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Abstract Huber et al. (SIAM J Comput 43:1064–1084, 2014) introduced a concept
of skew bisubmodularity, as a generalization of bisubmodularity, in their complexity
dichotomy theorem for valued constraint satisfaction problems over the three-value
domain, andHuber andKrokhin (SIAMJDiscreteMath 28:1828–1837, 2014) showed
the oracle tractability ofminimization of skew-bisubmodular functions. Fujishige et al.
(Discrete Optim 12:1–9, 2014) also showed a min–max theorem that characterizes the
skew-bisubmodular function minimization, but devising a combinatorial polynomial
algorithm for skew-bisubmodular function minimization was left open. In the present
paper we give first combinatorial (weakly and strongly) polynomial algorithms for
skew-bisubmodular function minimization.
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1 Introduction

The concept of bisubmodularity was independently introduced by Bouchet [3] and
Chandrasekaran–Kabadi [5] (also see [1,2,6,7,22]), and has been extensively studied
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in combinatorial optimization as a generalization of submodular functions (see, e.g.,
[4]). As a further generalization of bisubmodularity, the concept of skew-bisubmodular
function was recently introduced by Huber et al. [16] in their complexity dichotomy
theorem for the valued constraint satisfaction problems (VCSPs) over the three-value
domain (cf. [24]).

Let V be a finite nonempty set of n elements and 3V = {(X,Y ) | X,Y ⊆ V, X ∩
Y = ∅}. Let α ∈ (0, 1]. A function f : 3V → R is called α-bisubmodular [16] if, for
every Z1 = (X1,Y1) and Z2 = (X2,Y2) ∈ 3V , f satisfies

f (Z1) + f (Z2) ≥ f (Z1 ∩ Z2) + α f (Z1 ∪0 Z2) + (1 − α) f (Z1 ∪1 Z2),

where Z1 ∩ Z2 = (X1 ∩ X2,Y1 ∩ Y2), Z1 ∪0 Z2 = ((X1 ∪ X2)\(Y1 ∪ Y2), (Y1 ∪
Y2)\(X1 ∪ X2)), and Z1 ∪1 Z2 = (X1 ∪ X2, (Y1 ∪ Y2)\(X1 ∪ X2)). When α = 1,
1-bisubmodularity is exactly bisubmodularity. A function f : 3V → R is called skew-
bisubmodular [16] if it isα-bisubmodular for someα ∈ (0, 1]. Huber andKrokhin [15]
pointed out that the minimization of skew-bisubmodular functions is tractable via the
ellipsoid method as in the work by Qi [22] for bisubmodular functions. However,
developing a combinatorial algorithm remains unsolved.

In this paper we give first combinatorial weakly and strongly polynomial algo-
rithms for skew bisubmodular function minimization. In [12] the concept of skew-
bisubmodularity was slightly generalized, and a min–max relation characterizing the
minimum of a (generalized) skew-bisubmodular function was shown by introducing
skew-scaled bisubmodular polyhedra. Building on those polyhedral backgrounds, our
algorithms are adaptations of the combinatorial algorithms for bisubmodular function
minimization by Fujishige and Iwata [9] and McCormick and Fujishige [21], which
are built on the Iwata–Fleischer–Fujishige algorithm [17] for submodular function
minimization. However, a simple adaptation causes several technical problems. Two
major obstacles, which seem worth emphasizing here, are listed below.

1. The Fujishige–Iwata weakly polynomial algorithm [9] makes use of the boundary
operator of skew-symmetric digraphs to describe edge vectors of the associated
bisubmodular polyhedron, and their analysis implicitly relies on the symmetry of
the operator. In the skew-bisubmodular case, the associated polyhedra are scaled
(“skewed”) and the edge vectors are best described by scaled boundary of skew-
symmetric digraphs. This, however, makes the boundary operator asymmetric,
and we cannot directly apply the arguments of [9] and [21]. We will overcome the
difficulty by introducing a new augmentation concept, called augmenting path-
sequence.

2. Given a partition � = {X1, . . . , Xk} of V , one can define the aggregation of
a submodular function f : 2V → R as a function f̂ on 2� defined by f̂ (S) =
f (

⋃
X∈S X) for S ⊆ �. This operation can naturally be extended to bisubmodular

functions, and as in the Iwata–Fleischer–Fujishige algorithm [17] for submodular
functions, the McCormick–Fujishige strongly polynomial algorithm [21] makes
use of aggregation as a crucial tool to control the size of entry values of bases
in the intermediate steps. This operation, however, cannot be extended to skew-
bisubmodular functions (at least in an obvious manner). This difficulty will be
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overcome by introducing a new technique to find a base of the associated poly-
hedron with small duality gap with the aid of the ordinary submodular function
minimization as a subroutine.

Our quest of extending combinatorial algorithms for submodular functions is moti-
vated by questions about the tractability of submodular function minimization defined
on general discrete structures such as semilattices and sets of transversals (see, e.g.,
[10,11,13,14,18–20]), where bisubmodular functions are special cases of submodular
functions on a semilattice [13]. New techniques presented here might also be useful
for other classes of submodular functions.

The rest of the paper is organized as follows. In Sect. 2 we list preliminary facts
on skew-bisubmodular functions given in [12] and introduce necessary notation. In
Sect. 3 we first give a combinatorial weakly polynomial algorithm. In Sect. 4 we give
a combinatorial strongly polynomial algorithm by using the main body of the weakly
polynomial algorithm as a subroutine.

2 Definitions and preliminaries

For each v ∈ V let χv ∈ R
V be the characteristic vector of the singleton set {v}, i.e.,

χv(v) = 1 and χv(w) = 0 for w ∈ V \{v}. Each (X,Y ) ∈ 3V is called a signed set
and is identified with a {0,±1}-vector ∑

v∈X χv − ∑
v∈Y χv .

The original definition of skew-bisubmodular function of Huber et al. [16] was
slightly generalized in [12] as follows.

Let α = (α+, α−) with α+: V → R>0 and α−: V → R>0. For simplicity we
assume

α+(v) ≥ α−(v) (∀v ∈ V )

without loss of generality.1 Let β = max{α+(v)
α−(v)

| v ∈ V }. Note that by the assumption

we have 0 <
α−(v)
α+(v)

≤ 1 for all v ∈ V and hence β ≥ 1. For each t ∈ [0, 1), let
Vt =

{
v ∈ V

∣
∣
∣

α−(v)
α+(v)

≤ t
}
and define a binary operation ∪t on 3V by

(X1,Y1) ∪t (X2,Y2) = (((X1 ∪ X2)\Δ) ∪ (Vt ∩ Δ), (Y1 ∪ Y2)\Δ)

whereΔ = (X1∪X2)∩(Y1∪Y2) (see Fig. 1). Note that Vt is monotone nondecreasing
in t ∈ [0, 1).

The (generalized) skew-bisubmodular function is defined based on binary opera-
tions ∩ and ∪t (t ∈ [0, 1)) on 3V as follows, by generalizing ∪0 and ∪1 given in the
introduction.

1 If α+(v) < α−(v) for some v ∈ V , consider a reflection of f by element v given by f v(X, Y ) =
f (X\{v}, Y ∪ {v}) if v ∈ X , f v(X, Y ) = f (X ∪ {v}, Y\{v}) if v ∈ Y , and f v(X, Y ) = f (X, Y )

otherwise. Also consider old α+(v) and α−(v) as new α−(v) and α+(v), respectively.
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Fig. 1 The shaded regions correspond to a (X1, Y1) ∩ (X2, Y2), b Δ = (X1 ∪ X2) ∩ (Y1 ∪ Y2), and c
(X1, Y1) ∪0 (X2, Y2)

Definition 1 For given V and α, define a set T = {α−(v)
α+(v)

| v ∈ V }∪{0, 1} and arrange
the distinct elements of T in the increasing order of magnitude as 0 = t0 < t1 < t2 <

· · · < tp+1 = 1. Then a function f : 3V → R is called α-bisubmodular if

f (X1,Y1) + f (X2,Y2) ≥ f ((X1,Y1) ∩ (X2,Y2))

+
p∑

i=0

(ti+1 − ti ) f
(
(X1,Y1) ∪ti (X2,Y2)

)

for all (X1,Y1), (X2,Y2) ∈ 3V . We assume f (∅,∅) = 0.

We consider the problem of minimizing an α-bisubmodular function f .
We give some additional definitions and notation, and then review basic facts about

α-bisubmodular functions shown in [12]. Throughout the paper, we prepare the signed
copies v+ and v− for each v ∈ V . For any X ⊆ V define X+ = {v+ | v ∈ X} and
X− = {v− | v ∈ X}. Every signed set (X,Y ) ∈ 3V is identified with X+ ∪ Y− if it is
clear from the context. A subset Z of V+ ∪ V− is called consistent if there exists no
v ∈ V such that {v+, v−} ⊆ Z . Note that there is a natural bijection between 3V and
the set of all consistent subsets of V+ ∪ V−. For any (X1,Y1), (X2,Y2) ∈ 3V we say
that (X1,Y1) and (X2,Y2) are compatible if X1 ∩ Y2 = ∅ and X2 ∩ Y1 = ∅. For any
compatible (X1,Y1) and (X2,Y2)we write (X1,Y1)∪ (X2,Y2) = (X1∪ X2,Y1∪Y2).
Also we write (X1, Y1) ⊆ (X2,Y2) if X1 ⊆ X2 and Y1 ⊆ Y2. When (X1,Y1) ⊆
(X2,Y2), define (X2,Y2)\(X1,Y1) = (X2\X1,Y2\Y1).

