in phase n (as in any
other phase). More precisely (with no abandonment), given that one customer is in
phase n, this customer is the only one with probability γ

λ+γ
, or two customers or more

are in phase n with probability λ
λ+γ

. Again, as γ tends to infinity, the probability that
only one customer is in one phase is equal to one.

3 Performance analysis

In Sect. 3.1, we derive explicitly the performancemeasures without abandonment. The
method developed here is adapted numerically in Sect. 3.1.2 to include abandonment.

3.1 Explicit performance measures without abandonment

In Sect. 3.1, we give the stationary probabilities of the discretized system. Next, in
Sect. 3.1.2, we let the elapsing of time rate tends to infinity in order to obtain the exact
performance measures.
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3.1.1 Stationary probabilities

Recall that in the case with no abandonment (β = 0), we simply have

qx,x−h =
(

λ

λ + γ

) (
γ

λ + γ

)h

for 0 ≤ h < x and

qx,0 =
(

γ

λ + γ

)x

as in Theorem 2.1 of Koole et al. (2012). Let us introduce the notations a = λ
μ
and

aγ = s · a+γ /μ
s+γ /μ

. The ratio a represents the traffic intensity of the system and aγ is a
modified version of the traffic intensity. The parameter aγ is an increasing function of
γ which is equal to a for γ = 0 and equal to s for γ = ∞. Proposition 1 gives the
stationary probability px,y to be in state (x, y) for x ≥ −s and y ≥ 0.

Proposition 1 Under the stability condition λ < sμ, we have

p−s,0 =
⎡
⎣

s−1∑
x=0

ax

x ! + as

s!

(
1 + a

s
λ
γ

− r a
s

(
1 + λ

γ

) ( aγ

s

)n)

(1 − a/s)
(
1 − r a

s

( aγ

s

)n)
⎤
⎦

−1

,

px−s,0 = ax

x ! · p−s,0, for 0 ≤ x ≤ s,

px,0 = p0,0
λ

γ

( aγ

s

)x
(sμ − λ(1 − r)) − rλ

( aγ

s

)n
sμ − λ(1 − r) − rλ

( aγ

s

)n , for 1 ≤ x ≤ n,

px,0 = p0,0(1 − r)
λ

γ

(sμ − λ)
( aγ

s

)x−n

sμ − λ(1 − r) − rλ
( aγ

s

)n , for x > n,

px,y = λ

γ
p0,0

( aγ

s

)x
(sμ − λ(1 − r)) − rλ

( aγ

s

)n
sμ − λ

( aγ

s

)n
sμ − λ(1 − r)

( aγ

s

)x − rλ
( aγ

s

)n
sμ − λ(1 − r) − rλ

( aγ

s

)n

×
(
rλ

sμ

sμ − λ
( aγ

s

)n
sμ − λ(1 − r) − rλ

( aγ

s

)n
)y

, for 1 ≤ x ≤ n, y ≥ 1,

px,y = (1 − r)
(aγ

s

)x−n
pn,y, for x > n, y ≥ 1.

Proof We adopt the following approach to derive the stationary probabilities. First,
we determine a set of equilibrium equations. Next, using these equilibrium equations
we derive a simple explicit expression of the probability that the FIL in Queue 1 is
in waiting phase x ; px = ∑∞

y=0 px,y for x ≥ 0. Considering this probability leads to
a one-dimensional problem which in turn allows us to compute the probability of an
empty system using the normalizing condition. Finally, we derive the other stationary
probabilities.
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Equilibrium equations Let S be the state space. Consider the cut between A1 =
{(−s, 0), . . . , (x, 0)} and S\A1, where x ≥ −s. Observing that

(
γ

λ+γ

)x +
∑x−1

l=h

(
λ

λ+γ

) (
γ

λ+γ

)l =
(

γ
λ+γ

)h
, we deduce that the cumulative transition rate from

state (x, y) to states (0, y), (1, y) · · · (x − h, y) is sμ

(
γ

λ + γ

)h

, for 0 ≤ h < x < n

and y ≥ 0. Therefore, by equating flows across the cut, one may write

λpx,0 = (s + x + 1)μpx+1,0, for − s ≤ x < 0, (1)

λp0,0 = sμp0,1 + sμ
∞∑
i=1

pi,0

(
γ

λ + γ

)i

, (2)

γ px,0 = sμp0,1 + sμ
∞∑

i=x+1

pi,0

(
γ

λ + γ

)i−x

, for 0 < x ≤ n, (3)

γ px,0 + rγ pn,0 = sμp0,1 + sμ
∞∑

i=x+1

pi,0

(
γ

λ + γ

)i−x

, for x > n. (4)

Consider now the cut between A2 = {(x, y′) : y′ ≤ y} and S\A2, where y ≥ 0. This
leads to

rγ pn,y = sμp0,y+1, for y ≥ 0. (5)

Finally, from the cut between A3 = {(0, y), (1, y), · · · (x, y)} and S\A3, where x ≥ 0
and y ≥ 1, we get

(sμ + λ)p0,y = sμp0,y+1 + sμ
∞∑
i=1

pi,y

(
γ

λ + γ

)i

+ rγ

(
γ

λ + γ

)n

pn,y−1, for y ≥ 1, (6)

