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Abstract This paper deals with a single-server queue with modulated arrivals, ser-
vice requirements and service capacity. In our first result, we derive the mean of the
total workload assuming generally distributed service requirements and any service
discipline which does not depend on the modulating environment. We then show that
the workload is exponentially distributed under heavy-traffic scaling. In our second
result, we focus on the discriminatory processor sharing (DPS) discipline. Assuming
exponential, class-dependent service requirements, we show that the joint distribution
of the queue lengths of different customer classes under DPS undergoes a state-space
collapse when subject to heavy-traffic scaling. That is, the limiting distribution of the
queue-length vector is shown to be exponential, times a deterministic vector. The dis-
tribution of the scaled workload, as derived for general service disciplines, is a key
quantity in the proof of the state-space collapse.
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1 Introduction

Markov-modulation is a way to formalize the embedding of queues in a random
environment. The parameters of the queue in question, typically arrival rates, service
requirements or both, are governed by an external Markov chain, thereby creating an
extra layer of randomness around the stochastic queueing process. For classical results
onMarkov-modulated single-server queueswith the first-come-first-serve (FCFS) dis-
cipline see, for example, [26,28,30]. Recent work on systems in a Markov-modulated
environment can be found in, for example, [17,22,35].

In this paper we will analyse a modulated queue under a heavy-traffic scaling,
that is, evaluate the system at its critical load. It is a well-known result from the
literature on single-server queues that, under fairly general conditions [23], the steady-
state distributions of the appropriately scaled queue length and workload become
exponential when the critical load is approached. This property has been seen to
carry over to certain systems where arrivals and service times are modulated by an
external Markov process; see [3,12,15]. In fact, [3] establishes an even stronger result:
convergence of the queue-length process to a reflected Brownian motion.Multi-class
single-server queues under a heavy-traffic scaling have been studied in, for example,
[21] for FCFS with feedback routing, [20] for the discriminatory random order of
service discipline and [14,32] for the discriminatory processor sharing (DPS) policy.
In particular, [20,32] show that the steady-state queue-length vector undergoes a so-
called state-space collapse and converges to an exponentially distributed variable,
times a deterministic vector. The cited multi-class results under heavy-traffic scaling
are all for non-modulated systems. In light of this, we will in this paper put special
emphasis on amodulatedmulti-class single-server queue, and the limiting steady-state
queue-length distribution is derived.

While there is little ambiguity in how arrival rates are modulated, there are in the
literature typically two ways in which to modulate the service rates. One can (i) let
the departure rate be continuouslymodulated throughout a customer’s service, and the
other approach is to (ii) let a customer’s service requirement distributionbebasedon the
state of the environmentwhen it arrives and remain the same until the customer departs.
We note that by adapting the number of different customer classes, the fixed service
requirements of case (ii) can be seen as a special case of the continuously modulated
requirements (i); we further elaborate on this later in the paper in Remark 1 in Sect. 2.

The way the load or traffic intensity for modulated queues is defined goes hand in
hand with the way the service rates are affected by the environment. In case (i), the
load is typically the average of arrival rates (where the averaging is with respect to
the equilibrium distribution of the environment), say λ∞, divided by the average of
service rates, say μ∞ (see, for example, [26]). In case (ii), the load is taken as the
average over the arrival rate times the mean service requirement, say, λd/μd per state
d of the environment (see for example, [12,30]). The two load definitions represent
different scenarios. In particular, when load (ii) is equal to 1 (the critical load) it means
that in at least one state of the environment the total load over all classes must exceed
1, i.e. for at least one state we must have overload. This is true only for special cases
of definition (i).
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In this paper, special focus will be given to a multi-class single-server queue under
the DPS discipline. The DPS discipline was first introduced by Kleinrock in [24] as
an extension of the well-known egalitarian processor sharing (PS) discipline and has
turned out to be very suitable to model the simultaneous parsing of diverse tasks,
such as processing network data. Under this service discipline, the service capacity is
divided between all present customers in proportion to their prescribed weights. Due
to the challenging nature of DPS systems, most available results are in terms of limit
theorems and moments. Fayolle et al. [16] established the mean sojourn time condi-
tioned on the service requirement. That analysis also yielded the mean queue lengths
of the different classes, which were shown to depend on the entire service requirement
distributions of all classes. The DPS model has finite mean queue lengths irrespective
of any higher-order characteristics of the service distribution; see Avrachenkov et al.
[5]. This is an extension of a result for the Processor Sharing (PS) system, which
holds while the queue is stable. DPS under a heavy-traffic regime was analysed in [14]
assuming finite second moments of the service requirement distributions. Assuming
exponential service requirement distributions, a direct approach to establish a heavy-
traffic limit for the joint queue-length distribution was described in [29] and extended
to phase-type distributions in [32]. Combining light- and heavy-traffic limits, in [19]
an interpolation approximation is derived for the steady-state distribution of the queue
length and waiting time of DPS. The performance of DPS in overload is considered in
[1]. Asymptotics of the sojourn time have received attention in [8,9]. Game-theoretic
aspects of DPS have been studied in [18,33]. A thorough overview of DPS results can
be found in [2].

We are not aware of work analysing a DPS system under modulation. We refer to
[27] where the processor sharing discipline (DPS discipline with unit weights) was
analysed in a Markovian random environment. Multi-class queues in a random envi-
ronment have been studied for differentmodels in [11,31]. In [31], amodulated system
is studied where arrivals can only occur at transition epochs of the modulating process
but service requirements are class dependent and generally distributed. Using a time-
changing argument, the waiting time distribution is derived under the FCFS discipline.
In [11], the authors derive a Brownian control problem to establish a form of the cμ
scheduling rule in heavy traffic under continuously modulated service requirements.
By using a particular scaling, the time-scale separation of the external environment and
the queue-length process is exploited. Similar scaling of a modulated queue can also
be seen in results on the Markov-modulated infinite server queue in, for example, [7].

The system we analyse in this paper is a single-server queue where the arrival
rates, service requirements and service capacity are modulated. We focus on the set-
ting where a customer’s service requirement distribution is based on the state of the
environment when it arrives and does not change throughout its service. The service
capacity is, however, continuously modulated. This assumption is in line with the
literature for various types of modulated queues; see [10,13,25,31]. In Remark 3 in
Sect. 6, we discuss how part of our results can be extended to a more general model
with continuously modulated service requirements. We derive the distribution of the
workload under a heavy-traffic scaling for generally distributed service requirements
and any service discipline which does not depend on the environment. We then turn
our attention to the DPS discipline in a multi-class queue, which is a particular case
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of the general modulated system as described above. The weights of the DPS sys-
tem, determining the service proportion, depend on a customer’s class and do not
change with the environment, which means that the workload result remains valid.
An important finding in the present paper is that the queue-length vector under DPS
becomes independent of the modulating process in the heavy-traffic limit, which is
consistent with the modulated M/G/1 queue in, for example, [3,12]. This, together
with the obtained result on the workload, allows us to derive the distribution of the
queue-length vector under DPS and to show that it undergoes a state-space collapse.

