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Abstract. Correctness of the behavior of an adaptive system during dynamic adaptation is an important chal-
lenge to realize correct adaptive systems. Dynamic adaptation refers to changes to both the functionality of
the computational entities that comprise a composite system, as well as the structure of their interconnec-
tions, in response to variations in the environment, e.g., the load of requests on a server system. In this re-
search, we view the problem of correct structural adaptation as a supervisory control problem and synthe-
size a reconfiguration controller that guides the behavior of a system during adaptation. The reconfiguration
controller observes the system behavior during an adaptation and controls the system behavior by allow-
ing/disallowing actions in a way to ensure that a given property is satisfied and a deadlock is avoided. The
system during adaptation is modeled using a graph transition system and properties to be enforced are speci-
fied using a graph automaton. We adapt a classical theory of supervisory control for synthesizing a controller
for controlling the behavior of a system modeled using graph transition systems. This theory is used to syn-
thesize a controller that can impose both behavioral and structural constraints on the system during an adap-
tation. We apply a tool that we have implemented to support our approach on a case study involving https
servers.
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1. Introduction

The next generation of software systems includes systems composed of a large number of distributed, au-
tonomous, interacting and continually evolving components and subsystems. These software systems are sub-
ject to adaptation at runtime due to changes in their operational environments and user requirements. In
general, dynamic adaptation techniques are classified into two broad categories: structural adaptation and
behavioral adaptation. While structural adaptation aims to adapt the behavior by changing a system’s ar-
chitecture, behavioral adaptation focuses on modifying the functionalities of the computational
entities.
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In order to have a safe structural adaptation in component-based systems, wemust address several challenges.
First, structural adaptation may involve simultaneous changes in several independent components. It is

obvious that runtime changes do not occur instantaneously, and the system is likely to move through several
invalid configurations before reaching a final valid configuration; consequently, it is likely that some safety prop-
erties are violated in transient states. For instance, to replace a broken component with a new one, we must follow
a plan that specifies the steps to remove the old component, connect the new component to the same compo-
nents that the old component was connected to, and then allow the new component to start its execution. These
components may be distributed all over a network, which makes it impossible to carry out the reconfiguration
operations instantaneously, e.g. there may be a state where the new component and the old component coexist in
the system, some of the connections of the old component are connected to the new component while the rest are
still attached to the old version. Therefore, correct design of a system such that the system satisfies some specific
properties during adaptation is an important challenge.

Second, preserving consistency of the state of a component or system after adaptation is an important chal-
lenge. It is often assumed that a component starts its execution in a predefined initial state. However, when a
component is replaced by another one and the system switches to a new configuration, it is required for the new
state to be consistent with the previous states. Thus, it is necessary to determine the correct start state of a compo-
nent after adaptation.Observe that the definition of state consistency is application-specific and is determined by
the verification engineer. For instance, if a server handling requests is replaced by a new server, the information of
the handled requests by the old server and its waiting requests should be transferred to the new server, otherwise
the requests will be lost.

Third, there must not be a deadlock in the adaptation phase and the system must successfully finish the
adaptation by converging to its final states. If a deadlock occurs during an adaptation, the whole or part of the
system will stop working, which subsequently impacts the availability of the system.

Researchers have already proposed techniques to synthesize adaptors to control interactions where the system
is built by composing several (black-box) components/services. In [AFI+06, AMNT08, TFGG07], the authors
propose algorithms for synthesizing adaptors to assemble component-based systems wherein component inter-
actions and desired behavior are modeled using labeled transition systems. In another similar work [GMW12],
a control-theory based approach is proposed to synthesize behavioral adaptors that are responsible to adjust
the communication between some given services such that a certain behavioral property holds in the composed
system. In both approaches, the aim of reconfiguration control synthesis is controlling the interactions among
the components/services. However they are not concerned about the correctness of the adaptation phase. An ap-
proach based on the notion of transitional-invariant lattice is presented in [BK08, KB04] to verify the correctness
of adaptation. To the best of our knowledge, there is no research done on synthesizing controllers to control the
behavior of a system during a reconfiguration phase, i.e., while the system is in a transient state, undergoing a
structural reconfiguration, whichmay involve sequences of actions that affect different components of the system,
as the unaffected parts of the system continue to run concurrently.

To address the above challenges, we proposed an approach in [KAR14] to synthesize a non-blocking controller
that controls the reconfiguration process such that the desired behavior, defined by the verification engineer, is
preserved during a reconfiguration. We imposed properties only on the behavior of the system described using
an ordinary automaton. We modeled the behavior of the system during reconfiguration with a graph transition
system. Graph transition systems are classical transition systems augmented with a function mapping states into
graphs, and transitions into partial graph morphisms. The graph of a state represents the structure of the system
in that state.

We target component-based systems that employ dynamic reconfigurations to adapt system behavior and
focus on non-quantitative safety properties and deadlock avoidance. Other topics in self-adaptive computing
systems, which lie beyond our concerns, involve more quantitative properties, such as managing the number of
servers in a data center while ensuring response time properties, as well as the notions of stability, robustness and
fast convergence. These systems and properties would be approached with quite different models and control
techniques, e.g., hybrid modeling, differential equations, and non-linear controllers.

The Ramadge–Wonham (RW) framework [RW87] is a classical automaton-based framework used to synthe-
size a controller. In this framework, the system model, so called the plant, and the specification to be enforced
are specified by automata, and a controller is synthesized to control the plant’s behavior such that the property is
satisfied. This approach is one of the common supevisory controller synthesis approaches that has been applied
to computing systems, e.g. [GN12, GVNH11]. Our choice for discrete control is motivated by the fact that it is
a technique that solves safety problems from a description of possible behaviors and declaration properties of
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interest, and therefore can support safe design. The systems of concern in our work consist of component assem-
blies thatmust always satisfy predefined structural and behavioral constraints. Graphs are a common and suitable
mechanism to represent the structure of a system. To represent both the behavior and the structure of a system,
we use a combined formalism to model its structural (graph-based) and its behavioral (automata-based) aspects.
Accordingly, we need to adapt the automaton-based RW framework to a transition system that is enriched with
structural aspects in order to enforce structural and behavioral constraints on the desired system behavior and
the interactions among its components.
This paper In this work, we extend and improve our work by proposing a framework that allows us to (1) impose
properties on both the behavior and the structure of the system, (2) to construct the behavior of the whole system
during an adaptation given the initial system structure and each component behavior, and (3) to automate the
controller synthesis. Moreover, we prove the soundness of our approach and apply it on a case study to evaluate
the framework. Our approach consists of three steps shown in Fig. 1:

Step 1 We model the behavior of the system during reconfiguration, from when a reconfiguration starts until it
ends,with a graph transition systemG in [KAR14]. Thismodel captures both the behavior and the structure
of the whole system during a reconfiguration. To consider the environment behavior and its interaction
with the system, one can over-approximate its behavior and model it as a component of the system. It is
a cumbersome and error-prone process to manually construct a model that describes the whole behavior
of a system, because the changing structure of the system influences the components’ interactions. To
address this problem, we specify the behavior of a component using a state transition system and formalize
a plan for performing a reconfiguration by an algebra. Given the initial system structure, we apply the
reconfiguration plan to the components’ behavior specified by the state transition systems and construct a
graph transition system G that models both behavior and structure of the system during an adaptation.We
refer to the system actions by events that are the labels of the graph transition systems. An event represents
either a behavioral event, e.g. sending a message, or a reconfiguration event, e.g. adding a component. The
RW framework is an automaton-based approach which motivates our choice of state transition systems,
and an algebraic formalism for describing reconfiguration plans provides a compositional higher-level
specification compared to the state transition systems.

Step 2 We specify a property to be enforced during the adaptation phase, using an automaton A defined both
on the structure and the behavior of the system. For example, one can constrain a system to keep two
components A and B connected, as long as a component C is in the system, or a message is finally sent to
component A.

Step 3 We compute the product of the graph transition system G and the automatonA denoted by AG � G � A.
The graph transition systemAG indicates the part of G that preserves the propertyA. We use the Ramadge
and Wonham framework [RW87] to refine AG to remove all bad states, i.e. states that cause deadlock or
wherein an uncontrollable event is forbidden. An event (the label of a transition) is uncontrollable if it
cannot be prevented from occurring in a system, e.g. the event of a component crash is uncontrollable, as
we cannot prevent it from happening. The result is then a reconfiguration controller used to control the
behavior of the system during an adaptation, i.e. the controller runs in parallel with the system, monitors
the system, and allows/disallows the controllable events to preserve A. Furthermore, we improve the
approach for the cases that we have to enforce a purely structural property during a reconfiguration. Note
that there may not exist a non-blocking controller that enforces a property during an adaptation, e.g., the
synthesized controller may be an empty controller, which blocks unconditionally. In general, in the RW
framework, when the control problem is over-constrained and the property to be enforced is strong, the
set of remaining behaviors allowed by the controller may become empty. In that case, either the property
should be weakened, or the system must be redesigned in order to make the control that preserves the
property possible. In our case, for instance, this happens if an adaptation does not start in a proper state,
in which case, the verification engineer must update the reconfiguration plan, or change the adaptation
logic to start the adaptation from a suitable state such that the property is satisfied.