γ px,y + sμp0,y = sμp0,y+1 + sμ
∞∑

i=x+1

pi,y

(
γ

λ + γ

)i−x

+ rγ

(
γ

λ + γ

)n−x

pn,y−1, for 0 < x ≤ n and y ≥ 1, (7)

γ px,y + sμp0,y = sμp0,y+1+sμ
∞∑

i=x+1

pi,y

(
γ

λ+γ

)i−x

+rγ pn,y−1,

for x > n and y ≥ 1. (8)

Probability of an empty system Summing up Eqs. (4) and (8) for y ≥ 1 yields

γ px = sμ
∞∑
k=1

(
γ

λ + γ

)k

px+k,
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for x > n. Let us denote by z, a root of the related homogeneous equation. We then
have

γ = sμ
∞∑
k=1

(
γ

λ + γ

)k

zk,

which leads to γ (λ + γ (1 − z)) = sμγ z. This equation has a unique solution; z =
λ+γ
sμ+γ

= aγ

s . Therefore, we have px+n+1 = ( aγ

s

)x
pn+1, for x ≥ 0. Summing up now

Eqs. (3) and (7) for y ≥ 1 and x = n yields

(1 − r)γ pn = sμ
∞∑
k=1

(
γ

λ + γ

)k

pn+k,

sowe deduce that px+n = (1−r)
( aγ

s

)x
pn for x ≥ 0.We now prove by induction on x

that pn−x =
(

s
aγ

)x
pn , for 0 ≤ x < n. This relation is clearly true for x = 0. Assume

now that this relation holds for pn, pn−1, . . . , pn−x . Summing up now Eqs. (3) and
(7) for y ≥ 1 yields

γ pn−(x+1) = sμ

(
γ

λ + γ

) (
s

aγ

)x

pn + sμ

(
γ

λ + γ

)2 (
s

aγ

)x−1

pn + · · ·

+ sμ

(
γ

λ + γ

)x (
s

aγ

)
pn + (rγ + sμ)

(
γ

λ + γ

)x+1

pn

+ sμ(1 − r)
∞∑
k=1

(
γ

λ + γ

)x+1+k (aγ

s

)k
pn

= sμ
x+1∑
i=1

(
γ

λ + γ

)i ( s

aγ

)x+1−i

pn + γ r

(
γ

λ + γ

)x+1

pn

+ γ (1 − r)

(
γ

λ + γ

)x+1

pn .

Using
(

γ
λ+γ

) (
s
aγ

)−1 = γ
sμ+γ

, we may write

γ pn−(x+1) = sμ

(
s

aγ

)x+1 x+1∑
i=1

(
γ

sμ + γ

)i

pn + γ

(
γ

λ + γ

)x+1

pn

= sμ

(
s

aγ

)x+1
γ

sμ + γ

1 −
(

γ
sμ+γ

)x+1

1 − γ
sμ+γ

pn + γ

(
γ

λ + γ

)x+1

pn

= γ

(
s

aγ

)x+1

pn,
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which proves the induction step. Using Eq. (6), with the same approach we also

obtain p0 = γ
λ

(
s
aγ

)n
pn ; therefore, px = λ

γ

( aγ

s

)x
p0 for 1 ≤ x ≤ n and px =

(1 − r) λ
γ

( aγ

s

)x
p0 for x > n. From the last expression, the stability condition is

aγ

s < 1. This is equivalent to λ < sμ as for a simple M/M/s queue. Moreover,
summing up Eq. (5) for y ≥ 0 leads to sμ(p0 − p0,0) = rγ pn . So, p0 = p0,0

1−r a
s

(
aγ
s

)n .

Using now Eq. (1), we finally deduce that p0 = as
s! p−s,0

1−r a
s

(
aγ
s

)n . Using the fact that the

overall sum of the stationary probabilities is equal to one, we obtain the probability of
an empty system as in Proposition 1.

Other stationary probabilities We can show that pn+x,0 = (1 − r)
(αγ

s

)x
pn,0 for

x > 0. The proof is identical to the proof for pn+x above.
We now show by induction on x that

pn−x,0 = pn,0

{(
s

aγ

)x

+ rλ

sμ − λ

((
s

aγ

)x

− 1

)}
, (9)

for 0 ≤ x < n. This relation is clearly true for x = 0. Assume now that this relation
holds for pn,0, pn−1,0, pn−x,0. One may write using Eq. (3) that

γ pn−(x+1),0 = sμp0,1 + sμ
x∑

k=0

(
γ

λ + γ

)x+1−k

pn−k,0

+ sμ(1 − r)
∞∑
k=1

(
γ

λ + γ

)x+1+k (αγ

s

)k
pn,0.

We now replace pn,0, pn−1,0, . . . , pn−x,0 by their expressions as a function of pn,0
and sμp0,1 by rγ pn,0 (Eq. 5). We obtain

γ pn−(x+1),0 = rγ pn,0 + sμ(1 − r)
∞∑
k=1

(
γ

λ + γ

)x+1+k (αγ

s

)k
pn,0

+ sμpn,0

x∑
k=0

(
γ

λ + γ

)x+1−k
{(

s

aγ

)k

+ rλ

sμ − λ

((
s

aγ

)k

− 1

)}
.

