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a b s t r a c t

New maximal inequalities for non-negative martingales are proved. The inequalities
are tight and strengthen well-known maximal inequalities by Doob. The inequalities
relate martingales to information divergence and imply convergence of X ln X bounded
martingales. Similar results hold for stationary sequences.
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1. Introduction

Comparing results from probability theory and information theory is not a new idea. Many convergence theorems in
probability theory can be reformulated as “the entropy converges to its maximum” or “information divergence converges
to zero ”. The Weak Law of Large Numbers as well as its generalizations, mean convergence of martingales and stationary
sequences, can be proved using information theoretic techniques, see Csiszár (1963), Barron (1991) and Csiszár and Shields
(2004). Large deviation bounds are closely related to information theory and can be used to prove the Strong Law of Large
Numbers (Csiszár and Shields, 2004, p. 13). In this paper we shall see that information theoretic ideas are also relevant for
pointwise convergence of martingales and stationary sequences. In this short paper the focus is on martingales.

Let (Ω,B,Q) be a probability space. If not otherwise stated E [·] shall denote mean value with respect to Q . The following
inequalities are well known and a proof can be found in Shiryaev (1996, p. 494).

Lemma 1 (Doob’s Maximal Inequalities). Let (X1,F1) , . . . , (Xn,Fn) be a non-negative martingale. Let the random variables
Xmax and Xmin be given by Xmax

= max
{
Xj

}
and Xmin

= min
{
Xj

}
. Then the following inequalities hold

λ · Q
(
Xmax
≥ λ

)
≤ E [Xn · 1Xmax≥λ] (1)

λ · Q
(
Xmin
≤ λ

)
≥ E

[
Xn · 1Xmin≤λ

]
. (2)

A similar inequality holds for ergodic sequences, see Shiryaev (1996, p. 410).

Lemma 2 (Maximal Ergodic Theorem). Let T : Ω → Ω denote a measurable transformation that conserves the probability
measure Q . Let f be a random variable with E |f | <∞. Define fmin

n and fmax
n by

fmin
n = min

1≤k≤n

1
k

k−1∑
j=0

f ◦ T j (3)

fmax
n = max

1≤k≤n

1
k

k−1∑
j=0

f ◦ T j. (4)
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Then

λ · Q
(
fmax
n ≥ λ

)
≤ E

[
f · 1fmax

n ≥λ

]
(5)

λ · Q
(
fmin
n ≤ λ

)
≥ E

[
f · 1fmin

n ≤λ

]
. (6)

2. Some newmaximal inequalities

The following function will play an important role in what follows. Let γ (x) = x − 1 − ln x for x > 0. Remark that γ is
strictly convex with minimum γ (1) = 0.

Theorem 3. Let (X1,F1) , (X2,F2) , . . . (Xn,Fn) be a non-negative martingale. Let Xmax
= max

(
Xj

)
and Xmin

= min
(
Xj

)
. If

X1 = 1 then

γ
(
E [Xmax]

)
≤ E [Xn ln (Xn)] (7)

and

γ
(
E
[
Xmin

])
≤ E [Xn ln (Xn)] . (8)

Proof. By using that Xmax
≥ X1 = 1 we get

E [Xmax]− 1 =
∫
∞

0
Q
(
Xmax
≥ t

)
dt − 1 =

∫
∞

1
Q
(
Xmax
≥ t

)
dt

≤

∫
∞

1

1
t
E [Xn · 1Xmax≥t] dt = E

[∫
∞

1

Xn · 1Xmax≥t

t
dt
]

= E

[
Xn ·

∫ Xmax

1

1
t

dt
]
= E

[
Xn · ln

(
Xmax) dt

]
. (9)

Using that γ is non-negative we get

E [Xmax]− 1 ≤ E
[
Xn

(
ln
(
Xmax)

+ γ

(
Xmax

Xn · E [Xmax]

))]
= E [Xn ln (Xn)]+ ln E [Xmax] . (10)

Inequality (7) is obtained by reorganizing the terms.
Similarly, 0 ≤ Xmin

≤ X1 = 1 implies that

E
[
Xmin

]
=

∫ 1

0
Q
(
Xmin
≥ t

)
dt = 1−

∫ 1

0
Q
(
Xmin < t

)
dt

≤ 1−
∫ 1

0

1
t
E [Xn · 1Xmin<t] dt = 1− E

[∫ 1

0

Xn · 1Xmin<t

t
dt
]

= 1− E

[
Xn ·

∫ 1

Xmin

1
t

dt
]
= 1+ E

[
Xn · ln

(
Xmin

)]
. (11)

Inequality (8) can now be proved in the same way as (7). �

A similar inequality holds for an ergodic transformation T and a non-negative function f with
∫
f dQ = 1. The inequalities

(7) and (8) are tight in the following sense.

