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Abstract

Robinsonian matrices arise in the classical seriation problem and play an important role
in many applications where unsorted similarity (or dissimilarity) information must be re-
ordered. We present a new polynomial time algorithm to recognize Robinsonian matrices
based on a new characterization of Robinsonian matrices in terms of straight enumerations
of unit interval graphs. The algorithm is simple and is based essentially on lexicographic
breadth-first search (Lex-BFS), using a divide-and-conquer strategy. When applied to a non-
negative symmetric n× n matrix with m nonzero entries and given as a weighted adjacency
list, it runs in O(d(n+m)) time, where d is the depth of the recursion tree, which is at most
the number of distinct nonzero entries of A.

Keywords: Robinson (dis)similarity; unit interval graph; Lex-BFS; seriation; partition
refinement; straight enumeration

1 Introduction

An important question in many classification problems is to find an order of a collection of
objects respecting some given information about their pairwise (dis)similarities. The classic
seriation problem, introduced by Robinson [34] for chronological dating, asks to order objects
in such a way that similar objects are ordered close to each other, and it has many applications
in different fields (see [25] and references therein).

A symmetric matrix A = (Aij)
n
i,j=1 is a Robinson similarity matrix if its entries decrease

monotonically in the rows and columns when moving away from the main diagonal, i.e., if
Aik ≤ min{Aij , Ajk} for all 1 ≤ i ≤ j ≤ k ≤ n. Given a set of n objects to order and a
symmetric matrix A = (Aij) which represents their pairwise correlations, the seriation problem
asks to find (if it exists) a permutation π of [n] so that the permuted matrix Aπ = (Aπ(i)π(j)) is
a Robinson matrix. If such a permutation exists then A is said to be a Robinsonian similarity,
otherwise we say that data is affected by noise. The definitions extend to dissimilarity matrices:
A is a Robinson(ian) dissimilarity preciely when −A is a Robinson(ian) similarity. Hence results
can be directly transferred from one class to the other one.

Robinsonian matrices play an important role in several hard combinatorial optimization
problems and recognition algorithms are important in designing heuristic and approximation
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algorithms when the Robinsonian property is desired but the data is affected by noise (see
e.g. [6, 15, 24]). In the last decades, different characterizations of Robinsonian matrices have
appeared in the literature, leading to different polynomial time recognition algorithms. Most
characterizations are in terms of interval (hyper)graphs.

A graph G = (V,E) is an interval graph if its nodes can be labeled by intervals of the real
line so that adjacent nodes correspond to intersecting intervals. Interval graphs arise frequently
in applications and have been studied extensively in relation to hard optimization problems (see
e.g. [2, 7, 27]). A binary matrix has the consecutive ones property (C1P) if its columns can be
reordered in such a way that the ones are consecutive in each row. Then a graph G is an interval
graph if and only if its vertex-clique incidence matrix has C1P, where the rows are indexed by
the vertices and the columns by the maximal cliques of G [16].

A hypergraph H = (V, E) is a generalization of the notion of graph where elements of E ,
called hyperedges, are subsets of V . The incidence matrix of H is the 0/1 matrix whose rows
and columns are labeled, respectively, by the hyperedges and the vertices and with an entry 1
when the corresponding hyperedge contains the corresponding vertex. Then H is an interval
hypergraph if its incidence matrix has C1P, i.e., if its vertices can be ordered in such a way that
hyperedges are intervals.

Given a dissimilarity matrix A ∈ Sn and a scalar α, the threshold graph Gα = (V,Eα) has
edge set Eα = {{x, y} : Axy ≤ α} and, for x ∈ V , the ball B(x, α) := {y ∈ V : Axy ≤ α} consists
of x and its neighbors in Gα. Let B denote the collection of all the balls of A and HB denote the
corresponding ball hypergraph, with vertex set V = [n] and with B as set of hyperedges. One
can also build the intersection graph GB of B, where the balls are the vertices and connecting
two vertices if the corresponding balls intersect. Most of the existing algorithms are then based
on the fact that a matrix A is Robinsonian if and only if the ball hypergraph HB is an interval
hypergraph or, equivalently, if the intersection graph GB is an interval graph (see [28,30]).

Testing whether an m × n binary matrix with f ones has C1P can be done in linear time
O(n+m+f) (see the first algorithm of Booth and Leuker [3] based on PQ-trees, the survey [14]
and further references therein). Mirkin and Rodin [28] gave the first polynomial algorithm to
recognize Robinsonian matrices, with O(n4) running time, based on checking whether the ball
hypergraph is an interval hypergraph and using the PQ-tree algorithm of [3] to check whether
the incidence matrix has C1P. Later, Chepoi and Fichet [5] introduced a simpler algorithm
that, using a divide-an-conquer strategy and sorting the entries of A, improved the running
time to O(n3). The same sorting preprocessing was used by Seston [37], who improved the
algorithm to O(n2 log n) by constructing paths in the threshold graphs of A. Very recently, Préa
and Fortin [30] presented a more sophisticated O(n2) algorithm, which uses the fact that the
maximal cliques of the graph GB are in one-to-one correspondence with the row/column indices
of A. Roughly speaking, they use the algorithm from Booth and Leuker [3] to compute a first
PQ-tree which they update throughout the algorithm.

A numerical spectral algorithm was introduced earlier by Atkins et al. [1] for checking whether
a similarity matrix A is Robinsonian, based on reordering the entries of the Fiedler eigenvector
of the Laplacian matrix associated to A, and it runs in O(n(T (n) + n log n)) time, where T (n)
is the complexity of computing (approximately) the eigenvalues of an n× n symmetric matrix.

In this paper we introduce a new combinatorial algorithm to recognize Robinsonian matrices,
based on characterizing them in terms of straight enumerations of unit interval graphs. Unit
interval graphs are a subclass of interval graphs, where the intervals labeling the vertices are
required to have unit length. As is well known, they can be recognized in linear time O(|V |+|E|)
(see e.g. [8,22] and references therein). Many of the existing algorithms are based on the equiv-
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alence between unit interval graphs and proper interval graphs (where the intervals should be
pairwise incomparable) (see [31, 33]). Unit interval graphs have been recently characterized in
terms of straight enumerations, which are special orderings of the classes of the ‘undistinguisha-
bility’ equivalence relation, calling two vertices undistinguishable if they have the same closed
neighborhoods (see [9]). This leads to alternative unit interval graph recognition algorithms
(see [8, 9]), which we will use as main building block in our algorithm. Our algorithm relies
indeed on the fact that a similarity matrix A is Robinsonian if and only if its level graphs (the
analogues for similarities of the threshold graphs for dissimilarities) admit pairwise compatible
straight enumerations (see Theorem 7).

Our approach differs from the existing ones in the sense that it is not directly related to
interval (hyper)graphs, but it relies only on unit interval graphs (which are a simpler graph
class than interval graphs) and on their straight enumerations. Furthermore, our algorithm
does not rely on any sophisticated external algorithm such as the Booth and Leuker algorithm
for C1P and no preprocessing to order the data is needed. In fact, the most difficult task carried
out by our algorithm is a Lexicographic Breadth-First Search (abbreviated Lex-BFS), which is
a variant of the classic Breadth-First Search (BFS), where the ties in the search are broken by
giving preference to those vertices whose neighbors have been visited earliest (see [35] and [19]).
Following [8], we in fact use the variant Lex-BFS+ introduced by [38] to compute straight
enumerations. Our algorithm uses a divide-and-conquer strategy with a merging step, tailored
to efficiently exploit the possible sparsity structure of the given similarity matrix A. Assuming
the matrix A is given as an adjacency list of an undirected weighted graph, our algorithm runs
in O(d(m + n)) time, where n is the size of A, m is the number of nonzero entries of A and d
is the depth of the recursion tree computed by the algorithm, which is upper bounded by the
number L of distinct nonzero entries of A (see Theorem 14). Furthermore, we can return all the
permutations reordering A as a Robinson matrix using a PQ-tree data structure on which we
perform only a few simple operations (see Section 4.3).

Our algorithm uncovers an interesting link between straight enumerations of unit interval
graphs and Robinsonian matrices which, to the best of our knowledge, has not been made before.
Moreover it provides an answer to an open question posed by M. Habib at the PRIMA Conference
in Shanghai in June 2013, who asked whether it is possible to use Lex-BFS+ to recognize
Robinsonian matrices [11]. Alternatively one could check whether the incidence matrix M of
the ball hypergraph of A has C1P, using the Lex-BFS based algorithm of [19], in time O(r+c+f)
time if M is r × c with f ones. As r ≤ nL, c = n and f ≤ Lm, the overall time complexity
is O(L(n + m)). Interestingly, this approach is not mentioned by Habib. In comparison, an
advantage of our approach is that it exploits the sparsity structure of the matrix A, as d can be
smaller than L.

This paper is an extended version of the work [23], which appeared in the proceedings of the
9th International Conference on Algorithms and Complexity (CIAC 2015) .

Contents of the paper

Section 2 contains preliminaries about weak linear orders, straight enumerations and unit inter-
val graphs. In Section 3 we characterize Robinsonian matrices in terms of straight enumerations
of unit interval graphs. In Section 4 we introduce our recursive algorithm to recognize Robin-
sonian matrices, and then we discuss the complexity issues and explain how to return all the
permutations reordering a given similarity matrix as a Robinson matrix. The final Section 5
contains some questions for possible future work.
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2 Preliminaries

Throughout Sn denotes the set of symmetric n× n matrices. Given a permutation π of [n] and
a matrix A ∈ Sn, Aπ := (Aπ(i)π(j))

n
i,j=1 ∈ Sn is the matrix obtained by permuting both the

rows and columns of A simultaneously according to π. For U ⊆ [n], A[U ] = (Aij)i,j∈U is the
principal submatrix of A indexed by U . As we deal exclusively with Robinson(ian) similarities,
when speaking of a Robinson(ian) matrix, we mean a Robinson(ian) similarity matrix.