For any (A, B) ∈ 3V define the contraction f(A,B) of f by (A, B) as follows: the
domainof f(A,B) is givenby3V \(A∪B) and for each (X,Y ) ∈ 3V \(A∪B) f(A,B)(X,Y ) =
f ((X,Y ) ∪ (A, B)) − f (A, B). The contraction f(A,B) is α-bisubmodular.
For any (X,Y ) ∈ 3V define a vector χα

(X,Y ) in R
V by

χα
(X,Y ) =

∑

v∈X
α+(v)χv −

∑

v∈Y
α−(v)χv

which can be regarded as a signed α-scaled characteristic vector of signed set (X,Y ).
Note that the canonical inner product of x ∈ R

V and χα
(X,Y ) is given by
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Fig. 2 A simplicial division that determines the convex extension of f

〈
x, χα

(X,Y )

〉
=

∑

v∈X
α+(v)x(v) −

∑

v∈Y
α−(v)x(v)

=
∑

vσ ∈(X,Y )

σασ (v)x(v).

The α-bisubmodular polyhedron associated with an α-bisubmodular function f is
defined by

Pα( f ) =
{
x ∈ R

V | ∀(X,Y ) ∈ 3V :
〈
x, χα

(X,Y )

〉
≤ f (X,Y )

}
.

A signed set (S, T ) ∈ 3V with S∪T = V is called an orthant. For each (S, T ) ∈ 3V , f
restricted on 2(S,T ):= {(X,Y ) | (X,Y ) ⊆ (S, T )} is an ordinary submodular function.
Hence, in each orthant (S, T ) we have the α-scaled submodular polyhedron given by

Pα
(S,T )( f ) =

{
x ∈ R

V | ∀(X,Y ) ⊆ (S, T ):
〈
x, χα

(X,Y )

〉
≤ f (X,Y )

}
,

and the α-scaled base polyhedron by

Bα
(S,T )( f ) =

{
x ∈ Pα

(S,T )( f ) | 〈x, χα
(S,T )〉 = f (S, T )

}
.

[Compare them with ordinary submodular polyhedra and base polyhedra (see [8])].
Figures 2, 3 show two-dimensional examples with V = {1, 2}. Figure 2 gives a

simplicial division of the rectangle (the convex hull of points χα
(X,Y ) ((X,Y ) ∈ 3V ))

that determines the convex extension of f . Note that the extension of f is convex
if and only if f is α-bisubmodular [12,15]. Figure 3 shows an example of the α-
bisubmodular polyhedron Pα( f ), which is the subdifferential of the convex extension
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Fig. 3 An example of the α-bisubmodular polyhedron Pα( f )

of f at the origin. This can be seen by the defining inequalities for x ∈ Pα( f ):
∀(X,Y ) ∈ 3V : 〈x, χα

(X,Y ) − χα
(∅,∅)

〉 ≤ f (X,Y ) − f (∅,∅).
Let σ : V → {+,−} be a sign function. For any X ⊆ V , X |σ denotes (Xσ+ , Xσ−) ∈

3V with Xσ+ = {v ∈ X | σ(v) = +} and Xσ− = {v ∈ X | σ(v) = −}. Let
L = (v1, . . . , vn) be a linear ordering of V with |V | = n. For each i = 1, . . . , n
define L(vi ) = {v1, . . . , vi }.

For a linear ordering L = (v1, . . . , vn) of V and a sign function σ : V → {+,−},
let y ∈ R

V be given by

y(vi ) = σ(vi )
f (L(vi )|σ) − f (L(vi−1)|σ)

ασ(vi )(vi )
(1)

for i = 1, . . . , n, where we define L(v0) = ∅. Then y is an extreme point of Pα( f ),
which is called the extreme point generated by L and σ . Conversely, every extreme
point of Pα( f ) can be generated by some L andσ through (1).Note that y is determined
by a signed, α-scaled version of the greedy algorithm by (1).

For any x ∈ R
V define

‖x‖α:= −
∑

v∈V : x(v)<0

α+(v)x(v) +
∑

v∈V : x(v)>0

α−(v)x(v)

= −
∑

v∈V : σ x(v)<0

σασ (v)x(v)

=
∑

v∈V : σ x(v)<0

ασ (v)|x(v)|,
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which is an asymmetric norm (positively homogeneous convex function) of x .
The following min–max theorem characterizing the minimum value of α-

bisubmodular function f was shown in [12].

Theorem 1 For any α-bisubmodular function f : 3V → R (with f (∅,∅) = 0),

max{−‖x‖α | x ∈ Pα( f )} = min{ f (X,Y ) | (X,Y ) ∈ 3V }.

3 Weakly polynomial algorithm

In this section we describe a weakly polynomial algorithm for minimizing an
α-bisubmodular function f . The algorithm is designed for any real-valued α-
bisubmodular functions, and its main subroutine will be also used for the strongly
polynomial algorithm in the next section.

3.1 Algorithm description

Let KV+∪V− be the complete digraph with vertex set V+ ∪ V−, where recall that V+
is the positive copy of V and V− is the negative copy of V .

During the execution of our algorithm we keep the following:

– a positive number δ, which will be used as a parameter of the scaling.
– a vector x ∈ Pα( f ) along with its expression as a convex combination of extreme
points yi of Pα( f ) indexed by a finite set J , i.e.,

x =
∑

i∈J

λi yi with λi > 0 (i ∈ J ) and
∑

i∈J

λi = 1. (2)

Here each yi is represented by a pair of a linear ordering Li of V and a sign
function σi on V [with which yi is computed by (1)]. It should be noted that each
yi computed as such is an extreme point of Pα( f ).

– a nonnegative function ψ : (V+ ∪ V−) × (V+ ∪ V−) → R≥0.

Such a function ψ : (V+ ∪ V−) × (V+ ∪ V−) → R≥0 is called a flow in KV+∪V− .
The algorithm starts with

– some positive δ and x ∈ Pα( f ), which will be specified later, and
– ψ = 0.

The algorithm is controlled by the scaling parameter δ. At each scaling phase with
parameter δ we keep ψ being δ-feasible, which by definition satisfies the following
for all u, v ∈ V+ ∪ V−:
– 0 ≤ ψ(u, v) ≤ δ,
– ψ(u, v) = 0 or ψ(v, u) = 0.

For a flow ψ : (V+ ∪ V−) × (V+ ∪ V−) → R≥0, define ∂αψ ∈ R
V by

∂αψ =
∑

(uτ1 ,vτ2 )

(
τ1

1

ατ1(u)
χu − τ2

1

ατ2(v)
χv

)
ψ(uτ1 , vτ2), (3)
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where the sum is taken over all arcs (uτ1 , vτ2) of KV+∪V− with τ1, τ2 ∈ {+,−}. Note
that (3) can also be written as follows.

∂αψ =
∑

v∈V

∂ψ(v+)

α+(v)
χv −

∑

v∈V

∂ψ(v−)

α−(v)
χv,

where ∂ψ(v±) is the ordinary flow boundary (the net out-flow value) of ψ at vertex
v± in KV+∪V− defined by

∂ψ(v) =
∑

w∈V+∪V−
ψ(v,w) −

∑

w∈V+∪V−
ψ(w, v) (∀v ∈ V+ ∪ V−).

(The α-boundary ∂αψ of ψ is sort of signed, inversely α-scaled flow boundary of ψ .)
Then put

z:= x + ∂αψ.

At each phase we try to minimize ‖z‖α . The gap between ‖x‖α and ‖z‖α can be
estimated by the δ-feasible flow ψ , and it becomes close to zero for small δ > 0 since
ψ is δ-feasible. We will show that when δ becomes small enough, then obtained x
gives a minimizer of f if f is integer-valued.

We now describe the algorithm. Each phase starts by cutting the value of δ in half,
and then it modifies ψ to make it δ-feasible. This can be done by setting each ψ(u, v)

to δ if the value is more than δ.
In order to decrease ‖z‖α we introduce an auxiliary graph and define augmenting

paths. The auxiliary graph with respect to ψ , denoted by G(ψ), is the subgraph of
KV+∪V− consisting of arcs (uτ1 , vτ2) with ψ(uτ1 , vτ2) = 0. Define the following four
disjoint subsets of V+ ∪ V−.

S+ =
{

v+ ∈ V+ | z(v) ≤ − δ

α+(v)

}

, S̃− =
{

v− ∈ V− | z(v) ≤ − δ

α−(v)

}

,

T̃+ =
{

v+ ∈ V+ | z(v) ≥ δ

α+(v)

}

, T− =
{

v− ∈ V− | z(v) ≥ δ

α−(v)

}

.