Theorem 4. Assume that g : R+ → R is a continuous function such that

g
(
E [Xmax]

)
≤ E [Xn ln (Xn)] (12)

and

g
(
E
[
Xmin

])
≤ E [Xn ln (Xn)] . (13)

for all non-negative martingales (X1,G1) , (X2,G2) , . . . , (Xn,Gn). Then g ≤ γ.
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Proof. Let g denote a function satisfying inequality (12) for all martingales. Assume that t ∈ [1;∞[. We shall prove that
g (t) ≤ γ (t). For an integer k, define n = 2k. For j = 0, 1, . . . , 2k

− 1 let F k
j denote the σ-algebra generated by the sets[

0;
1
2k

[
[ 1

2k
;

2
2k

[
[ 2

2k
;

3
2k

[
...[
j− 1

2k
;

j

2k

[
[

j

2k
; 1
]

.

Further F k
2k shall denote the Borel σ-algebra on [0; 1]. With these definitions F k

0 ,F k
1 , . . .F k

2k is an increasing sequence of
σ-algebras. Let Q denote the uniform distribution on [0; 1]. Let f denote the function (random variable) on [0; 1] given by
f (x) = α (1− x)α−1 where α = t−1

∈ ]0; 1]. A martingale
(
Xj,F k

j

)
j=0,1,...,2k

is given by the random variables Xj = E
[
f |F k

j

]
where

E
[
f
∣∣∣F k

j

]
(x) =



∫ l
2k
l−1
2k

f (y) dy

1/2k
for x ∈

[
l− 1

2k
;

l

2k

[
, where l ≤ j,∫ 1

j

2k
f (y) dy

1− j
2k

for x ∈
[

j

2k
; 1
]
.

Remark that f is increasing and therefore

max
j

E
[
f
∣∣∣F k

j

]
(x) =

∫ 1
bx2kc

2k

f (y) dy

1− bx2kc
2k

=

(
1−

⌊
x2k

⌋
2k

)α−1

.

For any k ∈ Nwe have

g

∫ 1

0

(
1−

⌊
x2k

⌋
2k

)α−1

dx

 ≤ E [Xn ln (Xn)] =
∫ 1

0
f (x) log f (x) dx

=

∫ 1

0
α (1− x)α−1 log

(
(α− 1+ 1) (1− x)α−1

)
dx = log (α)+

1
α
− 1.

The sequence(
1−

⌊
x2k

⌋
2k

)α−1

is an increasing sequence of positive functions that converges to the function (1− x)α for k tending to infinity. According to
Lebesgue’s theorem the integral∫ 1

0

(
1−

⌊
x2k

⌋
2k

)α−1

dx

converges to∫ 1

0
(1− x)α dx =

[
− (1− x)α

α

]1

0

=
1
α

.

Thus

g
( 1
α

)
≤ log (α)+

1
α
− 1

so that

g (t) ≤ − log (t)+ t − 1.
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The proof works essentially the same way for t ∈ ]0; 1] and therefore inequality (8) is also tight. �

The proof of Theorem 4 gives an indication of how Theorem 3 can be generalized to martingales with continuous time
and proved via discretizations.

3. Convergence of martingales and ergodic sequences

In order to prove the convergence of martingales we have to reorganize our inequalities somewhat. Let P and Q be
probability measures on the same space. Then the information divergence from P to Q is defined by D (P ‖ Q) =

∫
ln dP

dQ dP
if P is absolutely continuous with respect to Q and by D (P ‖ Q) = ∞ otherwise.

