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Abstract We present a four-category classification algorithm for the solar wind, based on Gaussian
Process. The four categories are the ones previously adopted in Xu and Borovsky (2015): ejecta, coronal
hole origin plasma, streamer belt origin plasma, and sector reversal origin plasma. The algorithm is trained
and tested on a labeled portion of the OMNI data set. It uses seven inputs: the solar wind speed Vsw,
the temperature standard deviation 𝜎T , the sunspot number R, the F10.7 index, the Alfven speed vA, the
proton specific entropy Sp, and the proton temperature Tp compared to a velocity-dependent expected
temperature. The output of the Gaussian Process classifier is a four-element vector containing the
probabilities that an event (one reading from the hourly averaged OMNI database) belongs to each
category. The probabilistic nature of the prediction allows for a more informative and flexible interpretation
of the results, for instance, being able to classify events as “undecided.” The new method has a median
accuracy larger than 90% for all categories, even using a small set of data for training. The Receiver
Operating Characteristic curve and the reliability diagram also demonstrate the excellent quality of this
new method. Finally, we use the algorithm to classify a large portion of the OMNI data set, and we present
for the first time transition probabilities between different solar wind categories. Such probabilities
represent the “climatological” statistics that determine the solar wind baseline.

1. Introduction

There is a growing consensus that the classification of the solar wind merely based on the particle velocity
is too simplistic (Borovsky, 2012a; Salem et al., 2003; Stakhiv et al., 2015; Zurbuchen, 2007; Zurbuchen et al.,
2002). Recent classifications distinguish the solar wind based on its solar origin. Recently, Xu and Borovsky
(2015) have introduced a four-plasma categorization scheme, which distinguishes between ejecta, coronal
hole origin, sector reversal origin, and streamer belts origin. A correct classification of the solar wind is impor-
tant, on one hand, to be able to understand and interpret solar wind observations and to analyze data
consistently (for instance, a statistical study of heterogeneous solar wind types might lead to erroneous con-
clusions) (Borovsky, 2012b; 2016; Kilpua et al., 2016; Neugebauer et al., 2016; Wimmer-Schweingruber et al.,
2006), and, on the other hand, to be able to develop space weather models that take into account the dif-
ferent geoeffectiveness of different types of solar wind (Chen et al., 1997; Crooker et al., 1977; Gopalswamy
et al., 2015; Riley et al., 2017; Wing et al., 2016). Clearly, along with a correct classification, we need to develop
a robust and accurate scheme to automatically assign categories. In this paper we deal with the problem
of now-casting the correct classification using solar wind properties taken from the OMNI database. Xu and
Borovsky (2015) have introduced a simple scheme based on only three variables. That scheme produces very
good results, particularly for the ejecta and the coronal hole origin category, but less so for streamer belt and
sector reversal origin plasmas. A close inspection of Figure 6 in Xu and Borovsky (2015) shows that these two
categories have many overlapping data points in the chosen three-dimensional space. Hence, one can argue
that an improvement in classification skill would almost certainly require an increase in the number of input
variables. The goal of this paper is to introduce a new scheme that has excellent accuracy for all categories.

We employ a machine learning technique called Gaussian Process (GP), for a multicategory classification task.
GP is a nonparametric statistical model, which has the advantage of producing probabilistic results, employ-
ing a Bayesian approach. This is a key feature that makes GP models different from most machine learning
schemes. In particular, other classification schemes have the goal of finding the category boundaries in a
multidimensional input space, unambiguously partitioning the input space into categories. The probabilistic
approach is more flexible and informative, because it attaches a confidence level to predictions, hence being
able to classify events as “undecided,” if needed.
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2. Data