(4)

A simple directed path (dipath) P in G(ψ) from S+ ∪ T− to S̃− ∪ T̃+ is called an
augmenting path. The following procedure Single_Augment(δ′, P, ψ) updates the
flowψ through a dipath P so that ‖z‖α gets smaller. For later usewe prepare Procedure
Single_Augment for any dipath P in KV+∪V− (which may not be in G(ψ)).

Lemma 1 Let ψ ′ be the flow obtained from ψ by Single_Augment(δ′, P, ψ). Then
we have ∂α(ψ ′ −ψ) = τ1

δ′
ατ1 (u)

χu −τ2
δ′

ατ2 (w)
χw, where uτ1 andwτ2 denote the initial

vertex and the terminal vertex of P, respectively.

Proof For any intermediate vertex vτ3 in P , we have ∂α(ψ ′ − ψ)(v) = −τ3
δ′

ατ3 (v)
+

τ3
δ′

ατ3 (v)
= 0. Also, ∂α(ψ ′ − ψ)(u) = τ1

δ′
ατ1 (u)

and ∂α(ψ ′ − ψ)(w) = −τ2
δ′

ατ2 (w)
. ��
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Algorithm 1 Single_Augment(δ′, P, ψ)

Input: A simple dipath P in KV+∪V− , a flow ψ in KV+∪V− , and δ′ ∈ R>0.
1: for each (uτ1 , vτ2 ) ∈ P do
2: if ψ(vτ2 , uτ1 ) > 0 then
3: if δ′ ≤ ψ(vτ2 , uτ1 ) then
4: ψ(vτ2 , uτ1 ) := ψ(vτ2 , uτ1 ) − δ′
5: else
6: ψ(vτ2 , uτ1 ) := 0 and ψ(uτ1 , vτ2 ) := δ′ − ψ(vτ2 , uτ1 )

7: else
8: ψ(uτ1 , vτ2 ) := ψ(uτ1 , vτ2 ) + δ′
9: return ψ

Using the concept of augmenting path, a presumable algorithm would be
described as follows. First, check whether G(ψ) has an augmenting path P and call
Single_Augment if such P exists. If there is no augmenting path, then we take the
set W of vertices in G(ψ) reachable from S+ ∪ T−, and we would expect that W
relates ‖x‖α and the minimum value of f within a tolerance measured by the scaling
parameter δ. The following lemma more explicitly shows how W can be used.

Lemma 2 Suppose that we have a δ-feasible flow ψ in KV+∪V− and a vector x ∈
Pα( f ) expressed by (2), and that there is no augmenting path in G(ψ). Let W be the
set of vertices in G(ψ) reachable from S+ ∪ T−, and let A = {v ∈ V | v+ ∈ W } and
B = {v ∈ V | v− ∈ W }. Suppose that the following three conditions are satisfied:

(W1) (A, B) ∈ 3V ,
(W2) for each i ∈ J , A ∪ B precedes V \(A ∪ B) in Li , and
(W3) for each i ∈ J , σi (v) = + for all v ∈ A and σi (v) = − for all v ∈ B.

Then ‖z‖α ≤ 4βn2δ − f (A, B) and ‖x‖α ≤ 6βn2δ − f (A, B). Moreover, if δ <

1/(6βn2) and f is integer-valued, then (A, B) is a minimizer of f .

Proof Due to the three conditions, we have 〈yi , χα
(A,B)〉 = f (A, B) for all i ∈ J , and

hence 〈x, χα
(A,B)〉 = f (A, B) by (2). Also note that S+ ∪ T− ⊆ W , and hence from

(4) z(v) > −δ/α+(v) for v /∈ A and z(v) < δ/α−(v) for v /∈ B. Therefore we have

‖z‖α = −
∑

v∈V : z(v)<0

α+(v)z(v) +
∑

v∈V : z(v)>0

α−(v)z(v)

≤ −
∑

v∈A

α+(v)z(v) +
∑

v∈B
α−(v)z(v) + 2βnδ

= −〈x, χα
(A,B)〉 − 〈∂αψ, χα

(A,B)〉 + 2βnδ

≤ − f (A, B) + 2βn2δ + 2βnδ

≤ − f (A, B) + 4βn2δ. (5)

Moreover, since z = x + ∂αψ and ‖ − ∂αψ‖α ≤ 2βn2δ, it follows from (5) that

‖x‖α ≤ ‖x + ∂αψ‖α + ‖ − ∂αψ‖α ≤ 6βn2δ − f (A, B). (6)
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If δ < 1/(6βn2), inequality (6) implies f (A, B) − (−‖x‖α) < 1. It follows from
Theorem 1 that (A, B) is a minimizer of f if f is integer-valued. ��

Hence we now focus on how to achieve the conditions of Lemma 2 for W . It will
turn out that in order to achieve the three conditions for W in Lemma 2 we need
to introduce a stronger augmentation procedure beyond those used in bisubmodular
function minimization [9,21]. This is because of the lack of skew-symmetry of G(ψ).

Remark If there exist two dipaths such as

v
τ1
1 → v

τ2
2 → · · · → v

τ



v
−τ

 = u
σ′
′ ← · · · ← uσ2

2 ← uσ1
1

then we can compose them so that the α-boundary at v is equal to zero, and we may
achieve an augmentation. Here, note that if τ = +, to guarantee the δ-feasibility of
updated flow ψ the value of augmentation for the second path should be δ × α−(v)

α+(v)
,

which may be δ × 1
β
.

For a simple dipath P = (v
τ1
1 , v

τ2
2 , . . . , v

τ

 ) in G(ψ), define P−1 = (v
−τ

 , v
−τ−1
−1 ,

. . . , v
−τ1
1 ), a simple dipath inKV+∪V− , wherewe do not care about whether P−1 exists

in G(ψ) as a dipath. For two dipaths P1 and P2 in KV+∪V− such that the terminal
vertex of P1 is the initial vertex of P2, let P1 ◦ P2 denote the concatenation of P1 and
P2. We can define the concatenation of more than two dipaths in a natural way since
the binary operation ◦ of concatenation is associative.

Let P = (P1, . . . , Pk) be a sequence of dipaths in G(ψ). Suppose that P1 ◦ P−1
2 ◦

P3 ◦ · · · ◦ P(−1)k−1

k forms

– a walk in KV+∪V− from a vertex in S+ ∪ T− to a vertex in S̃− ∪ T̃+ if k is odd, or
– a walk in KV+∪V− from a vertex in S+ ∪ T− to a vertex in S− ∪ T+ if k is even.

Then we call P = (P1, . . . , Pk) an augmenting path-sequence. The number k is
called the length of the augmenting path-sequence P. (An augmenting path-sequence
of length one is an augmenting path.) Let v

−τ0
0 be the initial vertex of P1 and v

τi
i

be the terminal vertex of P(−1)i−1

i for each i = 1, . . . , k. Then, if i is odd, Pi is a

path from v
−τi−1
i−1 to v

τi
i , and otherwise Pi is a path from v

τi
i to v

−τi−1
i−1 . Define p(i)

(i = 1, 2, . . . , k) by

p(1) = 1, p(i) =
i−1∏

j=1

α−τ j (v j )

ατ j (v j )
(i = 2, . . . , k). (7)

We augment an appropriate flow value through each path Pi of the augmenting path-
sequence P = (P1, . . . , Pk) so that non-zero α-boundary of the flow changing can
appear only at the initial vertex of P1 and the terminal (or initial) vertex of Pk when
k is odd (or even). The details of the procedure are given in Augment as follows.

The following lemma shows how we can decrease ‖z‖α by calling Augment when
we are given an augmenting path-sequence (P1, . . . , Pk).
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Algorithm 2 Augment(δ, (P1, . . . , Pk), ψ)

Input: An augmenting path-sequence (P1, . . . , Pk ), where Pi is a path in G(ψ) from v
−τi−1
i−1 to v

τi
i for

odd i ∈ {1, . . . , k} and Pi is from v
τi
i to v

−τi−1
i−1 for even i ∈ {1, . . . , k}.

1: p(1) := 1
2: for i = 2, . . . , k do

3: p(i) := α
−τi−1 (vi−1)

α
τi−1 (vi−1)

p(i − 1)

4: π := max{p(i) | 1 ≤ i ≤ k}
5: Single_Augment

(
p(i)
kπ δ, Pi , ψ

)
for i = 1, . . . , k.

6: return ψ .

Lemma 3 Letψ ′ be the new flow inKV+∪V− obtained byAugment(δ, (P1, . . . , Pk),
ψ) from ψ through an augmenting path-sequence (P1, . . . , Pk). Then ψ ′ is δ-feasible

and ‖z‖α decreases by at least δ/(kβ� k
2 �−1), where β = max{α+(v)

α−(v)
| v ∈ V }(≥ 1).