Theorem 5. Let (X1,F1) , (X2,F2) , . . . be a non-negative martingale and assume that E
[
Xj

]
= 1. Let Pj be the probability

measure given by dPj
dQ = Xj. For m ≤ n put Xmax

m,n = supj=m,...,n Xj and let γ (x) = x− 1− ln (x). Then

γ
(
E
[
Xmax
m,n

])
≤ D (Pn ‖ Pm) . (14)

Proof. We note that Xm = 0 implies that Xj = 0 for j ≥ m and therefore also Xmax
m,n = 0. With the convention that Xmax

m,n

Xm
= 0

when both numerator and denominator are zero we get

E
[
Xmax
m,n

]
= EPm

[
Xmax
m,n

Xm

]
,

where EPm denotes expectation with respect to Pm. For m ≤ j ≤ n define Yj = Xj/Xm. It is straightforward to check that(
Yj,Fj

)
, j = m,m+ 1, . . . , n is a non-negative martingale with respect to Pm. Therefore

γ
(
E
[
Xmax
m,n

])
= γ

(
EPm

[
max
m≤j≤n

Yj

])
≤ EPm [Yn ln Yn]

= EPm

[
Xn

Xm
ln

Xn

Xm

]
= E

[
Xn ln

Xn

Xm

]
= D (Pn ‖ Pm) . �

Again a similar inequality is satisfied for the minimum of a martingale, i.e.

γ
(
E
[
Xmin
m,n

])
≤ D (Pn ‖ Pm) . (15)

Inspired by Barron (1991) convergence of log bounded martingales can be proved as follows. Let X1, X2, . . . be a non-
negative martingale. Without loss of generality we will assume that E [Xn] = 1. Then

E [Xn ln Xn]− E [Xm ln Xm] = D (Pn ‖ Pm) . (16)

Inequality (16) implies that E [Xn ln Xn] because information divergence is non-negative. Assume that E [Xn ln Xn] is bounded.
Then D (Pn ‖ Pm) converges to 0 for m, n tending to infinity. Now Theorem 5 implies that

E
[
Xmax
m,n − Xmin

m,n

]
→ 0 for m, n→∞. (17)

Thus Xn is a Cauchy sequence in L1 (Ω,Q) and converges. Using Markov’s inequality together with (17) gives

Q
(
Xmax
m,n − Xmin

m,n ≥ ε
)
→ 0 for m, n→∞

so that Xn is a Cauchy sequence with probability one. Therefore the martingale also converges pointwise almost surely. Thus
if E [Xn ln (Xn)] is bounded we get both mean and almost sure pointwise convergence.

By a similar argument, both mean convergence and almost sure pointwise convergence of

dPn
dQ
=

1
k

k−1∑
j=0

f ◦ T j (18)

hold for an ergodic transformation T when E [|f | log |f |] <∞.

In Cover and Thomas (1991) both convergence of martingales and stationary sequences are used in the proof of the
Shannon–McMillan–Breiman theorem. It is interesting that exactly the finiteness of E [X ln X] (finite entropy) is needed in
this theorem.
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Fig. 1. The curve is the graph of the function γ. Doob’s bound corresponds to the tangent.

4. Discussion

Theorem 3 can be seen as a strengthening of a classical maximal inequality by Doob, which states that

E [Xmax] ≤
e

e− 1
(1+ E [Xn ln (Xn)]) . (19)

As illustrated in Fig. 1 Doob’s inequality corresponds to a tangent to the function xy γ (x) at x = e. Thus, the new inequality
is superior to Doob’s inequality in a neighborhood of 1, and it is the behavior in this region that implies convergence of the
martingale. Only in a neighborhood of E[Xmax

] = e Doob’s inequality and the new inequalities gives approximately the same
bound on E[Xmax

].
In this paper upper bounds on E[Xmax

] and lower bounds on E[Xmin
] are given in terms of E [Xn ln (Xn)], and each of the

bounds is shown to be tight. In Theorem 4 the tightness of upper and lower bounds are obtained for different values of the
parameter α. Therefore a tighter bound on E[Xmax

− Xmin
] is possible in terms of E [Xn ln (Xn)]. Such tighter bounds would be

highly interesting and are obvious subjects for further investigation.
In Barron (1991) Pinsker’s inequality was used to see that convergence in information implies convergence in total

variation. If P � Q then the sequence (1, dP
dQ ) is a martingale. We have

E
[

max
{

1,
dP
dQ

}]
= 1+

1
2
‖P − Q‖ , (20)

where the norm denotes variational distance. Then inequality (7) states that

1
2
‖P − Q‖ − ln

(
1+

1
2
‖P − Q‖

)
≤ D (P ‖ Q) . (21)

This inequality is well known and dates back to Volkonskij and Rozanov (1959) and was later refined to Pinsker’s inequality,
see Fedotov et al. (2003) for more details about the history of this problem. If the minimum is used rather than the maximum
one gets an inequality that in some cases is stronger than the well-known Pinsker inequality.
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