Usingnow
∑x

k=0

(
γ

λ+γ

)x+1−k = γ
λ

(
1 −

(
γ

λ+γ

)x+1
)
,
∑x

k=0

(
γ

λ+γ

)x+1−k (
s
aγ

)k =
γ
sμ

((
s
aγ

)x+1 −
(

γ
λ+γ

)x+1
)
, and

∑∞
k=1

(
γ

λ+γ

)x+1+k (αγ

s

)k = λ+γ
sμ

(
γ

λ+γ

)x+2
, we

prove the induction step. Observe that Eq. (2) is almost identical to Eq. (3) in which
we would replace x by 0. The only difference is the multiplicative coefficient on the
left hand side of Eq. (2). This one is λ instead of γ . Therefore, using the corrective
coefficient γ

λ
, we deduce the explicit expression of p0,0;
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p0,0 = γ

λ
pn,0

{(
s

aγ

)n

+ rλ

sμ − λ

((
s

aγ

)n

− 1

)}
.

This last equation relates p0,0 and pn,0. By substituting the expression of pn,0 as a
function of p0,0 into Eq. (9), we get

px,0 = p0,0
λ

γ

(
s
aγ

)n−x + rλ
sμ−λ

((
s
aγ

)n−x − 1

)

(
s
aγ

)n + rλ
sμ−λ

((
s
aγ

)n − 1
)

= p0,0
λ

γ

( aγ

s

)x
(sμ − λ(1 − r)) − rλ

( aγ

s

)n
sμ − λ(1 − r) − rλ

( aγ

s

)n ,

for 1 ≤ x ≤ n, and

px,0 = p0,0(1 − r)
λ

γ

(sμ − λ)
( aγ

s

)x−n

sμ − λ(1 − r) − rλ
( aγ

s

)n ,

for x > n.
With the same approach, one can show by induction that pn+x,y = pn,y(1− r)

( aγ

s

)x
,

for x > 0 and

pn−x,y = pn,y

{(
s

aγ

)x

+ rλ

sμ − λ

((
s

aγ

)x

− 1

)}

+ rλ

sμ − λ
pn,y−1

[
1 −

(
s

aγ

)x]
,

(10)

for 0 ≤ x < n. Combining now Eq. (6) with Eq. (10), we get

p0,y = pn,y
γ

λ

{(
s

aγ

)n

+ rλ

sμ − λ

((
s

aγ

)n

− 1

)}

+ rλ

sμ − λ
pn,y−1

γ

λ

[
1 −

(
s

aγ

)n]
.

This last equation relates p0,y , pn,y and pn,y−1. Since sμp0,y = rγ pn,y−1 for y ≥ 1
(Eq. 5), we obtain a relation between p0,y and pn,y ;

p0,y = pn,y
γ

λ

{(
s

aγ

)n

+ rλ

sμ − λ

((
s

aγ

)n

− 1

)}

+ λ

sμ − λ
p0,y

sμ

λ

[
1 −

(
s

aγ

)n]
.
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This last equation can be finally simplified into

pn,y = λ

γ
p0,y

sμ − λ
( aγ

s

)n
sμ − λ(1 − r) − rλ

( aγ

s

)n ,

for y ≥ 1.
Equation (5) gives an expression of pn,y−1 as a function of p0,y . Inserting these

two results into Eq. (10) leads to an expression of px,y as a function of p0,y ;

px,y = λ

γ
p0,y

sμ − λ(1 − r)
( aγ

s

)x − rλ
( aγ

s

)n
sμ − λ(1 − r) − rλ

( aγ

s

)n ,

for 0 < x ≤ n and y ≥ 1. Finally, from Eq. (5) we get

pn,y =
(
rλ

sμ

sμ − λ
( aγ

s

)n
sμ − λ(1 − r) − rλ

( aγ

s

)n
)y

pn,0.

This finishes the proof of the proposition. 	


3.1.2 Performance measures

In Theorem 1, we derive the performance measures. In order to relate the performance
measures to those of anM/M/s queue, we introduce the notationC(s, a) = P(W > 0)
(i.e., probability of queueing in an M/M/s queue). Recall from Kleinrock (1975, p.

103) that C(s, a) = as
s!

s−1∑
x=0

ax
x ! + as

s!
1

1−a/s

· 1
1−a/s .

Theorem 1 We have

Pc = r · C(s, a) · (1 − a/s)e−sμ(1−a/s)·K

1 − r a
s e

−sμ(1−a/s)·K ,

P(W > K ) = C(s, a)
(1 − r a

s )e
−sμ(1−a/s)·K

1 − r a
s e

−sμ(1−a/s)·K ,

E(W1) =
as
s!
sμ

· 1 − re−sμ(1−a/s)·K (1 + sμ(1 − a/s) · K )

(1 − a/s)2
((

1 − r a
s e

−sμ(1−a/s)·K ) s−1∑
x=0

ax
x ! + as

s!
1−re−sμ(1−a/s)·K

1−a/s

) ,

E(W2) = 1 + sμ · K
sμ(1 − a/s)

.

Proof The approach to derive the performance measures first consists of defining the
embedded Markov chain at specific instants chosen in order to reach the performance
measures at arbitrary instants. Next, by letting γ and n tend to infinity we obtain the
results.
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The embedded Markov chain Arriving customers either enter service upon arrival,
enter service from Queue 1 after some wait, or are routed to Queue 2. Call the instants
when one of these three events occurs Q-instants. Since the events at Q-instants all
occur one at a time, in the long run the system is identical at arrival instants and Q-
instants. Since the Poisson arrival process of customers is independent of the system
state, the system is identical at arrival instants and arbitrary instants. So, the system is
also identical at arbitrary instants and Q-instants. We therefore choose to consider the
system at Q-instants to obtain the performance measures (the arrival instants cannot
be seen in our Markov chain).