An ordered partition (B1, . . . , Bp) of a finite set V corresponds to a weak linear order ψ on
V (and vice versa), by setting x =ψ y if x, y belong to the same class Bi, and x <ψ y if x ∈ Bi
and y ∈ Bj with i < j. Then we also use the notation ψ = (B1, . . . , Bp) and B1 <ψ . . . <ψ Bp.
When all classes Bi are singletons then ψ is a linear order (i.e., total order) of V .

The reversal of ψ is the weak linear order, denoted ψ, of the reversed ordered partition
(Bp, . . . , B1). For U ⊆ V , ψ[U ] denotes the restriction of the weak linear order ψ to U . Given
disjoint subsets U,W ⊆ V , we say U ≤ψ W if x ≤ψ y for all x ∈ U, y ∈ W . If ψ1 and ψ2 are
weak linear orders on disjoint sets V1 and V2, then ψ = (ψ1, ψ2) denotes their concatenation
which is a weak linear order on V1 ∪ V2.

The following notions of compatibility and refinement will play an important role in our
treatment. Two weak linear orders ψ1 and ψ2 on the same set V are said to be compatible if
there do not exist elements x, y ∈ V such that x <ψ1 y and y <ψ2 x. Hence, ψ1 and ψ2 are
compatible if and only if there exists a linear order π of V which is compatible with both ψ1

and ψ2 Then their common refinement is the weak linear order Ψ = ψ1 ∧ ψ2 on V defined by
x =Ψ y if x =ψ`

y for all ` ∈ {1, 2}, and x <Ψ y if x ≤ψ`
y for all ` ∈ {1, 2} with at least one

strict inequality.
We will use the following fact, whose easy proof is omitted.

Lemma 1. Let ψ1, . . . , ψL be weak linear orders on V . Hence, ψ1, . . . , ψL are pairwise compatible
if and only if there exists a linear order π of V which is compatible with each of ψ1, . . . , ψL, in
which case π is compatible with their common refinement ψ1 ∧ · · · ∧ ψL.

In what follows V = [n] = {1, . . . , n} is the vertex set of a graph G = (V,E), whose edges are
pairs {x, y} of distinct vertices x, y ∈ V . For x ∈ V , we denote by N(x) = {y ∈ V : {x, y} ∈ E}
the neighborhood of x. Then, its closed neighborhood is the set N [x] = {x}∪N(x). Two vertices
x, y ∈ V are undistinguishable if N [x] = N [y]. This defines an equivalence relation on V , whose
classes are called the blocks of G. Clearly, each block is a clique of G. Two distinct blocks B
and B′ are said to be adjacent if there exist two vertices x ∈ B, y ∈ B′ that are adjacent in G
or, equivalently, if B ∪ B′ is a clique of G. A straight enumeration of G is then a linear order
φ = (B1, . . . , Bp) of the blocks of G such that, for any block Bi, the block Bi and the blocks Bj
adjacent to it are consecutive in the linear order (see [21]). The blocks B1 and Bp are called the
end blocks of φ and Bi (with 1 < i < p) are its inner blocks. Having a straight enumeration is a
strong property, and not all graphs have one. In fact, this notion arises naturally in the context
of unit interval graphs as recalled below.

A graph G = (V = [n], E) is called an interval graph if its vertices can be mapped to
intervals I1, . . . , In of the real line such that, for distinct vertices x, y ∈ V , {x, y} ∈ E if and
only if Ix ∩ Iy 6= ∅. Such a set of intervals is called a realization of G, and it is not unique. If
the graph G admits a realization by unit intervals, then G is said to be a unit interval graph.

Interval graphs and unit interval graphs play an important role in many applications in
different fields. Many NP-complete graph problems can be solved in polynomial time on interval
graphs (this holds e.g. for the bandwidth problem [27]). However, there are still problems which
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remains NP-hard also for interval graphs (this holds e.g. for the minimal linear arrangement
problem [7]). It is well known that interval graphs and unit interval graphs can be recognized
in O(|V | + |E|) time [3, 8–10, 12, 13, 19, 22, 26, 38]. For a more complete overview on linear
recognition algorithms for unit interval graphs, see [8] and references therein. Most of the
above mentioned algorithms are based on the equivalence between unit interval graphs and
proper interval graphs (i.e., graphs admitting a realization by pairwise incomparable intervals)
or indifference graphs [31]. Furthermore, there exist several equivalent characterizations for unit
interval graphs. The following one in terms of straight enumerations will play a central role
in our paper.

Theorem 2 (Unit interval graphs and straight enumerations). [13] A graph G is a unit
interval graph if and only if it has a straight enumeration. Moreover, if G is connected, then it
has a unique (up to reversal) straight enumeration.

On the other hand, if G is not connected, then any possible linear ordering of the connected
components combined with any possible orientation of the straight enumeration of each con-
nected component induces a straight enumeration of G. The next theorem summarizes several
known characterizations for unit interval graphs, combining results from [9, 17, 26, 29, 31, 32].
Recall that K1,3 is the graph with one degree-3 vertex connected to three degree-1 vertices (also
known as claw).

Theorem 3. The following are equivalent for a graph G = (V,E).

(i) G is a unit interval graph.

(ii) G is an interval graph with no induced subgraph K1,3.

(iii) (3-vertex condition) There is a linear ordering π of V such that, for all x, y, z ∈ V ,

x <π y <π z, {x, z} ∈ E =⇒ {x, y}, {y, z} ∈ E. (1)

(iv) (Neighborhood condition) There is a linear ordering π of V such that for any x ∈ V
the vertices in N [x] are consecutive with respect to π.

(v) (Clique condition) There is a linear ordering π of V such that the vertices contained in
any maximal clique of G are consecutive with respect to π.

3 Robinsonian matrices and unit interval graphs

In this section we characterize Robinsonian matrices in terms of straight enumerations of unit
interval graphs. We focus first on binary Robinsonian matrices. We may view any symmetric
binary matrix with all diagonal entries equal to 1 as the extended adjacency matrix of a graph.
The equivalence between binary Robinsonian matrices and indifference graphs (and thus with
unit interval graphs) was first shown by Roberts [31]. Furthermore, as observed, e.g., by Corneil
et al. [9], the “neighborhood condition” for a graph is equivalent to its extended adjacency matrix
having C1P. Hence we have the following equivalence between Robinsonian binary matrices and
unit interval graphs, which also follows as a direct application of Theorem 3(iii).

Lemma 4. Let G = (V,E) be a graph and AG be its extended adjacency matrix. Then, AG is
a Robinsonian similarity if and only if G is a unit interval graph.
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The next result characterizes the linear orders that reorder the extended adjacency matrix
AG as a Robinson matrix in terms of the straight enumerations of G. It is simple but will play
a central role in our algorithm for recognizing Robinsonian similarities.

Theorem 5. Let G = (V,E) be a graph. A linear order π of V reorders AG as a Robinson
matrix if and only if there exists a straight enumeration of G whose corresponding weak linear
order ψ is compatible with π, i.e., satisfies:

∀x, y ∈ V with x 6=ψ y x <π y ⇐⇒ x <ψ y. (2)

Proof. Assume that π is a linear order of V that reorders AG as a Robinson matrix. Then it is
easy to see that the 3-vertex condition holds for π and that each block of G is an interval w.r.t.
π. Therefore the order π induces an order ψ of the blocks: B1 <ψ . . . <ψ Bp, with Bi <ψ Bj
if and only if x <π y for all x ∈ Bi and y ∈ Bj . In other words, ψ is compatible with π by
construction. Moreover, ψ defines a straight enumeration of G. Indeed, if Bi <ψ Bj <ψ Bk and
Bi, Bk are adjacent then Bj is adjacent to Bi and Bk, since this property follows directly from
the 3-vertex condition for π.

Conversely, assume that B1 <ψ . . . <ψ Bp is a straight enumeration of G and let π be a
linear order of V which is compatible with ψ, i.e., satisfies (2). We show that π reorders AG as
a Robinson matrix. That is, we show that if x <π y <π z, then (AG)xz ≤ min{(AG)xy, (AG)yz}
or, equivalently, that {x, z} ∈ E implies {x, y}, {y, z} ∈ E. If x, z belong to the same block Bi
then y ∈ Bi (using (2)) and thus {x, y}, {y, z} ∈ E since Bi is a clique. Assume now that x ∈ Bi,
z ∈ Bk and {x, z} ∈ E. Then, Bi <ψ Bk and Bi, Bk are adjacent blocks and thus Bi ∪ Bk is a
clique. If y ∈ Bi then y is adjacent to x and z (since Bi∪Bk is a clique). Analogously if y ∈ Bk.
Suppose now that y ∈ Bj . Then, using (2), we have that Bi <ψ Bj <ψ Bk. As ψ is a straight
enumeration with Bi,Bk adjacent it follows that Bj is adjacent to Bi and to Bk and thus y is
adjacent to x and z.

Hence, in order to find the permutations reordering a given binary matrix A as a Robinson
matrix, it suffices to find all the possible straight enumerations of the corresponding graph G.
As is shown e.g. in [9,13], this is a simple task and can be done in linear time. This is coherent
with the fact that C1P can be checked in linear time (see [14] and references therein).