The remainder of the paper is organized as follows. In Sect. 2we describe themodel.
In Sect. 3 we study the workload of a single-server queue with modulated arrivals,
service capacity and service requirement distribution, establishing its distribution in
heavy traffic. From Sect. 4 onwards the focus is on DPS. In Sect. 4 we derive some
basic properties of the queue-length distribution, obtain a rate conservation law and
derive an equation for the moments of the queue lengths weighted with the modulated
service capacity. Section 5 is devoted to the heavy-traffic scaling; there we show
that the distribution of the environment becomes independent of that of the queue-
length vector, in addition to deriving two technical lemmas. The exponential limiting
distribution of the joint queue length in heavy traffic follows in Sect. 6. The result is
shown in two steps; Sect. 6.1 for the state-space collapse and Sect. 6.2 for the exact
limiting distribution, where we rely on the workload result of Sect. 3. We conclude
with a summary and some open questions in Sect. 7.

2 Model

We analyse a single-server queue modulated by an independent external environment,
which is formalized by an irreducible continuous time Markov chain on a finite state-
space {1, . . . , D}. The modulating process is denoted by Z and is governed by an
infinitesimal generator matrix Q = (qd�)

D
d,�=1 with an invariant distribution π =

(π1, . . . , πD). In what follows, vectors are generally denoted in bold. New customers
arrive according to a Poisson distribution with rate λd when the environment is in
state d. A customer arriving in state d has a service requirement distribution given by a
function Hd(·)with Laplace–Stieltjes transform (LST) hd(·). The service requirement
does not change further with the environment. The first and second moments are given
by hd1 and hd2, respectively. In addition we let the service capacity be scaled by a
factor cd during the environment’s stay in state d; this can thus change during the
service of the customers. The traffic intensity will be measured as

ρ∞ =
∑

d

πdλdhd1/c∞, (1)

with c∞ := ∑
d πdcd being the service capacity averaged over the environment. The

workload is defined as the time it takes to empty the system at an arbitrary moment
in time given the observed environment and is denoted by W . In Sect. 3 we study
the workload and the environment as a two-dimensional process (W, Z), under any
service discipline that is independent of the environment.
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The first main result of this paper concerns the distribution of the workload when
the traffic intensity approaches its critical point. The system is said to be in heavy
traffic when ρ∞ approaches 1. Let N > 0 and define the following parametrization:

λ
(N )
d := λd

ρ∞
(1 − 1/N ) → λd

ρ∞
=: λ̂d , as N → ∞, (2)

where ρ∞ is based on the unscaled parameters. Prelimit quantities will be denotedwith
a superscript (N ); the prelimit traffic intensity is thus ρ

(N )∞ and is equal to 1 − 1/N .
Limiting quantities will have a ˆ ; in heavy traffic the traffic intensity is denoted ρ̂∞
and is equal to 1.

In the remainder of the paper, starting in Sect. 4, we analyse a single-server queue
with K customer classes under the discriminatory processor sharing policy; the queue
is again embedded in a randomenvironment. Letαk,d be theprobability that a customer,
arriving while the environment is in state d, is of class k; note that

∑
k αk,d = 1 for a

given d. The Poisson arrival rate of a class-k customer is denoted by λk,d := αk,dλd
and for each class k it is assumed that λk,d > 0 for at least one state d. In the multi-
class settingwe assume that a class-k customer has an exponentially distributed service
requirement with mean 1/μk . We believe that the results obtained in this paper can be
extended to phase-type distributed service requirements, the latter being dense in the
space of all distributions on [0,∞). For the non-modulated DPS queue, the phase-type
analysis was performed in [32] using similar proof techniques. For ease of exposition,
however, we focus here on the exponential case.

We no longer let the service requirement of a particular customer be environ-
ment dependent (although the distribution of an arbitrary customer is, as explained in
Sect. 6.2). One can, however, retrieve the environment-dependent service requirements
by introducing additional classes for each environment; see Remark 1. By referring to
a class-k customer’s service rate while in state d as μk,d := μkcd , we take the modu-
lated service capacity into account. Most of the results for the queue length can in fact
be shownwithout assuming this product form, representing a systemwhere the service
requirements are continuously modulated; see Remark 3, Sect. 6.1, for further details.

We denote the average arrival rate of class-k customers by λk,∞ := ∑
d λk,dπd ;

similarly we denote the average service rate for class k by μk,∞ := ∑
d μk,dπd =

μkc∞ and ρk,∞ := λk,∞/μk,∞. The aggregate traffic intensity for the multi-class
model is defined as

ρ∞ :=
K∑

k=1

ρk,∞,

which is consistent with the definition in Eq. (1).
Let the state of themulti-class systembe described by the vector of randomvariables

(M1, . . . , MK , Z) =: (M, Z), where Mk is the number of class-k customers, for
k = 1, . . . , K . As before, Z represents the state of the background process. In a DPS
system, the random fraction of service given to a class-k customer is
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Table 1 A multi-class system
where the service requirement
distribution is fixed upon arrival
can be translated into one with
non-modulated service
requirements

Classes Arrival rates Serv. rate Weight

d = 1 d = 2 d ∈ {1, 2}
(1,1) λ1,1 0 μ1,1 g1
(1,2) 0 λ1,2 μ1,2 g1
(2,1) λ2,1 0 μ2,1 g2
(2,2) 0 λ2,2 μ2,2 g2

gk∑
j g j M j

,

where gk are weight parameters associated with each class k.
When in heavy traffic, we denote ρ̂k,∞ := λ̂k,∞/μk,∞ and thus have for the multi-

class system

∑

k

ρ̂k,∞ =
∑

k

λ̂k,∞
μk,∞

= 1

ρ∞

∑

k

λk,∞
μk,∞

= 1

ρ∞

∑

k

ρk,∞ = 1.

Remark 1 (Modulated service requirements rewritten to classes) Any multi-class sys-
tem where the service requirement distribution is determined by the modulating
process at a customer’s arrival can be written as a multi-class model with non-
modulated, only class-dependent, service rates μk , as illustrated below: While in state
d of the environment, class-k customers arrive with rate λk,d and have exponential
service requirement with mean 1/μk,d and weight gk . Such customers we refer to as
being of class (k, d) and count with Mk,d ; hence, we need to keep track of K · D
different customer “classes”. Arrivals to class (k, d) are inactive while not in state d.

From Table 1 one can easily see how a K = D = 2 system can be written into one
with K = 4 and D = 2. The arrival rates are still modulated, but in an on-off way.
The service rates μk,d are now non-modulated.

3 Workload

In this sectionwe consider theworkload in amodulated queue and extend the results for
anM/G/1-type queue fromFalin andFalin [15] andDimitrov [12] to includemodulated
service capacity. We derive the mean of the workload and then its distribution in the
heavy-traffic regime.

Let p0,d = P(W = 0, Z = d) and let a = (a1, . . . , aD)T be a vector solving

[Q · a]d = cd − λdhd1 − c∞(1 − ρ∞), (3)

for d = 1, . . . , D. Note that such a solution always exists since the right-hand side
vector of Eq. (3) is orthogonal to π . We obtain the following result for the mean
workload.
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Proposition 3.1 For any service requirement distribution Hd(·) and any service dis-
cipline that does not depend on the state of the environment, the mean of the workload
satisfies

EW =
∑

d

[
πdλdhd2/2 + adπd(λdhd1 − cd) + p0,dcdad

]

c∞(1 − ρ∞)
, (4)

where a is a solution of Eq. (3). Furthermore, 1 − ρ∞ = ∑
d p0,dcd/c∞.