We use the same data that were utilized in Xu and Borovsky (2015). Xu and Borovsky created four collections of
data that they considered to be known examples of the four types of solar wind plasma: (1) magnetic clouds as
clear examples of ejecta, (2) unperturbed high-speed streams as clear examples of coronal hole origin plasma,
(3) strahl-confusion zones as clear examples of sector reversal region plasma, and (4) pseudostreamers as clear
examples of streamer belt origin plasma, which we denote hereinafter as categories 1 to 4, respectively. The
magnetic clouds as clear examples of ejecta and the unperturbed high-speed streams as clear examples of
coronal hole origin plasma need little explanation, but the strahl-confusion zones and the pseudostreamers
do need explanation. Around magnetic sector reversals (i.e., the heliospheric current sheet) there can be a
distinct plasma that has been denoted as the heliospheric plasma sheet (Winterhalter et al., 1994); however,
Xu and Borovsky (2015) found that some sector reversal regions have such plasma sheet plasma and some do
not. They did consistently find dropouts of the solar wind heat flux (strahl) in the vicinity of the heliospheric
plasma sheet and determined that the heat flux dropouts (or strahl confusion zones) were a better marker
of the plasma in the vicinity of the sector reversals. Sometimes a solar wind spacecraft traverses from one
coronal hole region to another coronal hole region of the same magnetic polarity, that is, without crossing
a magnetic-sector reversal; this is known as crossing a pseudostreamer. The slow solar wind between those
coronal holes is of streamer belt origin without contamination of sector reversal region plasma. Hence, the
slow wind during pseudostreamer crossings is a clear example of streamer belt origin plasma.

After removing some gaps in the data, our data set is composed of 1,925 (21.5%) 1 h events categorized as
ejecta, 3,049 (34%) coronal hole origin, 2,273 (25.5%) sector reversal, 1,704 (19%) streamer belts, for a total of
8,951 data points. The data set comprises events from 1995 to 2008. The attributes are the same contained
in the low-resolution OMNI web data set (https://omniweb.gsfc.nasa.gov/), and one event is intended as one
reading from the hourly averaged OMNI database. In Xu and Borovsky (2015) a classification algorithm was
proposed that makes use of only three variables, namely, the Alfven speed vA, the proton specific entropy Sp =
Tp∕n2∕3

p (with Tp and np the proton temperature and density, respectively), and the temperature ratio Texp∕Tp,
where Tp is the measured proton temperature, and Texp is the expected temperature of protons, calculated as:

Texp = (Vsw∕258)3.113, (1)

with Vsw the solar wind speed in km/s. Despite its simplicity, the three-parameter four-category scheme pro-
posed in Xu and Borovsky (2015) yields a remarkable accuracy. It categorizes correctly 87.5% and 96.9% of
the “known” events belonging to categories 1 and 2, respectively. It performs less well for categories 3 and 4,
where it scores 69.9% and 72.0%. These are the scores that we aim to improve in this paper.

3. Method

We use a Gaussian Process (GP) classification method. For a detailed technical description, we refer the reader
to standard textbooks, (for example, Bishop, 2007; Rasmussen & Williams, 2006). This is a statistical model
that is generally defined as a probability distribution over functions y(x) (with x a multidimensional variable)
such that the set of values y1, y2,… , yN evaluated at any set of points x1, x2,… , xN jointly have a Gaussian
distribution. As such, the joint distribution is completely determined by its second-order statistics, namely,
mean and covariance. Here we can assume without loss of generality that the data are rescaled to have zero
mean, and thus, the Gaussian Process is determined by the specification of the covariance of y(x) defined as

E[y(x1)y(x2)] = k(x1, x2), (2)

where the function k is known as kernel or covariance function. This defines the similarity between different
data points, and it encodes all the assumptions made in the Gaussian process model. A Gaussian Process
allows to perform a probabilistic classification, where a prediction is interpreted as the probability that an
event belongs to a given class. In a Gaussian Process used for binary classification, it is customary to squash the
output of a GP regression model from the real axis to the interval [0, 1], using a sigmoid. Here we will employ
the logistic function 𝜋(f ) = 1

1+exp(−f )
. In this way, 𝜋 has a natural probabilistic interpretation. In practice, one

assumes a Gaussian distribution of so-called latent functions f (x), that are mapped through the sigmoid 𝜋.
In turn, this produces a non-Gaussian Process over the functions 𝜋 (interpreted as probabilities). The values
taken by f , however, are not observable and not of interest. In order to obtain a predictive distribution at a

CAMPOREALE ET AL. SOLAR WIND CLASSIFICATION 2

https://omniweb.gsfc.nasa.gov/


Journal of Geophysical Research: Space Physics 10.1002/2017JA024383

Table 1
List of Attributes

Attribute Symbol

Solar wind speed Vsw

Proton temperature standard deviation 𝜎T

Sunspot number R

Solar radio flux (10.7 cm) F10.7

Alfven speed vA

Proton specific entropy Sp

Temperature ratio Texp∕Tp

new point x∗, the probability 𝜋 must be marginalized over the values of the latent func-
tion f . Such integral is analytically intractable and must be approximated (Williams & Barber,
1998). In this work we use an approach called Laplace approximation, where essentially the
non-Gaussian distribution of the latent functions f , conditioned on the observed data, is
approximated by a Gaussian (Bishop, 2007). All the results of this paper have been obtained
with the MATLAB software GPML, available at http://www.gaussianprocess.org/gpml/code
(Rasmussen & Nickisch, 2010).

