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Abstract In the search for robust, accurate and highly efficient financial option
valuation techniques, we present here the SWIFT method (Shannon Wavelets
Inverse Fourier Technique), based on Shannon wavelets. SWIFT comes with control
over approximation errors made by means of sharp quantitative error bounds. The
nature of the local Shannon wavelets basis enables us to adaptively determine the
proper size of the computational interval. Numerical experiments on European-style
options confirm the bounds, robustness and efficiency.

1 Introduction

European options are financial derivatives, governed by the solution of an integral,
the so-called discounted expectation of a final condition, i.e., the pay-off function.
A strain of literature dealing with highly efficient pricing of these contracts
already exists, where the computation often takes place in Fourier space. For the
computation of the expectation we require knowledge about the probability density
function governing the stochastic asset price process, which is typically not available
for relevant price processes. Methods based on quadrature and the Fast Fourier
Transform (FFT) [1, 6, 7], methods based on Fourier cosine expansions [4, 12]
and methods based on wavelets [8, 9] have therefore been developed because for
relevant log-asset price processes the characteristic function appears to be available.
The characteristic function is defined as the Fourier transform of the density
function. In this paper, we will explore the potential of Shannon wavelets [2] for
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the valuation of European-style options, which is also based on the availability of
the characteristic function. We will call the resulting numerical wavelets technique
“SWIFT” (Shannon Wavelet Inverse Fourier Technique). Further details on the
method can be found in [10].

The pricing of European options in computational finance is governed by the
numerical solution of partial differential, or partial integro-differential, equations.
The corresponding solution, being the option value at time t, can also be found
by means of the Feynman–Kac formula as a discounted expectation of the option
value at final time t D T, the so-called pay-off function. Here, we consider this
risk-neutral option valuation formula,

v.x; t/ D e�r.T�t/
E
Q .v. y; T/jx/ D e�r.T�t/

Z
R

v. y; T/f . yjx/ dy; (1)

where v denotes the option value, T is the maturity, t the initial date, EQ the
expectation operator under the risk-neutral measure Q, x and y are state variables
at time t and T, respectively, f . yjx/ is the probability density of y given x, and r is
the deterministic risk-neutral interest rate.

Whereas f is typically not known, the characteristic function of the log-asset
price is often available (sometimes in closed-form), as the Fourier transform of f .
We represent the option values as functions of the scaled log-asset prices, and denote
these prices by x D ln.St=K/ and y D ln.ST=K/, with St the underlying price at time
t and K the strike price.

The pay-off v. y; T/ for European options in log-asset space is then given by

v. y; T/ D Œ˛ � K .ey � 1/�C ; (2)

with ˛ D 1 for a call, and ˛ D �1 for a put.

2 SWIFT

The strategy to follow to determine the price of the option consists of approximating
the density function f in (1) by means of a finite combination of Shannon scaling
functions and recovering the coefficients of the approximation from its Fourier
transform.

Let us consider the probability density function f in (1) and its Fourier transform,

Of .w/ D
Z
R

e�iwyf . yjx/ dy: (3)
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Following the wavelets theory from [3], the function f can be approximated at a
level of resolution m, i.e.,

f . yjx/ � Pm f . yjx/ D
X
k2Z

cm;k.x/�m;k. y/; (4)

where Pm f converges to f in L2 .R/, that is, k f � Pm f k2 ! 0; when m ! C1,
and where �m;k. y/ D 2m=2�.2my � k/, �. y/ D sinc. y/, cm;k.x/ D h f ; �m;ki, and
< f ; g >D R

R
f . yjx/g. y/ dy denotes the inner product in L2 .R/ (the bar denoting

complex conjugation).
Lemma 1 in [10] guarantees that the infinite series in (4) is well-approximated

by a finite summation without loss of considerable density mass,

Pm f . yjx/ � fm. yjx/ WD
k2X

kDk1

cm;k.x/�m;k. yjx/; (5)

for certain accurately chosen values k1 and k2.

2.1 Density Coefficients

We compute the coefficients in expression (5) by considering

cm;k.x/ D h f ; �m;ki D
Z
R

f . yjx/�m;k. y/ dy D 2m=2

Z
R

f . yjx/�.2my � k/ dy: (6)

Using the classical Vieta formula [5], the cardinal sinus can be expressed as an
infinite product, i.e.,

sinc.t/ D
C1Y
jD1

cos
��t

2j

�
: (7)

If we truncate this infinite product to a finite product with J factors, then, thanks to
the cosine product-to-sum identity [11], we have

JY
jD1

cos
��t

2j

�
D 1

2J�1

2J�1X
jD1

cos

�
2j � 1

2J
�t

�
: (8)
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By (7) and (8), the sinc function can thus be approximated as

sinc.t/ � sinc�.t/ WD 1

2J�1

2J�1X
jD1

cos

�
2j � 1

2J
�t

�
: (9)

If we replace the function � in (6) by its approximation (9) then,

cm;k.x/ � c�
m;k.x/ WD 2m=2

2J�1

2J�1X
jD1

Z
R

f . yjx/ cos

�
2j � 1

2J
�.2my � k/

�
dy:

Taking into account that <
�Of .w/

�
D R

R
f . yjx/ cos.wy/ dy in expression (3) (where

<.z/ denotes the real part of z), and observing that

Of .w/eik�
2j�1

2J D
Z
R

e�i
�

wy� k�.2j�1/

2J

�
f . yjx/ dy;

we end up with the following expression for computing the density coefficients,

cm;k.x/ � c�
m;k.x/ D 2m=2

2J�1

2J�1X
jD1

<
�

Of
�

.2j � 1/�2m

2J

�
e

ik�.2j�1/

2J

�
:

2.2 Pay-off Coefficients

The pay-off functions for European call or put options have been given in equa-
tion (2). We truncate the infinite integration range in (1) to a finite domain Im D
Œ k1

2m ; k2

2m �, which gives,

v.x; t/ D e�r.T�t/
Z
R

v. y; T/f . yjx/ dy � v1.x; t/ D e�r.T�t/
Z
Im

v. y; T/f . yjx/ dy:

If we now replace f by its approximation fm, we find

v1.x; t/ D e�r.T�t/
Z
Im

v. y; T/f . yjx/ dy � v2.x; t/De�r.T�t/
Z
Im

v. y; T/fm. yjx/ dy

D e�r.T�t/
k2X

kDk1

cm;k.x/ � V˛
m;k;

with the pay-off coefficients V˛
m;k WD R

Ik
v. y; T/�m;k. y/ dy. Then, let us define,

Nk1 WD max.k1; 0/. The pay-off coefficients for a European call option are computed
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as follows,

V1
m;k � V1;�

m;k WD
8<
:

K2m=2

2J�1

P2J�1

jD1

h
I1

� Nk1

2m ; k2

2m

�
� I2

� Nk1

2m ; k2

2m

�i
; if k2 > 0;

0; if k2 � 0;

where

I1.a; b/ D Cj2
m

1 C .Cj2m/2

"
eb sin.Cj.2

mb � k// � ea sin.Cj.2
ma � k//

C 1

Cj2m

�
eb cos.Cj.2

mb � k// � ea cos.Cj.2
ma � k//

	 #
;

and

I2.a; b/ D 1

Cj2m

�
sin.Cj.2

mb � k// � sin.Cj.2
ma � k//

	
; Cj D 2j � 1

2J
�:
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