Remark 2 Although the solution vector a is not unique, the term

D∑

d=1

ad [πd(λdhd1 − cd) + p0,dcd ],

as appearing in Eq. (4), is. This is due to the following argument: Suppose a and a∗
are two solutions to Eq. (3). Then 0 = Qa− Qa∗ = Q(a− a∗), so (a− a∗) is in the
nullspace of Q. But Q is a generator matrix so it can easily be seen that Qr = 0 for
any vector r ·1T = (r, r, . . . , r)T , r ∈ R. Also, since the environment is an irreducible
Markov chain, the nullspace of Q has dimension 1, and therefore, (a− a∗) = ra · 1T ,
for some ra ∈ R. Thus,

D∑

d=1

(ad − a∗
d)[πd(λdhd1 − cd) + p0,dcd ] = rac∞(ρ∞ − 1) + rac∞(1 − ρ∞) = 0,

where the first term follows by the definition of ρ∞ and c∞ and the second term comes
from Eq. (7) in the proof below.

Proof of Proposition 3.1 Define Fd(x, t) = P(W (t) < x, Z(t) = d) for some time
t > 0. In an infinitesimal time dt , a new arrival requiring service x changes the
workload with probability λd Hd(x)dt . The service capacity is scaled by cd when the
environment is in state d, meaning that in dt time, the workload is reduced by cddt ,
yielding by a classic birth-and-death argument for the M/G/1 queue,

Fd(x, t + dt) = (1 − λddt + qdddt)Fd(x + cddt, t)

+
∑

� �=d

q�d F�(x + c�dt, t)dt + λddt
∫ x

0
Fd(x + cddt − y, t)dHd(y).

We let t → ∞ to go to steady state, and since

Fd(x + cddt) − Fd(x)

dt
= cd

Fd(x + cddt) − Fd(x)

cddt
−→
dt↓0 cd F

′
d(x),

we obtain

cd F
′
d(x) = (λd − qdd)Fd(x) −

∑

� �=d

q�d F�(x) − λd

∫ x

0
Fd(x − y)dHd(y).
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Denote the LST of Fd(·) by ϕd(s) = E[e−sW (t), Z(t) = d] = p0,d +∫∞
0+ e−sxdFd(x).

The corresponding transform equation becomes

D∑

�=1

q�dϕ�(s) = [λd(1 − hd(s)) − scd ]ϕd(s) + sp0,dcd . (5)

It is now convenient to sum over d and divide through Eq. (5) with s to get zero on
the left-hand side, leading to

∑

d

p0,dcd =
∑

d

ϕd(s)

[
cd − λd

(1 − hd(s))

s

]
. (6)

Using that ϕd(0) = πd and by l’Hôpital’s rule

lim
s↓0

(1 − hd(s))

s
= − lim

s↓0 h
′
d(s) = hd1.

We get by taking the limit s → 0 of Eq. (6) that

∑

d

p0,dcd
c∞

= 1 − ρ∞. (7)

We differentiate Eq. (6) w.r.t. s:

∑

d

ϕd(s)λd

[
h′
d(s)

s
+ 1 − hd(s)

s2

]
=
∑

d

ϕ′
d(s)

[
cd − λd

1 − hd(s)

s

]
,

which in the limit s → 0 results in

∑

d

πdλdhd2
2

=
∑

d

Wd [cd − λdhd1] , (8)

with the first moment of the workload while in state d being

− lim
s↓0 ϕ′

d(s) = E[W, Z = d] =: Wd .

Nowmultiply Eq. (5) with ad , sum over d, take the derivative w.r.t. s and let s → 0
to obtain

−
∑

d

Wd [c∞(ρ∞ − 1) + cd − λdhd1] =
∑

d

[
adπd(λdhd1 − cd) + p0,dcdad

]
,
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by using Eq. (3). Adding this equation to Eq. (8) yields

c∞(1 − ρ∞)
∑

d

Wd =
∑

d

[
πdλdhd2

2
+ adπd(λdhd1 − cd) + p0,dcdad

]
, (9)

which gives the desired expression for the mean of the workload, EW = ∑
d Wd . 	


Eq. (7) makes it clear that in heavy traffic, that is, when ρ
(N )∞ → 1, all the proba-

bilities p(N )
0,d go to zero. Also, in heavy traffic, the right-hand side of Eq. (3) reduces

to cd − λ̂dhd1. Recalling the parametrization 1 − ρ
(N )∞ = 1/N in Sect. 2, we obtain

the following result.

Proposition 3.2 For any service distribution Hd(·) and any service discipline that
does not depend on the state of the environment, the mean of the workload in heavy
traffic satisfies

lim
N→∞

1

N
EW (N ) = 1

c∞

∑

d

πd

[
λ̂dhd2/2 + ad(λ̂dhd1 − cd)

]
, (10)

where a is a solution of [Q · a]d = cd − λ̂dhd1.

Proof Under the heavy-traffic scaling, the empty probabilities p(N )
0,d go to zero for

d = 1, . . . , D. The result then follows immediately from Eq. (4) and 1−ρ
(N )∞ = 1/N .

	

This leads to the main result of this section.

Theorem 3.3 In heavy traffic, the scaled workload 1
N W (N ) converges in distribution

to Ŵ , where Ŵ is exponentially distributed with mean given in Eq. (10).

Proof This follows from combining Proposition 3.2 with Theorem 4 in [12]. The full
proof is in the Appendix. 	


The above results yields that Ŵ is relatively compact, which together with the
metric space being separable and complete implies that the scaled workload 1

N W (N )

is tight, by Prohorov’s theorem [6].

4 Queue-length vector under DPS

In the remainder of the paper we focus on the multi-class model under DPS, where we
assume that the service requirements of class-k customers are exponentially distributed
with rate μk . In this section we establish some properties of the joint queue-length
distribution. We start with the flow equations, followed by a rate conservation law and
an equation for the moments of the queue lengths conditioned on the environment.

123



38 Queueing Syst (2016) 83:29–55

Equating the flow in and out of state (M, Z) = (m, d) yields (noting that −qdd =∑
� �=d qd�)

(
K∑

k=1

(
λk,d + gkmk∑

i gimi
μk,d · 1{mk>0}

)
− qdd

)
pm,d

=
K∑

k=1

(
λk,d pm−ek ,d · 1{mk>0} + gk(mk + 1)∑

i gimi + gk
μk,d pm+ek ,d

)
+
∑

� �=d

qd� pm,�,

(11)

where pm,d := P((M, Z) = (m, d)) and ek is the vector with 1 in the k-th place and
zeros elsewhere. We now define the partial probability generating function (PGF) for
when the background process is in state d:

Pd(z) := E[zM1
1 · · · zMK

K · 1{Z=d}]

:=
∞∑

m1=0

· · ·
∞∑

mK=0

P(M1 = m1, . . . , MK = mK , Z = d) · zm1
1 · · · zmK

K

=
∑

m≥0

pm,d zm,

where zm1
1 . . . zmK

K =: zm and (m1, . . . ,mK ) ≥ (0, . . . , 0), i.e. m ≥ 0. Then the

overall generating function for the queue length is P(z) := E[zM1
1 · · · zMK

K ] =∑D
d=1 Pd(z). We also define

Rd(z) :=
∑

m≥0

pm,d zm∑
j g jm j

· 1{∑K
j=1 m j>0

}, hence

∂Rd(z)
∂zk

= z−1
k

∑

m≥ek

mk∑
j g jm j

pm,d zm · 1{∑K
j=1 m j>0

}.