We now consider a general (nonbinary) matrix A. We first introduce its ‘level graphs’, the
analogues for similarity matrices of the threshold graphs for dissimilarities. Let α0 < α1 <
· · · < αL denote the distinct values taken by the entries of A. The graph G(`) = (V,E`), whose
edges are the pairs {x, y} with Axy ≥ α`, is called the `-th level graph of A. Let J be the all
ones matrix. Clearly, both J and −J are Robinson matrices. Hence, we may and will assume,
without loss of generality, that α0 = 0. Then, A is nonnegative and G(1) is its support graph.
The level graphs can be used to decompose A as a conic combination of binary matrices and,
as already observed by Roberts [33], A is Robinson precisely when these binary matrices are
Robinson. This is summarized in the next lemma, whose easy proof is omitted.

Lemma 6. Let A ∈ Sn with distinct values α0 < α1 < · · · < αL and with level graphs
G(1), . . . , G(L). Then:

A = α0J +

L∑
`=1

(α` − α`−1)AG(`) .

Moreover, A is Robinson if and only if AG(`) is Robinson for each ` ∈ [L].
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Clearly, ifA is a Robinsonian matrix then the adjacency matrices of its level graphsG(`) (` ∈ [L])
are Robinsonian too. However, the converse is not true: it is easy to build a small example
where A is not Robinsonian although the extended adjacency matrix of each of its level graphs
is Robinsonian. The difficulty lies in the fact that one needs to find a permutation that reorders
simultaneously the extended adjacency matrices of all the level graphs as Robinson matrices.
Roberts [33] first introduced a characterization of Robinsonian matrices in terms of indifference
graphs (i.e. unit interval graphs). Rephrasing his result using the notion of level graphs, he
showed that A is Robinsonian if and only if its level graphs have vertex linear orders that are
compatible (see [33, Theorem 4.4]). However, he does not give any algorithmic insight on how
to find such orders.

Combining the links between binary Robinsonian matrices and unit interval graphs (Lemma 4)
and between reorderings of binary Robinsonian matrices and straight enumerations of unit in-
terval graphs (Theorem 5) together with the decomposition result of Lemma 6, we obtain the
following characterization of Robinsonian matrices.

Theorem 7. Let A ∈ Sn with level graphs G(1), . . . , G(L). Then:

(i) A is a Robinsonian matrix if and only if there exist straight enumerations of G(1), . . . ,
G(L) whose corresponding weak linear orders ψ1, . . . , ψL are pairwise compatible.

(ii) A linear order π of V reorders A as a Robinson matrix if and only if there exist pairwise
compatible straight enumerations of G(1), . . . , G(L), whose corresponding common refine-
ment is compatible with π.

Proof. Observe first that if assertion (ii) holds then (i) follows directly using the result of
Lemma 1. We now prove (ii). Assume that A is Robinsonian and let π a linear order of V that
reorders A as a Robinson matrix. Then Aπ is Robinson and thus, by lemma 6, each permuted
matrix (AG(`))π is a Robinson matrix. Then, applying Theorem 5, for each ` ∈ [L], there
exists a straight enumeration of G(`) whose corresponding weak linear ordering ψ` is compatible
with π. We can thus conclude that the common refinement of ψ1, . . . , ψL is compatible in view
of Lemma 1. Conversely, assume that there exist straight enumerations of G(1), . . . , G(L) whose
corresponding weak linear orders ψ1, . . . , ψL are pairwise compatible with π and their common
refinement is compatible with π. Then, by Theorem 5, π reorders simultaneously each AG(`) as
a Robinson matrix and thus Aπ is Robinson, which shows that A is Robinsonian.

4 The algorithm

We describe here our algorithm for recognizing whether a given symmetric nonnegative matrix A
is Robinsonian. First, we introduce an algorithm which either returns a permutation reordering
A as a Robinson matrix or states that A is not a Robinsonian matrix. Then, we show how to
modify it in order to return all the permutations reordering A as a Robinson matrix.

4.1 Overview of the algorithm

The algorithm is based on Theorem 7. The main idea is to find straight enumerations of the
level graphs of A that are pairwise compatible and to compute their common refinement. The
matrix A is not Robinsonian precisely when these objects cannot be found. As above, L denotes
the number of distinct nonzero entries of A and throughout G(`) = (V = [n], E`) is the `-th level
graph, whose edges are the pairs {x, y} with Axy ≥ α`, for ` ∈ [L].
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One of the main tasks in the algorithm is to find (if it exists) a straight enumeration of
a graph G which is compatible with a given weak linear order ψ of V . Roughly speaking, G
will correspond to a level graph G(`) of A (in fact, to a connected component of it), while ψ
will correspond to the common refinement of the previous level graphs G(1), . . . , G(`−1). Hence,
looking for a straight enumeration of G compatible with ψ will correspond to looking for a
straight enumeration of G(`) compatible with previously selected straight enumerations of the
previous level graphs G(1), . . . , G(`−1).

Since the straight enumerations of the level graphs might not be unique, it is important to
choose, among all the possible straight enumerations, the ones that lead to a common refinement
(if it exists).

If G is a connected unit interval graph, its straight enumeration φ is unique up to reversal
(see Theorem 2). On the other hand, if G is not connected then any possible ordering of
the connected components induces a straight enumeration, obtained by concatenating straight
enumerations of its connected components. This freedom in choosing the straight enumerations
of the components is crucial in order to return all the Robinson orderings of A, and it is taken
care of in Section 4.3 using PQ-trees.

As we will see in Section 4.1.4, the choice of a straight enumeration of G compatible with ψ
reduces to correctly orient straight enumerations of the connected components of G.

There are three main subroutines in our algorithm: CO-Lex-BFS (see Algorithm 1), a
variation of Lex-BFS, which finds and orders the connected components of the level graphs;
Straight enumeration (see Algorithm 2), which computes the straight enumeration of a con-
nected graph as in [8]; Refine (see Algorithm 3), a variation of partition refinement, which finds
the common refinement of two weak linear orders. These subroutines are used in the recursive
algorithm Robinson (see Algorithm 4).

4.1.1 Component ordering

Our first subroutine is CO-Lex-BFS (where CO stands for ‘Component Ordering’) in Algo-
rithm 1. Given a graph G = (V,E) and a weak linear order ψ of V , it detects the connected
components of G and orders them in a compatible way with respect to ψ. According to Lemma
8 below, this is possible if G admits a straight enumeration compatible with ψ.

Lemma 8. Consider a graph G = (V,E) and a weak linear order ψ of V . If G has a straight
enumeration φ compatible with ψ then there exists an ordering V1, . . . , Vc of the connected com-
ponents of G which is compatible with ψ, i.e., such that V1 ≤ψ . . . ≤ψ Vc.

Proof. If V1, . . . , Vc is the ordering of the components of G which is induced by the straight
enumeration φ, i.e., V1 <φ . . . <φ Vc, then V1 ≤ψ . . . ≤ψ Vc as φ is compatible with ψ.

Algorithm 1 is based on the following observations. When the vertex p in the set S at line 10
(which represents the current set of unvisited vertices with a tie, known as slice in Lex-BFS)
has label ∅, it means that p is not contained in the current component Vω, so a new component
containing p is opened. Every time a connected component Vω has been completed, we check if
it can be ordered along the already detected components in a compatible way with ψ. We also
do this for the last completed component Vc, at the last iteration i = 0 at line 9 of Algorithm
1. Let Bmin

ω and Bmax
ω denote respectively the first and the last blocks of ψ intersecting Vω. We

distinguish two cases:

1. if Vω meets more than one block of ψ (i.e., if Bmin
ω <ψ Bmax

ω ), we check if all the inner
blocks between Bmin

ω and Bmax
ω are contained in Vω. If this is not the case, then the

8



Algorithm 1: CO-Lex-BFS (G,ψ)

input: a graph G = (V,E), a weak linear order ψ = (B1, . . . , Bp) of V
output: a linear order σ of V and a linear order (V1, . . . , Vc) of the connected

components of G compatible with ψ and σ, or STOP (no such linear order of
the components exists)

1 mark all the vertices as unvisited
2 ω = 1
3 Vω, B

min
ω , Bmax

ω = ∅
4 Let u be a vertex in B1

5 label(u) = |V |
6 foreach v ∈ V \ u do
7 label(v) = ∅
8 end
9 for i = |V |, . . . , 0 do

10 let S be the set of unvisited vertices with lexicographically largest label
11 pick arbitrarily a vertex p in S coming first in ψ and mark it as visited
12 σ(p) = |V | − i+ 1
13 if label(p) = ∅ or i = 0 then
14 if there exists a block B of ψ such that B * Vω and Bmin

ω <ψ B <ψ B
max
ω then

15 stop (no ordering of components compatible with ψ exists)
16 end
17 if ω ≥ 2 then
18 if Vω ⊆ Bmin

ω−1 then
19 swap Vω and Vω−1 and modify σ accordingly

20 else
21 if Bmin

ω <ψ B
max
ω−1 then

22 stop (no ordering of components compatible with ψ exists)
23 end

24 end

25 end
26 ω = ω + 1
27 Vω = ∅
28 end
29 Vω = Vω ∪ {p}
30 Bmin

ω is the first block in ψ which meets Vω
31 Bmax

ω is the last block in ψ which meets Vω
32 foreach unvisited vertex w in N(p) do
33 append i− 1 to label(w)
34 end

35 end
36 return (V1, . . . , Vc) and σ

algorithm stops. Moreover the algorithm also stops if both Vω and Vω−1 meet exactly the
same two blocks, i.e., Bmin

ω = Bmin
ω−1 and Bmax

ω = Bmax
ω−1. In both cases it is indeed not

possible to order the components in a compatible way with ψ.