Proof Define δi = p(i)δ/(kπ) for each i = 1, . . . , k. Then δi ≤ δ/k holds for all
i since p(i) ≤ π . Since each arc appears at most k times in total in the augmenting
path-sequence of length k, ψ ′ is δ-feasible by the way of computing ψ ′ through
Augment(δ, (P1, . . . , Pk), ψ). Also observe that from (7) and the definition of π we
have

δi+1 = α−τi (vi )

ατi (vi )
δi (∀i = 1, . . . , k − 1), (8)

δ1 ≥ δ

kβ j−1 , δk ≥ δ

kβk− j
(∀ j ∈ Argmax{p(i) | i ∈ {1, . . . , k}}). (9)

Let us evaluate ∂αψ ′ − ∂αψ . By Lemma 1 and (8),

∂αψ ′ − ∂αψ (= ∂α(ψ ′ − ψ))

=
k∑

i=1

(−1)i−1
(

τi−1δi

α−τi−1(vi−1)
χvi−1 − τiδi

ατi (vi )
χvi

)

= τ0δ1

α−τ0(v0)
χv0 − (−1)k−1 τkδk

ατk (vk)
χvk +

k−1∑

i=1

(−1)i−1
(

− τiδi

ατi (vi )
+ τiδi+1

α−τi (vi )

)

χvi

= τ0δ1

α−τ0(v0)
χv0 − (−1)k−1 τkδk

ατk (vk)
χvk . (10)

Putting z′ := x + ∂αψ ′, we have z(v) = z′(v) for all v ∈ V \{v0, vk} by (10). Observe
also that the sign of z′(v0) is equal to that of z(v0), which is equal to τ0 since v

−τ0
0 ∈

S+ ∪ T−. Similarly, the sign of z′(vk) is equal to that of z(vk), which is equal to
(−1)k−1τk since v

τk
k ∈ S+ ∪ T− if k is even and otherwise v

τk
k ∈ S̃− ∪ T̃+. Hence,

we get

‖z′‖α − ‖z‖α = −|α−τ0(v0)∂α(ψ ′ − ψ)(v0)| − |α(−1)kτk (vk)∂α(ψ ′ − ψ)(vk)|.
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Combining this with (10) and (9), we have

‖z′‖α − ‖z‖α =
⎧
⎨

⎩

−δ1 − δk ≤ −
(

1
β j−1 + 1

βk− j

)
δ
k (if k is even)

−δ1 − α−τk (vk)
ατk (vk)

δk ≤ −
(

1
β j−1 + 1

βk− j+1

)
δ
k (if k is odd)

for some j with 1 ≤ j ≤ k. Note that min{ j − 1, k − j} ≤ k/2 − 1 if k is even and
min{ j − 1, k − j + 1} ≤ k/2 − 1/2 = �k/2� − 1 if k is odd. Hence, we get

‖z‖α − ‖z′‖α ≥ δ

kβ� k
2 �−1

.

��
Lemma 3 implies that the value of augmentationmay be exponentially small, which

causes a trouble in constructing a polynomial algorithm. However, fortunately we can
show a crucial fact that it suffices to consider augmenting path-sequences of length
at most four. Our algorithm checks whether G(ψ) has an augmenting path-sequence
of length k ≤ 4. If there exists such an augmenting path-sequence, the algorithm
calls Augment to update ψ . On the other hand, if there exists no augmenting path-
sequence of length k ≤ 4, then we compute the set W of vertices in G(ψ) reachable
from S+ ∪ T− [by dipaths in G(ψ)].

Let R be the set of vertices in G(ψ) from which we can reach some vertex in
{v−τ ∈ V+ ∪ V− | vτ ∈ W }. We then have the following.

Lemma 4 G(ψ) has an augmenting path-sequence of length k ≤ 4 if one of the
following three holds:

(i) W ∩ R �= ∅ ;
(ii) W is not consistent;
(iii) R is not consistent.

Proof (ii): Suppose that there is a vertex v ∈ V with {v+, v−} ⊆ W . Then there are a
path P1 from S+ ∪ T− to v+ and a path P2 from S+ ∪ T− to v−, so that (P1, P2) is
an augmenting path-sequence of length 2.

(i): This follows from (ii) since a vertex that is reachable from W ∩ R is still
contained in W .

(iii): Suppose that there is a vertex v ∈ V with {v+, v−} ⊆ R. Then there are a
path P2 from v+ to a vertex uτ1 with u−τ1 ∈ W and a path P3 from v− to a vertex wτ2

with w−τ2 ∈ W . Hence there are a path P1 from S+ ∪ T− to u−τ1 and a path P4 from
S+ ∪ T− to w−τ2 . Observe that (P1, P2, P3, P4) is an augmenting path-sequence of
length 4. ��

It follows from Lemma 4 (ii) that if there is no augmenting path-sequence of length
k ≤ 4, then W satisfies condition (W1) of Lemma 2. If W violates (W2) or (W3), we
call procedure Double_Exchange or Tail_Exchange defined below to improve the
situation. These two procedures are direct adaptations of those devised for bisubmod-
ular function minimization in [9], where Double_Exchange originally appeared in
[17].
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Suppose that we are given an expression (2) for current x ∈ Pα( f ), where recall
that each extreme point yi (i ∈ J ) of Pα( f ) is generated by a linear ordering Li and a
sign function σi on V . We say that a triple (i, u, v) with i ∈ J and u, v ∈ V is active
if

(a) u immediately succeeds v in Li and
(b) uσi (u) ∈ W and vσi (v) /∈ W , or uσi (u) /∈ R and vσi (v) ∈ R.

If such an active triple exists, we perform procedure Double_Exchange(i, u, v).

Algorithm 3 Double_Exchange(i, u, v)

Input: An active triple (i, u, v)

1: t := f (Li (u)\{v}|σi ) − f (Li (u)|σi ) + σi (v)ασi (v)yi (v)

2: s := min{δ, λi t} (where λi is as given in (2))
3: if s < λi t then
4: k : a new index
5: J := J ∪ {k}
6: λk := λi − s/t
7: λi := s/t
8: yk := yi
9: Lk := Li
10: σk := σi
11: Update Li to be the linear ordering obtained from Li by interchanging u and v.

12: yi := yi + t

(
σi (u)χu

ασi (u)(u)
− σi (v)χv

ασi (v)(v)

)

13: x := x + s

(
σi (u)χu

ασi (u)(u)
− σi (v)χv

ασi (v)(v)

)

14: if s ≥ ψ(uσi (u), vσi (v)) then
15: ψ(vσi (v), uσi (u)) := s − ψ(uσi (u), vσi (v))

16: ψ(uσi (u), vσi (v)) := 0
17: else
18: ψ(uσi (u), vσi (v)) := ψ(uσi (u), vσi (v)) − s

We now give the detail of procedure Double_Exchange(i, u, v). Given an active
triple (i, u, v), let L ′

i be the linear ordering obtained from Li by interchanging u and
v, and let y′

i be the extreme point associated with L ′
i and σi . Then the vector

σi (u)
1

ασi (u)(u)
χu − σi (v)

1

ασi (v)(v)
χv

is an edge vector of the edge of Pα( f ) connecting adjacent yi and y′
i unless yi = y′

i .
The number t defined in Line 1 of Double_Exchange(i, u, v) is nothing but the one
satisfying

y′
i = yi + t

(

σi (u)
1

ασi (u)(u)
χu − σi (v)

1

ασi (v)(v)
χv

)

.

If t �= 0, λi yi is updated to (λi − s
t )yi + s

t y
′
i with s defined in Line 2, andψ is updated

so that z does not change, as will be shown in the following lemma.
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We say that Double_Exchange(i, u, v) is saturating if s = λi t holds at Line 2,
and otherwise non-saturating.

Lemma 5 Vector z remains the same by Double_Exchange(i, u, v). Moreover, a
new vertex joins W or R after non-saturating Double_Exchange(i, u, v),

Proof Let z, x andψ be thoseobtainedbefore performingDouble_Exchange(i, u, v)

and let z′, x ′ andψ ′ be the new ones obtained afterDouble_Exchange(i, u, v). Then,

x ′ = x + s

(

σi (u)
1

ασi (u)(u)
χu − σi (v)

1

ασi (v)(v)
χv

)

.

Also, ψ(uσi (u), vσi (v)) is decreased by s, where in effect, if s ≥ ψ(uσi (u), vσi (v)),
the flow value ψ(uσi (u), vσi (v)) is put to be zero and ψ(vσi (v), uσi (u)) of the reversed
arc (vσi (v), uσi (u)) is increased from zero to s − ψ(uσi (u), vσi (v)), to keep ψ ≥ 0.
Therefore,

∂αψ ′ − ∂αψ = −s

(

σi (u)
1

ασi (u)(u)
χu − σi (v)

1

ασi (v)(v)
χv

)

due to definition (3) of ∂α . This implies z′ = x ′ + ∂αψ ′ = x + ∂αψ = z.
To see the second statement, supposeDouble_Exchange(i, u, v) is non-saturating.

Then s = δ holds at Line 2. Hence ψ(uσi (u), vσi (v)) = 0 holds at Line 16, and a new
arc (uσi (u), vσi (v)) emerges in updated G(ψ). If uσi (u) ∈ W and vσi (v) /∈ W , vσi (v) is
newly included inW , while if uσi (u) /∈ R and vσi (v) ∈ R, then uσi (u) is newly included
in R. ��

A pair (i, v) of i ∈ J and v ∈ V is called active if v is the last element in Li and
vσi (v) ∈ R. If such an active pair exists, we perform Tail_Exchange(i, v).