By multiplying the flow equation (11) with zm, summing over all vectors m ≥ 0 and
rearranging terms, we can eventually write it in terms of the PGF Pd(z) and the partial
derivative ∂Rd(z)/∂zk , that is,

K∑

k=1

[
λk,d(1 − zk)Pd(z) + μk,dgk(zk − 1)

∂Rd(z)
∂zk

]
=

D∑

�=1

P�(z)q�d . (12)

It will be convenient to write the equation fully in terms of ∂Rd/∂zk , so we note
the relation

Pd(z) =
K∑

k=1

gkzk
∂Rd(z)

∂zk
+ p0,d , (13)
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where p0,d = P((M, Z) = (0, d)) is the probability of an empty queue in state d,
which is equivalent to the probability of noworkload defined in Sect. 3.We incorporate
this into Eq. (12) to obtain

K∑

k=1

λk,d(1 − zk)

⎡

⎣
K∑

j=1

g j z j
∂Rd(z)

∂z j
+ p0,d

⎤

⎦

+
K∑

k=1

μk,dgk(zk − 1)
∂Rd(z)

∂zk
=

D∑

�=1

[
K∑

k=1

gkzk
∂R�(z)

∂zk
+ p0,�

]
q�d . (14)

This equation we will use later when deriving the heavy-traffic limit.
For the M/M/1 queue with modulated arrivals and service times, moments of the

queue length and the sojourn times can be found for the FCFS service discipline in [34]
and [25], respectively. In [29] the authors establish a recursive formula to calculate
moments of the queue length in a non-modulated DPS system. In a similar fashion,
we obtain an expression for the sum of the state-dependent moments weighted with
the capacity of the server. We also derive a rate conservation law, which shows how
the average arrival rates per class are proportional to the resources allocated to that
same class, and the service they receive. Both results can be found in the following
proposition.

Proposition 4.1 When the queue is stable, the average number of class-k arrivals is
proportional to the service resources allocated to class-k customers, i.e.

λk,∞ =
∑

d

μk,dE

[
gkMk∑
j g j M j

· 1{∑ j M j>0} · 1{Z=d}

]
,

for k = 1, . . . , K. Furthermore, the state-dependent expectations of Mk satisfy

∑

d

cdE[Mk · 1{Z=d}] = λk,∞
μk

+
∑

d, j

g j
λk,dE[Mj · 1{Z=d}] + λ j,dE[Mk · 1{Z=d}]

μkgk + μ j g j
.

Proof We sum Eq. (12) over d and take the derivative w.r.t. zi to obtain

∑

d

⎡

⎣−λi,d Pd(z) +
∑

j

λ j,d(1 − z j )
∂Pd(z)

∂z j
+ μi,dgi

∂Rd(z)
∂zi

+
∑

j

μ j,dg j (z j − 1)
∂2Rd(z)
∂zi∂z j

⎤

⎦ = 0.

Letting z → 1 yields

∑

d

[
μi,dgi

∂Rd(z)
∂zi

∣∣∣∣
z→1

− λi,d Pd(z)

∣∣∣∣
z→1

]
= 0. (15)
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Since

lim
z→1

Pd(z) = πd ,

the following conservation law results from Eq. (15), for k = 1, . . . , K :

λk,∞ =
∑

d

μk,dgk
∂Rd(z)

∂zk

∣∣∣∣
z→1

=
∑

d

μk,dE

[
gkMk∑
j g j M j

· 1{∑ j M j>0} · 1{Z=d}

]
. (16)

By taking partial derivatives of Eq. (13), we obtain after standard calculations the
recursive relation

∂ j Pd(z)
∂zi1 · · · ∂zi j

∣∣∣∣
z→1

=
K∑

k=1

gk
∂ j+1Rd(z)

∂zi1 · · · ∂zi j ∂zk
+

j∑

�=1

gi�
∂ j Rd(z)

∂zi1 · · · ∂zi j
. (17)

In particular, this yields the explicit form

E[Mk · 1{Z=d}] = ∂Pd
∂zk

∣∣∣∣
z→1

=
∑

j

g j
∂2Rd

∂zk∂z j

∣∣∣∣
z→1

+ gk
∂Rd

∂zk

∣∣∣∣
z→1

.

Proceeding from the rate conservation law, Eq. (16), and by using μk,d = μkcd , we
have

∑

d

cdgk
∂Rd

∂zk

∣∣∣∣
z→1

= λk,∞
μk

.

By taking two partial derivatives of the balance equation Eq. (12), we can solve for a
second mixed derivative of Rd , namely

∂2Rd

∂zk∂z j

∣∣∣∣
z→1

=
∑

� E
[
MkMj ·1{Z=�}

]
q�d+λk,dE

[
Mj ·1{Z=d}

]+λ j,dE
[
Mk ·1{Z=d}

]

μk,dgk+μ j,dg j
,

thus also yielding a mixed moment. Summing over the weighted moments of the
number of class-k customers while in state d, we obtain a linear equation resembling
Eq. (16) in [29] for the non-modulated DPS queue:

∑

d

cdE[Mk · 1{Z=d}] = λk,∞
μk

+
∑

d, j

cd g j
∂2Rd

∂zk∂z j

∣∣∣∣
z→1

(by Eq. (17))

= λk,∞
μk

+
∑

d, j

g j

∑
� E[MkMj ·1{Z=�}]q�d+λk,dE[Mj ·1{Z=d}]+λ j,dE[Mk ·1{Z=d}]

μkgk+μ j g j
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= λk,∞
μk

+
∑

d, j

g j
λk,dE[Mj · 1{Z=d}] + λ j,dE[Mk · 1{Z=d}]

μkgk + μ j g j
,

where the last equality comes from
∑

d q�d = 0. 	


5 Preliminary results for the queue length in heavy traffic

We proceed to show that in heavy traffic the distribution of the environment and the
joint queue length become independent. This result, along with two technical lemmas
that we derive in this section, will later help establish the main result about the limiting
queue length under DPS, presented in Sect. 6. Here we consider the queue-length
vector (M1, . . . , MK ) scaled with 1/N and evaluate the PGF in z1/N . The objective is
to determine the distribution of 1

N (M (N )
1 , . . . , M (N )

K ) ·1{Z=d} as N goes to infinity. We
will state the existence of the limiting vector, and thus also the limit of the generating
function P(N )

d (z1/N ), as an assumption. This assumption will be proven in Sect. 6.2.

The superscript N denotes dependency on the prelimit parameter λ
(N )
d .

We make use of the change of variables e−sk = zk , for sk > 0, and denote
e−s/N := (e−s1/N , . . . , e−sK /N ). Assuming that the limit exists, we use the new
variables to define the heavy-traffic quantities: We let p̂0,d := limN→∞ p(N )

0,d ,

P̂d(s) := limN→∞ P(N )
d (e−s/N ) = limN→∞ E[e−∑

j s j M j /N · 1{Z=d}] and P̂(s) :=
∑

d P̂d(s) = limN→∞ E[e−∑
j s j M j /N ]. We denote by (M̂1, . . . , M̂K ) the random

vector corresponding to the LST P̂(s). Finally, let

R̂d(s) := E

[
1 − e−∑

j s j M̂ j

∑
j g j M̂ j

· 1{∑ j M̂ j>0} · 1{Z=d}

]
,

where the 1 in the numerator is to ensure that the bracketed expression remains bounded
when the queue length quantities M̂k are all near zero. We can now proceed to the
following lemma.