2. if Vω meets only one block Bk of ψ (i.e., Vω ⊆ Bk) and if this block Bk is the first block
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of the previous connected component Vω−1 (i.e., Bk = Bmin
ω−1), then we swap Vω−1 and Vω

in order to make the ordering of the components compatible with ψ. The ordering σ is
updated by setting, for each v ∈ Vω−1 its new ordering as σ(v) + |Vω| and for each v ∈ Vω
as σ(v)− |Vω−1|. Observe that if we are in the case when both Vω and Vω−1 are contained
in Bk, then we do not need to do this swap, i.e., the two components Vω and Vω−1 can be
ordered arbitrarily.

The next lemma shows the correctness of Algorithm 1.

Lemma 9. Let G = (V,E) be a graph and let ψ be a weak linear order of V .

(i) If Algorithm 1 successfully terminates then the returned order V1, . . . , Vc of the components
satisfies
V1 ≤ψ . . . ≤ψ Vc.

(ii) If Algorithm 1 stops then no ordering of the components exists that is compatible with ψ.

Proof. (i) Assume first that Algorithm 1 successfully terminates and returns the linear ordering
V1, . . . , Vc of the components. Suppose for contradiction that Vω−1 6≤ψ Vω for some ω ∈ [c] with
ω ≥ 2. Then there exist x ∈ Vω−1 and y ∈ Vω such that y <ψ x. Let z be the first vertex
selected in the component Vω−1. Then, z ≤ψ y (for if not the algorithm would have selected y
before z when opening the component Vω−1). Let ψ = (B1, . . . , Bp) and denote by Bmin

ω and
Bmax
ω , respectively, the first and last blocks of ψ meeting Vω (Bmin

ω−1 and Bmax
ω−1 are analogously

defined). Say, x ∈ Bj , y ∈ Bi so that i < j, and z ∈ Br. As z ≤ψ y, we have Br ≤ψ Bi. Suppose
first that Br <ψ Bi. Then, Bi is an inner block between Bmin

ω−1 and Bmax
ω−1 which is not contained

in Vω−1 (since y ∈ Bi), yielding a contradiction since the algorithm would have stopped when
dealing with the component Vω−1. Suppose now that Br = Bi. If ψ[Vω] has only one block B,
then B ⊆ Bi = Bmin

ω−1 and then the algorithm would have swapped Vω and Vω−1. Hence ψ[Vω]
has at least two blocks and Bmin

ω ≤ψ Bi <ψ Bj ≤ψ Bmax
ω−1, which is again a contradiction since

the algorithm would have stopped.
(ii) Assume now that the algorithm stops after the completion of the component Vω. Then ψ[Vω]
has at least two blocks. Suppose first that the algorithm stops because Bmin

ω <ψ B
max
ω−1. Then

clearly one cannot have Vω−1 <ψ Vω. We show that we also cannot have Vω <ψ Vω−1. For this
assume for contradiction that Vω <ψ Vω−1. Let y be the first selected vertex in Vω and let x be
the first vertex selected in Vω−1. Then, y ∈ Bmin

ω , x ≤ψ y (for if not the algorithm would have
considered the component Vω before Vω−1), and thus Bmin

ω−1 ≤ψ Bmin
ω . If Bmin

ω−1 <ψ Bmin
ω then

the algorithm would have stopped earlier when examining Vω−1, since Bmin
ω−1 <ψ B

min
ω <ψ B

max
ω−1

and Bmin
ω 6⊆ Vω−1. Hence, we have Bmin

ω−1 = Bmin
ω and, as ψ[Vω] has at least two blocks, there

exists a vertex z ∈ Bmax
ω such that x <ψ z, which contradicts Vω <ψ Vω−1. Suppose now that

the algorithm stops because Bmin
ω <ψ B <ψ Bmax

ω and B 6⊆ Vω. Let x ∈ Bmin
ω , y ∈ Bmax

ω and
z ∈ B \ Vω, and say z ∈ Vω′ . Then we cannot have Vω′ <ψ Vω since x <ψ z, and we also
cannot have Vω <ψ Vω′ since z <ψ y. Hence the two components Vω and Vω′ cannot be ordered
compatibly with ψ and this concludes the proof.

4.1.2 Straight enumerations

Once the connected components of G are ordered, we need to compute a straight enumeration of
each connected component G[Vω]. We do this with the routine Straight enumeration appplied to
(G[Vω], σω), where σω is a suitable given order of Vω (namely, σω = σ[Vω], where σ is the vertex
order returned by CO-Lex-BFS (G,ψ)). This routine is essentially the 3-sweep unit interval
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graph recognition algorithm of Corneil [8] which, briefly, computes three times a Lex-BFS (each
is named a sweep) and uses the vertex ordering coming from the previous sweep to break ties
in the search for the next sweep. The only difference of Straight enumeration(G[Vω], σω) with
respect to Corneil’s algorithm is that we save the first sweep, because we use the order σω
returned by CO-Lex-BFS. We now describe the routine Straight enumeration which is based on
the algorithms of [9, §3] and [8, §2]. Below, degG(v) denotes the degree of the vertex v in G.

Algorithm 2: Straight enumeration(G, σ)

input: a connected graph G = (V,E) and a linear order σ of V
output: a straight enumeration φ of G, or STOP (G is not a unit interval graph)

1 σ+ = Lex-BFS+(G, σ)
2 σ++ = Lex-BFS+(G, σ+)
3 i = 0 (index of the blocks of ψ)
4 L = R = 0 (dummy variables to record the current block Bi)
5 for v = 1, . . . , |V | do
6 lmn(v) = min{u : u ∈ N [v]} (leftmost vertex adjacent to v)
7 rmn(v) = max{u : u ∈ N [v]} (rightmost vertex adjacent to v)
8 if rmn(v)− lmn(v) 6= degG(v) then
9 stop (G is not a unit interval graph)

10 else
11 if lmn(v) = L and rmn(v) = R then
12 Ci = Ci ∪ {v}.
13 else
14 L = lmn(v)
15 R = rmn(v)
16 i = i+ 1
17 Ci = {v}
18 end

19 end

20 end
21 return φ = (C1, . . . , Cq)

Basically, after the last sweep of Lex-BFS, for each vertex v we define the leftmost vertex
lmn(v) and the rightmost vertex rmn(v), according to σ++, that are adjacent to v. Checking
whether rmn(v)− lmn(v) = degG(v) corresponds exactly to checking whether the neighborhood
condition holds for node v. The vertices with the same leftmost and rightmost vertex are then
indistinguishable vertices, and they form a block of G. The order of the blocks follows the vertex
order σ++.

4.1.3 Refinement of weak linear orders

Given two weak linear orders ψ and φ on V , our second subroutine Refine in Algorithm 3
computes their common refinement Φ = ψ ∧ φ (if it exists).

We show the correctness of Algorithm 3.

Lemma 10. If Algorithm 3 returns a weak linear order Φ of V , then Φ is the common refinement
of ψ and φ. If Algorithm 3 returns Φ = ∅, then ψ and φ are not compatible.
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Algorithm 3: Refine(ψ, φ)

input: two weak linear orders ψ = (B1, . . . , Bp) and φ = (C1, . . . , Cq) of V
output: their common refinement Φ = ψ ∧ φ, or Φ = ∅ (ψ and φ are not compatible)

1 Bmax is the last block of ψ meeting C1

2 Φ = ∅
3 if there exists a block B of ψ such that B <ψ B

max and B 6⊆ C1 then
4 return ∅ (ψ and φ are not compatible)
5 else
6 W = V \ C1

7 if W = ∅ then
8 Φ = (ψ[C1])
9 else

10 Φ = (ψ[C1],Refine(ψ[W ], φ[W ]))
11 end

12 end
13 if Φ is a weak linear order of V then
14 return Φ
15 else
16 return ∅ (ψ and φ are not compatible)
17 end

Proof. The proof is by induction on the number q of blocks of φ. If q = 1 then φ = (V ) is
clearly compatible with ψ and the algorithm returns Φ = ψ as desired. Assume now q ≥ 2. Let
W = V \C1. Then we can apply the induction assumption to ψ[W ] and φ[W ] (which has q − 1
blocks).

Assume first that the algorithm returns Φ which is a weak linear order of V . We show that
Φ = ψ ∧ φ, i.e., that the following holds for all x, y ∈ V :

x =Φ y ⇐⇒ x =ψ y and x =φ y,
x <Φ y ⇐⇒ x ≤ψ y and x ≤φ y with at least one strict inequality.

(3)

If x, y ∈ C1 then x =φ y and (3) holds since Φ[C1] = ψ[C1]. If x, y ∈ V \ C1, then (3) holds by
the induction assumption. Suppose now x ∈ C1 and y ∈ V \ C1. Then x <φ y and x <Φ y. We
show that x ≤ψ y holds. For this let Bi (resp., Bj) be the block of ψ containing x (resp., y).
Then Bi ≤ψ Bmax since B1 meets C1 as x ∈ C1. Moreover, Bmax ≤ψ Bj , which implies x ≤ψ y.
Indeed, if one would have Bj <ψ B

max, then we would have Φ = ∅ (line 4 in Algorithm 3), since
Bj 6⊆ C1 as y ∈ Bj \ C1, and thus Φ would not be a weak linear order of V .