The Q-instants are determined by λ-transitions from state with a vacant server, sμ-
transitions from the other states except in states (0, y) and γ -transitions from states
(n, y), for y ≥ 0. The overall customer flow at Q-instants is identical to the customer
flow at arrival instants and has a rate λ. Therefore, the probability at Q-instants that x
servers are busy for 0 ≤ x < s is λ

λ
p−s+x,0 = p−s+x,0. The probability that the FIL is

in waiting phase x and y customers are in Queue 2 is sμ
λ
px,y for 0 < x < n or x > n,

0 for x = 0 and sμ+rγ
λ

pn,y for x = n. The stationary probabilities at Q-instants are
then completely known. This allows us to derive the performance measures.

Performance measures The approach to obtain the performance measures is to let γ
and n tend to infinity with respect to n

γ
= K . First, we have

lim
n,γ→∞

(aγ

s

)n = e−sμ(1−a/s)·K .

We now derive the proportion of customers who are routed to Queue 2, Pc. A customer
moves from Queue 1 to Queue 2 due to a γ -transition from states (n, y), y ≥ 0. The
proportion of customers which are moved from Queue 1 to Queue 2 is therefore

Pc = lim
n, γ → ∞

r
γ

λ
pn .

Recall from the proof of Proposition 1 that pn = λ
γ

( aγ

s

)n
p0 and p0 = as

s! p−s,0

1−r a
s

(
aγ
s

)n .

Therefore,

r
γ

λ
pn = r

(aγ

s

)n as
s! p−s,0

1 − r a
s

( aγ

s

)n . (11)

From the expression of p−s,0 in Proposition 1, we get the probability of an empty
system in an M/M/s queue:

lim
n, γ → ∞

p−s,0 =
[
s−1∑
x=0

ax

x ! + as

s!
1

1 − a/s

]−1

. (12)

By applying the last result in Eq. (11), we obtain the explicit expression of Pc.
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We now derive the proportion of customers who waits less than K , P(W < K ). A
customer is served from Queue 1 due to a sμ-transition from states (x, y), y ≥ 0.
Therefore,

P(W < K ) = lim
n, γ → ∞

p−s,0 + p−s+1,0+· · · + p−1,0+ sμ

λ
(p1+ p2+· · · + pn).

Therefore, we get

P(W < K )= lim
n, γ → ∞

p−s,0

⎛
⎜⎝

s−1∑
x=0

ax

x ! +
as
s!

1 − a/s

λ + γ

γ

1 −
(

λ+γ
sμ+γ

)n

1 − r a
s

(
λ+γ
sμ+γ

)n

⎞
⎟⎠;

this in turn leads to the result of the theorem.
Consider now the served customers from Queue 1. A served customer from Queue

1 waits x γ -phases with probability sμ
λ
px for x > 0, and each phase has an expected

duration of 1/γ . Therefore,

(1 − Pc)E(W1) = lim
n, γ → ∞

sμ

λ

∞∑
x=1

x

γ
px

= lim
n, γ → ∞

p0
sμ

γ 2

aγ

s

−r(n + 1)
(
1 − aγ

s

) ( aγ

s

)n + 1 − r
( aγ

s

)n
(
1 − aγ

s

)2 .

In order to compute this limit, we separate the last expression in three parts. First, we
may write

lim
n, γ → ∞

p0 = lim
n, γ → ∞

as
s! p−s,0

1 − r a
s

( aγ

s

)n =
as
s!

[
s−1∑
x=0

ax
x ! + as

s!
1

1−a/s

]−1

1 − r a
s e

−sμ(1−a/s)·K . (13)

Second, we have

lim
n, γ → ∞

sμ

γ 2

aγ

s

1
(
1 − aγ

s

)2 = lim
n, γ → ∞

sμ

(s − a)2

(
a + γ

μ

) (
s + γ

μ

)

γ 2 (14)

= 1

sμ(1 − a/s)2
.

Finally, one may write

−r(n + 1)
(
1 − aγ

s

) (aγ

s

)n + 1 − r
(aγ

s

)n

= 1 − r
(aγ

s

)n − r
(n + 1)(s − a)

s + γ /μ

(aγ

s

)n
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Applying the assumption n
γ

= K yields

lim
n, γ → ∞

−r(n + 1)
(
1 − aγ

s

) (aγ

s

)n + 1 − r
(aγ

s

)n

= 1 − re−sμ(1−a/s)·K (1 + sμ(1 − a/s) · K ). (15)

Combining Eqs. (13), (14) and (15) leads to the expression of E(W1).
We now consider the expected waiting time of customers who are routed to Queue

2. The probability of having y customers in Queue 2 at Q-instants (y ≥ 0) is∑∞
x=1

sμ
λ
px,y + rγ

λ
pn,y .Using the results of Proposition 1, we can compute explicitly

this expression by letting n and γ tends to infinity.

3.2 Numerical analysis with abandonment

The complexity of the transition structure does not allow us to obtain explicit expres-
sions for the performance measures with abandonment. However, since the transition
structure is completely known, using space state truncation with a bound, D1, for
the number of waiting phases in Queue 1 and a bound, D2, for the number of cus-
tomers in Queue 2, we can derive the performance measures including the proportion
of abandonment.