3.1. Choice of the Kernel and Attributes
We have used seven attributes, either obtained directly from the OMNI database or as
derived quantities. Specifically, we use the following: the solar wind speed Vsw, the tempera-
ture standard deviation 𝜎T calculated on 1 h intervals, the sunspot number R, the F10.7 index,
the Alfven speed vA, the proton specific entropy Sp, and the temperature ratio Texp∕Tp (see

Table 1). The last three are the same attributes used in Xu and Borovsky (2015). The attributes have been
chosen mostly by trial and error, somewhat guided by physical intuition. We have verified that using a sub-
set of these seven attributes, the performance is either comparable or worse. Interestingly, although R and
F10.7 are known to be strongly correlated, we have verified that when using both attributes, the performance
significantly increases, with respect to the case when one of the two is left out. Figure 1 shows the probability

Figure 1. Probability distribution function (pdf ) of the attributes (a) Vsw, (b) vA , (c) Sp, (d) Texp∕Tp, and (e) 𝜎T , shown for
the four different categories, calculated over the whole training set. The pdfs are normalized such that the area under
the curve is equal to 1.
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Figure 2. Accuracy of the GP classification model. The four colors represent different sizes of the training set, increasing
from light orange (10% of the data set used for training) to dark orange (25%). The statistics is computed on the
percentage of the number of events classified correctly, calculated across 100 runs (the training set being chosen
randomly for each run). The boxes denote the first and third quartiles of the distribution. Horizontal lines and circles
show the median and mean values, respectively. The lower and upper whiskers denote the 2nd and 98th percentiles.

distribution of five attributes, calculated over the whole database and color coded for different categories. R
and F10.7 are not shown because they do not present any meaningful distribution, for any category.

A crucial ingredient in the GP methodology is an appropriate choice of the covariance function (kernel). The
strategy followed here is to use one that belongs to a fairly general family, that is then optimized (see later
about Automatic Relevance Determination (ARD)) in order to be representative of the data. The kernel is sta-
tionary, meaning that k(x, y) is a function of r = ||x − y|| only. It is chosen as a combination of an isotropic
Gaussian and a piecewise polynomial kernel with compact support:

k(x, y) = 𝜎2
0 exp

(
− r2

2l2
0

)
+ 𝜎2

1 (1 − rΣ)6(6rΣ + 1)Θ(1 − rΣ), (3)

where Θ is the Heaviside step function, the weighted distance rΣ is defined as

rΣ =
√
(x − y)TΣ−1(x − y), (4)

and Σ is the diagonal matrix Σii = l2
i , with i = 1,… , 7. Note that the Gaussian part of the kernel can in prin-

ciple correlate inputs whose distance is larger than r = 1, while the polynomial is restricted by the Heaviside
function to rΣ < 1. Also, the former assigns an equal length scale l0 to each input, while the latter implements
Automatic Relevance Determination (ARD) (MacKay, 1996; Neal, 2012), where different inputs are assigned
different li . Those length scales define the characteristic distance that determine uncorrelation between data.
The kernel so defined contains 10 hyperparameters: two scaling factors 𝜎, and eight characteristic length
scales l. These are determined by minimizing the negative log likelihood of the training set (Rasmussen &
Williams, 2006). In this way, the kernel is tuned to be representative of the training data.

4. Results

A binary classification algorithm can be generalized to multiple categories in a straightforward way. First,
we compute the probability of an event to belong to a single category via binary classification, that is “one
category versus all the others.” The obtained probabilities can then be renormalized in order to obtain the
correct probability that an event belongs to any of the four categories. Finally, in order to assign an event
to a single category, we choose the one with highest probability (however, see later for a discussion on the
possible choice of thresholds).