In ourwork, a reconfiguration can be triggered by the systemor the environment.Wemayobtain different con-
trollers to enforce a property depending on the controllability of the system events, if such a controller exists at all.
Furthermore, the states fromwhich a reconfiguration starts are usually determined by the systemadaptation logic.
The verification engineer can synthesize different reconfiguration controllers for different starting states of the sys-
tem, and evaluate them according to her needs to find suitable states to start a reconfiguration. The starting state
of a reconfiguration is determined based on the initial system structure and the current states of the components.
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Fig. 1. The outline of our approach

In this paper, we assume that (1) we know the behavior of every component, modeled as a transitions system,
(2) some events in the system are controllable while some are uncontrollable, (3) the set of possible safe initial
states for a new component is given by the verification engineer according to her needs, (4) the system states
from which a reconfiguration can start and its current configuration are known, and (5) the verification engineer
defines different plans for re-configuring the system. These assumptions may not always hold in all systems. For
example in completely open systems components can come in whose behavior is not known, in which case there
can be no guarantee about the safety of a reconfiguration, as we consider here.

The existing approaches proposed for safe adaptation have focused on controlling the interactions of com-
ponents. In this paper, we propose a new approach to synthesize a controller for guiding the adaptation process
safely. Our contributions are as follows:

• We customize the supervisory control problem for synthesis of systems modeled using a graph-based formal-
ism. This customization enables us to consider both the structure and the behavior of a system for designing
a correct controller.

• We use the extended supervisory control problem supporting structural modeling to design a correct non-
blocking controller where the controller controls the adaptation process.

• We can enforce a range of properties defined on both the behavior and the structure of a system.

• Given the behavior of each component and the initial structure of a system, we use an algebraic method to
construct a model of the system automatically. This model captures both the behavior and the structure of
the system considering the components’ interactions.

• We present a tailored method to synthesize a controller to enforce a purely structural property. This efficient
method helps to reduce the complexity of the synthesis process by abstracting the internal behavior of the
components.

• We implement a tool to support the proposed approach.

• We successfully use our tool in a case study to construct the system model during adaptation, and synthesize
a controller to guide the adaptation process.

Structure of the paper This paper is organized as follows. We present a brief review of graphs and supervisory
control in Sect. 2. Sections 3 and 4 concern modeling a system during the adaptation phase and property speci-
fication, respectively. We introduce our synthesis approach in Sect. 5. In Sect. 6, we present our implementation,
and evaluate our approach by applying it on a case study. In Sect. 7, we discuss related work, and finally in Sect.
8, we conclude and discuss our plans for future work.
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2. Preliminaries

2.1. Graphs overview

Consider analgebraicdefinitionof labeleddirectedgraphs.A labeleddirectedgraph is a structureG � 〈V ,E , σ, τ,
lab〉 where V denotes the set of vertices and E ⊆ V ×V denotes the edge set of G . The functions σ, τ : E → V
are the source and target functions such that for e � (x , y) ∈ E , we have σ (e) � x and τ (e) � y . The edge
labeling function lab : E → L maps every edge to a label in a fixed set of labels L.

Definition 1 (Graph morphism) Given graphs G1 and G2 with Gi � (Vi ,Ei , σi , τi , labi ) for i � 1, 2, a graph
morphism ψ : G1 → G2 is a pair of mappings ψ � (ψV , ψE ) where the functions ψV : V1 → V2 and
ψE : E1 → E2 preserve the source and target functions, i.e. ψV ◦ σ1 � σ2 ◦ ψE , ψV ◦ τ1 � τ2 ◦ ψE and
lab1 � lab2 ◦ ψE :

We say a graphmorphismψ : G1 → G2 is injective, surjective or bijective ifψV andψE are injective, surjective
or bijective, respectively.

2.2. Supervisory control

The objective of the supervisory control problem is to synthesize a supervisor that constrains a system’s behavior
according to a given specification while ensuring controllability and coaccessibility. The coaccessibility property
states that all states are coaccessible: a state is coaccessible if it is reachable from the initial state and fromwhich a
final state can be reached. Controllability refers to the fact that inhibition of controllable events makes it possible
to enforce a property.

A solution to this problem is offered by the Ramadge–Wonham (RW) framework [RW87]. In this approach,
both the possible behavior of a system and a specification for its desired behavior are given as finite automata.
The system (also called plant) automaton (A) describes both wanted and unwanted behaviors, while the specifi-
cation automaton is intended to restrict the possible actions to something useful. In this framework, events are
categorized into two types: controllable and uncontrollable. Controllable events can be prevented from occurring
in the system, while it is infeasible to prevent uncontrollable events from happening. In the RW framework, the
aim is to design a nonblocking supervisor, denoted by S/A, that monitors the events and ensures that the system
under supervision satisfies the specification by disabling/enabling the controllable events.

Let � represent an alphabet, L ⊆ �∗ be a language over �, and ̂L be the prefix-closure of L, i.e. ̂L �
{s ∈ �∗ | ∃t ∈ �∗, st ∈ L}. L is called prefix-closed if L � ̂L. In the RW framework, the plant is a discrete
event system (DES) modeled by a finite automaton A � 〈Q, �, δ, q0,Qm 〉 where Q is the set of states, � is
the finite set of events, δ : Q × � → Q is a partial transition function, q0 is the initial state, and Qm ⊆ Q is
the set of marked states.1 The events are partitioned into two disjoint subsets, controllable events set �c , and
uncontrollable events set �uc . We also introduce the extended transition function δ : Q × �∗ → Q as usual. Let
L(A) � {s | s ∈ �∗, δ(q0, s) is defined} and Lm (A) � {s | s ∈ L(A), δ(q0, s) ∈ Qm} be the closed and marked
behaviors of A. The language L(A) represents all possible paths of A from its initial state, while the marked
language Lm (A) represents only the accepting paths of A, i.e. the paths that end in a marked state. The DES A is
blocking if ̂Lm (A) ⊂ L(A) and nonblocking if ̂Lm (A) � L(A), i.e. if all prefixes of L(A) finally ends in a marked
state, then A is non-blocking, otherwise, the system may follow a path in L(A)\̂Lm (A) and end in a state from
which it cannot reach a marked state. Let S/A show a plant automaton A controlled by a supervisor automaton
S , and define Lm (S/A) :� Lm (A) ∩ L(S/A). The plant S/A can perform a controllable event, if it is allowed by
S , and it can perform an uncontrollable event with no restriction from S . SCP (Supervisory Control Problem) is
defined formally as follows:

Given a plant represented by an automaton A, a specification automaton with the language E ⊆ Lm (A)
representing the desired behavior of A under supervision, and a minimally acceptable behavior Amin ⊆ E ,
Supervisory Control Problem consists of finding a nonblocking supervisor S (i.e., ̂Lm (S/A) � L(S/A)) such that
Amin ⊆ Lm (S/A) ⊆ E .

1 In the RW framework, marked states play the role of final states in an automaton, but they are not referred to as final states to avoid the
connotation of termination.We also call themmarked states here, to avoid the confusion with what we call the final states of reconfigurations,
where we do require termination.
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In the RW framework, first the product of the plant A and the specification E is computed. The standard
automata product accepts exactly those paths of the plant that are consistent with the specification, i.e.L(S×A) �
L(A) ∩ L(S ). Then, the result is refined to obtain a non-blocking controller.

3. Modeling dynamic reconfiguration

As the first step of our approach, in this section we concentrate on modeling the system behavior during a
reconfiguration. The reconfiguration of a system is performed using reconfiguration plans: a reconfiguration
plan describes different strategies (sequences of actions) to reconfigure a system structure to reach a target
structure, for example, there can be two strategies to remove a component A and add a component B: first
add B and then remove A, or the other way around. Given the initial and final configurations of a sys-
tem, one can in principle obtain a reconfiguration plan automatically that contains all strategies to reconfig-
ure the system. Although, automatic generation of reconfiguration plans can be convenient from a practical
point of view, such synthesis may be very expensive, if possible at all. Hence, we assume that the verification
engineer specifies a reconfiguration plan and removes unsuitable strategies according to her domain knowl-
edge.

We specify the behavior of each component using deterministic state transition systems, and specify a recon-
figuration plan using an algebra. Given the behavior of all components in a system and a reconfiguration plan,
we obtain a graph transition system that models both behavior and structure of the system during reconfigu-
ration. In our model, behavioral events arise from the internal behavior of components and their synchronous
communications. Structural events, on the other hand, may be triggered by internal computation or in reaction
to external changes in the environment, and require modifications to the graph that represents the structure of
the interconnections of the components in the system. In this section, we explain how we build the whole system
model, to accommodate the handling of both behavioral and structural events.

(A) Modeling the behavior of single components

As mentioned above, we specify the behavior of a component as an ordinary state transition system:

Definition 2 (State transition system) A state transition system is a tuple T � 〈S , �,→, s0,F 〉 where S is a set
of states, � is a (finite) set of events, →⊆ S × � × S is a transition relation, s0 is the initial state, and F ⊆ S is
the set of final states.