Let S be the state space. Consider the cut between A1 = {(−s, 0), . . . , (x, 0)} and
S\A1, where −s ≤ x ≤ D1. By equating flows across the cut, one may write

λpx,0 = (s + x + 1)μpx+1,0, for − s ≤ x < 0, (16)

λp0,0 = sμp0,1 +
(
sμ + γ

β

γ + β

) D1∑
i=1

pi,0qi,0, (17)

γ px,0 = sμp0,1 +
(
sμ + γ

β

γ + β

) D1∑
i=x+1

pi,0

x∑
k=0

qi,k, for 0 < x ≤ n, (18)

γ px,0 + rγ pn,0 = sμp0,1 +
(
sμ + γ

β

γ + β

) D1∑
i=x+1

pi,0

x∑
k=0

qi,k, for n < x < D1.

(19)

Consider now the cut between A2 = {(x, y′) : y′ ≤ y} and S\A2, where 0 ≤ y ≤ D2.
This leads to

rγ pn,y = sμp0,y+1, for 0 ≤ y < D2. (20)

Finally, from the cut between A3 = {(0, y), (1, y), · · · (x, y)} and S\A3, where −s ≤
x ≤ D1 and 1 ≤ y ≤ D2, we get
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(sμ + λ)p0,y = sμp0,y+1 +
(
sμ + γ

β

γ + β

) D1∑
i=1

pi,yqi,0 + rγ qn,0 pn,y−1, (21)

for 1 ≤ y < D2,

γ px,y + sμp0,y = sμp0,y+1 +
(
sμ + γ

β

γ + β

) D1∑
i=x+1

pi,y

x∑
k=0

qi,k

+ rγ
x∑

k=0

qn,k pn,y−1, (22)

for 0 < x ≤ n, and 1 ≤ y < D2,

γ px,y + sμp0,y = sμp0,y+1 +
(
sμ + γ

β

γ + β

) D1∑
i=x+1

pi,y

x∑
k=0

qi,k + rγ pn,y−1

(23)

for n < x < D1 and 1 ≤ y < D2.
We then get a finite number of equations due to the state space truncation. In addition

to the normalizing condition (i.e., the sum of the overall probabilities is equal to one),
on may obtain numerically all stationary probabilities.

Arriving customers either enter service upon arrival, enter service from Queue 1
or Queue 2 after some wait, abandon from Queue 1 after experiencing some wait, or
move from Queue 1 to Queue 2 after waiting n phases. The proportion of customers
which accepts the callback offer, Pc, is then given by

Pc = r
γ

λ

D2∑
y=0

pn,y .

The proportion of customers who have waited less than K time units, P(W < K ), is

P(W < K ) =
−1∑

x=−s

px,0 +
D2∑
y=0

n∑
x=1

sμ + γ
β

γ+β

λ
px,y .

The proportion of abandonment, Pa , is

Pa =
D2∑
y=0

D1∑
x=1

γ
β

γ+β

λ
px,y .

The expected waiting time in Queue 1, E(W1), is given by

(1 − Pc)E(W1) =
D2∑
y=0

D1∑
x=1

sμ + γ
β

γ+β

λ

x

γ
px,y .

123



Call centers with a postponed callback offer

We now consider the expected waiting time of customers who are routed to Queue

2. The probability of having y customers in Queue 2 (y ≥ 0) is
∑D1

x=1
sμ+γ

β
γ+β

λ
px,y +

rγ
λ
pn,y . This leads to the expected number in Queue 2. Next, applying Little’s Law

leads to E(W2).
One difficulty in the computation is the choice for the two parameters γ and D1.

The truncation parameter D1 introduces the risk of having a large probability mass in
the truncated state, particularly for large values of γ . The value of γ has an important
influence on the approximation. Increasing γ means that more states are required
for the truncation. At the same time, γ should be sufficiently large to represent the
continuous elapsing of time.

4 Operational findings, discussions and insights

We investigate the issues related to a postponed callback offer. We derive a series of
insights which can be proved in the case without abandonment. The proven results
are next discussed with abandonment. More precisely, in Sect. 4.1, we show how
a postponed callback offer can improve a waiting time percentile. In Sect. 4.2, we
analyze how the customer’s behavior may impact the system performance and what
may be a customer rational strategy. In Sect. 4.3, we investigate the impact of the
control parameter K on the performance measures to obtain recommendations to
better control the system performance. Finally, in Sect. 4.4, we conduct a comparison
between our postponed callback option and a callback option given at customer’s
arrival as developed in the literature (e.g., see Armony and Maglaras 2004a; Legros
et al. 2016).

4.1 The callback offer, a tool to improve a waiting time percentile

We evaluate the impact of the callback offer on P(W < K ).

Analysis without abandonment We denote by R the ratio between P(W > K ) with
the callback offer and P(W > K ) without the callback offer. Without the callback
offer, we have P(W > K ) = C(s, a) · e−sμ(1−a/s)·K . Therefore, using the expression
of P(W > K ) in Theorem 1, we get

R = 1 − r a
s

1 − r a
s e

−sμ(1−a/s)·K ≤ 1.

So, as a first insight, we obtain

Insight 1 The callback offer allows the manager to reduce a waiting time percentile.