Assume now that the returned Φ is not a weak linear order of V . If Φ = ∅ (line 4 in
Algorithm 3), then there is a block B <ψ Bmax such that B 6⊆ C1, and we can pick elements
x ∈ B \ C1 and y ∈ C1 ∩ Bmax so that y <φ x and x <ψ y, which shows that ψ and φ are not
compatible. If Φ is a weak linear order of a subset U ⊂ V (line 16 in Algorithm 3), then it means
that the weak linear order returned by the recursive routine Refine(ψ[W ], φ[W ]) is not a weak
linear order of W (but of a subset) and thus, by the induction assumption, ψ[W ] and φ[W ] are
not compatible and thus ψ and φ neither. This concludes the proof.

4.1.4 Main algorithm

We can now describe our main algorithm Robinson(A,ψ). Given a nonnegative matrix A ∈ Sn
and a weak linear order ψ of V = [n], it either returns a weak linear order Φ of V compatible
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with ψ and with straight enumerations of the level graphs of A, or it indicates that such Φ does
not exist. The idea behind the algorithm is the following. We use the subroutines CO-Lex-BFS
and Straight enumeration to order the components and compute the straight enumerations of
the level graphs of A, and we refine them using the subroutine Refine. However, instead of
refining the level graphs one by one on the full set V , we use a recursive algorithm based on
a divide-and-conquer strategy, which refines smaller and smaller subgraphs of the level graphs
obtained by restricting to the connected components and thus working independently with the
corresponding principal submatrices of A. In this way we work with smaller subproblems and
one may also skip some level graphs (as some principal submatrices of A may have fewer distinct
nonzero entries). This recursive algorithm is Algorithm 4 below.

Algorithm 4: Robinson(A,ψ)

input: a nonnegative matrix A ∈ Sn and a weak linear order ψ of V = [n]
output: a weak linear order Φ compatible with ψ and with straight enumerations of all

the level graphs of A, or STOP (such an order Φ does not exist)

1 G is the support of A
2 CO-Lex-BFS (G,ψ) returns a linear order (V1, . . . , Vc) of the connected components of G

compatible with ψ (if it exists) and a vertex order σ
3 Φ = ∅
4 for ω = 1, . . . , c do
5 φω = Straight enumeration(G[Vω], σ[Vω]) (if G[Vω] is a unit int. graph)
6 if Φω = Refine(ψ[Vω], φω) = ∅ then

7 if Φω = Refine(ψ[Vω], φω) = ∅ then
8 stop (no straight enumeration compatible with ψ[Vω] exists)
9 end

10 end
11 a′min is the smallest nonzero entry of A[Vω]
12 A′[Vω] is obtained from A[Vω] by setting entries with value a′min to zero
13 if A′[Vω] is diagonal then
14 Φ = (Φ,Φω)
15 else
16 Φ = (Φ, Robinson(A′[Vω],Φω))
17 end

18 end
19 return: Φ

The algorithm Robinson(A,ψ) works as follows. We are given as input a symmetric nonneg-
ative matrix A ∈ Sn and a weak linear order ψ of V = [n]. Let G be the support of A. First,
we find the connected components of G and we order them in a compatible way with ψ. If this
is not possible, then we stop as there do not exist straight enumerations of the level graphs of
A compatible with ψ (Theorem 9). Otherwise, we initialize the weak linear order Φ, which at
the end of the algorithm will represent a common refinement of the straight enumerations of
the level graphs of A. In order to find Φ, we divide the problem over the connected components
of G. The idea is then to work independently on each connected component Vω and to find
its (unique up to reversal) straight enumeration φω and the common refinement Φω of ψ[Vω]
and φω.
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For each component Vω, we compute the straight enumeration φω of G[Vω] if it exists, else
we stop (Theorem 2). Since φω is unique up to reversal, we check if either φω or φω is compatible
with ψ[Vω]. Specifically, we first compute the common refinement Φω of ψ[Vω] and φω. If it is
nonempty we continue (Lemma 10), while if it is is empty we compute the common refinement
Φω of ψ[Vω] and φω. If such a common refinement is nonempty we continue (Lemma 10), while
if it is again empty this time we stop, as no straight enumeration of Gω compatible with ψ[Vω]
exists. Finally, we set to zero the smallest nonzero entries of A[Vω], obtaining the new matrix
A′[Vω] (whose nonzero entries take fewer distinct values than the matrix A[Vω]). Now, if the
matrix A′[Vω] is diagonal, then we concatenate Φω after Φω−1 in Φ. Otherwise, we make a
recursive call, where the input of the recursive routine is the matrix A′[Vω] and Φω. If the
algorithm successfully terminates, then the concatenation (φ1, . . . , φc) will represent a straight
enumeration of G, and Φ = (Φ1, . . . ,Φc) will represent the common refinement of this straight
enumeration with the given weak linear order ψ and with the level graphs of A.

The final algorithm is Algorithm 5 below.

Algorithm 5: Robinsonian(A)

input: a nonnegative matrix A ∈ Sn
output: a permutation π such that Aπ is Robinson or stating that A is not Robinsonian

1 ψ = (V )
2 if Robinson(A,ψ) stops then
3 “A is NOT Robinsonian”
4 else
5 Φ=Robinson(A,ψ)
6 return: a linear order π of V compatible with Φ;

7 end

Roughly speaking, every time we make a recursive call, we are basically passing to the next
level graph of A. Hence, each recursive call can be visualized as the node of a recursion tree,
whose root is defined by the first recursion in Algorithm 5, and whose leaves (i.e. the pruned
nodes) are the subproblems whose corresponding submatrices are diagonal.

The correctness of Algorithm 5 follows directly from the correctness of Algorithm 4, which
is shown by the next theorem. Indeed, assume that Algorithm 4 is correct. Then, if Algorithm
5 terminates then it computes a weak linear order Φ compatible with straight enumerations of
the level graphs of A and thus the returned order π orders A as a Robinson matrix in view
of Theorem 7 (ii). On the other hand, if Algorithm 5 stops then Algorithm 4 stops with the
input (A,ψ = (V )). Then no weak linear order Φ exists which is compatible with straight
enumerations of the level graphs of A and thus, in view of Theorem 7 (i), A is not Robinsonian.

Theorem 11. Consider a weak linear order ψ of V = [n] and a nonnegative matrix A ∈ Sn
ordered compatibly with ψ.

(i) If Algorithm 4 terminates, then there exist straight enumerations φ(1), . . . , φ(L) of the level
graphs G(1), . . . , G(L) of A such that the returned weak linear order Φ is compatible with
each of them and with ψ.

(ii) If Algorithm 4 stops then there do not exist straight enumerations of the level graphs of A
that are pairwise compatible and compatible with ψ.
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Proof. The proof is by induction on the number L of distinct nonzero entries of the matrix
A. We first consider the base case L = 1, i.e., when A is (up to scaling) 0/1 valued. We
first show (i) and assume that the algorithm terminates successfully and returns Φ. Then G
is the support of A, CO-Lex-BFS (G,ψ) orders the components of G as V1 ≤ψ . . . ≤ψ Vc, and
Φ = (Φ1, . . . ,Φc) where each Φω = Φ[Vω] is build as the common refinement of ψ[Vω] and a
straight enumeration of G[Vω] (either φω or φω). Hence G has a straight enumeration φ and the
returned Φ is compatible with φ and ψ.

We now show (ii) and assume that Algorithm 4 stops. If it stops when applying CO-Lex-
BFS (G,ψ), then no order of the components of G exists that is compatible with ψ and thus no
straight enumeration of G exists that is compatible with ψ (Lemma 8). If the algorithm stops
when applying Straight enumeration to G[Vω] then no straight enumeration of G[Vω] exists.
Else, if the algorithm stops at line 8 in Algorithm 4, then ψ[Vω] is not compatible with neither
φω nor φω. Because G[Vω] is connected, φω and φω are its unique straight enumerations (see
Theorem 2) and therefore no straight enumeration of G[Vω] is compatible with ψ[Vω]. In both
cases, no straight enumeration of G exists that is compatible with ψ.

We now assume that Theorem 11 holds for any matrix whose entries take at most L − 1
distinct nonzero values. We show that the theorem holds when considering A whose nonzero
entries take L distinct values. We follow the same lines as the above proof for the case L = 1,
except that we use recursion for some components. First, assume that the algorithm terminates
and returns Φ. Then, Φ = (Φ̃1, . . . , Φ̃c) after ordering the components compatibly with ψ as
V1 ≤ψ . . . ≤ψ Vc, constructing the common refinement Φω of ψ[Vω] and a straight enumeration
(say) φω of G[Vω], and having Φ̃ω = Robinson(A′[Vω],Φω), where A′[Vω] is obtained from A[Vω]
by setting to 0 its entries with smallest nonzero value. By the induction assumption, Φ̃ω is
compatible with straight enumerations of the level graphs of the matrix A′[Vω] and with Φω. As
Φ̃ω is compatible with Φω, which refines both ψ[Vω] and φω, it follows that Φ̃ω is compatible
with ψ[Vω] and φω. Therefore, Φ̃ω is compatible with straight enumerations of all the level
graphs of A[Vω] and thus Φ = (Φ̃1, . . . , Φ̃c) is compatible with ψ and all level graphs of A, as
desired.

Assume now that the algorithm stops. If the algorithm stops at CO-Lex-BFS (G,ψ), then
no linear order of the connected components of G exists that is compatible with ψ and then
no straight enumeration of G exists that is compatible with ψ (Lemma 8), giving the desired
conclusion. If the algorithm stops at line 8, then a connected component Vω is found for
which ψ[Vω] is not compatible with any straight enumeration of G[Vω], giving again the desired
conclusion.