Lemma 5.1 If limN→∞ P(N )
d (e−s/N ) exists, then it satisfies

P̂d(s) =
K∑

k=1

gk
∂ R̂d(s)

∂sk
+ p̂0,d . (18)

Proof From Eq. (13),

lim
N→∞ P(N )

d (e−s/N ) = lim
N→∞

K∑

k=1

gkzk
∂R(N )

d (z)

∂zk

∣∣∣∣
z=e−s/N

+ p̂0,d . (19)
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Note that

lim
N→∞zk

∂R(N )
d (z)

∂zk

∣∣∣∣
z=e−s/N

= lim
N→∞

∑

m≥ek

mk∑
j g jm j

p(N )
m,d z

m · 1{∑ j m j>0}
∣∣∣∣
z=e−s/N

= lim
N→∞

∑

m≥ek

mk∑
j g jm j

p(N )
m,de

−s1m1/N · · · · · e−sKmK /N · 1{∑ j m j>0}

= lim
N→∞E

[
M (N )

k∑
j g j M

(N )
j

e−∑
j s j M

(N )
j /N · 1{∑ j M

(N )
j /N>0} · 1{Z=d}

]

= E

[
M̂k∑
j g j M̂ j

e−∑
j s j M̂ j · 1{∑ j M̂ j>0} · 1{Z=d}

]

= ∂ R̂d(s)
∂sk

. (20)

The second-to-last step follows from the fact that
M(N )

k∑
j g j M

(N )
j

· e−∑
j s j M

(N )
j ·

1{∑ j M
(N )
j >0} is upper bounded by 1/min j (g j ). By the continuous mapping theorem

(see Billingsley [6]), it converges in distribution to M̂k∑
j g j M̂ j

· e−∑
j s j M̂ j · 1{∑ j M̂ j>0}.

The environment is not affected by the heavy-traffic scaling. Eqs. (19) and (20) now
conclude the proof. 	


With the help of Lemma 5.1 we obtain:

Proposition 5.2 If limN→∞ P(N )
d (e−s/N ) exists, the joint queue-length distribution

is independent of the environment in heavy traffic, that is,

P̂d(s) = πd P̂(s).

Proof We use the change of variables zk = e−sk . Since

zk
∂Rd

∂zk
(z)

∣∣∣∣
z=e−s

= −∂Rd

∂sk
(e−s),

we obtain, by applying the heavy-traffic scaling to Eq. (14),

∑

k

[
λ

(N )
k,d

(
1 − e−sk/N

)
⎡

⎣
K∑

j=1

g j
−∂R(N )

d

∂s j

(
e−s/N

)
+ p(N )

0,d

⎤

⎦

− μk,dgk
(
e−sk/N − 1

)
esk/N

∂R(N )
d

∂sk

(
e−s/N

)]
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=
D∑

�=1

[
K∑

k=1

gk
−∂R(N )

�

∂sk

(
e−s/N

)
+ p(N )

0,�

]
q�d .

With Taylor expansion we obtain

∑

k

[
λ

(N )
k,d

(
sk
N

− s2k
N 2

) ⎡

⎣
K∑

j=1

g j
−∂R(N )

d

∂s j

(
e−s/N

)
+ p(N )

0,d

⎤

⎦

− μk,dgk

(
sk
N

+ s2k
N 2

)
−∂R(N )

d

∂sk

(
e−s/N

)]

=
D∑

�=1

[
K∑

k=1

gk
−∂R(N )

�

∂sk

(
e−s/N

)
+ p(N )

0,�

]
q�d + O(N−3). (21)

Since
−∂R(N )

d
∂s j

is bounded (see the proof of Lemma 5.1) and converges to ∂ R̂d
∂s j

, we
obtain, as N → ∞,

ν · [Q]d =
D∑

�=1

[
K∑

k=1

gk
∂ R̂�(s)

∂sk
+ p̂0,�

]
q�d = 0, s ≥ 0, ∀d, (22)

where [Q]d is the dth column of Q and ν is a row vector with ν� = ∑K
k=1 gk

∂ R̂�(s)
∂sk

+
p̂0,�. This implies that νQ = 0, and since Q is a generator we conclude that

νd =
K∑

k=1

gk
∂ R̂d(s)

∂sk
+ p̂0,d = πd x,

where x does not depend on d. Observe now that by Lemma 5.1 we have

P̂d(s) − p̂0,d =
K∑

k=1

gk
∂ R̂d(s)

∂sk

= πd x − p̂0,d
= E[1{Z=d}]x − p̂0,d .

Since P̂d(s) = E

[
e−∑

j s j M̂ j · 1{Z=d}
]
, this implies that x = E

[
e−∑

j s j M̂ j
]

=
P̂(s). This shows that the environment becomes independent from the joint queue-
length process in the heavy-traffic limit. 	


The flow equation, Eq. (14), simplifies considerably in heavy traffic, as shown in
the following lemma.
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Lemma 5.3 If limN→∞ P(N )
d (e−s/N ) exists, then R̂d(s) satisfies the following equa-

tion:

0 =
∑

k,d

Fk,d(s)
∂ R̂d(s)

∂sk
, ∀s ≥ 0,

with Fk,d(s) defined as

Fk,d(s) := gk

⎛

⎝
∑

j

λ̂ j,ds j − μk,dsk

⎞

⎠.

Proof We start by multiplying through Eq. (21) with N , followed by summing over
d. Due to Q being a generator, this eliminates the right-hand side with the transition
rates q�d :

∑

k,d

⎡

⎣λ
(N )
k,d

(
sk − s2k

N

)⎡

⎣
K∑

j=1

g j
−∂R(N )

d

∂s j
(e−s/N ) + p(N )

0,d

⎤

⎦

⎤

⎦

−
∑

k,d

[
μk,dgk

(
sk + s2k

N

)
−∂R(N )

d

∂sk
(e−s/N )

]
+ O(N−2) = 0.

Taking the limit N → ∞ yields

0 =
∑

k,d

λ̂k,dsk
∑

j

g j
∂ R̂d(s)

∂s j
−
∑

k,d

μk,dgksk
∂ R̂d(s)

∂sk

=
∑

k,d

gk
∂ R̂d(s)

∂sk

∑

j

λ̂ j,ds j −
∑

k,d

μk,dgksk
∂ R̂d(s)

∂sk

=
∑

k,d

gk

⎛

⎝
∑

j

λ̂ j,ds j − μk,dsk

⎞

⎠ ∂ R̂d(s)
∂sk

=
∑

k,d

Fk,d(s)
∂ R̂d(s)

∂sk
. (23)

	

In what follows we focus on

Fk,∞(s) :=
∑

d

Fk,d(s)πd = gk

⎛

⎝
∑

j

λ̂ j,∞s j − μk,∞sk

⎞

⎠,

and denote its vector counterpart by F∞(s) = (F1,∞(s), . . . , FK ,∞(s)).
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6 Queue-length distribution in heavy traffic

We now state and subsequently prove our main result about the queue-length distrib-
ution.