In Fig. 2, we represent P(W > K ) and R as a function of the workload for three
different values for the callback acceptance parameter r . We observe that the higher
is r , the smaller are P(W > K ) and R. This can be proved by
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Fig. 2 P(W > K ) (μ = 1, K = 0.5, β = 0). a s = 1, b s = 1, c s = 50 and d s = 50

∂P(W > K )

∂r
= −C(s, a)e−sμ(1−a/s)·K

a
s (1 − e−sμ(1−a/s)·K )

(
1 − r a

s e
−sμ(1−a/s)·K )2 < 0, and

∂R

∂r
= −

a
s (1 − e−sμ(1−a/s)·K )

(
1 − r a

s e
−sμ(1−a/s)·K )2 < 0.

One would expect that the impact of accepting the callback offer is stronger under
high workload situations. Yet, the highest improvement is for intermediate workload
situations as shown in Fig. 2b, d. This can be explained as follows. For low workload
situations, the probability of waiting less that the threshold K is high. Therefore,
most customers do not hear the callback offer. Under high workload situations, most
customers hear the callback offer, but whether they accept it or not, they will wait
more than K . The comparison between Fig. 2a and c illustrates that the absolute
improvement is stronger in small call centers. The reason is related to the pooling
effect. It is well established that the pooling effect in large call centers reduces the
improvement that a good routing strategy could bring (Bassamboo et al. 2010; Legros
et al. 2015). In summary, our observations lead to a second insight:

Insight 2 Themore customers are likely to accept the callback offer, the more strongly
P(W > K ) can be improved. The maximal improvement is for intermediate workload
situations and for small call center size.

Impact of the abandonment The callback offer can be used to prevent some customers
with too long waiting time to leave the system. It is then interesting to observe how
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Fig. 3 P(W > K ) (μ = 1,
s = 10, K = 0.5, r = 90%)

abandonment may impact P(W > K ). In Fig. 3, we give P(W > K ) as a function of
the ratio a/s for different values of the abandonment rate. An interesting observation
is that the abandonment feature strongly helps to reduce P(W > K ). This is particu-
larly apparent in high workload situations. Callback customers then benefit from the
abandonment of customers in Queue 1 because the abandonment participates in the
departure flow from Queue 1.

4.2 Customer’s behavior

We investigate here the customer’s reaction to the callback offer.

Impact of r on E(W2) The parameter r is assumed to capture the customer’s behavior.
An interesting observation is that this parameter r is not part of the expression of
E(W2) without abandonment. This means that the delay for callback customers is
insensitive to the willingness of customers to accept the callback offer. Hence, we get
the following insight:

Insight 3 Without abandonment, the delay for callback customers is insensitive to the
parameter r .

However, Fig. 4 reveals that with abandonment, the parameter r influences the
delay for callback customers. More precisely, as r increases, E(W2) increases. This
observation is intuitive. As r increases, the proportion of callback customers also
increases. These customers do not abandon which in turn leads to a higher congestion
of the system.

Rational customers We study here customers’ rational behavior. First, with rational
customers, one may neglect the exponential patience. As shown in Mandelbaum and
Shimkin (2000), rational abandonments can occur only upon arrival (zero or infinite
patience for each customer).

We then investigate the willingness to accept the callback offer without abandon-
ment. The choice for a customer to accept the callback offer or not can be seen as the
result of a rational decision.When hearing the callback offer at time K , a customer has
the choice to stay in Queue 1 with a remaining expected waiting time of 1

sμ (because
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Fig. 4 E(W2) (μ = 1, s = 10,
K = 0.5, λ = 9.9)

the callback offer is given to the first customer in line) or can choose to be called back
later with an expected delay of E(W2) − K . Of course, accepting the callback offer
leads to higher waiting time, but waiting to be called back is less costly/annoying than
continuing to wait for an agent to be available. We capture by c1 and c2 the cost per
time unit of waiting in the initial queue (Queue 1) or in the callback queue (Queue 2),
respectively.

The parameter r should therefore be

r = arg min

(
(1 − r)c1

1

sμ
+ rc2(E(W2) − K )

)
,

with c1 ≥ c2. Since E(W2) is insensitive to r , the optimal value for r is either 0 or 1.
More precisely, we get:

Insight 4 Only two rational customer strategies are possible. Either all customers
who hear the callback offer accept this offer if c2

1+λ·K
1−a/s < c1; otherwise, they all

reject the offer.

The condition c2
1+λ·K
1−a/s < c1 induces that the higher the workload is, the more

likely customers will refuse the callback offer. Intuitively, this can be explained by
the long delays for callback customers in case of high workload situations due to
their low priority. The second consequence is that the smaller is K , the more likely
a customer will accept the callback offer. The reason is related to the proportion of
callback customers. When K is small, a high proportion of customers will hear the
offer. Therefore, if they all accept the offer, the proportion of those who are in Queue
1 is small and the effect of the low prioritization is reduced which in turn makes the
callback offer attractive.