We have considered cases where 10%, 15%, 20%, and 25% of the original data (8,951 1 h events) are used
for training, and the rest for testing. It is important to perform cross validation, that is, to make sure that
our results do not depend on a particular fortuitous choice of the training set. In order to do so, we perform
100 independent runs of classifications, each time randomly partitioning the original “known event” set into

CAMPOREALE ET AL. SOLAR WIND CLASSIFICATION 4



Journal of Geophysical Research: Space Physics 10.1002/2017JA024383

Table 2
Median Percentage of Number of Events Correctly Categorized Over 100 Tests, for
Different Ratios of Training to Test Data Size

Ratio of training to test data

Category 10% 15% 20% 25%

Ejecta 90.8 93.1 94.9 96.1

Coronal hole origin 99.2 99.5 99.7 99.7

Sector reversal origin 92.2 95.1 96.9 97.5

Streamer belt origin 93.2 96.8 97.8 98.7

training and test sets. Figure 2 shows the accuracy of the classification (percentage of “known” events classi-
fied correctly) calculated over the distribution of 100 runs. The different colors represent the different ratios of
training set: from 10% to 25% going from lighter to darker orange. The boxes denote the first and third quar-
tile. Horizontal lines and circles show the median and mean values, respectively. Finally, the whiskers denote
the 2nd and 98th percentiles of the distribution. One can appreciate that the classifier yields extremely good
results for all categories: even with only 10% of the data used for training, the median and mean values are
above 90% for all categories. This result considerably improves the classification scheme proposed in Xu and
Borovsky (2015). Similarly to the results in Xu and Borovsky (2015), the coronal hole origin plasma is the eas-
iest to classify, with almost perfect classification. Table 2 reports the numerical values of the medians shown
in Figure 2. Table 3 shows the confusion matrix for the case of 20% training set. The numbers reported here
are the probabilities of predicting a given category, conditioned on the observed categories. This means that
the probabilities sum to 100% along each column. For completeness, we report the numbers of events for
each observed categories used to define these probabilities: ejecta (147,700), coronal hole origin (260,100),
sector reversal origin (125,600), and streamer belt origin (182,500). The percentage of Table 3 were calculated
by using the category with maximum probability as the predicted one. However, the probabilistic nature of
the Gaussian Process approach allows us to give more informative statistics, depending on the values of the
outcome probabilities. This will be the subject of the next section. Table 4 reports the confusion matrix, when
only results with largest probability greater than 0.5 are taken in consideration (again only for the case of 20%
training set). With this particular choice, one would disregard 17%, 3%, 6%, and 6% of the results (respectively
for observed categories 1 to 4), but the frequency of false classification becomes very small.

4.1. Receiver Operating Characteristic Curve
Because our classifier produces a probabilistic classification, one is faced with the problem of how to inter-
pret such probabilities. Of course, one possibility is to disregard the probabilistic nature and simply consider
the category with higher probability, as done in Figure 2. On the other hand, it is interesting to evaluate how
considering as positives only the events that yield probabilities above a certain threshold can change the clas-
sification accuracy, in terms of true and false positives and negatives. A concise representation of this metric
for binary classification is given by the Receiver Operating Characteristic (ROC) curve. This is a curve of the
False Positive Ratio FPR, defined as the ratio of false positives divided by the total number of negatives (also
called “one minus specificity”) versus the True Positive Ratio TPR, defined as the ratio of true positives divided
by the total number of positives (also called sensitivity), for different values of thresholds. By definition, con-
sidering a threshold equal to 0% yields FPR = TPR = 1 and considering a threshold equal to 100% yields

Table 3
Confusion Matrix for the Case of 20% Training Set

Observed category

Prediction Ejecta Coronal hole Sector reversal Streamer belt

Ejecta 94.8 0.2 1.6 1.4

Coronal hole origin 0.8 99.6 0.5 0.2

Sector reversal origin 1.8 0.1 96.6 0.8

Streamer belt origin 2.5 0.1 1.3 97.7

Note. Probabilities are conditioned on the observed category.
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Table 4
Confusion Matrix for the Case of 20% Training Set, When Only Probabilities Larger Than 50%
Are Considered

Observed category

Prediction Ejecta Coronal hole Sector reversal Streamer belt

Ejecta 97.9 0 0.8 0.6

Coronal hole origin 0.2 100 0.1 0.1

Sector reversal origin 1.0 0.0 98.5 0.3

Streamer belt origin 1.0 0.0 0.5 99.0

Note. Probabilities are conditioned on the observed category.