Theorem 6.1 When scaled by 1/N = (1− ρ
(N )∞ ), the queue-length vector converges

in distribution as (ρ
(N )
1,∞, . . . , ρ

(N )
K ,∞) → (ρ̂1,∞, . . . , ρ̂K ,∞), i.e. ρ(N )∞ → 1, namely

1

N

(
M (N )

1 , . . . , M (N )
K

)
· 1{Z=d}

d→
(
M̂1, . . . , M̂K

)
· 1{Z=d}

d= πd

(
ρ̂1,∞
g1

, . . . ,
ρ̂K ,∞
gK

)
· X, (24)

where
d→ denotes convergence in distribution and X is exponentially distributed with

mean

EX =
∑

k ρ̂k,∞/μk −∑
d cdπdad(1 − ρ̂d)

c∞
∑

k ρ̂k,∞/(gkμk)
, (25)

with ρ̂d := c−1
d

∑
k λ̂k,d/μk and a = (a1, . . . , aD)T being a solution of

[Q · a]d = cd(1 − ρ̂d).

Wewill prove this theorem in the two following subsections, first showing in Sect. 6.1
the state-space collapse observed in Eq. (24) and then in Sect. 6.2 we will show that
X is exponentially distributed with the mean given by Eq. (25).

6.1 State-space collapse

The first part of the proof of Theorem 6.1 is the state-space collapse. In this section,
we assume limN→∞ P(N )

d (e−s/N ) exists.
Observe that due to Proposition 5.2,

R̂d(s) = E

[
1 − e−∑

k sk M̂k

∑
k gk M̂k

· 1{∑k M̂k>0} · 1{Z=d}

]

= E

[
1 − e−∑

k sk M̂k

∑
k gk M̂k

· 1{∑k M̂k>0}

]
· πd

= : R̂(s)πd , (26)

where the last equation defines R̂(s), which is independent of d. We now derive some
properties of R̂(s).
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Lemma 6.2 R̂(s) is constant on a (K − 1)-dimensional hyperplane Hc, where

Hc :=
{
s ≥ 0 :

∑

k

ρ̂k,∞
gk

sk = c

}
, c > 0.

Proof We follow closely the steps of the proof of Lemma three in [32]. The proof
has three steps: (i) Show that Fk,∞(s) is parallel to the hyperplane. Hence, any flow
corresponding to Fk,∞ that starts in the plane, stays in the plane. (ii) Show that R̂(s)
is constant along each flow in the hyperplane and (iii) show that each flow in the
hyperplane converges to a unique point. This implies that R̂(s) is constant on the
hyperplane.

(i) F∞(s) is parallel to Hc

Observe that with 1 = ∑
k ρ̂k,∞ and ρ̂k,∞ = λ̂k,∞/μk,∞,

∑

k

ρ̂k,∞
gk

Fk,∞(s) =
∑

k

ρ̂k,∞

⎛

⎝
∑

j

λ̂ j,∞s j − μk,∞sk

⎞

⎠

=
∑

j

λ̂ j,∞s j −
∑

k

ρ̂k,∞μk,∞sk

=
∑

k

λ̂k,∞sk −
∑

k

λ̂k,∞sk

= 0.

This indicates that the K -dimensional vector F∞(s) is parallel to the hyperplane.
(ii) R̂(s) is constant along flows inHc

For each state s ≥ 0, there exists a unique flow f (u) = ( f1(u), . . . , fK (u))T

parametrized by u ≥ 0, such that

f (0) = s and
d fk(u)

du
= Fk,∞( f (u)). (27)

Due to (i), any flow that starts inHc, stays inHc. Now,

d R̂( f (u))

du
=

K∑

k=1

d fk(u)

du
· ∂ R̂(s)

∂sk

∣∣∣∣
s= f (u)

=
K∑

k=1

Fk,∞( f (u)) · ∂ R̂(s)
∂sk

∣∣∣∣
s= f (u)

=
K∑

k=1

D∑

d=1

Fk,d( f (u))πd · ∂ R̂(s)
∂sk

∣∣∣∣
s= f (u)
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=
K∑

k=1

D∑

d=1

Fk,d( f (u)) · ∂ R̂d(s)
∂sk

∣∣∣∣
s= f (u)

= 0, by Eq. (23),

implying that R̂( f (u)) is constant along each flow f (u) which lies inHc.
(iii) Each flow inHc converges to a unique point

Here we first write the flow specifications in a vector-matrix form, then show that
one eigenvalue of that matrix is zero with eigenvector s∗ ∈ H1, and the other
eigenvalues are negative, and thus we can write f (u) = c · s∗ + g(u) where
limu→∞ g(u) = 0.
Eq. (27) can be written in matrix-vector form as

f ′(u) = A f (u),

with

A =

⎛

⎜⎜⎜⎝

g1(λ̂1,∞ − μ1,∞) g1λ̂2,∞ · · · g1λ̂K ,∞
g2λ̂1,∞ g2(λ̂2,∞ − μ2,∞) · · · g2λ̂K ,∞

...
. . .

...

gK λ̂1,∞ · · · gK (λ̂K ,∞ − μK ,∞)

⎞

⎟⎟⎟⎠ .

Let D be the diagonal matrix with di = ρ̂i,∞/gi on the diagonal. Then with

S:=DAD−1=

⎛

⎜⎜⎜⎜⎜⎝

g1(λ̂1,∞ − μ1,∞) g2
ρ̂1,∞
ρ̂2,∞ λ̂2,∞ · · · gK

ρ̂1,∞
ρ̂K ,∞ λ̂K ,∞

g1
ρ̂2,∞
ρ̂1,∞ λ̂1,∞ g2(λ̂2,∞ − μ2,∞) · · · gK

ρ̂2,∞
ρ̂K ,∞ λ̂K ,∞

...
. . .

...

g1
ρ̂K ,∞
ρ̂1,∞ λ̂1,∞ · · · gK (λ̂K ,∞ − μK ,∞)

⎞

⎟⎟⎟⎟⎟⎠
.

ST is a generator corresponding to a finite-state Markov chain.

From the proof of Lemma 4 in [32], it is easily seen that the Markov chain cor-
responding to ST is irreducible (since we assume that all λk,d > 0 for all k and at
least one d). Retracing the arguments stated there, for completeness, it follows that
this Markov chain has a unique equilibrium distribution (column) vector, η, such that
ηT ST = 0. In particular, 0 is an eigenvaluewithmultiplicity one and all other eigenval-
ues have a strictly negative real part; see [4]. Since the eigenvalues of ST and A are the
same, 0 is also an eigenvalue of A with corresponding right eigenvector s∗ = D−1η,
s∗ ≥ 0, s∗ ∈ H1. The solution of the linear system f ′(u) = A f (u), f (0) ∈ Hc

can now be written as the sum of the homogeneous and the particular solution, i.e.
f (u) = c · s∗ + g(u), where limu→∞ g(u) = 0. This implies that all the flows inHc

converge to one common point c · s∗.
Combining (i), (ii) and (iii), we conclude that the function R̂(s) is constant onHc.
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As a consequence of Lemma 6.2, the function R̂(s) depends on s only through the
sum

∑K
k=1(ρ̂k,∞/gk)sk . Therefore, there exists a function R̂∗ : R → R such that

R̂(s) = R̂∗(
∑K

k=1(ρ̂k,∞/gk)sk). Then

∂

∂sk
R̂(s) = ρ̂k,∞

gk

d R̂∗(v)

dv

∣∣∣∣
v=∑K

k=1(ρ̂k,∞/gk )sk

,

so we obtain

E[e−∑K
k=1 sk M̂k ] = lim

N→∞

D∑

d=1

P(N )
d (e−s/N )