An event e ∈ � can be an input, an output or an internal event. An input event, denoted by e? is used to
receive a message, an output event, denoted by e! is used to send a message, and an internal event e represents
an internal computation. It is worth mentioning that a component has no final state.

Example 1 Figure 2 shows the behavior of four components A, B, C and D. The component A, first performs
an internal action a, then either synchronizes on the event d , or synchronizes on the event sequences c1-d or
c1-c2-d . Afterwards, the component A performs the internal event e. The component B synchronizes on c1-d ,
the component C synchronizes on c1-d -c2, and the component D synchronizes on d .

(B) The system structure modeling

We model the structure of a system as a graph, which represents the components and their interconnections.
The components can interact with each other through synchronous communications, i.e., two active connected
components ci and cj may synchronize on an action α. If there is no event issued by the other components to
synchronize on, the component will block. Multi-party synchronization is not supported in our model and if
a component is connected to multiple other communication enabled components, it can synchronize with only
one of them at a time. Figure 3 is an example showing the structure of a system before and after a reconfigura-
tion.
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Fig. 2. The behavior of the components

Fig. 3. The initial structure and the target structure

(C) Reconfiguration plans

A reconfiguration starts from an initial configuration and applies a set of atomic reconfiguration actions to obtain
the target configuration. We use the following language to specify an algebra of reconfiguration plans in which
α is a primitive reconfiguration action. The set of primitive structural actions includes add (c), del (c), con(c, c′),
and dis(c, c′) for respectively adding a new component c, removing the component c, connecting c to c′, and
disconnecting c from c′.

a :� a; a ′ | a ‖ a ′ | a + a ′ | φ :→ a | α
α :� add (c) | del (c) | con(c, c′) | dis(c, c ′)

Thus a reconfiguration plan can be a sequential composition (; ), a parallel composition (‖), an internal non-
deterministic choice (+), or a conditional choice (φ :→ a where φ is a condition defined on the system structure).
The non-deterministic choice operator is a source of choice points, which collectively form the domain of control-
lability. The standard operators ‖ and + are commutative. We don’t allow recursion in this language to ensure the
termination of reconfiguration plans. Figure 4 shows the operational semantics of the reconfiguration algebra.
SR1 represents the execution of a primitive action α. SR2 and SR3 define the semantics of non-deterministic
choice and SR4-SR9 apply sequential, parallel compositions and conditional choice of actions. The symbol

√
shows the termination of a computation.

We explain some of the rules. The rule SR2 states that if the plan a evolves to a ′′ by performing an action μ,
then the non-deterministic choice between a and a ′ can evolve to a ′′ by performing μ as well. The rule SR4 states
that if a performs an action μ and evolves to a ′′, then its parallel composition a || a ′ can evolve to a ′′ || a ′ by
performing μ. The rule SR6 states that if a plan a evolves to a ′′ by performing an action μ, then a; a ′ can first
perform a ′′ and then proceed with a ′.

Example 2 Figure 3 shows the structure of the system before and after a reconfiguration. We define the following
reconfiguration plan to perform this reconfiguration. In this plan, the connection between the components C and
D may be removed first, and then C and D are removed concurrently while the component B is added and then
connected to A:

Pl � ((del (C) || del (D)) + (dis(C,D); (del (C) || del (D))))
|| (add (B); con(A,B))

Note that when a component is removed, all of its connecting edges are removed as well, leaving no dangling
edge in the updated structure.
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(SR1)
α

α−→ √ (SR2)
a

μ−→ a

a + a
μ−→ a

(SR3)
a

μ−→ √

a + a
μ−→ √ (SR4)

a
μ−→ a

a a
μ−→ a a

(SR5)
a

μ−→ √

a a
μ−→ a

(SR6)
a

μ−→ a

a; a
μ−→ a ; a

(SR7)
a

μ−→ √

a; a
μ−→ a

(SR8)
eval(φ) a

μ−→ a

φ :→ a
μ−→ a

(SR9)
eval(φ) a

μ−→ √

φ :→ a
μ−→ √

Fig. 4. Operational semantics of reconfiguration algebra

(D) Construction of the system model during an adaptation

Given a reconfiguration plan as an algebraic term, and the behavior of each component in terms of state transition
systems,we construct a graph transition systemG thatmodels the systemduring an adaptation.Agraph transition
system is essentially a classical transition system augmented with a function mapping states into graphs and
transitions into partial graph morphisms:

Definition 3 (Graph transition system) Let G be a universal set of graphs. A graph transition system is a pair
G � 〈T , g〉 consisting of a state transition system T � 〈S , �,→, s̄0,F 〉 and a pair g � 〈g1, g2〉 where g1 : S → G

is a total function that associates a graph to every state in S , and g2(t) is an injective partial graph morphism for
every transition t : s̄ e−→ s̄ ′ of →.

Anaccepting runof agraph transition systemG � 〈T , g〉 is a sequenceπ :� 〈g1(s̄0), e0〉, 〈g1(s̄1), e1〉, . . . , g1(s̄n )
where s̄n ∈ F , and (s̄k , ek , s̄k+1) ∈→ for 0 ≤ k < n − 1. The language of G, denoted by L(G), consists of the set
of its accepting runs.

We use a graph transition system G � 〈T , 〈g1, g2〉〉 tomodel a system of components ci , 1 ≤ i ≤ n undergoing
a reconfiguration planPl . We use a bar variable to show a vector, and si to denote the current state of component
ci , regardless of whether or not it is currently an active member of the global system. An active component is a
running component that is a part of the system structure. Informally, a state in G is a pair 〈x̄ ,G〉 ∈ S ×G where
the component vector x̄ ∈ S denotes the computational state of G, and the topology graphG � g1(x̄ ) represents
the connections among the components in the system. The nodes of G represent the components in the system
in state 〈x̄ ,G〉, and a component ci can send a message to a component cj in state 〈x̄ ,G〉, only if a directed edge
from ci to cj exists in G , otherwise, it will be blocked. The significance of G is that it restricts the possibilities of
communications among components to only those that are connected in G .

Thus, such a graph transition system, G, specifies both behavior and structural evolution of a system during
its reconfiguration phase. Structural modification actions execute interleavingly with behavioral actions of its
components. Without loss of generality, we assume all components pre-exist in the system state, regardless of
whether or not they are active members of the global system in a given global system state. If a component ci is
inactive in a state 〈x̄ ,G〉, xi shows its state but it should not belong to the G ’s nodes.

Reconfiguration actions change G and thus, the communication structure of the global system. Changes to
the components connectivity graph follow the rules in Fig. 5. These changes result from the execution of the
actions given in a reconfiguration plan, specified in the language of our reconfiguration algebra whose semantics
appears in Fig. 4. The rules in Fig. 5 define the evolution of G under the execution of a reconfiguration plan,
l . The construct l

γ−→ l ′ represents the transformation of the reconfiguration plan l into l ′ as a result of the
execution of one of its actions, γ , according to the semantics in Fig. 4. Execution of a reconfiguration action γ

changes the component connectivity graph, G , into G ′ represented by G
γ−→ G ′, according to the rules in Fig. 5.

The rule addSE transforms G into G ′ by the execution of an add (ci ) reconfiguration action. Similarly, delSE ,
conSE and disSE each transformsG intoG ′ by the execution of, respectively, a del (ci ), con(ci , cj ), or dis(ci , cj )
reconfiguration action.

For 1 ≤ i ≤ n, let the state transition system Ti � 〈Si , �,→i , s0,i ,Fi 〉 denote the behavior of component
ci , where ε �∈ Si , and let S ε

i � Si ∪ {ε}. Every component ci behaves and changes states according to its own
respective state transition system Ti , regardless of whether or not it is an active member of the global system.
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(addSE)
l

add(ci)−−−−→ l′, G = (V,E, σ, τ, lab), V ′ = V ∪ {ci}, G′ = (V ′, E, σ, τ, lab)

G
add(ci)−−−−→ G′

(delSE)

l
del(ci)−−−−→ l′, G = (V,E, σ, τ, lab), R = {e | e ∈ E, σ(e) = ci ∨ τ(e) = ci},

V ′ = V \ {ci}, E′ = E \ R,G′ = (V ′, E′, σ, τ, lab)

G
del(ci)−−−−→ G′

(conSE)

l
con(ci,cj)−−−−−−→ l′, G = (V,E, σ, τ, lab), ci ∈ V, cj ∈ V,

E′ = E ∪ {(ci, cj)}, G′ = (V,E′, σ, τ, lab)

G
con(ci,cj)−−−−−−→ G′

(disSE)

l
dis(ci,cj)−−−−−−→ l′, G = (V,E, σ, τ, lab), ci ∈ V, cj ∈ V,

E′ = E \ {(ci, cj)}, G′ = (V,E′, σ, τ, lab)

G
dis(ci,cj)−−−−−−→ G′

Fig. 5. Structure evolution rules

(ADD)

x̄ = 〈x1, ...xi−1, ε, xi+1, ...xn〉, G add(ci)−−−−→ G′,
si ∈ initi(x), si 	= ε, x̄′ = 〈x1, ...xi−1, si, xi+1, ...xn〉