FPR = TPR = 0. Hence, increasing the threshold designs a well-defined curve in the (FPR,TPR) space. A per-
fect classification would yield FPR = 0 and TPR = 1; hence, the value of the threshold that produces the
point closest to (FPR = 0, TPR = 1) is optimal. On the other hand, a classifier that assigns a prefixed probabil-
ity to all events would produce FPR = TPR, thus the distance from this line denotes the quality of a scheme.
Tables 5–8 list the FPR and TPR for each category and thresholds at 10% intervals (here we have used the
scheme with 20% used for training). The values denoted in bold indicate the optimal threshold, calculated
as the one that minimizes the Euclidean distance from (FPR = 0, TPR = 1). Here each table shows the ROC
computed in a binary classification sense, that is, “one category versus all others.” Although the ROC is usu-
ally shown graphically as a curve in the (FPR, TPR) space, one can appreciate that this model produces such
excellent results, with the optimal value extremely close to the point (FPR = 0, TPR = 1), that plotting the
curves would not be very informative. Finally, we report in Table 9 the number of undecided events, for differ-
ent thresholds (considered as the maximum probability over the four categories larger than a certain number)
and their classification skill over all categories. Table 9 has been computed on the 20% training set case.

4.2. Reliability
Reliability is an important characteristic of a probabilistic prediction. A prediction is said to be perfectly reli-
able if for all occasions when a category is predicted with a given probability p, the observed frequency of that
category is exactly p (Gneiting & Katzfuss, 2014). Here we adopt the definition of reliability for multicategory
probabilistic predictions introduced in Hamill (1997), which is defined as the average percentage of observa-
tions below given percentiles of the predictions distribution. This is calculated as follows. For a single event
we calculate the cumulative probability associated to each category. In our case, the probabilistic prediction
for a single event is composed of four probabilities. For instance, for a prediction (0.3, 0.5, 0, 0.2), the cumula-
tive distribution associated to categories (1, 2, 3, 4) is (0.3, 0.8, 0.8, 1.0). Then, we construct an ordered vector
of 100 elements of category numbers (1, 2, 3, 4) at the discrete percentile values (1, 2,… , 100). This vector
represents the predicted category at each percentile. For the above example, this vector would contain 1 for
elements 1 to 30, 2 for elements 31 to 80, and 4 for elements 81 to 100. Finally, the reliability, or calibration,

Table 5
False and True Positive Ratios for Category Ejecta

Threshold FPR TPR

10% 0.4541 0.9975

20% 0.0922 0.9901

30% 0.0255 0.9648

40% 0.0099 0.9048

50% 0.0037 0.8036

60% 0.0014 0.6226

70% 0.0006 0.3669

80% 0.0003 0.1405

90% 0.0001 0.0240

Note. The optimal threshold is in bold.
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Table 6
False and True Positive Ratios for Category Coronal Hole Origin

Threshold FPR TPR

10% 0.1857 0.9999

20% 0.0315 0.9992

30% 0.0089 0.9971

40% 0.0036 0.9902

50% 0.0011 0.9671

60% 0.0001 0.8777

70% 0.0000 0.6652

80% 0 0.3363

90% 0 0.0666

Note. The optimal threshold is in bold.

for a given percentile is defined as the probability that the observed category is less than the predicted cat-
egory at this percentile, averaged over all the events. This quantity is shown in Figure 3, where the black
dashed line indicates the case of perfect reliability. One can appreciate that the classifier presented in this
paper achieves a very good reliability, with predictions slightly underreliable for percentiles smaller than 50%
and slightly overreliable for percentiles larger than 50%. We have verified that the curves using different size
of training sets are essentially indistinguishable.