Given an active pair (i, v), let σ ′
i be the sign function obtained from σi by changing

the sign of σi (v), and let y′
i be the extreme point associated with Li and σ ′

i . Then t
computed in Line 2 of Tail_Exchange is determined so that the following relation
holds:

y′
i (v) = yi (v) + tσ ′

i (v)

(
1

ασ ′
i (v)

+ 1

α−σ ′
i (v)

)

χv.

We say that Tail_Exchange(i, v) is saturating if s = λi t holds at Line 3, and
otherwise non-saturating.

Lemma 6 Vector z remains the same by Tail_Exchange(i, v). Moreover, a new
augmenting path-sequence of length four appears as a result of non-saturating
Tail_Exchange(i, v).

Proof The first claim can be checked in the same manner as in the proof of Lemma 5.
To see the second claim, let (i, v) be the active pair on which Tail_Exchange is

performed with τ := σi (v). If the present Tail_Exchange(i, v) is non-saturating, then
we have s = δ at Line 3. Also, in the case of non-saturating Tail_Exchange(i, v),
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Algorithm 4 Tail_Exchange(i, v)

Input: An active pair (i, v)

1: σi (v) := −σi (v)

2: t := α−σi (v)

ασi (v)+α−σi (v) [ f (V | σi ) − f (V \{v} | σi )] − σi (v)ασi (v)α−σi (v)

ασi (v)+α−σi (v) yi (v)

3: s := min{δ, λi t}
4: if s < λi t then
5: k : a new index
6: J := J ∪ {k}
7: λk := λi − s/t
8: λi := s/t
9: yk := yi
10: Lk := Li
11: σk := σi and σk (v) := −σk (v)

12: yi := yi + tσi (v)
(

1
ασi (v) + 1

α−σi (v)

)
χv

13: x := x + sσi (v)
(

1
ασi (v) + 1

α−σi (v)

)
χv

14: if s ≥ ψ(vσi (v), v−σi (v)) then
15: ψ(v−σi (v), vσi (v)) := s − ψ(v−σi (v), vσi (v)))

16: ψ(vσi (v), v−σi (v)) := 0
17: else
18: ψ(vσi (v), v−σi (v)) := ψ(vσi (v), v−σi (v)) − s

ψ(v−τ , vτ ) = 0 holds at Line 16, which means that a new arc (v−τ , vτ ) emerges in
updated G(ψ). Hence, in the resulting G(ψ), we have {v−, v+} ⊆ R. This implies
that G(ψ) has an augmenting path-sequence of length at most four by Lemma 4 (iii).

��
Moreover, we have the following.

Lemma 7 Let W be the set of vertices in G(ψ) reachable from S+∪T−. Suppose that
there is no augmenting path-sequence of length k ≤ 4 and there is neither an active
triple nor an active pair. Then, letting A = {v ∈ V | v+ ∈ W } and B = {v ∈ V |
v− ∈ W }, (A, B) together with Li and σi for all i ∈ J satisfies the three conditions
(W1), (W2) and (W3) in Lemma 2.

Proof It follows from the present assumption and (ii) inLemma4 that there is no v ∈ V
with {v+, v−} ⊆ W , which means that condition (W1) holds, i.e., (A, B) ∈ 3V .

Condition (W2) of Lemma 2 easily follows as there is no active triple.
To see that condition (W3) of Lemma 2 is satisfied, suppose to the contrary that

there are i ∈ J and v ∈ V such that v−σi (v) ∈ W . Then vσi (v) ∈ R. Since there is no
active triple, there should hold uσi (u) ∈ R for the element u next to v in Li . Hence,
continuing this argument, we conclude that wσi (w) ∈ R for the last element w in Li .
However, this implies that (i, w) is an active pair, which contradicts the assumption,
so that condition (W3) of Lemma 2 holds. ��

Summarizing the discussion so far, we are now ready to describe the whole algo-
rithm, weakly-ABSFM( f ). The main body of the algorithm will also be used in the
strongly polynomial time algorithm given in the next section, and hence we shall
refer to it as REFINE. An iteration of the while-loop in REFINE (i.e., lines 3–21)
corresponds to a scaling phase with a scaling parameter δ discussed above.
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Algorithm 5 weakly-ABSFM ( f )
1: L0 : a linear ordering on V
2: σ0 : a sign function on V
3: x : an extreme point of Pα( f ) generated by L0 and σ0
4: J := {1}, y1 := x, λ1 := 1, ψ = 0
5: δ := ‖x‖α

βn2

6: ζ := 1
6βn2

7: return REFINE ( f, x, δ, ζ )

Algorithm 6 REFINE ( f, x, δ, ζ )

Input: anα-bisubmodular function f , a point x ∈ Pα( f ) alongwith its expression as a convex combination
of extreme points of Pα( f ) as in (2), and δ > ζ > 0.

1: ψ := 0
2: while δ ≥ ζ do
3: δ := δ/2
4: for all (uτ1 , vτ2 ) ∈ V+ ∪ V− × V+ ∪ V− do
5: ψ(uτ1 , vτ2 ) := δ if ψ(uτ1 , vτ2 ) > δ

6: repeat
7: S+ := {v+ ∈ V+ | x(v) + ∂αψ(v) ≤ − δ

α+(v)
}

8: T− := {v− ∈ V− | x(v) + ∂αψ(v) ≥ δ
α−(v)

}
9: W : the set of vertices reachable from S+ ∪ T− in G(ψ)

10: R : the set of vertices from which we can reach {v−τ ∈ V+ ∪ V− | vτ ∈ W }
11: A := {v ∈ V | v+ ∈ W }
12: B := {v ∈ V | v− ∈ W }
13: if ∃(P1, . . . , Pk ) : an augmenting path-sequence of length k ≤ 4 then
14: Augment (δ, (P1, . . . , Pk ), ψ)

15: Reduce x (i.e., express x as a convex combination of at most |V | + 1 extreme points)
16: else
17: Compute the set Q of active pairs and active triples in G(ψ).
18: if Q �= ∅ then
19: Take (i, u, v) ∈ Q or (i, v) ∈ Q.
20: Double_Exchange (i, u, v) or Tail_Exchange (i, v).
21: until �augmenting path-sequence of length at most four and Q = ∅
22: return (A, B) and x

Although the above algorithm checks the existence of augmenting path-sequences
of length at most four, according to the correctness proof it actually works even if
allowable sequences are restricted to those of length two or four.

3.2 Analysis

Westill assume that f is real-valued. Lemmas 8–10 andTheorem2hold for real-valued
f .

Lemma 8 At the end of each scaling phase of REFINE, we have (A, B) ∈ 3V , and
z:= x + ∂αψ satisfies ‖z‖α ≤ 4βn2δ − f (A, B) and ‖x‖α ≤ 6βn2δ − f (A, B).

Proof The present lemma follows from Lemmas 2 and 7. ��
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Lemma 9 Suppose that x ∈ Pα( f ) and δ > 0 satisfy ‖x‖α + f (A, B) ≤ 6βn2δ
for some (A, B) ∈ 3V . Then each scaling phase of REFINE( f, x, δ, ζ ) carries out
O(β2n2) augmentations.

Proof Observe first that, at the beginning of a scaling phase (before reducing δ by
half),

‖z‖α + f (A, B) ≤ 6n2βδ (11)

for some (A, B) ∈ 3V . Indeed, if the scaling phase is the initial phase of the algorithm,
then (11) follows from the lemma assumption and x = z. Otherwise by Lemma 8
the pair (A, B) obtained at the end of the previous scaling phase satisfies ‖z‖α ≤
6n2βδ − f (A, B).

Now thefirst step of the scalingphase reduces δ byhalf, andhence‖z‖α ≤ 12n2βδ−
f (A, B) for the new δ.
At the end of the scaling phase we have ‖z‖α ≥ −〈z, χα

(A,B)〉 ≥ −〈x, χα
(A,B)〉 −

2βn2δ ≥ − f (A, B) − 2βn2δ. Therefore, ‖z‖α decreases by at most 14βn2δ. Since
‖z‖α decreases by at least δ/(4β) by each Augment through an augmenting path-
sequence of length k ≤ 4, the number of augmentations is bounded by O(β2n2).

��
Lemma 10 REFINE carries out saturating Double_Exchange O(n3) times, non-
saturating Double_Exchange O(n) times, saturating Tail_Exchange O(n2) times,
and non-saturating Tail_Exchange at most once, between consecutive augmenta-
tions.

Proof We should remark that, due to Reduce, |J | = O(n) holds after every augmen-
tation.

By Lemma 6, the algorithm carries out non-saturatingTail_Exchange atmost once
between augmentations. By Lemma 5, W ∪ R becomes larger after a non-saturating
Double_Exchange. Hence non-saturatingDouble_Exchange is performed at most
2n times. Since new Lk and σk arise only as a result of non-saturating Dou-
ble_Exchange, |J | = O(n) holds between augmentations.