〈x̄, G〉 add(ci)−−−−→ 〈x̄′, G′〉

(REMOVE)

x̄ = 〈x1, ...xi−1, si, xi+1, ...xn〉, G del(ci)−−−−→ G′,
si ∈ removablei(x), si 	= ε, x̄′ = 〈x1, ...xi−1, ε, xi+1, ...xn〉

〈x̄, G〉 del(ci)−−−−→ 〈x̄′, G′〉

(CONT)
x̄ = 〈x1, ...xi−1, si, xi+1, ...xj−1, sj , xj+1, ...xn〉, si 	= ε, sj 	= ε, G

con(ci,cj)−−−−−−→ G′

〈x̄, G〉 con(ci,cj)−−−−−−→ 〈x̄, G′〉

(DISCONT)
x̄ = 〈x1, ...xi−1, si, xi+1, ...xj−1, sj , xj+1, ...xn〉, si 	= ε, sj 	= ε, G

dis(ci,cj)−−−−−−→ G′

〈x̄, G〉 dis(ci,cj)−−−−−−→ 〈x̄, G′〉

(IACT)
x̄ = 〈x1, ...xi−1, si, xi+1, ...xn〉, si

α−→i s′
i, si 	= ε, s′

i 	= ε, x̄′ = 〈x1, ...xi−1, s
′
i, xi+1, ...xn〉

〈x̄, G〉 α−→ 〈x̄′, G〉

(SACT)

x̄ = 〈x1, ...xi−1, si, xi+1, ...xj−1, sj , xj+1, ...xn〉, G = (V,E, σ, τ, lab), (ci, cj) ∈ E,

si
α!−→i s′

i, si 	= ε, s′
i 	= ε, sj

α?−→j s′
j , sj 	= ε, s′

j 	= ε,
x̄′ = 〈x1, ...xi−1, s

′
i, xi+1, ...xj−1, s

′
j , xj+1, ...xn〉, i 	= j, ψi,j(x̄, α)

〈x̄, G〉 α−→ 〈x̄′, G〉

Fig. 6. Operational semantics of reconfiguration actions
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A component vector x̄ ∈ X � ∏

n
i�1S

ε
i denotes the current state of every ci that is an active member of the the

global system in global system state 〈x̄ ,G〉. For x̄ � 〈x1, x2, . . . , xn 〉 ∈ X , a component ci is an active member
of the global system in state 〈x̄ ,G〉 if and only if xi �� ε, in which case xi � si ∈ Si is the current state of ci in the
system state 〈x̄ ,G〉. Similarly, xi � ε if and only if ci is not an active member of the global system in state 〈x̄ ,G〉.
Definition 4 (Global transition system) Let G � 〈T , 〈g1, g2〉〉 be a graph transition system representing a system
of components ci , 1 ≤ i ≤ n, whose connections are modeled by a graph G � (V ,E , σ, τ, lab), where T �
〈S , �,→, s0,F 〉. The set of states of G is the set of all 〈x̄ ,G〉 where:
1. x̄ ∈ X ∧ G � g1(x̄ ), and
2. for all 1 ≤ i ≤ n, xi �� ε ⇐⇒ ci ∈ V .

The function g2 returns a partial injective morphism ψ � (ψV , ψE ) : G → G ′ implied by the rules in Fig. 5. �

Condition 2 in Definition 4 ensures that a component ci is active in a global system state 〈x̄ ,G〉 if and only
if ci belongs to the system structure in 〈x̄ ,G〉, as determined by graph G . The rules in Fig. 6 define how the
components connection graph changes as a result of the execution of actions in the reconfiguration plan.

The reconfiguration of the global system according to a reconfiguration plan, Pl , starts with G in an initial
state 〈x̄0,G0〉where x̄0 � 〈x1,0, . . . , xn,0〉, xi,0 denotes the status of component ci at the start of the reconfiguration,
andG0 � g1(x̄0) denotes the initial structure of the components in the system before reconfiguration. The global
state 〈x̄ ,G〉 of the system changes either when (1) a component performs an internal computation action; (2) a
pair of components perform a pair of complementary communication actions compatible with the topology of
component connections in G ; or (3) execution of the next reconfiguration action prescribed in Pl changes the
system structure. The first two activities change the x -part and the third changes theG-part of the global system
state (in addition to possibly changing its x -part, as well).

The rule ADD in Fig. 6 “adds” a pre-existing component ci as a new active member to the system. The entry
ε in position i in x ensures that ci is currently not an active member of the system. Execution of the add (ci )
reconfiguration action evolves the component connections graph from G to G ′ according to the rule addSE in
Fig. 5. When a component ci is added to the system, it must start from a state compatible with the current system
state x̄ . The definition of state compatibility is application-specific and we assume that the verification engineer
defines a function that determines the compatible states from which ci can start in x̄ . If no such compatible state
exists, it means that the current state is not a proper state to add the component. Furthermore, not all compatible
states are safe to start ci in x̄ because it may lead to violating some safety properties or cause a deadlock, in which
case the compatible state will be removed by the synthesized controller. Thus, to ensure a safe reconfiguration,
ci may start only from a subset of its compatible states. The user-defined function initi (x̄ ) returns the set of
states of ci that are compatible with ci joining the system, given the membership status and the actual states of all
system components, as specified by x̄ . If the current state of ci , denoted by si , is in the set returned by initi (x̄ ),
then adding ci in its current state of si is actually compatible with the current states of the rest of the components.
The new global state, therefore, replaces ε with si .

The component ci is removed using the rule REMOVE in Fig. 6. The entry si in position i in x̄ ensures that ci is
currently an active member of the system (by definition, si �� ε). Execution of the del (ci ) reconfiguration action
evolves the component connections graph from G to G ′ according to the rule delSE in Fig. 5. The function
removablei (x̄ ) returns the set of states of ci that are compatible with ci leaving the system, given the membership
status and the actual states of all system components, as specified by x̄ . If the current state of ci , denoted by si ,
is in the set returned by removablei (x̄ ), then removing ci in its current state of si is actually compatible with the
current states of the rest of the components. The new global state, therefore, replaces si with ε.

The CONT rule in Fig. 6 connects active components ci and cj , and the DISCONT rule disconnects them. The
entries si and sj (that, by definition, are different from ε) in x̄ ensure that ci and cj are currently active members
of the system.

When an internal action is executed by an active component ci , the system evolves to a new state where the
state of ci is updated (rule IACT). If two active connected components ci and cj synchronize on action α, the
system state is updated with the new states of ci and cj (rule SACT). The condition ψi,j (x̄ , α) checks if ci can
synchronize with cj on α in state x̄ and ensures that the systemmodel remains deterministic. The RW framework
is developed for deterministic systems and the determinisim of a constructed model is ensured by the condition
ψi,j (x̄ , α). If the determinism condition does not hold, the transition cannot be taken and the user will be notified
about this. The above rules express the case of i < j . The rules for the case of j < i are defined similarly.
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As, according to the rules in Fig. 4, execution of a reconfiguration plan eventually reduces it to
√

for which no
further transformation is possible, the execution of a reconfiguration plan eventually terminates. Termination of
the execution of a reconfiguration plan, Pl , places G in a state 〈x̄ ,G〉, x̄ ∈ X√,G ∈ G√ that is reachable from the
initial, pre-reconfiguration state 〈x̄0,G0〉. Observe that at this point G can no longer structurally evolve, however,
some of its components may still be active, in which case the global state of the system may still evolve according
to the (IACT) and (SACT) rules of Fig. 6. Some of these reachable states may have undesirable properties, for
instance, the ones that lead to deadlock after an adaptation. Let 〈x̄ ,G〉, x̄ ∈ Xd ,G ∈ Gd be the set of states of G
that have no undesirable properties. We define the final states of G, then, as a subset of its states reachable from
〈x̄0,G0〉 by the reconfiguration planPl that have no undesired properties, i.e., 〈x̄ ,G〉, x̄ ∈ Xd ∩X√,G ∈ Gd ∩G√
constitutes the final states of G.
Lemma 1 If 〈x̄ ,G〉 is a state of G by Definition 4, then in Fig. 6, 〈x̄ ′,G ′〉 derived in rules ADD and REMOVE, 〈x̄ ,G ′〉
derived in rules CONT and DISCONT, and 〈x̄ ′,G〉 derived in rules IACT and SACT, are also states of G by Definition 4.

Proof From x ′
k ∈ S ε

k , 1 ≤ k ≤ n and the definition of g1, item (1) is simply concluded. The rules IACT and SACT
do not change the system structure, i.e. for 1 ≤ k ≤ n,

G ′ |� φk ⇔ G |� φk . (1)

1. If k �� i , j then x ′
k � xk and x ′

k �� ε ⇔ G ′ |� φk is followed from (1) and the assumption xk �� ε ⇔ G |� φk .
2. If k ∈ {i , j }, then xk , x ′

k ∈ Sk and xk , x ′
k �� ε. Since xk �� ε then G |� φk , and from x ′

k �� ε and (1), we can
conclude x ′

k �� ε ⇔ G ′ |� φk .