4.3. Transition Probabilities
Once we have assessed that the accuracy and reliability of our classifier are extremely good, we can attempt
to classify events that are not labeled, that is, for which we do not know the category in advance. Hence, we
have classified the whole OMNI data set (1965–2017), using the entire original data set described in section 2
for training. Of course, we can classify only events for which the seven attributes discussed in section 3.1 are
available. Moreover, by considering only events where the largest assigned probability among the four cate-
gories is larger than 30%, we end up with 292,798 classified events. At this point, we can compute transition
probabilities, defined as the empirical probability that a given category at a given time will transition to a dif-
ferent category at later times (or remain in the same category). We have used the hourly OMNI data set, which
however contains gaps that can last for several hours. Therefore, we have only considered as valid the transi-
tions that occur within 10 h. This slightly reduces the data set to 290,602 events. Table 10 shows the transition
probabilities from the category listed in the first column to the ones listed in the first row. The last column
indicates the total number of events for transitions from a given category. The persistent character of the solar
wind is evident: the probability to remain in the same category is always much larger than the probability to
transition. However, Table 10 provides more information: when a transition does occur, some transitions are
preferred. For instance, it is clear that ejecta transition to streamer belt origin twice as frequently as they do
toward sector reversal origin plasma, and almost 4 times more frequently than toward coronal hole origin.

Table 7
False and True Positive Ratios for Category Sector Reversal Origin

Threshold FPR TPR

10% 0.5793 0.9981

20% 0.1166 0.9946

30% 0.0222 0.9850

40% 0.0079 0.9653

50% 0.0029 0.9240

60% 0.0012 0.8334

70% 0.0005 0.6078

80% 0.0001 0.2482

90% 0.0000 0.0327

Note. The optimal threshold is in bold.
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Table 8
False and True Positive Ratios for Category Streamer Belt Origin

Threshold FPR TPR

10% 0.4967 0.9999

20% 0.1474 0.9985

30% 0.0317 0.9935

40% 0.0101 0.9771

50% 0.0034 0.9323

60% 0.0014 0.8106

70% 0.0005 0.5253

80% 0.0002 0.2141

90% 0.0001 0.0613

Note. The optimal threshold is in bold.

The transition probabilities of Table 10 have a straightforward physical interpretation. Coronal holes on the
Sun are surrounded by streamer belts; hence, it makes sense that their transition probability to streamer
belts is higher than toward other categories. Also, helmet streamers are surrounded by streamer belts, which
explain the higher transition probability between sector reversal region and streamer belt plasma. An interest-
ing feature of Table 10 is its asymmetry. Because the four categories occur with different frequencies, a given
transition (excluding self-transitions) might be preferred simply due to such different frequencies. However,
it is straightforward to verify that the asymmetry of Table 10 cannot entirely be due to this effect. Hence, this
is a feature that deserves further investigation. One might wonder if differences of a few percentage points
in Table 10 are statistically significant. Hoeffding’s inequality (Hoeffding, 1963) states that the probability that
the empirical mean calculated from a finite independent sample differs from the real expected value is larger
than a value 𝜉 can be bounded by 2 exp(−2N𝜉2), where N is the number of independent samples. In our case,
we can estimate that the probability that the values listed differ from the “real” values by more than 1% is
smaller than 0.1% for Ejecta (which is the category with the smaller number of events), and even smaller than
0.01% for the other categories. Because these transition probabilities are calculated over many years and sev-
eral solar periods, they should not be intended as predictive. However, we believe they represent a very useful
baseline that new forecast models should compare against when assessing their accuracy.

5. Example: One Solar Rotation in 2006

In Figure 4 the Gaussian Process categorization scheme is compared with the Xu and Borovsky (2015) alge-
braic categorization scheme. Twenty seven days of data from the year 2006 are plotted, which is approximately
one solar rotation. (These 27 days can also be seen in Figure 7 of Xu & Borovsky, 2015.) The solar wind velocity
from the 1 h resolution OMNI data set is plotted as the black points. This is a time interval when the Earth’s

Table 9
Percentage of Undecided Events, for a Given Threshold (Maximum
Probability Along the Four Categories), and Corresponding
Classification Skill (Percentage of Events Correctly Classified)

Threshold (%) Undecided (%) Correctly classified (%)

0.3 0.2 97.6

0.4 1.8 98.2

0.5 7.5 99.1

0.6 19.7 95.6

0.7 44.1 95.8

0.8 75.1 99.8

0.9 95.0 100

CAMPOREALE ET AL. SOLAR WIND CLASSIFICATION 8
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Figure 3. Multicategory reliability diagram, as defined in the text. The black dashed line indicates perfect reliability.