Notice that, ifDouble_Exchange(i, u, v) for an active triple (i, u, v) is performed
and is saturating, then triple (i, u, v) never becomes active again till the next augmen-
tation. This means that saturatingDouble_Exchange is performed O(n3) times since
|J | = O(n). Similarly, saturating Tail_Exchange is performed O(n2) times between
augmentations. ��
Theorem 2 Let f : 3V → R be an α-bisubmodular function with f (∅,∅) = 0, y ∈
Pα( f ), and δ > ζ > 0. If

‖y‖α + f (S, T ) ≤ 6βn2δ

for some (S, T ) ∈ 3V , thenREFINE ( f, y, δ, ζ ) outputs (A, B) ∈ 3V and x ∈ Pα( f )
such that

‖x‖α + f (A, B) ≤ 6βn2ζ
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with O(β2n5 log δ
ζ
) function evaluations and arithmetic operations.

Proof The algorithm has O(log δ
ζ
) scaling phases. In each scaling phase, by Lemma 9,

the algorithm carries out Augment and Reduce O(β2n2) times. Each Reduce takes
O(n3) running time, while each Augment requires O(n) running time. By Lemma 10,
between consecutive augmentations the algorithm carries outDouble_Exchange and
Tail_Exchange O(n3) times. Since |J | = O(n), the total running time for updating
S+, T−, A, B, and Q between consecutive augmentations is O(n3). Therefore, the
number of function evaluations and arithmetic operations is bounded as stated in the
present theorem.

Moreover, by Lemma 8 we have ‖x‖α < 6βn2ζ − f (A, B) at the end. ��
Now we assume that f is integer-valued.

Theorem 3 Let f : 3V → Z be an α-bisubmodular function with f (∅,∅) = 0. Then
weakly-ABSFM ( f ) finds aminimizer of f inO(β2n5 logβnM) function evaluations
and arithmetic operations, where M = max{ f (X,Y ) | (X,Y ) ∈ 3V }.
Proof At the end of the algorithm, we have ‖x‖α ≤ 6βn2ζ − f (A, B) < 1− f (A, B)

by Theorem 2. The present theorem follows fromTheorem 1 since f is integer-valued.
��

4 Strongly polynomial algorithm

In this section we show how to make the weakly polynomial algorithm given in the
previous section strongly polynomial for real-valued α-bisubmodular functions.

Let us consider an α-bisubmodular function f : 3V → R as before. As in the bisub-
modular functionminimization, the algorithm tries to collect two types of information:
elements which are not included in anyminimizer of f and pairs of elements for which
every minimizer containing one always contains the other. This information will be
stored in a setUe of excluded elements and a conditioning graph H = (W,C), which
will be explained in the next subsection. A key parameter that controls the next pro-
cedure in the algorithm is δ1, which is defined based on the marginal gain of f on the
strongly connected components of H . By definition δ1 is nonnegative, and we show
that, if δ1 = 0, then a signed set that corresponds to a maximal consistent ideal in H
is a minimizer of f . On the other hand, if δ1 > 0, H can be updated (by adding a
new arc or deleting at least one node) by using REFINE given in the last section. A
detailed description will be given in Sect. 4.3.

4.1 Conditioning graph

The algorithm keeps Ue ⊆ V and a digraph H = (W,C) on W := (V \Ue)
+ ∪

(V \Ue)
−. The set Ue denotes a set of elements which are currently known to be

included in none of the minimizers of f , while H denotes the diagram of logical
implications such that

(uσ , vτ ) ∈ C implies that every minimizer of f containing uσ contains vτ . (12)
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Since elements of Ue do not affect the set of minimizers, we may always update
V ← V \Ue, and omit to mention Ue if it is clear from the context.

Initially we have a conditioning graph H = (W,C) with C = ∅. Assuming that
H keeps property (12) we can impose extra properties of H . The following lemma,
which is a generalization of [21, Lemma 2.1], is used to ensure those properties.

Lemma 11 For any distinct u, v ∈ V , if every minimizer of fuσ contains vτ , then
every minimizer of f containing v−τ contains u−σ .

Proof Suppose to the contrary that there exists a minimizer (X,Y ) of f that contains
v−τ but not u−σ . Let (S, T ) be a minimizer of fuσ . Then we have uσ , vτ ∈ (S, T ),
due to the assumption.

Note that uσ is contained in (S, T ) ∪ti (X,Y ) for all i = 0, . . . , p, and hence

f (S, T ) ≤ f ((S, T ) ∪ti (X,Y )) (∀i = 0, . . . , p). (13)

On the other hand, vτ is not contained in (S, T ) ∪ti (X,Y ) for any i such that 0 ≤
ti <

α−(v)
α+(v)

. (Note that i = 0 is always among those is.) For such i the inequality (13)
holds with strict inequality by the assumption. Hence we have

f (S, T ) <

p∑

i=0

(ti+1 − ti ) f ((S, T ) ∪ti (X,Y )). (14)

By the α-bisubmodularity of f we have

f (S, T ) + f (X,Y ) ≥ f ((S, T ) ∩ (X,Y )) +
p∑

i=0

(ti+1 − ti ) f ((S, T ) ∪ti (X,Y )).

(15)

It follows from (14) and (15) that f (X,Y ) > f ((S, T ) ∩ (X,Y )), which contradicts
that (X,Y ) is a minimizer of f . ��

For a vertex vσ in H , let R(vσ ) be the set of vertices reachable from vσ in H . We
say that H is skew-symmetric if (uτ , vσ ) ∈ C implies (v−σ , u−τ ) ∈ C for u �= v.
Starting from C = ∅, the algorithm will insert new arcs in H keeping the skew-
symmetry. More specifically, Algorithm 17 given in Sect. 4.3 has two possible cases
for the update of H :

Case 1: (Line 12–13) It finds an element uτ that is contained in every minimizer of
fR(D), where D is a strongly connected component in H , R(D) denotes the set of
vertices reachable from some vertex in D, and fR(D) denotes the contraction of
f by R(D). This implies that every minimizer of fvσ also contains uτ for every
vσ ∈ D by (12). Thus every minimizer of f containing vσ contains uτ , and we
can add (vσ , uτ ) to C . By Lemma 11, we can also add (u−τ , v−σ ) to C to keep
the skew-symmetry of H .
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Case 2: (Line 14–16) It finds a set F of elements that are not contained in anyminimizer
of f . We can add (uτ , u−τ ) to C for each uτ ∈ F . (Clearly H is still skew-
symmetric).

Since H is skew-symmetric, we have the following implication:

If (uσ , vτ ) ∈ C and (u−σ , uσ ) ∈ C, then no minimizer of f contains v−τ .

Indeed, by the skew-symmetry of H , (uσ , vτ ) ∈ C implies (v−τ , u−σ ) ∈ C and hence
anyminimizer containing v−τ would contain u−σ , contradicting (u−σ , uσ ) ∈ C . Thus
we may further perform the following update keeping (12):

– If (uτ , vσ ) ∈ C and (u−τ , uτ ) ∈ C , then add (v−σ , vσ ) to C (if it does not exist).
– If R(uτ ) is not consistent (i.e.,∃v ∈ V with {v+, v−} ⊆ R(uτ )), then add (uτ , u−τ )

to C (if it does not exist).
– If (uτ , u−τ ) ∈ C and (u−τ , uτ ) ∈ C , then delete u from the ground set (i.e., add
u to Ue and update V ).

In total, every time H gets new arcs, the algorithm performs the above update of H
so that it satisfies the following four extra properties:

H is skew-symmetric.

If R(uτ ) is not consistent, (uτ , u−τ ) ∈ C.

There is no u ∈ V with (uτ , u−τ ), (u−τ , uτ ) ∈ C.

If (u−τ , uτ ) ∈ C, then (v−σ , vσ ) ∈ C for every vσ ∈ R(uτ ).

(16)

4.2 Parameter δ1

In the subsequent discussion, we shall assign a label i for each strongly connected
component Hi in H . For each component Hi , the vertex set and the edge set of Hi are
denoted by Wi and Ci , respectively, and the set of vertices that are reachable from Wi

in H is denoted by Di . We set

I := {i : Di is consistent}.

We say that Z ⊆ W is an ideal of H = (W,C) if there is no arc (uσ , vτ ) ∈ C
leaving Z . It is known that the collectionR(H) of all consistent ideals of H (regarded
as signed subsets of V ) is closed with respect to binary operations ∩ and ∪0, i.e.,
R(H) is a signed ring family. However, R(H) may not be closed with respect to ∪t

in general.
We say (X,Y ) ∈ 3V (or its corresponding X+ ∪ Y−) spans V if X ∪ Y = V . We

remark the following.

Lemma 12 Any maximal consistent ideal of H spans V .

Proof Let U0 = {vσ ∈ W : (v−σ , vσ ) ∈ C}. By (16), U0 is consistent and there is no
arc from U0 to W\U0.
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We show that, if a consistent ideal U does not span V , then it is not maximal.
Suppose that U does not span V . Then we can take uτ ∈ W\(U ∪ U−). We claim
that U ∪ R(uτ ) is a larger consistent ideal. If uτ ∈ U0, then the claim holds since
U ∩ U−

0 = ∅ and R(uτ ) ⊆ U0 (as there is no arc from U0 to W\U0). Otherwise,
U ∪ R(uτ ) becomes consistent because there is no arc fromW\(U ∪U−) toU− since
otherwise U cannot be ideal due to the skew-symmetry of H . ��

For each i ∈ I , let fi : 2Wi → R be the minor f Di
Di\Wi

obtained from f by the
restriction to Di and the contraction by Di\Wi . We define δ1 by

δ1 = max
i∈I

{

fi (Wi ) − min
X⊆Wi

{ fi (X)}
}

. (17)

It should be noted that we always have δ1 ≥ 0 and that if δ1 = 0, thenWi is aminimizer
of fi for all i ∈ I .