Assume now that the algorithm stops at line 16, i.e., there is a component Vω for which the
algorithm terminates when applying Robinson(A′[Vω],Φω). Then, by the induction assumption,
we know that:

no straight enumerations of the level graphs of A′[Vω] exist
that are pariwise compatible and compatible with Φω,

(*)

where Φω is the common refinement of ψ[Vω] and a straight enumeration (say) φω of G[Vω].
Assume, for the sake of contradiction, that there exist straight enumerations ϕ(1), . . . , ϕ(L) of
the level graphs G(1) = G, . . . , G(L) of A, that are pairwise compatible and compatible with ψ. In
particular, ϕ(1)[Vω] is a straight enumeration of G[Vω] compatible with ψ[Vω]. If ϕ(1)[Vω] = φω,
then the restrictions ϕ(`) (` ≥ 2) yield straight enumerations of the level graphs of A′[Vω] that
are pairwise compatible and compatible with φω and ψ[Vω], and thus with their refinement Φω =
ψ[Vω]∧φω, contradicting (*). Hence, ϕ(1)[Vω] = φω, so that ψ[Vω] is compatible with both φω and
its reversal φω. This implies that ψ[Vω] = (Vω). But then the reversals ϕ(2)[Vω], . . . , ϕ(L)[Vω]
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provide straight enumerations of the level graphs of A′[Vω] that are pairwise compatible and
compatible with ϕ(1)[Vω] = φω = Φω. This contradicts again (*) and concludes the proof.

4.2 Complexity analysis

We now study the complexity of our main algorithm. First we discuss the complexity of the two
subroutines CO-Lex-BFS and Refine in Algorithms 1 and 2 and then we derive the complexity
of the final Algorithm 4. In the rest of the section, we let m denote the number of nonzero
(upper diagonal) entries of A, so that m is the number of edges of the support graph G = G(1)

and m = |E1| ≥ |E2| ≥ . . . ≥ |EL| for the level graphs of A. We assume that A is a nonnegative
symmetric matrix, which is given as an adjacency list of an undirected weighted graph, where
each vertex x ∈ V is linked to the list of vertex/weight pairs corresponding to the neighbors y
of x in G with nonzero entry Axy.

A simple but important observation that we will repeatedly use is that, given a weak linear
order ψ of V , we can assume the vertices V to be ordered according to a linear order τ of V
compatible with ψ. Then, the blocks of ψ are intervals of the order τ and thus one can check
whether a given set C ⊆ V is contained in a block B of ψ in O(|C|) operations (simply by
comparing each element of C to the end points of the interval B). Furthermore, the size of any
block of ψ is simply given by the difference between its extremities (plus one).

Lemma 12. Algorithm 1 runs in O(|V |+ |E|) time.

Proof. It is well known that Lex-BFS can be implemented in linear time O(|V | + |E|). In our
implementation of Algorithm 1 we will follow the linear time implementation of Corneil [8],
which uses the data structure based on the paradigm of “partitioning” presented in [19]. Recall
that the blocks of ψ are intervals in τ , which is a linear order compatible with ψ. In order to
carry out the other operations about the components of G we maintain a doubly linked list,
where each node of the list represents a connected component Vω of G and it has a pointer to
the connected component Vω−1 ordered immediately before Vω and to the connected component
Vω+1 ordered immediately after Vω. Then, swapping two connected components can be done
simply by swapping the left and right pointers of the corresponding connected components in
the doubly linked list. Furthermore, each node in this list contains the set of vertices in Vω, the
first block Bmin

ω and the last block Bmax
ω in ψ meeting Vω. These two blocks Bmin

ω and Bmax
ω

can be found in time O(|Vω|) as follows. First one finds the smallest element vmin (resp. the
largest element vmax) of Vω in the order τ , which can be done in O(|Vω|). Then, Bmin

ω is the
block of ψ containing vmin, which can be found in O(|Vω|). Analogously for Bmax

ω , which is the
block of ψ containing vmax. Checking whether Vω is contained in the block Bmin

ω−1 can be done
in O(|Vω|) (since Bmin

ω−1 is an interval). In order to check whether all the inner blocks between
Bmin
ω and Bmax

ω are contained in Vω we proceed as follows. Let Bω be the union of these inner
blocks, which is an interval of τ . First we compute the sets Vω ∩Bmin

ω and Vω ∩Bmax
ω , which can

be done in O(|Vω|). Then we need to check whether Bω ⊆ Vω or, equivalently, whether the two
sets Vω \ (Bmin

ω ∪Bmax
ω ) and Bω are equal. For this we check first whether Vω \ (Bmin

ω ∪Bmax
ω ) is

contained in Bω (in time O(|Vω|)) and then whether these two sets have the same cardinality,
which can be done in O(|Vω|). Hence, the complexity of this task is O(

∑
ω |Vω|) = O(|V |).

Therefore we can conclude that the overall complexity of Algorithm 1 is O(|V |+ |E|).

Lemma 13. Algorithm 3 runs in O(|V |) time.

Proof. We show the lemma using induction on the number q of blocks of φ. Recall that the
blocks of ψ are intervals in τ , which is a linear order compatible with ψ. If q = 1 the result is
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clear since the algorithm returns Φ = φ without any work. Assume q ≥ 2. The first task is to
compute the last block Bmax of ψ meeting C1. For this, as in the proof of the previous lemma,
one finds the largest element vmax of C1 in the order τ and one returns the block of ψ containing
vmax, which can be done in O(|C1|). Then let B be the union of the blocks preceding Bmax. In
order to check whether B ⊆ C1 or, equivalently, whether C1 \ Bmax = B, we proceed as in the
previous lemma: we first check whether C1 \ Bmax ⊆ B and then whether |C1 \ Bmax| = |B|,
which can be done in O(|C1|). Hence, the running time is O(|C1|) for this task which, together
with the running time O(|V \ C1|) for the recursive application of Refine to the restrictions of
ψ and φ to the set V \ C1, gives an overall running time O(|V |).

We can now complete the complexity analysis of our algorithm.

Theorem 14. Let A be a nonnegative n × n symmetric matrix given as a weighted adjacency
list and let m be the number of (upper diagonal) nonzero entries of A. Algorithm 5 recognizes
whether A is a Robinsonian matrix in time O(d(n+m)), where d is the depth of the recursion
tree created by Algorithm 5. Moreover, d ≤ L, where L is the number of distinct nonzero entries
of A.

Proof. We show the result using induction on the depth d of the recursion tree. In Algorithm 5
we are given a matrix A and its support graph G, and we set ψ = (V = [n]). First we run the
routine CO-Lex-BFS (G,ψ) in O(n+m) time, in order to find and order the components of G.
For each component Vω, the following tasks are performed. We compute a straight enumeration
φω of G[Vω], in time O(nω + mω) where nω = |Vω| and mω is the number of edges of G[Vω].
The reversal φω can be computed in O(|Vω|) by simply reversing the ordered partition φω,
which is stored in a double linked list. Hence, we apply the routine Refine to ψ[Vω] and φω
(or φω), which can be done in O(nω) time. Then we build the new matrix A′[Vω] and checks
whether it is diagonal, in time O(mω). Finally, by the induction assumption, the recursion step
Robinson(A′[Vω],Φω) is carried out in time O(dω(nω +mω)), where dω denotes the depth of the
corresponding recursion tree. As dω ≤ d − 1 for each ω, after summing up, we find that the
overall complexity is O(d(n + m)). The last claim: d ≤ L is clear since the number of distinct
nonzero entries of the current matrix decreases by at least 1 at each recursion node.

4.3 Finding all Robinsonian orderings

In general, there might exist several permutations reordering a given matrix A as a Robinson
matrix. We show here how to return all Robinson orderings of a given matrix A, using the
PQ-tree data structure of [3].

A PQ-tree T is a special rooted ordered tree. The leaves are in one-to-one correspondence
with the elements of the groundset V and their order gives a linear order of V . The nodes of
T can be of two types, depending on how their children can be ordered. Namely, for a P-node
(represented by a circle), its children may be arbitrary reordered; for a Q-node (represented by
a rectangle), only the order of its children may be reversed. Moreover, every node has at least
two children. Given a node α of T , Tα denotes the subtree of T with root α.

A straight enumeration ψ = (B1, . . . , Bp) of a graph G = (V,E) corresponds in a unique way
to a PQ-tree T as follows. If G is connected, then the root of T is a Q-node, denoted γ, and it
has children β1, . . . , βp (in that order). For i ∈ [p], the node βi is a P-node corresponding to the
block Bi and its children are the elements of the set Bi, which are the leaves of the subtree Tβj .
If a block Bi is a singleton then no node βi appears and the element of Bi is directly a child of
the root γ (see the example in Figure 1).
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AG =



1 2 3 4 5 6

1 1 1 1 1 0 0
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 0 1 1 1 1 1
6 0 1 1 1 1 1



γ

1

β2

2 3 4

β3

5 6

Figure 1: A connected graph G and the PQ-tree corresponding to its straight enumeration

If G is not connected, let V1, . . . , Vc be its connected components. For each connected
component G[Vω], Tω is its PQ-tree (with root γω) as indicated above. Then, the full PQ-tree T
is obtained by inserting a P-node α as ancestor, whose children are the subtrees T1, . . . , Tc (see
Figure 2).

α

γω1
γω2

. . . γωc

Figure 2: The PQ-tree corresponding to the straight enumeration of a disconnected graph

We now indicate how to modify Algorithms 4 and 5 in order to return a PQ-tree T encoding
all the permutations ordering A as a Robinson matrix.