foot point on the rotating Sun passes from a coronal hole region with an away magnetic orientation (Days
153 and 154) across a helmet streamer into a second coronal hole region with a toward magnetic orientation
(Days 158–161) and across another helmet streamer into a third coronal hole region with an away magnetic
orientation (Days 166–169). In the bottom portion of the figure the solar wind categorizations of the 1 h res-
olution OMNI data set are plotted: the bottom row is the Xu and Borovsky (2015) categorization of OMNI, the
middle row is the Gaussian Process categorization of OMNI with the maximum vector component required to
be greater than 0.3, and the top row is the Gaussian Process categorization of OMNI with the maximum vector
component required to be greater than 0.5. The color codings are red for a coronal hole origin categorization,
green for a streamer belt origin categorization, purple for a sector reversal region categorization, and blue for
ejecta categorization. As can be seen by comparing the three rows in Figure 4, the Gaussian Process and the Xu
and Borovsky schemes agree quite well in the categorizations. The magnetic sector reversals are marked with
orange vertical dashed lines; these sector reversals were not determined from the OMNI data set but were
instead determined by the direction of the solar wind electron heat flux measured by the SWEAPM instru-
ment (McComas et al., 1998) on the ACE spacecraft in the solar wind. An important test of the categorization
is that the sector reversals lie in sector reversal region plasma, which they do in Figure 4. Note that the top row
is sparser than the bottom two rows: the Gaussian Process > 0.5 scheme only yields categorizations that are
quite certain in the probabilistic sense. In the year 2006 the Xu + Borovsky scheme categorized 99.4% of all
hours in the year (only not categorizing when there is no solar wind data available), the Gaussian Process> 0.3
scheme categorized 98.4% of the hours in 2006, and the Gaussian Process > 0.5 scheme categorized 42.7% of
the hours in 2006. Note in Figure 4 that the Gaussian Process > 0.5 scheme in the top row produces very few
stream belt origin plasmas categorizations (green). In the year 2006, the Xu and Borovsky scheme had 37.0%
of all categorizations being streamer belt origin plasma, the Gaussian Process > 0.3 scheme had 25.3% of all
categorizations being streamer belt origin plasma, but the Gaussian Process > 0.5 scheme had only 11.4% of
all categorizations being streamer belt origin plasma. Looking at Figures 3, 4, and 6 of Xu and Borovsky (2015)
it is seen that the streamer belt origin plasma lies parametrically between the coronal hole origin plasma
and the sector reversal region plasma, and that it is somewhat rare to have plasma that is certainly of that
middle category.

Table 10
Transition Probabilities (in Percentage)

From/To Ejecta Coronal hole Sector reversal Streamer belt Total number

Ejecta 83.2 2.6 4.7 9.5 40,125

Coronal hole 1.5 94.3 0.6 3.6 58,388

Sector reversal 2.7 0.5 91.7 5.1 80,515

Streamer belt 3.3 1.8 4.0 91.0 111,574
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Figure 4. For 27 days in 2006 the solar wind velocity is plotted (black). The times at which magnetic sector reversals in
the solar wind pass the Earth are marked by vertical orange dashed lines. In color, categorizations of the OMNI data set
are plotted: the bottom row is the Xu and Borovsky (2015) categorization, the middle row is the Gaussian Process
categorization for the maximum vector component exceeding 0.3, and the top row is the Gaussian Process
categorization for the maximum vector component exceeding 0.5.

6. Conclusions

We have presented a seven-input solar wind classifier based on the technique of Gaussian Processes that
yields extremely good results for the four-plasma categorization scheme introduced by Xu and Borovsky
(2015). Even using as little as 10% of the data set for training, the median accuracy is larger than 90% for all
categories. This increases to >96% when the training set is 25% of the original data set, achieving a peak of
99.7% for the category coronal hole. The GP method produces a probabilistic classification. Hence, one can in
principle select nowcasts above a given threshold and classify as “undecided” the ones below the threshold.
We have investigated the ROC curve for varying thresholds, confirming that both the True and False Posi-
tive Ratios are optimal for thresholds about 30–40%. Finally, we have classified a large portion of the hourly
OMNI data set and studied the probability for a given category to transition to a different category. We have
found that although persistence (i.e., not transitioning) is largely dominant across all categories, transition has
a preferential direction: some transition probabilities are several times larger than others.
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