It should also be noted here that fi is a submodular (set) function on 2Wi with
fi (∅,∅) = 0. Thus we can employ a submodular function minimization algorithm to
compute a minimizer of each fi and hence δ1 can be computed in time proportional
to that required for a single submodular function minimization with an underlying set
of size |V | = n.

Let B( fi ) be the base polyhedron associated with fi . That is,

B( fi ) :=
⎧
⎨

⎩
x ∈ R

Wi | ∀X ⊆ Wi :
∑

vτ ∈X
τ x(v) ≤ fi (X),

∑

vτ ∈Wi

τ x(v) = fi (Wi )

⎫
⎬

⎭
.

Applying an existing algorithm for the ordinary submodular function minimization
(e.g., [23]), we have the following.

Lemma 13 For each i ∈ I , there exists xi ∈ B( fi ) such that xi is a maximizer of

max

⎧
⎨

⎩

∑

vτ ∈Wi : τ x(v)<0

τ x(v)

∣
∣
∣
∣ x ∈ B( fi )

⎫
⎬

⎭

and

τ xi (v)

{
≤ 0 for all vτ ∈ Mi

≥ 0 for all vτ ∈ Wi\Mi

where Mi is any minimizer of fi . Moreover, a submodular function minimization
algorithm can compute such xi ∈ B( fi ), togetherwith an expression xi = ∑

i∈Ji λ j y j ,
a convex combination of extreme bases y j ∈ BWi ( fi ) ( j ∈ Ji ), each corresponding
to a linear ordering L j |σ j of Wi , where |Ji | ≤ |Wi |.
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4.3 Algorithm description

We now give an algorithm description. In order to understand the whole picture of
the algorithm, we also state key lemmas, whose proofs will be given in the next
subsections.

The algorithm first computes δ1 defined in the last subsection, and decides the next
procedure depending on whether δ1 = 0 or δ1 > 0. If δ1 = 0, we have the following.

Lemma 14 Suppose δ1 = 0. Then, any consistent ideal of H that spans V is a
minimizer of f .

Hence, in this case, we can output aminimizer of f by computing amaximal consistent
ideal of H by Lemma 12. On the other hand, if δ1 > 0, then we further split the case
into two subcases as follows.

Let i∗ ∈ I be a maximizer of (17), let f ∗ = fDi∗ be the contraction of f by Di∗ ,
and let V ∗ ⊆ V be the ground set of f ∗. For δ > 0 we call (X,Y ) ∈ 3V

∗
δ-highly

negative for f ∗ if f ∗(X,Y ) ≤ −δ. The following lemma is adapted from [21, Lemma
3.8].

Lemma 15 Let i∗ ∈ I be a maximizer of (17). Suppose that δ1 > 0 and that there is
no δ1-highly negative element for f ∗. Then there exists no minimizer (X,Y ) of f such
that (X,Y ) ⊇ Wi∗ .

On the other hand, if there is a δ1-highly negative element, we have the following.

Lemma 16 Suppose that δ1 > 0 and that there exists a δ1-highly negative element for
f ∗. Let x be the output of REFINE for f ∗ = fDi∗ with δ = δ1 and ζ = δ1/(12βn3).
Then there exist u ∈ V ∗ and τ ∈ {−,+} such that

τατ (u)x(u) ≤ −δ1

n
. (18)

Moreover, if uτ satisfies (18), then uτ is contained in every minimizer of f ∗.

Hence, from Lemmas 15 and 16, after applying REFINE for f ∗ = fDi∗ with
δ = δ1 and ζ = δ1/(6βn3) we can determine one of the following two:

(I) There exists no minimizer of f that contains elements of Wi∗ .
(II) There exists some j ∈ I\{i∗} such that every minimizer of f containing Wi∗

contains Wj .

Now we are ready to describe our algorithm strongly-ABSFM ( f ).
For Line 9 of strongly-ABSFM ( f ) we have the following.

Lemma 17 There is an algorithm that computes y∗ ∈ Pα( f ∗) with ‖y∗‖α +
f ∗(S, T ) ≤ 2nδ1 for some (S, T ) ∈ 3V

∗
, along with the expression of y∗ as a

convex combination of extreme points of Pα( f ∗), in O(n2 + SFM(n)) time, where
SFM(n) denotes the complexity of ordinary submodular function minimization with
the underlying set of size n.

Assuming the correctness of above lemmas, we now have the following theorem.
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Algorithm 7 strongly-ABSFM ( f )
1: Initialize H = (W,C) to be the graph on W = V+ ∪ V− with no arc, and Ue = ∅.
2: while Ue �= V do
3: Compute δ1
4: if δ1 = 0 then
5: Compute any maximal consistent ideal of H and return the corresponding signed set of 3V .
6: else
7: i∗ := a maximizer of (17) for δ1.
8: Let f ∗ = fDi∗ and let V ∗ ⊆ V be the ground set of f ∗.
9: Compute y∗ ∈ Pα( f ∗) with ‖y∗‖α + f ∗(S, T ) ≤ 2nδ1 for some (S, T ) ∈ 3V

∗
.

10: REFINE( f ∗, y∗, δ = δ1, ζ = δ1/(12βn3)).
11: Let (S, T ) and x be the output of REFINE.
12: if there are u ∈ V ∗ and τ ∈ {−,+} with τατ (u)x(u) ≤ − δ1

n then
13: Add arcs from Wi∗ to uτ in H .
14: else
15: Compute the set F of vertices from which we can reach Wi∗ in H .
16: For each uτ ∈ F , add (uτ , u−τ ) to H .
17: Update Ue and H so that it satisfies (16).

Theorem 4 Let f : 3V → R with f (∅,∅) = 0. strongly-ABSFM ( f ) returns a
minimizer of f in O(n2(n5EOβ2 logβn + SFM(n))) time, where EO denotes the
oracle time for the function evaluation of f .

Proof The correctness follows from the above arguments.
Let us check the time complexity. The number of while-loop iterations is O(n2)

since in each iteration the algorithm adds a new arc or delete at least one node.
In each iteration of the while-loop the running time of SFM(n) is required for

computing δ1 and y∗ with additional O(n2) time, while eachREFINE ( f ∗, y∗, δ1, δ1/
(12βn3)) requires O(n5EOβ2 logβn) time. ��

Thus the remaining two subsections are devoted to giving the missing proofs.

4.4 Concatenating linear orderings and proof of Lemma 17

Before going to the proofs of the lemmas, we give a technique for concatenating the
linear orderings on strongly connected components given in Lemma 13 to be linear
orderings of the whole set.

Choose any maximal chain

C : (∅,∅) = (S0, T0) � · · · � (Sk, Tk). (19)

of consistent ideals of H . By Lemma 12, (Sk, Tk) spans V . Here, note that for each
 = 1, . . . , k there uniquely exists i ∈ I such that (S, T)\(S−1, T−1) = Wi .

By Lemma 13 we have extreme bases y j ∈ B( fi ) corresponding to linear orderings
L j |σ j ( j ∈ Ji ) of Wi and positive numbers λ j ( j ∈ Ji ) with

∑
j∈Ji λ j = 1. Those

linear orderings can be concatenated to be linear orderings L ′
q |σ ′

q (q ∈ Q) of (Sk, Tk)
with the index set Q such that
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∑

q∈Q
μq ŷq ∈ Pα( f ),

where ŷq is the extreme base of Pα( f ) generated by L ′
q |σ ′

q and μq is a positive scaler
for each q ∈ Q satisfying

λ j =
∑

q:L ′
q |σ ′

q coincides with L j |σ j on Wi

μq (1 ≤ ∀ ≤ k,∀ j ∈ Ji ) (20)

The following procedure gives an explicit construction of such L ′
q |σ ′

q and μq .

(P) Let J∗ = ∪k
=1 Ji , where we assume Jis are disjoint. Let Q = ∅.

Repeat the following until J∗ = ∅.
1. Find j∗ ∈ J∗ such that λ j∗ = min{λ j | j ∈ J∗}. Suppose j∗ ∈ Ji∗ .
2. Put μ j∗ = λ j∗ and Q ← Q ∪ { j∗}.
3. For each  ∈ {1, . . . , k}\{i∗} choose one j ∈ Ji . Also, put ji∗ = j∗ for

 = i∗.
4. For each  ∈ {1, . . . , k} do:

λ j ← λ j − λ j∗
if λ j = 0 then J ← J\{ j} and J∗ ← J∗\{ j}.

5. Let L ′
j∗ |σ ′

j∗ be a signed linear ordering of V such that L j |σ j ( = 1, . . . , k)
appear in L ′

j∗ |σ ′
j∗ , each as an interval, in the order of .

Note that, since
∑

j∈Ji
λ j = 1 for each  and the procedure decreases

∑
j∈Ji

λ j by
the same amount for all  at Line 4, Ji becomes empty for some  if and only if Ji
becomes empty for all . In other words, Ji �= ∅ for all  at Line 3, and the procedure
works in O(n2) time.