Similarly, the rules CONT and DISCONT do not add or remove nodes, i.e., the formula (1) holds for 1 ≤ k ≤ n.
Since x ′

k � xk , then x ′
k �� ε ⇔ G ′ |� φk is followed consequently.

Since 〈x̄ ,G〉 is a global system state, thenG |� φi does not hold and the rule ADD adds the new component ci
by applying the rule addSE , i.e. V ′ � V ∪ {ci } and G ′ |� φi holds. Furthermore, for 1 ≤ k ≤ n, k �� i , x ′

k � xk
and the formula (1) holds. If k �� i , we can prove x ′

k �� ε ⇔ G ′ |� φk similar to the case 1 of the rules CONT and
DISCONT. If k � i , then x ′ � si ∈ Si and si �� ε, and subsequently, item (2) is concluded fromG ′ |� φi . Similarly,
we can prove item (2) for the rule Remove. �

Example 3Considerdel (C )add (B ) conn(A,B )del (D) as oneof thepossible reconfigurationpaths inour example.
Figure 7 shows the behavior of the system during this reconfiguration. For the sake of simplicity and readability,
we donot draw the graphs associatedwith each state in this figure, butwepartition the systembehavior into several
parts (shown as the boxes in the figure), each of which shows the behavior of the system in the corresponding
configuration obtained using the rules IACT and SACT in Fig. 6. In other words, the states in each box have the
same structure and the transition system in a lined box describes the behavior of the system between structural
actions. The corresponding structure of each box, showing the changes of the system structure, is depicted in Fig.
8. The label of a box in Fig. 7 (e.g., p0, p1, . . . , p4) represents its corresponding configuration label in Fig. 8.

The label of a system state is the concatenation of the state labels of each component followed by the label of
the current configuration. For example, the state a4c3d0b2p1 shows that the component A is in the state a4, C is
in the ε-state c3, D is in the state d0, B is in the ε-state b2, and the system structure is the configuration p1. The
dashed arrows show the structural events (add, del,con, and dis) connecting the states of two configurations,
and solid arrows are the behavioral events done by the components in a configuration. The gray states are bad
states that we will introduce and consider in Sect. 5. All states of the final configuration comprise the final states.

4. Property specification

We specify properties to be preserved during the adaptation of a system in terms of the structure of the system in
addition to its behavior. We use an automaton called graph automaton over an alphabet of both ordinary event
variables and atomic graph constraints to specify a property. A graph constraint is defined as follows:

Definition 5 (Graph constraints)An atomic graph constraint is a graphmorphism.Agraph constraint is aBoolean
formula over atomic graph constraints:

1. True, False, and every atomic graph constraint are graph constraints;
2. if c1 and c2 are two graph constraints, then c1 ∨ c2, c1 ∧ c2 and ¬c1 are graph constraints;
3. if c is a graph constraint, then (c) is a graph constraint.
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Fig. 7. The system behavior during the reconfiguration

Fig. 8. The system structure during the reconfiguration

Definition 6 (Graph constraint satisfaction) A graphG satisfies an atomic graph constraint α : P → C if for every
injective morphism p : P → G , there exists an injective morphism q : C → G with q ◦ α � p.
A graph G satisfies a graph constraint of the form:

1. c1 ∨ c2, if G satisfies either c1 or c2, or both;
2. c1 ∧ c2, if G satisfies both c1 and c2;
3. ¬c, if G does not satisfy c;
4. (c), if G satisfies c.

Definition 7 A graph automaton is defined as A � (Q, �,GC , δ, q0,Qm ) where Q is a finite set of states, � is a
finite set of alphabet symbols,GC is a set of graph constraints as defined in Definition 5, δ : Q × (GC ×�) → Q
is a partial transition function, q0 is the initial state, and Qm ⊆ Q is the set of marked states.

In general, an automaton runs on a given sequence of inputs and its language is defined as the set of observables
of all of its runs. The observable of a run is the sequence of the observables of its transition instances, and an
observable of a transition instance is a witness that makes its label satisfiable. In a graph automaton, a witness

of a transition 〈X ,G〉 (φ,e)−−→ 〈X ′,G ′〉 is a pair (G, e) where G |� φ (i.e., G satisfies the graph constraint φ), and



Synthesizing control for reconfigurations 33

PC = ∅ → A B ∨ ∅ → A C ∨ ∅ → A D

Fig. 9. A property

e ∈ � is an event. Thus, the observable of a run of a graph automaton A is a sequence of graph/event pairs
π ∈ (G × �)∗, where for some set of Xi ’s and ei ’s, its i -th element is πi � (Gi , ei ); q0 � 〈x̄0,G0〉 is the initial,
pre-reconfiguration state of the automaton; δ(〈Xi ,Gi 〉, (φ, ei )) � 〈Xi+1,Gi+1〉; andGi |� φi . The language L(A)
of a graph automaton A is the set of all such sequences π . The marked language of a graph automaton is defined
similarly to that of an ordinary automaton (See Sect. 2.2).

The product of two graph automata is defined as follows:

Definition 8 The product of two graph automata A1 � (Q1, �,GC , δ1, q0,1,Qm,1) and A2 � (Q2, �,GC ,
δ2, q0,2,Qm,2), denoted by A1 × A2, is a graph automaton A � (Q, �,GC , δ, q0,Qm ) where Q � Q1 × Q2,
q0 � (q0,1, q0,2), Qm � Qm,1 × Qm,2, and ((s1, s2), (t1 ∧ t2, a), (s ′

1, s
′
2)) ∈ δ where (s1, (t1, a), s ′

1) ∈ δ1 and
(s2, (t2, a), s ′

2) ∈ δ2.

Lemma 2 L(A1 × A2) � L(A1) ∩ L(A2).

Proof Induction on the length of the accepting words. �

Example 4 The property stating that the component Amust always remain connected to another component, and
an interaction d must always happen after an occurrence of a is shown in Fig. 9, where PC is a graph constraint
stating that A is connected to C , or D , or B , ∅ shows an empty graph, and ∅ → G is a basic graph constraint
(See Definition 5).

5. Reconfiguration controller synthesis

Weneed tomake sure that a reconfigurationplan is safe, i.e., it doesnot cause adeadlockduring the reconfiguration
process, nor does it violate any user-defined correctness properties. Control consists in imposing interleaving of
structural actions and behavioral actions in such a way that they are complying with the required constraints,
e.g., structural actions can wait for behavioral actions to be in a state ready for reconfiguration, and reciprocally
behavioral actions can be inhibited or delayed until the adaptation reaches a state where they can be executed
correctly. As the third step of our approach, in this section we deal with the design of safe structural adaptation
plans for adaptive systems. We build a non-blocking controller to control the reconfiguration process such that
a specific property remains satisfied. As mentioned before, a property can be specified in terms of the system
structure as well as its behavior. First, we deal with the synthesis of controllers for enforcing properties specified
in terms of both structure and behavior. Then to reduce the complexity of computing the controller, we improve
the approach for the case of pure structural properties.

5.1. General synthesis method

The aim of the supervisory control problem is to design a controller that restricts the system behavior by al-
lowing/disallowing events in a proper way such that a specific property is preserved. We approach our goal as a
controller synthesis problem. Given a reconfiguration plan Pl , we generate all possible strategies for reconfigur-
ing a structure, and build a system model containing all possible reconfiguration strategies. Then, we restrict the
reconfiguration/component operations to preserve the desired property in question. The synthesized controller
allows behavioral and structural actions be interleaved in such a way that they can progress as far as possible
without jeopardizing safety requirements. Inhibiting events corresponds to a control that is delaying some actions
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in order to execute them only in states where they can safely be executed. Delay is to be taken in the sense that
transitionswith these actions are inhibited or removed except fromappropriate states. This delaying is a reciprocal
game between structural and behavioral parts of the system, which have to wait for each other in order to avoid
undesirable behavior, e.g., attempting communication when the other party is not ready yet.

In our problem domain, a controllable event in the system can be a reconfiguration event described in an
adaptation strategy, or a visible event describing an internal computation or an interaction of the components. It is
worthmentioning that many components (such as web-services) are presented as black-boxes, and it is impossible
to observe and modify their internal behavior. However, one can usually observe and coordinate the interactions
of components. Uncontrollable events can be invisible internal events of components, as well as unplanned
reconfiguration events, e.g., break-down of a component or a fault in the connections among components. We
assume that a controller has full observation, i.e. all events are observable by the controller. We do not deal with
partial observations in this paper, and if an event is invisible for the controller in the implementation, one can
consider it as an uncontrollable event.

In contrast to the Ramadge–Wonham framework, we do not use ordinary automata to model a system and
a specification. We adapt the automata theoretic approach of the RW framework for designing a controller to
control the reconfiguration phase.

Wefirst compute the product of a systemmodel specified as a graph transition systemand the graphautomaton
of a specification. We prove that the product returns those paths of the system model that are consistent with the
specification. Then, we follow the RW framework approach to obtain the final non-blocking controller. Synthesis
of a controller for enforcing a property during a reconfiguration phase consists of three main steps as the classical
RW framework. The product that we use in the first step is specific to our problem, the second step is the same as
in the RW framework, and we use our own algorithm in the third step. This algorithm is based on the ordinary
state space exploration algorithms.