=
D∑

d=1

K∑

k=1

gk
∂ R̂d(s)

∂sk

=
D∑

d=1

K∑

k=1

gk
∂ R̂(s)
∂sk

πd

=
K∑

k=1

ρ̂k,∞
d R̂∗(v)

dv

∣∣∣∣
v=∑K

k=1(ρ̂k,∞/gk )sk

= d R̂∗(v)

dv

∣∣∣∣
v=∑K

k=1(ρ̂k,∞/gk )sk

, (28)

which only depends on v = ∑K
k=1(ρ̂k,∞/gk)sk . Since we also have

E[e−∑K
k=1 sk M̂k ] = E

⎡

⎣e− g1
ρ̂1,∞ vM̂1 · e− ρ̂2,∞

g2
s2

(
g2

ρ̂2,∞ M̂2− g1
ρ̂1,∞ M̂1

)

· · · · · e− ρ̂K ,∞
gK

sK

(
gK

ρ̂K ,∞ M̂K− g1
ρ̂1,∞ M̂1

)⎤

⎦ ,

this, together with Eq. (28), implies that
(

g j

ρ̂ j,∞ M̂ j − g1
ρ̂1,∞ M̂1

)
= 0, for all j =

1, . . . , K . Thus (gk/ρ̂k,∞)M̂k
d= (g j/ρ̂ j,∞)M̂ j , for all k, j , almost surely. Com-

bining this finding with that of Eq. (22), we obtain Eq. (24) with X distributed as
(g1/ρ̂1,∞)M̂1.

Remark 3 (Continuously modulated service requirements) In Sect. 3 we saw that the
critical load is indeed reached when ρ∞ → 1, since then p0,d → 0. This indicates
that (1 − ρ∞) is the right heavy-traffic scaling when μk,d = μkcd . This is less
clear for a general μk,d , that is, for continuously modulated service requirements,
where the environment can influence the departure rate of customers present in the
system. For that setting, theworkload process is no longer independent of the employed
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scheduling discipline, since the decision on which class to serve impacts the rate at
which customers leave. We are not aware of any results on workload and waiting time
distributions where the service distribution is a general function of both class and
environment.

The majority of the preceding queue-length results in this paper can, however, be
proven without the restriction of the product form, i.e. for continuously modulated
service requirements. The traffic intensity for this variant is defined as for the multi-
class model above, only this time one cannot split the average class-k service rate into
μk,∞ = μkc∞. The traffic intensity per class k, ρk,∞ = λk,∞/μk,∞, is in line with the
Markov-modulated single-server queues. Assuming there exists a scaling f (N ) such
that f (N )(M1, . . . , MK )1{Z=d} converges in distribution, it can be shown that the
empty probabilities p0,d vanish in heavy traffic as N → ∞, for a general μk,d . This
property then follows from Proposition 5.2 without relying on the workload results
from Sect. 3 and the product form assumed there. Furthermore, under this assumption,
all results in Sect. 6.1 hold, implying that a state-space collapse will appear. In other
words, we can prove the first half of Theorem 6.1. However, we do not know what the
distribution of the common factor X will be.

6.2 Distribution of the common factor

In order to prove that the limiting queue-length distribution exists and to find the
common factor of the queue-length distribution in heavy traffic, the random variable
X , we make use of the results on the workload of the total system. From [32] and Eq.
(24) we have that

Ŵ
d=

K∑

k=1

M̂k

μk
= X ·

K∑

k=1

ρ̂k,∞
gkμk

. (29)

In order to apply the workload result of Sect. 3, we first derive the service requirement
of an arbitrary customer while in state d. If Hk(·) is the distribution function of a class-
k customer’s service requirement, then the probability of a class-k customer arriving
and requiring service not exceeding x is αk,d Hk(x). Summing over k now yields the
desired distribution,

Hd(x) :=
K∑

k=1

αk,d Hk(x).

The overall service requirement distribution thus depends on the state of the environ-
ment at its arrival. With exponential service requirements, the corresponding LST is
given by

hd(s) =
K∑

k=1

αk,dμk

μk + s
, s ≥ 0, (30)

and the first and second moment are given by

hd1 =
∑

k

αk,d

μk
, hd2 = 2

∑

k

αk,d

μ2
k

. (31)
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We can now apply the result of Theorem 3.3withmoments as given in Eq. (31). Hence,
we have that Ŵ is exponentially distributed with mean

EŴ = c−1∞

(
∑

k

ρ̂k,∞/μk −
∑

d

cdπdad(1 − ρ̂d)

)
,

where a is a solution of [Q · a]d = cd − λ̂d
∑

k
αk,d
μk

= cd(1 − ρ̂d). Along with Eq.
(29), this yields the mean of the exponential random variable X :

EX = EŴ∑
k ρ̂k,∞/(gkμk)

=
∑

k ρ̂k,∞/μk −∑
d cdπdad(1 − ρ̂d)

c∞
∑

k ρ̂k,∞/(gkμk)
. (32)

The first term of the numerator is in accordance with the results of [29] and [32], and
the second term is a result of the random environment.

The results in Sects. 5 and 6.1 are based on the assumption that limN→∞ 1
N M ·

1{Z=d} exists. Since the scaled workload is tight, see Sect. 3, so is the scaled queue
length. Then, by Prohorov’s theorem ([6]) there exists a subsequence of N such that
1
N Mk converges in distribution, and hence for this subsequence limN→∞ P(N )

d (e−s/N )

exists. Since each converging subsequence yields the same limit, the limit itself exists

(see corollary page 59 in [6]), i.e. 1
N (M, Z = d)

d→ M̂ · 1{Z=d}, as N → ∞, with
the limiting vector as in Eq. (24).

This concludes the proof of Theorem 6.1.

7 Conclusion and future work

Wefirst studied theworkload for a queuewithmodulated arrivals, service requirements
and service capacity, and derived that the scaled workload converges to an exponen-
tially distributed random variable in heavy traffic. The workload results obtained are
valid for any service distribution and for any service discipline which does not depend
on the environment. We then focussed on the special setting of a multi-class queue
under the DPS policy and showed that the joint queue-length distribution for such a
system undergoes a state-space collapse in heavy traffic. Under the scaling of (1−ρ∞),
the vector-valued limiting distribution is independent of the modulating environment
and converges in distribution to a one-dimensional random variable times a determin-
istic vector. In this derivation, the distribution of the scaled workload is a key quantity.
With this we extend known results about the DPS queue to a Markov-modulated
setting.

Clearly an interesting question for future consideration is whether the state-space
collapse for the DPS policy carries over to continuously modulated service require-
ments, as discussed in Remark 3. Another open question concerns the characterization
of the moments of the queue lengths for the modulated DPS queue, outside of heavy
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traffic. Last but not least, modulating the weights of the DPS would open the possi-
bility of dynamical scheduling based on the environment. The latter would be a study
on its own, as already the stability conditions will no longer be independent of the
weights of the DPS policy.

Acknowledgments The authors would like to thank Urtzi Ayesta, Joke Blom and Michel Mandjes for
helpful discussions. This research was partially supported by the SMI Program of INP Toulouse.