Suppose that we are given (L ′
q , σ

′
q) (q ∈ Q) and μq (q ∈ Q) by procedure (P).

For each q ∈ Q let yq be the base of B( f (Sk ,Tk )) determined by (L ′
q , σ

′
q), and define

y ∈ R
V by

y =
∑

q∈Q
μq yq . (21)

Lemma 18 Let xi (i ∈ I ) be given as in Lemma 13 and let y be defined by (21). Then
for all  = 1, . . . , k and vτ ∈ Wi we have

τ y(v) ≤ τ xi (v).

Proof Consider f (S,T)
(S−1,T−1)

. This is submodular onWi . Moreover, since (Di\Wi ) ⊆
(S−1, T−1), we have f (S,T)

(S−1,T−1)
≤ fi by the submodularity of f (S,T). Therefore,

for each linear ordering L j |σ j of Wi , we have τ y j (v) ≤ τ x j (v), where y j and x j
are bases of B( f (S,T)

(S−1,T−1)
) and B( fi ) generated by L j |σ j , respectively. Therefore,

by (20), we have
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τ xi (v) =
∑

j∈Ji

λ jτ x j (v) ≥
∑

j∈Ji

∑

q:L ′
q |σ ′

q coincides with L j |σ j on Wi

μqτ y j (v)

=
∑

q∈Q
μqτ yq(v) = τ y(v)

for all  = 1, . . . , k and vτ ∈ Wi . ��
From y, let us further define ŷ ∈ R

V by

ŷ(v) = 1

ατ (v)
y(v) (∀vτ ∈ (Sk, Tk)). (22)

Lemma 19 Let ŷ be defined by (22). Then ŷ ∈ Bα
(Sk ,Tk )

( f ).

Proof Since Bα
(Sk ,Tk )

( f ) is obtained fromB( f (Sk ,Tk )) by appropriate scaling, the state-
ment follows from Lemma 18. ��

For proving Lemma 17, we need one more technical lemma.

Lemma 20 Let ŷ be defined by (22). Then for each  = 1, . . . , k we have

∑

vτ ∈Wi :τ ŷ(v)>0

τατ (v)ŷ(v) ≤ δ1.

Proof Denote xi by x for simplicity in the present proof. Since x ∈ B( fi ), we have

∑

vτ ∈Wi

τ x(v) = fi (Wi ). (23)

On the other hand, due to the min–max relation for the submodular function mini-
mization,

∑

vτ ∈Wi :τ x(v)<0

τ x(v) = fi (Mi ), (24)

where Mi is a minimizer of fi . It follows from (23) and (24) that

∑

vτ ∈Wi :τ x(v)>0

τ x(v) = fi (Wi ) − fi (Mi ) ≤ δ1.

Also, by Lemma 18, τ ŷ(v) > 0 holds only if τ x(v) > 0 for each vτ ∈ Wi .
Therefore we get

∑

vτ ∈Wi :τ ŷ(v)>0

τατ ŷ(v) ≤
∑

vτ ∈Wi :τ x(v)>0

τ x(v) ≤ δ1.

��
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Now we are ready to prove Lemma 17.

Proof of Lemma 17 We can assume that the maximal chain C in (19) contains
(S, T) = Di∗ for some  ∈ {1, . . . , k}. Let ŷ be defined by (22). Then we have
f (Di∗) = 〈ŷ, χα

Di∗ 〉. Hence, putting (S′
k, T

′
k) := (Sk, Tk)\Di∗ and letting y∗ be the

restriction of ŷ on (S′
k, T

′
k), by Lemma 19 we have y∗ ∈ Bα

(S′
k ,T

′
k )

( f ∗) and

∑

vτ ∈(S′
k ,T

′
k )

τατ ŷ(v) = f ∗(S′
k, T

′
k).

Therefore,

f ∗(S′
k, T

′
k) + ‖y∗‖α = f ∗(S′

k, T
′
k) −

∑

v∈V ∗:ŷ(v)<0

α+(v)ŷ(v)+
∑

v∈V ∗:ŷ(v)>0

α−(v)ŷ(v)

= f ∗(S′
k, T

′
k) −

∑

vτ ∈(S′
k ,T

′
k ):τ ŷ(v)<0

τατ ŷ(v)

+
∑

vτ ∈(S′
k ,T

′
k ):τ ŷ(v)>0

τατ ŷ(v)

= 2

⎛

⎝
∑

vτ ∈(S′
k ,T

′
k ):τ ŷ(v)>0

τατ ŷ(v)

⎞

⎠

≤ 2nδ1,

where the last inequality follows from Lemma 20 and recall that V ∗ = S′
k ∪ T ′

k . ��

4.5 Proofs of Lemmas 14, 15, and 16

Proof of Lemma 14 Since δ1 = 0, we see that for all i ∈ I Wi is a minimizer of fi .
Hence we have a base xi ∈ B( fi ) such that τ xi (u) ≤ 0 (∀uτ ∈ Wi ) by Lemma 13.

Now, let (A, B) be an arbitrary consistent ideal of H that spans V . Then there is
a maximal chain C of consistent ideals of H whose last element is (A, B), and let
y ∈ B( f (A,B)) be the vector constructed in (21) in Sect. 4.4 with respect to chain C .
Then by Lemma 18 we have

τ y(v) ≤ τ xi (v) ≤ 0 ∀vτ ∈ A+ ∪ B−.

This means that {v ∈ V : y(v) < 0} ⊆ A and {v ∈ V : y(v) > 0} ⊆ B. Therefore,
setting ŷ as in (22), we get

‖ŷ‖α =
∑

u∈V :y(u)<0

α+(u)ŷ(u) −
∑

u∈V :y(u)>0

α−(u)ŷ(u)

=
∑

u∈A

α+(u)ŷ(u) −
∑

u∈B
α−(u)ŷ(u) = 〈ŷ, χα

(A,B)〉 = f (A, B).
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where the last equation follows fromLemma19. It follows fromTheorem1 that (A, B)

is a minimizer of f . ��
Proof of Lemma 15 Let Mi∗ be a minimizer of fi∗ , and let Ei∗ = Mi∗ ∪ (Di∗\Wi∗).
Since δ1 > 0, we have Ei∗ �= Di∗ . Also, by the assumption we have

f ∗(X,Y ) > −δ1 (∀(X,Y ) ∈ 3V
∗
),

which is rewritten as

f ((X,Y ) ∪ Di∗) − f (Di∗) > f (Ei∗) − f (Di∗) (∀(X,Y ) ∈ V ∗).

Hence f ((X,Y )∪Di∗) > f (Ei∗) for all (X,Y ) ∈ 3V
∗
. This implies that any (X,Y ) ∈

3V with (X,Y ) ⊇ Di∗ ⊇ Wi∗ is not a minimizer of f . ��
In order to prove Lemma 16, we need one more extra lemma.

Lemma 21 For a given x ∈ Pα( f ) suppose that we have ‖x‖α < − f (X,Y ) + γ

for some (X,Y ) ∈ 3V and γ > 0. If τατ (u)x(u) ≤ −γ holds for some u ∈ V and
τ ∈ {+,−}, then every minimizer of f contains uτ .

Proof Let (S, T ) be any minimizer of f , and suppose that uτ is not contained in
(S, T ). Let Z = {vσ ∈ V+ ∪ V− : σ x(v) < 0}. Then uτ ∈ Z\(S+ ∪ T−). By using
the assumption of the present lemma, we have

γ ≥ ‖x‖α + f (X,Y ) ≥ ‖x‖α + f (S, T ) ≥ ‖x‖α + 〈x, χα
(S,T )〉

= −
∑

vσ ∈Z
σασ(v)x(v) +

∑

vσ ∈S+∪T−
σασ(v)x(v)

=
∑

vσ ∈Z\(S+∪T−)

−σασ(v)x(v) +
∑

vσ ∈(S+∪T−)\Z
σασ(v)x(v).

By the definition of Z , each term in the summations is nonnegative. Therefore, by
uτ ∈ Z\(S+ ∪ T−), we get γ ≥ −τατ x(u), contradicting the assumption of the
present lemma. ��
Proof of Lemma 16 By Theorem 2,REFINE( f ∗, ŷ, δ1, δ1

12βn3
) outputs (A, B) ∈ 3V

∗

and x ∈ R
V ∗

with ‖x‖α ≤ 6βn2( δ1
12βn3

) − f ∗(A, B) < δ1
n − f ∗(A, B).

Let (X,Y ) ∈ 3V
∗
be a δ1-highly negative element for f ∗. Since x ∈ Pα( f ∗), we

have
∑

uτ ∈X+∪Y−
τατ (u)x(u) =

〈
x, χα

(X,Y )

〉
≤ f ∗(X,Y ) ≤ −δ1.

Hence there is uτ ∈ X+ ∪ Y− such that τατ (u)x(u) ≤ δ1
n .

Now, since ‖x‖α < δ1
n − f ∗(A, B), Lemma 21 implies that uτ is contained in every

minimizer of f ∗. ��
This completes the proofs of all the lemmas stated in Sect. 4.3.
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