Step A—Computing the synchronous product of the system model and the graph automaton of the
property

Given the graph transition system of a reconfiguration, we compute the product of the graph transition system
and the graph automaton of the property as follows:

Definition 9 Let G � 〈T , g〉, T � 〈S , �,→, s̄0,F 〉 be a graph transition system indicating the evolution of a
system structure during a dynamic reconfiguration, andA � (Q, �,GC , δ, q0,Qm ), denote the graph automaton
of the property to be enforced. The product of G and A, written as G � A, is a graph transition system AG �
〈T ′, g ′〉 where g ′ � 〈g ′

1, g
′
2〉 and T ′ � 〈S ′, �,→′, s̄ ′

0,F
′〉 is defined as follows:

• S ′ � S × Q ,
• s̄ ′

0 � (s̄0, q0),
• F ′ � F × Qm ,
• g ′

1((s̄, q)) � g1(s̄) for all (s̄, q) ∈ S ′,
• g ′

2(((s̄, q), a, (s̄ ′, q ′))) � g2((s̄, a, s̄ ′)) for all ((s̄, q), a, (s̄ ′, q ′)) ∈→′, and

(q, (t, a), q ′) ∈ δ (s̄, a, s̄ ′) ∈→ g1(s̄) |� t
((s̄, q), a, (s̄ ′, q ′)) ∈→′ .

The goal of synchronous product is to consider all accepting runs of G that are also the accepting runs of
A. An accepting run on G which matches a run in A describes an execution sequence satisfying the property
expressed by A.

Theorem 1 For any graph transition system G and a graph automaton A, L(G � A) � L(G) ∩ L(A)

Proof In order to prove this theorem, we transform the system model G � 〈T , g〉, T � 〈S , �,→, s0,F 〉 into an
automaton defined as �(G) � 〈S , �, δ, s0,F 〉 where (s, (t, a), s ′) ∈ δ if (s, a, s ′) ∈→ and the graph constraint
t is ∅ → g1(s). Note that ∅ represents an empty graph. In this automaton, we move the graph label of a state
to all its outgoing transitions. Observe that the label of the states with no outgoing transitions is not considered
in the product. It is trivial to show that the product of G and the property automaton equals to the ordinary
product of the transformation of G and the property automaton (by induction on the length of the accepting
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words), i.e. G � A � �(G)×A. It follows from Lemma 2 that L(�(G)×A) � L(�(G))∩L(A), and subsequently
L(G � A) � L(G) ∩ L(A). �

Step B—Removing bad states from AG

The product of a graph transition systemG modeling the system behavior, and a graph automatonAmodeling the
desired property, is a controller that restricts atomic reconfigurations to those paths which preserve the property
A during the adaptation phase by disallowing some events. However, not all events are controllable, and for some
technical reasons, they may not be preventable either. For instance, only the interactions among the components,
but not the internal behavior of a component may be observable and controllable by the controller. However,
the controller AG prevents all forbidden uncontrollable events from occurring while it is impossible to prevent
undesirable uncontrollable events. To rectify this situation, we compare G and AG to find all bad states of AG
where a forbidden uncontrollable reconfiguration occurs, according to the RW framework.

Let � ⊇ �r � �u
r ∪ �c

r denote the set of all actions applied during a reconfiguration phase where �c
r and

�u
r are the sets of controllable events and uncontrollable events, respectively. A state such as (s, q) of G � A is

considered a bad state if it fails to satisfy the following condition:

actG(s) ∩ �u
r ⊆ actAG((s, q)) (2)

where actG(s) and actAG((s, q)) denote all activated events of G and AG, in states s and (s, q) respectively, i.e.,
actG(s) � {σ ∈ � | ∃ s ′ ∈ S1 , (s, σ, s ′) ∈→}. In other words, a state is good when uncontrollable actions
from the original system are still included in actions of the controlled system, i.e. they have not been abusively
inhibited. Having all bad states of AG, we remove bad states and the transitions to and from them from AG. We
use a depth-first algorithm to traverse the state space and remove the bad states.

Step C—Removing non-coaccessible states

The resulting graph transition system of Step B may include non-coaccessible states, i.e. states that are either not
reachable from an initial state or from which a final state is not reachable.

Moreover, the system can lead to a final deadlock state after adaptation, i.e. the adaptation is performed
successfully, but the system after adaptation contains deadlock states. Therefore, the deadlock states must be
avoided. We trim this graph transition system to those states that lie on a path from an initial state to a final state.
The resulting graph transition system is a non-blocking controller that enforces the desired property during the
reconfiguration phase.

Algorithm 1 is our algorithm to remove the non-coaccessible states. It takes an input graph transition system
AG, and returns a graph transition system (res). This algorithm, first returns in rgts, the part of AG that is
accessible from its initial state using a depth first search algorithm (the function compute reachable GTS from).
Now we must trim rgts to those states from which a final state can be reached. So, for each final state s in rgts, the
algorithm computes the part of rgts from which s can be reached. The variable res shows a subset of coaccessible
states/transitions computed so far. We use a (backward) depth first algorithm to compute the states from which
a final state can be reached. This search starts from a final state, traverses the incoming transitions, adds the
visited source states/transitions to the result in a recursive manner until it reaches a coaccessible state, i.e. a state
of res

Theorem 2 Algorithm 1 is sound.

Proof Let s ∗−→ s ′ denote that state s ′ is reachable from s , i.e. ∗−→ is the transitive closure of −→. To show the
correctness, we need to show that for all states sk in res, (i) s0

∗−→ sk , and (ii) there exists a state sn in the final
states of res such that sk

∗−→ sn . The graph transition system rgts contains all the states that are reachable from
the initial state. Since the state/transition set of res is a subset of rgts’s states/transitions, we conclude the states
of res are reachable from the initial state [obligation (i)]. The obligation (ii) is proved by induction on the number
of final states of rgts. �

There is no unique solution to the basic controller synthesis problem, i.e. there may be several controllers that
can enforce a property. A maximal solution is a controller AG that restricts the behavior of the system the least.

Definition 10 Given a system model G and a property A, a non-blocking controller, AG, enforcing A in G is
maximally permissive if for any other non-blocking controller AG ′ that enforces A on G, L(AG ′) ⊆ L(AG).
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Algorithm 1: Computing Coaccessible Automaton
Input: Graph Transition System AG.
Output: res (Trimmed Graph Transition System AG ′).
// s0 is the initial state of AG

1 res = ∅;
2 stack = ∅;
// compute the reachable part of AG from s0

3 rgts = compute reachable GTS from(s0,AG);
4 for each final state s in rgts do
5 if s �∈ res.states then
6 stack.push(s);
7 visited=∅;
8 repeat
9 curstate = stack.pop();
10 if curstate �∈ res.states and curstate �∈ visited then

// gets all transitions of rgts with the target state of "curstate"
11 intrans = IncomingTransof(curstate,rgts);
12 for each t ∈ intrans do
13 res.states = {t .trg} ∪ res.states
14 res.transitions = {t} ∪ res.transitions
15 stack.push(t .src);
16 end
17 visited = visited ∪ {curstate};
18 end
19 until stack �� ∅;
20 end
21 end

Fig. 10. The product

Theorem 3 A controller AG ′ synthesized using our approach is the maximally-permissive controller.

ProofA graph transition system can be transformed into an equivalent automaton as explained above. Then, we
can prove this theorem similarly to the corresponding theorem of the RW framework [RW87]. �

Example 5Anexcerpt of the product of the systembehavior and the property automatonof our running example is
shown in Fig. 10, if the adaptation is initiated in the system state a0c0d0b2p0 (Fig. 7). If all events are controllable,
then the product is the final controller (or the controlled system).

Now suppose a case where the event c1 is uncontrollable, while the events a, d, e and c2 are controllable, i.e.,
the controller monitors internal behavior of the components and their interactions, except the interactions on
c1. In this case, the states in {a1c0d0b2p0s1,a1c3d0b0p3s1,a1c3d1b0p4s1} are bad, because in the product, the
event c1 in the corresponding states of the plant model (i.e., the state set {a1c0d0b2p0,a1c3d0b0p3,a1c3d1b0p4})
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Fig. 11. The controller

is forbidden while this event is not controllable and cannot be disallowed. After removing the bad states, the
state a4c0d0b2p0s0 becomes non-coaccessible, because it is not reachable from the initial state a0c0d0b2p0s0
and is removed from the product. Figure 11 shows the controller after removing the bad and non-coaccessible
states.

While a synthesized controller is nonblocking during the adaptation, it is not guaranteed that the system has
no deadlock state after an adaptation as well. The reason is that we defined the termination of the adaptation
phase as execution of the last structural event. As such, we considered all the states of the final mode reached
by a structural event as a valid final state. To prevent such blocking, we need to define the termination of an
adaptation more carefully. Note that the state a0c3d1b0p4 is not a blocking state, because after the adaptation,
the system does not run under the control of the controller anymore, but continues its normal execution. From
this state, the system can perform a and evolve to the state a1c3d1b0p4.