We modify Algorithm 4 by taking as input, beside the matrix A and the weak linear order
ψ, also a node α. Then, the output is a PQ-tree Tα rooted in α, representing all the possible
weak linear orders Φ compatible with ψ and with straight enumerations of all the level graphs
of A. It works as follows.

Let G be the support of A. The idea is to recursively build a tree Tω for each connected
component Vω of G and then to merge these trees according to the order of the components found
by the routine CO-Lex-BFS (G,ψ). To carry out this merging step we classify the components
into the following three groups:

1. Θ, which consists of all ω ∈ [c] for which the connected component Vω meets at least two
blocks of ψ.

2. Λ, which consists of all ω ∈ [c] for which the component Vω is contained in some block Bi,
which contains no other component.

3. Ω = ∪pi=1Ωi, where Ωi consists of all ω ∈ [c] for which the component Vω is contained in
the block Bi, which contains at least two components.

Every time we analyze a new connected component ω ∈ [c] in Algorithm 4, we create a Q-node
γω. After the common refinement Φω (of ψ[Vω] and the straight enumeration φω of G[Vω] or its
reversal) has been computed, we have two possibilities. If A′[Vω] is diagonal, then we build the
tree Tω rooted in γω and whose children are P-nodes corresponding to the blocks of Φω (and
prune the recursion tree at this node). Otherwise, we build the tree Tω recursively as output of
Robinson(A′[Vω],Φω, γω).
After all the connected components have been analyzed, we insert the trees Tω in the final tree
Tα in the order they appear according to the routine CO-Lex-BFS (G,ψ). The root node is α
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and is given as input. For each component Vω, we do the following operation to insert Tω in Tα,
depending on the type of the component Vω:

1. If ω ∈ Θ, then φω (or φω) is the only straight enumeration compatible with ψ[Vω]. Then
we delete the node γω and the children of γω become children of α (in the same order).

2. If ω ∈ Λ, then both φω and its reversal φω are compatible with ψ[Vω]. Then γω becomes
a child of α.

3. If ω ∈ Ωi for some i ∈ [p], then both φω and φω are compatible with ψ[Vω] and the same
holds for any ω′ ∈ Ωi. Moreover, arbitrary permuting any two connected components
Vω, Vω′ with ω, ω′ ∈ Ωi will lead to a compatible straight enumeration. Then we insert a
new node βi which is a P-node and becomes a child of α and, for each ω′ ∈ Ωi, γω′ becomes
a child of βi.
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Algorithm 6: Robinson(A,ψ, α)

input: a nonnegative matrix A ∈ Sn, a weak linear order ψ of V = [n] and a node α
output: A PQ-tree Tα representing all the possible weak linear orders Φ compatible with

ψ and with straight enumerations of all the level graphs of A, or STOP (such a
tree does not exist)

1 G is the support of A
2 CO-Lex-BFS (G,ψ) returns a linear order (V1, . . . , Vc) of the connected components of G

compatible with ψ (if it exists) and a vertex order σ
3 group the connected components (c.c.) Vω (ω ∈ [c]) of G as follows:
4 Θ : all ω for which Vω meets at least two blocks of ψ
5 Λ : all ω for which Vω is contained in a block Bi containing no other connected component
6 for i ∈ [p], Ωi: all ω for which Vω ⊆ Bi and Bi contains at least two connected components
7 Φ = ∅
8 for ω = 1, . . . , c do
9 create a Q-node γω

10 φω = Straight enumeration(G[Vω], σ[Vω]) (if G[Vω] is a unit int. graph)
11 if Φω = Refine(ψ[Vω], φω) = ∅ then

12 if Φω = Refine(ψ[Vω], φω) = ∅ then
13 stop (no straight enumeration compatible with ψ[Vω] exists)
14 end

15 end
16 a′min is the smallest nonzero entry of A[Vω]
17 A′[Vω] is obtained from A[Vω] by setting entries with value a′min to zero
18 if A′[Vω] is diagonal then
19 create a PQ-tree Tω rooted in γω and whose children are P-nodes corresponding to

the blocks of Φω

20 else
21 Tω = Robinson(A′[Vω],Φω, γω)
22 end

23 end
24 Tα is the PQ-tree rooted in α, build as follows:
25 ω = 1
26 while ω ≤ c do
27 if ω ∈ Θ then
28 the children of γω become children of α and remove γω; ω = ω + 1
29 else
30 if ω ∈ Λ then
31 set Tω as child of α (if α = ∅, then set α = γω); ω = ω + 1
32 else
33 let Ωi s.t. ω ∈ Ωi; create a P-node βi and set it as child of α (if α = ∅, then set

α = βi)
34 foreach ω′ ∈ Ωi do
35 set γω′ as children of βi
36 end
37 ω = ω + |Ωj |
38 end

39 end

40 end
41 return: Tα
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Finally, we modify Algorithm 5 by just giving the node α = ∅ (i.e. undefined) as input
to the first recursive call. The overall complexity of the algorithm after the above mentioned
modifications is the same as for Algorithm 5. Indeed, determining the type of the connected
components can be done in linear time, by just using the information about the initial and final
blocks Bmin

ω and Bmax
ω already provided in Algorithm 1. Furthermore, the operations on the

PQ-tree are basic operations that do not increase the overall complexity of the algorithm.

Algorithm 7: Robinsonian(A)

input: a nonnegative matrix A ∈ Sn
output: a PQ-tree T that encodes all the permutations π such that Aπ is a Robinson

matrix or stating that A is not Robinsonian

1 ψ = (V )
2 α = ∅
3 G is the support of A
4 T =Robinson(A,ψ, α)
5 if the number of leaves of T is equal to n then
6 return: T
7 else
8 “A is NOT Robinsonian”
9 end

5 Conclusions

We introduced a new combinatorial algorithm to recognize Robinsonian matrices, based on a
divide-and-conquer strategy and on a new characterization of Robinsonian matrices in terms
of straight enumerations of unit interval graphs. The algorithm is simple, rather intuitive and
relies only on basic routines like Lex-BFS and partition refinement, and it is well suited for
sparse matrices.

The complexity depends on the depth d of the recursion tree. An obvious bound on d is the
number L of distinct entries in the matrix. A first natural question is to find other better bounds
on the depth d. Is d in the order O(n), where n is the size of the matrix? The answer is no:
some computational experiments carried out in [36] show that, for some instances, the depth of
the recursion tree is d = L > n. This suggests that more sophisticated modifications might be
needed to improve the complexity of the algorithm. A possible way to bound the depth is to find
criteria to prune recursion nodes. One possibility would be, when a submatrix is found for which
the current weak linear order consists only of singletons, to check whether the corresponding
permuted matrix is Robinson. Another possible way to improve the complexity might be to
compute the straight enumeration of the first level graph and then update it dynamically (in
constant time, using a appropriate data structure) without having to compute every time the
whole straight enumeration of the next level graphs; this would need to extend the dynamic
approach of [21], which considers the case of single edge deletions, to the deletion of sets of
edges. Other possible future work includes investigating how the algorithm could be used to
design heuristics or approximation algorithm in the noisy case, when A is not Robinsonian, for
example by using (linear) certifying algorithms as in [20] to detect the edges and the nodes of
the level graphs which create obstructions to being a unit interval graph.
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A Example

We give a complete example of the algorithm. We consider the same matrix A as the one used
in the example in Section 5 of [30]. However, since [30] handles Robinsonian dissimilarities, we
first transform it into a similarity matrix and thus we use instead the matrix amaxJ −A, where
amax denotes the largest entry in the matrix A. If we rename such a new matrix as A, it looks
as follows:

A =



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 11 2 9 0 5 0 5 5 2 0 5 0 5 6 0 0 2 0 5
2 11 2 0 9 0 8 5 10 0 5 0 5 2 0 0 10 0 8
3 11 0 5 0 5 5 2 0 5 0 5 10 0 0 2 0 5
4 11 0 3 0 0 0 3 0 3 0 0 10 3 0 9 0
5 11 0 8 7 9 0 7 0 7 5 0 0 9 0 10
6 11 0 0 0 10 0 6 0 0 5 8 0 5 0
7 11 7 8 0 7 0 7 5 0 0 8 0 9
8 11 6 0 10 0 8 7 0 0 6 0 7
9 11 0 6 0 5 2 0 0 10 0 8
10 11 0 6 0 0 4 9 0 5 0
11 11 0 9 7 0 0 6 0 7
12 11 0 0 9 6 0 10 0
13 11 7 0 0 5 0 7
14 11 0 0 2 0 5
15 11 4 0 10 0
16 11 0 4 0
17 11 0 8
18 11 0
19 11


Here the red labels denote the original numbering of the elements. Throughout we will use the
fact that adding any multiple of the all-ones matrix J to the matrix A does not change the
Robinson(ian) property. The recursion tree computed by Algorithm 5 is shown in Figure 3 at
page 30. The weak linear order at each node represents the weak linear order ψ given as input
to the recursion node, while the number on the edge between two nodes denotes the minimum
value in the current matrix A, which is set to zero before making a new recursion call (in this
way, the reader may reconstruct the input given at each recursion node).

Root node
We set ψ = (V ) and invoke Algorithm 4. Then, Algorithm 1 would find two connected compo-
nents:

V1 = {1, 2, 3, 5, 7, 8, 9, 11, 13, 14, 17, 19},
V2 = {4, 6, 10, 12, 15, 16, 18}.

Hence, we can split the problem into two subproblems, where we deal with each connected
component independently.