4.3 The control parameter K

The control parameter for the call center is the time at which the callback offer is
proposed, K .
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Fig. 5 E(W1) (s = 10, μ = 1,
r = 0.8)

With rational customers As mentioned in Sect. 4.2, by choosing a too high value for
K , a call center with rational customers will induce a rejection of the callback offer
(r = 0). In this case, the value of K is irrelevant. Under a waiting time threshold for the
callback offer, all customers accept the offer (r = 1). In the case r = 1, both E(W1)

and E(W2) are strictly increasing in K . This argue for a value of K = 0. However,
in that case with r = 1 and K = 0, the call center manager may loose the control
of the proportion of callback customers and the inbound queue will always be empty.
This might be unwanted because inbound calls can be a source of revenue for the call
center; contrary to outbound calls they may pay a waiting cost per waiting time unit.
So, the choice of K also depends on the wanted proportion of callback customers.
This proportion, Pc, is strictly decreasing in K . This can be seen by

∂Pc
∂K

= −sμr · C(s, a) · (1 − a/s)2e−sμ(1−a/s)·K

(1 − r a
s e

−sμ(1−a/s)·K )2
< 0.

With irrational customers In the case r < 1, the elements mentioned above still hold
except the monotonicity of E(W1). In Fig. 5, we present E(W1) as a function of K
for different workload situations.

Proposition 2 If 0 < r < 1, there exists a unique value for K which minimizes
E(W1). It is the unique solution in K of

x A + re−x = 1, (24)

with x = sμK (1 − a/s) and A =
s−1∑
x=0

ax
x ! + as

s!(1−a/s)

a
s

s−1∑
x=0

ax
x ! + as

s!(1−a/s)

.

Note that in the case r = 0, E(W1) is insensitive to K .

Proof We obtain Eq. (24) from ∂E(W1)
∂K = 0. Consider the function f (x) = x A +

re−x − 1. We want to show that f (x) = 0 has a unique solution. We have f ′(x) =
A − re−x . Since x > 0, r < 1 and A > 1, we have f ′(x) > 0 for x ≥ 0. So,
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Fig. 6 Impact of the abandonment (s = 10, r = 0.8, a/s = 0.95, μ = 1). a E(W1) and b E(w2)

the function f is increasing in x for x ≥ 0. Moreover, f (0) = r − 1 < 0 and
lim

x→+∞ f (x) = +∞. This proves that there exists a unique solution of Eq. (24). 	


One way to obtain the unique solution of Eq. (24) is to apply the Newton algorithm
by defining recursively xk by x0 = 0 and xk+1 = xk − f (xk )

f ′(xk ) for k ≥ 0 and f defined
as in the proof of Proposition 2. Note that since f ′(x) > 0 for x ≥ 0, the recursion is
well defined.

The reason which explains why E(W1) is not increasing in K is the definition of the
callback offer. Increasing K does not necessarily mean that less customers have the
callback proposition. Recall that only the first customer in line can hear the callback
offer. In case of high workload situations and low value for K , the probability to be
the FIL at waiting time K is low (except if r = 1). Most likely, at waiting time K
a customer will have other customers in front of him and will not have the callback
offer. Increasing K in this case leads to a higher chance to be the FIL at waiting time
K . Therefore, increasing K leads to a higher chance to leave Queue 1. This explains
how E(W1) can be decreasing in K . In case of low workload situations, increasing K
reduces the proportion of callback customers and therefore increases E(W1).

With abandonment Figure 6a, b illustrates the impact of K on E(W1) and E(W2),
for different values of the abandonment rate β. We observe that with abandonment,
the value of K which minimizes E(W1) is higher than the one obtained without
abandonment.With abandonment, the increasing of the number of customers in Queue
1 increases also the departure rate (after abandonment or service) of inbounds from the
system, which makes the system more efficient and may decrease E(W1). Therefore,
higher values for K may lead to a better performance for inbound calls. We observe
that E(W2) is still increasing in K (Fig. 6b) although the abandonment in Queue 1
also reduces the waiting time in Queue 2.

The abandonment plays a important role in the choice of K . Since by definition
outbound calls do not abandon, reducing K reduces abandonment, which is positive.
Yet, this may also increase the workload and lead to higher waiting time. This leads
to another insight.
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Insight 5 The callback offer may help to reduce the proportion of abandonment.
However, the time at which the callback offer is proposed should be carefully chosen
in order to avoid congestion.

4.4 Comparison with a non-postponed callback offer

The callback offer studied in this article differs from the one in the literature by the
instant at which it is proposed. In most callback models, the callback offer is given
at arrival of a new call if the expected waiting time is too high (e.g., see Armony and
Maglaras 2004a; Legros et al. 2016). Instead, we consider in this article a callback offer
given after experimenting some wait. We propose to conduct a comparison between
these two strategies.

We call Model A our postponed callback offer and by Model B a callback offer
proposed at arrival of a new call. For Model B, we assume that at and above a given
number of customers inQueue 1 (or equivalently at and above a given expectedwaiting
time for an arriving customer) the callback offer is proposed to all arriving customers.
Hence, inModel B, Queue 1 has a limited capacity n. All arriving customers are routed
to Queue 2 if Queue 1 size is equal to n. Therefore, n is the control parameter ofModel
B. The performance measures in Model B can be obtained through a Markov chain
analysis or can be deduced from Proposition 3 of Legros et al. (2016). We obtain the
following performance measures for Model B:

Pc = C(s, a) · (1 − a/s)
( a
s

)n

1 − ( a
s

)n+1 ,

E(W1) =
as
s!
sμ

· 1 − ( a
s

)n
(1 + n(1 − a/s))

(1 − a/s)2
((

1 − ( a
s

)n+1
) s−1∑
x=0

ax
x ! + as

s!
1−( a

s )
n

1−a/s

) ,

E(W2) = 1 + n

sμ(1 − a/s)
.