A possible solution to this problem is to find the deadlock states of the system after an adaptation, remove
them from the set of final states of the system and perform Step C for the updated model.

Complexity The complexity of the approach isO(m×n) wherem and n are respectively, the sizes of the property
and that of the model, i.e., the numbers of transitions. The complexity of computing the product is O(m × n).
Step B traverses the whole state space of the product, i.e. the complexity of this step is O(m × n). To obtain the
accessible states from the initial state, in the worst case, we traverse the whole state space. Similarly, computing
the states from which a final state is reachable also needs m × n steps in the worst case. Note that for each final
state, we do not traverse the whole state space to reach the initial state, but we update the list of coaccessible states
and the traversing process stops when a coaccessible state is reached. Therefore, a transition/state is visited once,
and the complexity of Step C is O(m × n).

5.2. Synthesis for pure structural properties

To reduce the complexity of synthesis in the special case of preserving a pure structural property, we construct
an abstract graph transition system which specifies only the structural changes of the system. In other words,
we don’t use the rules IACT and SACT in Fig. 6 to build this transition system and use a ghost state s to denote
a (behavioral) state. Given a pure structural property and the abstract graph transition system, we obtain an
abstract controllerAG using the method introduced in Sect. 5.1. This controller only restricts the reconfiguration
actions such that the property is preserved; however, it does not ensure termination of the adaptation phase. This
is because of the possible existence of deadlocks in the system when it runs with a fixed structure. For instance,
assume a case where while a component is waiting to receive a message from another component, the sender is
removed which may cause a deadlock in the system. In other words, since we do not model the behavior of the
components, it is impossible to detect a (behavioral) deadlock using the abstract model. Hence, we need to model
the behavior of the system as well to be able to detect deadlocks.

The abstract synthesized controller, AG � 〈T , g〉, specifies the potential safe reconfiguration strategies to
adapt the system behavior. To remove non-coaccessible states, we use T as the input reconfiguration plan at the
semantics level and construct the system model, as explained in Sect. 3. Afterwards, we proceed with step C to
remove non-coaccessible states of the constructed model. The result is a non-blocking controller enforcing the
structural property.
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(a) (b)

Fig. 12. The pure graph transition system of the example 5.2

In other words, in the extended approach for synthesis of pure structural properties, we do not consider the
internal behavior of the components in constructing the whole system model. Instead, we build a simple model
describing only the structural evolution and synthesize a controller based on this model. Afterwards, we add
the behavior of components to the synthesized controller and refine it. While in the approach described in Sect.
5.1, we build a complex model describing both the system behavior and its structural evolution, synthesize a
controller based on that model and refine the synthesized controller.
Example 6 In our running example, assume the property to be enforced is that at all time the componentA should
be connected to another component. The pure graph transition of our reconfiguration plan is partially shown in
Fig. 12a, and the abstract synthesized controller to enforce the reconfiguration actions is shown in Fig. 12b. The
reconfiguration plan corresponds to the abstract synthesized controller in Fig. 12b is the following:

((add (B); con(A,B)) || del (C)); del (D) + ((add (B); con(A,B)) || del (D)); del (C)
We use this reconfiguration plan to build a graph transition system and remove the deadlock states.

6. Implementation and evaluation

ImplementationWehave implemented a tool in Java to support our approach. This tool has twomain components:
(1) an engine to construct the plantmodel that takes themodel of each component as a state transition system, the
initial structure of the system and a reconfiguration plan, and produces the system model during reconfiguration
automatically, and (2) the synthesizer that takes the output of themodel construction engine, the set of controllable
events andaproperty, and synthesizes a controller to enforce that property.Theproperty tobe enforced is provided
to the tool as an automaton in the .dot format. The output of the tool is a controller (a graph transition system)
stored in a .dot file. We used the tool to produce the results of the illustrating example in this paper that are
available.

Case study To evaluate our approach, we use an extension of the example in [BCL+06] to illustrate our approach.
In this example, three application servers provide services of types A and B to the clients where their required
data are provided by the data servers DBA and DBB. The cache handler is used to determine the best server for
handling a request considering the quality of service constraints, and the logger monitors the incoming requests.
The request analyzer analyzes the requests and transmits them to the request dispatcher. The latter forwards the
request to the proper application server(s). The application servers server 1 and server 3 can handle services of
both types A and B, server 2 can handle tasks of type B but delegates tasks of type A to server 3 for performance
reasons. When a request is processed, it gets forwarded to the result aggregator component. This component is
responsible to combine the results received from the servers and sends the result back to the requester and/or
the cache handler. According to the load of the system, two different configurations, light-load and heavy-load
configurations, are used (Fig. 13). When the number of requests is high, the cache handler is activated, which
gets replaced by the logger in the light-load configuration. Application server 2 is active only in the heavy-load
configuration, and server 1 handles requests of both types A and B in the light-load configuration.
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Fig. 13. The reconfiguration of the case study

Fig. 14. The properties of the cluster Https servers

Results In our example, different constraints must be enforced to have a correct reconfiguration. Figure 14 shows
some of the properties that we checked. A category of properties contains the properties stating that the caller
should be connected to the called component.Whenwe construct amodel of the system during a reconfiguration,
weonly allow synchronizationon the connected components.Therefore, this categoryof properties are guaranteed
by construction. However, if there is no component to synchronize with, this can cause a deadlock. Deadlock
freedom is one of the basic properties that we check (the property p1). The property p2 states that the requests
delegated to Server 3 by Server 2 should be responded to before shutting down Server 2, otherwise the responses
will be lost. The formula PC23 is a graph constraint stating that Server 2 and Server 3 are connected. The property
p3 asserts that a request should finally be handled. The property p4 asserts that Server 3 should be connected to
the data server A before connecting it to the dispatcher, otherwise, the new requests cannot be handled correctly.
The graph constraints PC3A states that Server 3 and the data server A are connected.

Table 1 shows the results of our analysis. The columns of this table, from left to right, show the plan used
to reconfigure the system, the number of states/transitions of the system model during reconfiguration, the time
for constructing the system model during reconfiguration, the consumed memory, the property to be enforced,
the set of events that are uncontrollable by the synthesized controller, the number of states/transitions of the
synthesized controller, and the synthesis time. In this table, plans Pl1 and Pl2, below, are used to reconfigure the
system from the heavy-load to the light-load configuration, and Pl3 reconfigures the system from the light-load
to the heavy-load configuration:
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Table 1. Statistics
Plan System’s states/ Model const. Memory (MB) Prop. Uncont. Controller’s states/ Synth.

transitions time (s) events transitions time (s)

Pl1 1.7 × 104/5.8 × 104 �11.7 18 p1 el2 9.6 × 103/3.4 × 104 197
p2 ∅ 7.8 × 103/2.7 × 104 78

el2 7.8 × 104/2.7 × 104 108
p3 el1 1.0 × 104/3.6 × 104 103
p4 el2 0/0 40

Pl2 2.4 × 104/8.7 × 104 �15.8 26 p1 el1 7.7 × 103/2.7 × 104 12
p2 ∅ 1.2 × 104/4.6 × 104 572

el1 1.2 × 104/4.6 × 104 576
el2 1.2 × 104/4.6 × 104 579

p3 el2 1.3 × 104/4.9 × 104 496
p4 el1 1.1 × 104/4.5 × 104 425

Pl3 2.6 × 104/1.0 × 105 �35 31 p1 el1 2.6 × 104/1.0 × 105 1460
p2 ∅ 9.8 × 103/3.8 × 104 422
p3 el1 2.3 × 104/7.8 × 104 2017
p4 el1 0/0 2996

el2 0/0 950

Pl1 � del(srv2) || del(ch); add(lgr); conn(rec, lgr); conn(agg, lgr);
conn(disp, srv3); conn(srv3, DBA) || conn(srv3, agg)

Pl2 � dis(rec, ch); dis(srv3, srv2); dis(disp, srv2); add(lgr); del(srv2) || del(ch);
conn(rec, lgr); conn(agg, lgr); conn(srv3, DBA) || conn(srv3, agg); conn(disp, srv3)

Pl3 � add(srv2) || add(ch); del(lgr); conn(rec, ch); conn(srv2, srv3);
conn(srv3, srv2); conn(disp, srv2); conn(srv2, DBB); conn(srv2, agg);
dis(disp, srv3); dis(srv3, DBA) || dis(srv3, agg)

We consider three cases for partitioning the events into controllable and uncontrollable events. In the first
case (el1), all events are controllable. This case is suitable when there are facilities provided to disable an event,
e.g., all components can control their internal computations and an external entity coordinates the interactions
between the components by disallowing interactions. In the second case (el2), receiving a request from outside
is uncontrollable; it is not always possible to prevent the requester from issuing a request. If the components
are designed as black boxes, we cannot observe their internal behavior and disallow the events associated with
their internal computations. Furthermore, the servers altogether can be provided as a (web)-service making
their internal interactions invisible from outside. We consider the third case (el3) to model these scenarios, i.e.,
where the internal computations of components and the interaction between the servers and the data servers are
uncontrollable.