1.0 Connected component V1, level 0
The submatrix A[V1] induced by V1 is shown below (after shifting the matrix by amin = 2, i.e.,
substracting 2J from it).
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A[V1] =



1 2 3 5 7 8 9 11 13 14 17 19

1 9 0 7 3 3 3 0 3 3 4 0 3
2 9 0 7 6 3 8 3 3 0 8 6
3 9 3 3 3 0 3 3 8 0 3
5 9 6 5 7 5 5 3 7 8
7 9 5 6 5 5 3 6 7
8 9 4 8 6 5 4 5
9 9 4 3 0 8 6
11 9 7 5 4 5
13 9 5 3 5
14 9 0 3
17 9 6
19 9



(4)

If we invoke Algorithm 2 on the support G[V1], we get the following straight enumeration:

φ = ({1, 3, 14}, {5, 7, 8, 11, 13, 19}, {2, 9, 17}).

Note that since ψ[V1] has only one block, we do not need to compute the partition refinement
in Algorithm 3 and then the common refinement is simply Φ = φ. The smallest nonzero value
of the matrix in (4) is a′min = 3. Hence, we compute A′[V1] by setting to zero the entries of the
matrix in (4) with value equal to a′min. Since A′[V1] is not diagonal, we make a recursion call,
and we set ψ = Φ. To simplify notation, we shall rename A′[V1] as A[V1] after every iteration.

1.1 Connected component V1, level 1
The input matrix A[V1] is obtained by setting to zero the entries of the matrix in (4) with value
at most 3. The support of this matrix is still connected, and its straight enumeration is:

φ = ({1, 3}, {14}, {13}, {8, 11}, {5, 7, 19}, {9, 17}, {2}).

If we invoke Algorithm 3, it is easy to see that the common refinement Φ of ψ and φ is exactly
φ. The smallest nonzero value of A[V1] is now a′min = 4. Hence, we compute A′[V1], which is
not diagonal and thus we make a recursion call, setting ψ = Φ and renaming A′[V1] as A[V1].

1.2 Connected component V1, level 2
The input matrix A[V1] is obtained by setting to zero the entries of the matrix in (4) with value
at most 4. The support of this matrix is still connected, and its straight enumeration is:

φ = ({1}, {3}, {14}, {13, 8, 11}, {5, 7, 19}, {9, 17, 2}).

The common refinement with ψ is then given by:

Φ = ({1}, {3}, {14}, {13}, {8, 11}, {5, 7, 19}, {9, 17}, {2}).

The smallest nonzero value of A[V1] is now a′min = 5. Hence, we compute A′[V1], which is not
diagonal and thus we make a recursion call, setting ψ = Φ and renaming A′[V1] as A[V1].

1.3 Connected component V1, level 3
The input matrix A[V1] is obtained by setting to zero the entries of the matrix in (4) with value
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at most 5. The support of this matrix is not connected, and thus Algorithm 1 will detect the
following connected components:

V11 = {1, 3, 14},
V12 = {13, 8, 11},
V13 = {5, 7, 19, 9, 17, 2}.

We analyze each connected component independently.

1.3.1 Connected component V11, level 4
The common refinement is Φ = ({1}, {3}, {14}) and a′min = 7. We make a recursion call, finding
two connected components {1} and {3, 14}, and then we stop, because the first one has only
one vertex, while the submatrix corresponding to the second one is diagonal (after shifting).

1.3.2 Connected component V12, level 4
Since amin = 6, we first “shift” the input submatrix. Then, the common refinement is Φ =
({13}, {11}, {8}) and a′min = 7 (i.e. =1 after shifting). We make a recursion call, finding two
connected components {13} and {11, 8}, and then we stop, because the first one has only one
vertex, while the submatrix corresponding to the second one is diagonal (after shifting).

1.3.3 Connected component V13, level 4
Since amin = 6, we first “shift” the input submatrix. Then, the common refinement is Φ =
({7}, {19}, {5}, {9, 17}, {2}) and a′min = 7 (i.e. =1 after shifting). We update A′[V1], and
we make a recursive call because it is not diagonal. The new input matrix is then given by
the submatrix in (4) restricted to V13 by setting to zero the entries with value at most 7. The
support of this matrix is not connected, and thus Algorithm 1 will detect the following connected
components:

V131 = {7},
V132 = {19, 5},
V133 = {9, 17, 2}.

We then split the problem over the connected components. The first one has only one vertex
while the second and the third one are diagonal (after shifting). This was the last recursion
node open.

Therefore, we get that the final common refinement of the level graphs of the matrix in (4) is:

Φ1 = ({1}, {3}, {14}, {13}, {11}, {8}, {7}, {19}, {5}, {9, 17}, {2})

and the PQ-tree T1 computed by the algorithm is reported in Figure 4 at page 31.

2.0 Connected component V2, level 0
The submatrix A[V2] induced by V2 is reported below (after shifting the matrix by amin = 3).

A[V2] =



4 6 10 12 15 16 18

4 8 0 0 0 7 0 6
6 8 7 3 2 5 2
10 8 3 1 6 2
12 8 6 3 7
15 8 1 7
16 8 1
18 8


(5)
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If we invoke Algorithm 2 on the support G[V2], we get the following straight enumeration:

φ = ({4}, {15, 18}, {6, 10, 12, 16}).

Note that since ψ[V2] has only one block, we do not have to compute the partition refinement
in Algorithm 3, and then the common refinement is simply Φ = φ. The smallest nonzero value
of the matrix in (5) is a′min = 1. Hence, we compute A′[V2] by setting to zero the entries of
the matrix in (5) with value equal to a′min. Since A′[V2] is not diagonal, we make a recursion
call, and we set ψ = Φ. To simplify notation, we shall again rename A′[V2] as A[V2] after every
iteration.

2.1 Connected component V2, level 1
The input matrix A[V2] is obtained by setting to zero the entries of the matrix in (5) with value
at most 1. The support of this matrix is still connected, and its straight enumeration is:

φ = ({4}, {15}, {18}, {6, 12}, {10}, {16}).

If we invoke Algorithm 3, it is easy to see that the common refinement is Φ = φ The smallest
nonzero value of A[V2] is now a′min = 2. Hence, we compute A′[V2], which is not diagonal and
thus we make a recursion call, setting ψ = Φ and renaming A′[V2] as A[V2] for the next iteration.

2.2 Connected component V2, level 2
The input matrix A[V2] is obtained by setting to zero the entries of the matrix in (5) with value
at most 2. The support of this matrix is still connected, and its straight enumeration is:

φ = ({4, 15}, {18}, {12}, {6, 10, 16}).

The common refinement is then simply:

Φ = ({4}, {15}, {18}, {12}, {6}, {10}, {16}).

The smallest nonzero value of A[V2] is now a′min = 3. Hence, we compute A′[V2], which is not
diagonal and thus we make a recursion call, setting ψ = Φ and renaming A′[V2] as A[V2] for the
next iteration.

2.3 Connected component V2, level 3
The input matrix A[V2] is obtained by setting to zero the entries of the matrix in (5) with value
at most 3. The support of this matrix is still connected, and its straight enumeration is:

φ = ({4}, {15}, {18}, {12}, {6}, {10}, {16})

which is equal to the given ψ (and thus will be the common refinement Φ). The smallest nonzero
value of A[V2] is now a′min = 5. Hence, we compute A′[V2], which is not diagonal and thus we
make a recursion call, setting ψ = Φ and renaming A′[V2] as A[V2] for the next iteration.

2.4 Connected component V2, level 4
The input matrix A[V2] is obtained by setting to zero the entries of the matrix in (5) with value
at most 5. The support of this matrix is not connected, and thus Algorithm 1 will detect two
connected components.

V21 = {4, 15, 18, 12},
V22 = {6, 10, 16}.
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We then split the problem over the connected components.

2.4.1 Connected component V21, level 5
The common refinement is Φ = ({4}, {15}, {18}, {12}) and a′min = 6. We then make a recursion
call and we find again a connected graph. Again the common refinement does not change (in
fact the blocks are singletons) and now a′min = 7. Finally, the submatrix A′[V21] is diagonal, so
we prune the node.

2.4.2 Connected component V22, level 5
The common refinement is Φ = ({6}, {10}, {16}) (again the blocks are singletons) and a′min = 6.
But now A′[V22] is diagonal, so we prune the node. This was the last recursion node open.

Therefore, we get that the final common refinement of level graphs of A[V2] is:

Φ2 = ({4}, {15}, {18}, {12}, {6}, {10}, {16})

and the PQ-tree T2 computed by the algorithm is shown in Figure 5 at page 31. Finally, we can
build the PQ-tree representing the permutation reordering A as a Robinson matrix. Since both
V1 and V2 are contained in the same block of ψ (which at the beginning is ψ = ([n])), then we
create a P-node (named α since it is the ancestor) whose children are the subtrees T1 and T2.
The final PQ-tree is shown in Figure 6 at page 31, and is equivalent to the one returned by [30].

Note that, using the fact that a common refinement which is a linear order cannot be refined
anymore, the depth could be lowered to d = 4 (since the right branch would have depth d = 3).
Understanding this and other possible speed up will be the subject of future work.
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γ1

1 3 14 13 11 8 7 19 5

β

9 17 2

Figure 4: The PQ-tree corresponding to the common refinement of level graphs of A[V1]

γ2

4 15 18 12 6 10 16

Figure 5: The PQ-tree corresponding to the common refinement of level graphs of A[V2]

α

γ1

1 3 14 13 11 8 7 19 5

β

9 17 2

γ2

4 15 18 12 6 10 16

Figure 6: The PQ-tree corresponding to the permutations reordering A as a Robinson matrix
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