Appendix: Proof of Theorem 3.3

The proof Theorem 3.3 is based on Theorem 4 in [12], which can be adapted to our
model as follows:

We start with notation and some preliminaries. Let
 = diag(λ1, . . . , λD), H̄(s) =
diag(1 − h1(s), . . . , 1 − hD(s)), C = diag(c1, . . . , cD) and p0 = (p0,1, . . . , p0,D).
Furthermore H̄1 and H̄2 are the diagonal matrices corresponding to the moments hd1
and hd2, respectively, for d = 1, . . . , D. Recall Eq. (3), [Q · a]d = cd − λdhd1 −
c∞(1 − ρ∞). We will now construct a partial inverse of Q to make it easier to find a
vector a which solves this equation. Let Q1 and R be matrices such that

Q1 =
⎛

⎜⎝
q22 q23 · · · q2D
...

qD2 qD3 · · · qDD

⎞

⎟⎠ , R =

⎛

⎜⎜⎜⎝

0 0 · · · 0
0
... Q−1

1
0

⎞

⎟⎟⎟⎠ .

Then det Q1 �= 0 and, due to Q being a generator (for more details, see [12]), we have

QR =

⎛

⎜⎜⎜⎜⎜⎝

0 −π2
π1

−π3
π1

· · · −πD
π1

0 1 0 · · · 0
0 0 1 0 · · ·
...

...
...

. . .
. . .

0 0 · · · · · · 1

⎞

⎟⎟⎟⎟⎟⎠
.

It follows that for any vector x, it holds that

xQR = x − x1
π1

π . (33)

Then it can be verified with straightforward calculations that

a = (a1, . . . , aD)= R(c1− λ1h11 − c∞(1−ρ∞), . . . , cD− λDhD1− c∞(1− ρ∞))T

= R[C − 
H̄1]e − c∞(1 − ρ∞)Re

= R[C − 
H̄1]e − r (34)

is a possible solution vector, with r := c∞(1 − ρ∞)Re.
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Define the vector ϕ = (ϕ1(s), . . . , ϕD(s)) and write Eq. (5) in matrix-vector terms:

ϕ(s)Q = ϕ(s)[
H̄(s) − sC] + s p0C. (35)

Observe that, according to Eq. (7),

p0Ce = c∞(1 − ρ∞).

Now multiply from the right both sides of the new vector-matrix equation, Eq. (35),
with a D-dimensional vector of 1’s, e, to obtain

ϕ(s)[
H̄(s) − sC]e + sc∞(1 − ρ∞) = 0. (36)

Multiply from the right both sides of Eq. (35) with the matrix R to get

ϕ(s)QR = ϕ(s)[
H̄(s) − sC]R + s p0CR.

Rewrite this equation by using the property of Eq. (33) to obtain

ϕ(s) = ϕ1(s)

π1
π + ϕ(s)[
H̄(s) − sC]R + s p0CR. (37)

Iterate Eq. (37) with itself by inserting ϕ(s) into the right-hand side of the equation to
obtain, after some algebraic transformations,

ϕ(s) = ϕ1(s)

π1
π [I + G(s)R] + y(s), (38)

with G(s) := 
H̄(s) − sC and

y(s) := ϕ(s)[G(s)R]2 + s p0CR[G(s)R + I ]. (39)

Substitute Eq. (38) into Eq. (36) to obtain an expression for ϕ1(s):

0 =
[
ϕ1(s)

π1
π[I + G(s)R] + y(s)

]
· G(s)e + sc∞(1 − ρ∞)

= ϕ1(s)

π1
[πG(s)e + πG(s)RG(s)e] + y(s)G(s)e + sc∞(1 − ρ∞)

= ϕ1(s)

π1
[B2(s) + B3(s)] + B1(s), (40)

with B1(s) = y(s)G(s)e + sc∞(1 − ρ∞), B2(s) = πG(s)e and B3(s) =
πG(s)RG(s)e.

The next step is to insert the scaling s → s/N for each term. Recall that using the
heavy-traffic parametrization introduced in Sect. 2, we have (1 − ρ∞) = 1/N . Now
observe that, as N → ∞,
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H̄(s/N )

s/N
→ H̄1,

H̄1s/N − H̄ (s/N )

(s/N )2
→ H̄2

2
.

Therefore the limit

G(s/N )

s/N
→ 
H̄1 − C,

is a constant, and since |ϕ(s/N )| ≤ 1 and p(N )
0 → 0 (see Eq. (7)), we have

y(s/N )

s/N
= ϕ(s/N )

[G(s/N )R]2
s/N

+ p(N )
0 CR[G(s/N )R + I ]

= ϕ(s/N )
( s

N

) [G(s/N )

s/N
R

]2
+ p(N )

0 CR[G(s/N )R + I ]
→ 0,

as N → ∞. Combining the above we obtain

B1(s/N ) = y(s/N )G(s/N )e + sc∞(1 − ρ∞)/N

= sc∞(1 − ρ∞)/N + o(N−2) = sc∞/N 2 + o(N−2).

Then

B2(s/N ) = π
[

H̄ (s/N ) − sC/N

]
e

= π

[
H̄ (s/N ) − H̄1s/N

]
e + π

[

H̄1s/N − sC/N

]
e

= π

H̄ (s/N ) − H̄1s/N

(s/N )2
(s/N )2e − sc∞(1 − ρ∞)/N

= −π

H̄2

2
(s/N )2e + o(N−2) − sc∞/N 2

= −(s/N )2
D∑

d=1

πdλdhd2/2 − sc∞/N 2 + o(N−2),

since π
H̄1e = ∑D
d=1 πdλdhd1 = ρ∞c∞. Furthermore,

B3(s/N ) = π
[

H̄ (s/N ) − Cs/N

]
R
[

H̄ (s/N ) − Cs/N

]
e

= π(s/N )2
[


H̄ (s/N )

(s/N )
− C

]
R ·

[


H̄ (s/N )

(s/N )
− C

]
e

= π(s/N )2
[

H̄1 − C

]
R
[

H̄1 − C

]
e + o(N−2)

= −π(s/N )2
[

H̄1 − C

]
(a + r) + o(N−2)

= −
∑

d

πd [(ad + rd)(λdhd1 − cd)] (s/N )2 + o(N−2),
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due to R
[
C − 
H̄1

]
e = a + r; see Eq. (34). Under the heavy-traffic scaling,

r = c∞(1 − ρ∞)Re = c∞N−1Re

is an o(1) term. Observe that

− (B2(s/N ) + B3(s/N ))

= (s/N )2
D∑

d=1

πd [λdhd2/2 + (ad + o(1))(λdhd1 − cd)] + sc∞/N 2 + o(N−2).

Rearranging Eq. (40) yields

ϕ1(s/N ) = π1
B1(s/N )

−(B2(s/N ) + B3(s/N ))

= π1
c∞s/N 2 + o(N−2)

(s/N )2
∑D

d=1 πd [λdhd2/2 + ad(λdhd1 − cd)] + c∞s/N 2 + o(N−2)

= π1
1 + o(1)

1 + c−1∞
∑

d πd [λdhd2/2 + ad(λdhd1 − cd)] s + o(1)
.

Let M be the desired mean stated in Theorem 3.3, that is,

M := c−1∞
∑

d

πd

[
λ̂dhd2/2 + ad(λ̂dhd1 − cd)

]
.

Then, taking the heavy-traffic limit,

lim
N→∞ ϕ(s/N ) = lim

N→∞
ϕ1(s/N )

π1
π = π

1 + Ms
,

i.e. the LST ϕ(s) converges in distribution to the LST of an exponentially distributed
random variable with mean M .
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