We carried out our experiments on an Intel Core i7 2.8 GHz CPU with 16 Gbyte memory running OS X
10.9.5. The size of the system model and the time for constructing the system model depend on the number and
the size of components involved in the reconfiguration, as well as the complexity of the reconfiguration plan. For
instance, consider the plan Pl3 which has more reconfiguration steps compared to Pl1 and Pl2. The size of its
system model is larger than those of Pl1 and Pl2 and it is more time-consuming to build its system model. The
memory used for synthesizing a property depends on the systemmodel size and the property. Since the properties
have similar complexities in this case study, the memory usage mainly depend on the system model size, i.e.,
different properties enforced in the same plan require almost the same amount of memory.

Besides the size of the system model and the property to be enforced, the number of uncontrolled events
affects the synthesis time too. Consider the plan Pl1 and the property p2. The controllers synthesized for the
empty uncontrolled event set and the set e2 are the same, but it takes less time to synthesize a controller for
the event set ∅. The difference is due to the time consumed to check if a transition label is in the uncontrollable
event list e2. For some cases, the tool could not find a controller to enforce the property. For instance, there is no
controller to enforce the property p4 in the plan Pl1. This is because Server 3 is not connected to the dispatcher
[holds after executing the event conn(srv3, DBA)] when the event conn(disp, srv3) occurs. Due to the complexity
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of the synthesized controllers, it is impossible to show them in the paper; however, the synthesized controllers are
available. We use Graphviz [GRP] to draw transition systems/automata in dot or gv format.

We believe that the controller synthesis is expensive, in particular for real-life applications. However, since the
synthesis process is performed offline, it does not have a high run-time cost. Furthermore, our experiments show
that the tool can synthesize controllers for systems with large state spaces that are much more difficult to obtain
manually. We tested the validity of the results for some smaller examples. The output of the tool can be used
for further analysis during the software development cycle. Once we have obtained a controlled system, we can
continue working on it in the design phase, for instance through model checking to verify properties other than
those already enforced by the controller, that may be relevant for the complete system. Automated generation
of executable code for the synthesized controller is yet another important step in the implementation phase of
a system under design. Adding this step completes our methodology by integrating controller synthesis into a
complete design flow, as done in [DRM13]. Such an executable can be used for simulation or for actual run-time
execution of the controlled system.

7. Related work

The aim of reconfiguration control synthesis in [AFI+06, TFGG07, AMNT08] is to coordinate the interaction
behavior of the components in order to avoid undesirable behavior such as deadlocks. The interaction behavior
of the system and the desirable behavior are modeled using labeled transitions systems. Then, algorithms are
proposed to synthesize (distributed) adaptors to coordinate the components’ interactions. Furthermore, supervi-
sory control theory is used to synthesize behavioral adaptors to adjust the communication between services such
that a certain behavioral property holds in the composed system [GMW12]. The main difference between our
approach and the above approaches is that they are mainly concerned with synthesizing the behavioral adaptors
to coordinate the interactions of components/services, while we are interested in correct-by-construction design
of controllers to guarantee the safe structural adaptations. We model both the behavior and the structure of
the system, while the above approaches deal with only behavioral modeling of the component interactions. We
specify properties involving both structure and behavior of a system, but only behavioral properties are taken
into account in [AFI+06, TFGG07, AMNT08, GMW12]. Compared to [AFI+06, AMNT08] we can synthesize
a centralized adaptor and we do not deal with real-time properties such as latency, performance, etc., as done in
[TFGG07].

The authors of [BK08, KB04] proposed an approach based on the concept of proof lattice to verify if a
system is in a correct state during and after adaptation in terms of satisfying the transitional-invariants. In this
approach, the behavior of a system during adaptation is specified using an adaptation lattice in which a node is an
automaton denoting the behavior of a possible intermediate program.Although verification identifies undesirable
behavior, one has to fix errors manually while using synthesis techniques, one can generate a controller to control
the adaptation phase. In this work, the properties to be verified are only about the behavior of the system while
we consider both structural and behavioral properties.

Discrete Control Theory has recently been applied to computing systems. We restrict ourselves to present the
works done in the area of dynamic adaptation and component-based system. In [GN12, GVNH11], the authors
consider run-time exceptions raised by programs and not handled by the code. Supervisory control is used to
modify and adapt programs in such a way that the un-handled exceptions will be inhibited. In terms of autonomic
computing, this corresponds to a form of self-healing of the system.

Applying control theory to design self-adaptive systems has recently received attentions. In [FHM14], the
authors propose amethodology for automatically constructing amodel of the system dynamically and synthesize
a continuous controller to enforce non-functional requirements at runtime, and tune the variables to achieve the
goal in the presence of unpredictable disturbances. In this work, the model is updated dynamically at runtime.
In [GGM12], the aim is introducing safe and automatic self-adaptation mechanisms driven by the requirement
and environment changes. In this research, the system is controlled by a controller that enforces requirements
and environment assumptions. If the specification changes, the approach attempts to find a safe state to update
the system behavior to satisfy the new specification, and then drive a new controller from the old controller
to implement the changed specifications. A multi-tier framework is proposed in [DBK+14] for designing the
planning layer of a self-adaptive system. In this framework, each tier is associated with its own set of goals to be
achieved and the environment model. Then for each tier, a control problem is solved to synthesize a controller to
achieve the goal of that tier given the environment model. This approach allows to provide graceful degradation
and progressive functional enhancement at runtime based on the fact that the assumptions of the tiers hold. The
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focus of [FHM14, GGM12, DBK+14], in contrast to ours, is not on synthesizing a controller to provide safe
adaptation during an adaptation, but their goal is to provide techniques to design self-adaptive systems.

In an approach related to reactive systems and synchronous programming, discrete controller synthesis, as
defined and implemented in the tool Sigali, is integrated in a programming language compiler BZR [DRM13],
used in component-based software [BSDR11].

Furthermore, interface synthesis [CdAHM02] is also related to Discrete Controller Synthesis, and consists of
generating interfacingwrappers for components, in order to adapt them for the composition into given component
assemblies, with respect to the communication protocols between them.

There are several works on integrating graph-based formalisms with the behavioral modeling approaches
to model an adaptive system. In [WGT14], the authors combine Modal Sequence Diagrams and graph trans-
formation techniques to model message-based interaction behavior and structural reconfigurations. Similar to
our work, they use synchronous message passing. In this work, the events are implemented using graph trans-
formation rules, while we only implement structural reconfiguration events using (simple) graph evolutions. In
another work, [HH11] integrates real-time state-charts and time graph transformation systems where the adap-
tation behavior is specified by graph transformation rules and the remaining behavior is modeled in state-charts.
The authors in [HHG08] present an approach to model collaborations among several participants (roles) where
the components can join and leave collaborations dynamically. They use state charts to describe the behavior of
each role and graph transformation to express the structural changes. The authors of [HH11, WGT14, HHG08]
do not model the behavior of the system during an adaptation and assume that a reconfiguration is performed in
one step, specified by graph transformation rules, while we are concerned about the system behavior during an
adaptation. Furthermore, they can specify behavioral adaptations, and we only focus on structural adaptations
in this paper.

Koenig [Koe04] investigates graph-transformation techniques for modeling and formal analysis of adaptive
systems. In this thesis, the focus is on both behavioral and structural adaptations, while we only concentrate on
structural adaptation. As a part of the RAPIDware project, Zhang and Cheng [ZC06] proposed a model-driven
approach for developing adaptive systems. In this approach, different contexts in which an adaptive programmay
run are determined according to high-level requirements specified by a formalism like temporal logic. The local
properties of the program in each context are described formally. Then, a state-based model of the program in
each context, as well as the adaptation models for the adaptations of the program from one context to another,
are built. Different behavioral variants of a program are modeled as Petri Nets in [ZC06]. They specify the system
behavior during an adaptation, as we do in this paper. However, they only deal with behavioral adaptation,
while we consider structural adaptations. In contrast to our work, they do not deal with correct-by-construction
adaptations and their focus is on formal verification of adaptive systems.

8. Conclusions

We proposed an approach for synthesizing a controller to control dynamic reconfigurations in adaptive systems.
We modeled the problem of reconfiguration control synthesis as a supervisory control problem. To this end, we
adapted the supervisory control problem to support reasoning about the structure of system. The property to
be applied is specified using a graph automaton and the system is modeled using a graph transition system. We
have implemented a tool to support our approach and have applied it on a case study in the area of clustered
https-servers.

There is muchmore research to pursue in the area of reconfiguration control synthesis. Convergence of system
state toward a stable state during adaptation is an important issue. It is often the case that an adaptation causes
another adaptation which in turn leads to another, and so on. If this cycle continues without reaching a stable
state, we say the system is in an unstable state. Extending our approach to avoid instability during reconfiguration
is a future work. Finding the best strategy for performing an adaptation with minimum transient states is another
issue which we did not consider in this research. There are different approaches to solve the SCP problem.
In this paper, we chose and adapted the RW framework to solve our problem, however we are interested in
investigating other advanced approaches, particularly game-theoretic approaches (e.g. [Job07]) to optimize the
synthesis process. An adaptive system evolves dynamically, and both the system model and the specification may
change over time. In order to take into account the system and the specification dynamics, we will focus on online
controller synthesis in the future.
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