The difficulty in the comparison is the customer’s reaction to the offer. It may differ
whether the callback offer is given at arrival or later. To avoid this complexity, we
assume that all customers accept the callback offer in both models. This corresponds
to a rational behavior in Model A.

Comparison without abandonment In Theorem 2, we consider a context for which
the call center manager wants to maintain the proportion of callback customers at
a given level. Under this constraint which forces the two models to have the same
proportion of callback customers, we prove that our postponed callback offer leads to
a better expected waiting time for inbound calls and a worse expected waiting time
for outbound ones.
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Fig. 7 Comparison between the callback offers (s = 10, r = 1, μ = 1, β = 0, K = 0.5, n ln(a/s) =
−sμ(1 − a/s)K ). a E(W1) and b E(W2)

Theorem 2 Given that the control parameters K (Model A) and n (Model B) are
chosen such that the proportion of callback customers in identical in both models,
E(W1) is lower in Model A and E(W2) is lower in Model B.

Proof To obtain the same proportion of callback customers in bothmodels, the control
parameters n and K should be related by

( a
s

)n = e−sμ(1−a/s)K . This equation is
equivalent to n ln(a/s) = −sμ(1 − a/s)K . Let us denote by E(W1)A and E(W1)B ,
the expected waiting time of inbound calls in Model A and B. We have

E(W1)A − E(W1)B

=
as
s!
sμ

· e−sμ(1−a/s)·K (n − sμK )

(1 − a/s)

((
1 − a

s e
−sμ(1−a/s)·K ) s−1∑

x=0

ax
x ! + as

s!
1−e−sμ(1−a/s)·K

1−a/s

) .

Thus, the sign of this difference depends on the sigh of n − sμK . One may write,

n − sμK = − sμK

ln(a/s)
(ln(a/s) + 1 − a/s).

Since a/s < 1, − sμK
ln(a/s) > 0. Thus, the sign of the expression depends on the sign of

ln(a/s)+1−a/s. Consider the function in x , f (x) = ln(x)+1−x for x > 0.We have
f ′(x) = 1

x −1. So f ′(x) > 0 for 0 < x ≤ 1. Since f (1) = 0, ln(a/s)+1−a/s < 0.
This proves that E(W1)A − E(W1)B < 0. With the same approach, we can prove that
the expected waiting time for outbound calls is higher with Model A. 	


In Fig. 7a, b, we represent E(W1) and E(W2) as a function of the workload for
ModelA andModelB assuming a fixed value of K = 0.5 forModelA and n is adjusted
in Model B with the relation n ln(a/s) = −sμ(1 − a/s)K such that the two models
achieve the same proportion of callback customers. An interesting observation is that
the improvement for E(W1) with Model A is higher under high workload situations,
whereas the improvement for E(W2) with Model B is higher under low workload
situations. This leads to a last insight.

Insight 6 A postponed callback offer is preferred under high workload situations.
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Fig. 8 Comparison between the callback offers (s = 10, r = 1, μ = 1, β = 10, n = 5). a Pa , b E(W1)

and c E(W2)

Comparison with abandonment In Fig. 8a–c, we represent Pa , E(W1) and E(W2)

as a function of the arrival rate for Model A and Model B assuming a fixed value of
n = 5 for Model B and K is adjusted in Model A such that the two models achieve the
same proportion of callback customers.We obtain the same qualitative observations as
shown in Fig. 7. As mentioned in Insight 6, with abandonment the postponed callback
offer is preferred under high workload situation. In addition, Fig. 8a reveals that for a
given proportion of callback customers, the postponed callback offer achieves a lower
proportion of abandonment. This is an essential value of the postponed callback offer;
it allows the call center to reduce the proportion of lost customers.

5 Conclusion

In this article, we propose a new callback model. After experimenting some wait, the
first customer in line receives a callback proposition and chooses to accept it or not.
This simple model differs from the one in the literature where the callback offer is
given at customers’ arrival. We first develop a Markov chain analysis to derive the
performance measures without abandonment. The same approach is also applied to
compute numerically the performance measures with abandonment. This allows us
to better understand the effect of the callback offer on the call center performance.
We find that our callback offer succeeds in reducing a percentile of the waiting time.
In particular, the realized improvement can be significant in intermediate workload
situations, with abandonment and small call center size. One surprising result is that

123



B. Legros et al.

the delay for callback customers is insensitive to thewillingness of customers to accept
the callback offer without abandonment. This result is, however, no longer valid with
abandonment. This leads to only two rational customer behaviors: either they all accept
or they all reject the callback offer. Next, we evaluate how to derive the optimal value
of K without abandonment and show how this parameter can be efficiently used to
reduce the proportion of abandonment. Finally, we show that our postponed callback
offer outperforms the existing ones in reducing the proportion of abandonment and
the expected waiting time of inbound calls.

Several avenues are open for future research. It would be interesting to develop a
callback offer with a state-dependent starting time. This may give a trade-off between
the benefits of the postponed and non-postponed callback offer. In addition, more com-
plexity could be included in the model like retrials and reconnections, time-dependent
parameters or other type of service time or patience distributions.
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