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� New mathematical foundation of steady-state assumption based on averages.

� Applies to oscillating and growing systems.
� Does not require quasi-steady-state assumption.
� Pinpoints unintuitive effects in the integration of metabolite concentrations.
� Can be used to approximate growth maximization in dynamic metabolic network models.
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a b s t r a c t

The steady-state assumption, which states that the production and consumption of metabolites inside
the cell are balanced, is one of the key aspects that makes an efficient analysis of genome-scale metabolic
networks possible. It can be motivated from two different perspectives. In the time-scales perspective,
we use the fact that metabolism is much faster than other cellular processes such as gene expression.
Hence, the steady-state assumption is derived as a quasi-steady-state approximation of the metabolism
that adapts to the changing cellular conditions.

In this article we focus on the second perspective, stating that on the long run no metabolite can
accumulate or deplete. In contrast to the first perspective it is not immediately clear how this perspective
can be captured mathematically and what assumptions are required to obtain the steady-state condition.

By presenting a mathematical framework based on the second perspective we demonstrate that the
assumption of steady-state also applies to oscillating and growing systems without requiring quasi-
steady-state at any time point. However, we also show that the average concentrations may not be
compatible with the average fluxes.

In summary, we establish a mathematical foundation for the steady-state assumption for long time
periods that justifies its successful use in many applications. Furthermore, this mathematical foundation
also pinpoints unintuitive effects in the integration of metabolite concentrations using nonlinear con-
straints into steady-state models for long time periods.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A rather frequently used assumption for metabolic network
modelling is that the production and consumption of internal
metabolites must balance (steady-state assumption). This as-
sumption lies at the core of many metabolic network analysis
techniques such as flux balance analysis (FBA) (Varma and Palsson,
r Ltd. This is an open access article
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rmany.
(A.-M. Reimers),
1994; Orth et al., 2010), elementary flux mode analysis (Schuster
and Hilgetag, 1994), metabolic control analysis (Heinrich and
Schuster, 1998) or gene intervention studies (Hädicke and Klamt,
2011; Burgard et al., 2003).

Given the stoichiometric matrix S of a metabolic network, we
call a vector of reaction rates (fluxes) w a steady-state flux if it
satisfies

= ( )Sw 0. SS

In this paper we provide a new, mathematically sound deri-
vation of the steady-state condition using flux averages over time.
This derivation does not require any underlying theory on
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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dynamics, like oscillations, in metabolic networks. While the bio-
logical motivation of our approach, as detailed in Section 1.2, is
well known (Fell, 1997; Steuer and Junker, 2009; Knoke et al.,
2008; Schuster and Fell, 2007; Palsson, 2015), the mathematical
foundation presented here strengthens the existing approaches
that study metabolism using steady-state fluxes.

The steady-state assumption, as used in metabolic network
analysis, is usually mathematically derived from a quasi-steady-
state perspective. This perspective is however not always applic-
able, as pointed out in Song and Ramkrishna (2009). Therefore, our
mathematical derivation presented here does not use the quasi-
steady-state argument. We nevertheless outline the quasi-steady-
state perspective below for the sake of comparison.

1.1. Classical derivation based on the quasi-steady-state assumption

To illustrate the differences between the existing theory and
our new derivation, we first recall how the steady-state assump-
tion is mathematically derived in the quasi-steady-state
perspective.

Given a kinetic model

̇( ) = ( ) ( ) = ( ( ) ( )) ( )t S t t f t tc v v e c, , KM1

that describes the dynamics of the internal metabolite con-
centrations c, reaction rates v and enzyme concentrations e, we
assume that the dynamics of the metabolism can be approximated
by a quasi-steady-state solution with respect to the enzyme dy-
namics. A quasi-steady-state solution of (KM1) is a tuple of time-
dependent functions ( )c v e, , such that

= ( ) ( ) = ( ( ) ( )) ≥ ( )S t t f t t t0 v v e c, , for all 0. QSS

Note that in the QSS solution the enzyme and metabolite con-
centrations can still change over time (the constraint on the me-
tabolite concentrations ̇( ) = ( )t S tc v is dropped) while fluxes tran-
sition from one metabolic steady-state to another, and are there-
fore not constant.

Indeed, as Varma and Palsson put it, “this assumption is based
on the fact that metabolic transients are typically rapid compared
to cellular growth rates and environmental changes. The con-
sequence of this assumption is that all metabolic fluxes leading to
the formation and degradation of any metabolite must balance”
(Varma and Palsson, 1994, p. 994). Similar reasons for assuming a
quasi-steady-state for metabolism are obtained by comparing the
time scale of metabolic processes (fast) to those of e.g. transcrip-
tional regulation or cell cycle (slow) (Almquist et al., 2014; Hein-
rich and Schuster, 1996; Moreira dos Santos et al., 2004). Hence, it
is assumed that at every time point the metabolite concentrations
have converged to a steady-state and thus the quasi-steady-state
assumption (QSS) follows (Schilling et al., 1999; Voss et al., 2003;
Waldherr et al., 2015).

The quasi-steady-state assumption found successful applica-
tions in dynamic simulation models like dynamic flux balance
analysis (dynamic FBA) (Mahadevan et al., 2002) and dynamic
enzyme-cost flux balance analysis (Waldherr et al., 2015).

There are, however, situations when the quasi-steady-state
assumption cannot be applied (Song and Ramkrishna, 2009; Behre
and Schuster, 2009), which means the derivation above cannot be
used. Therefore, the main result of this paper is a derivation that
does not need this assumption.

Before we continue with our new mathematical approach, it is
worth noting the difference between the steady-states in (QSS)
and the global steady-state used in classical metabolic network
analysis tools such as FBA.

Given (QSS), for every time point t, ( )tv is a steady-state flux.
Therefore, we consider the quasi-steady-state assumption a
time-local property. From this the steady-state condition =Sw 0 as
used in classical metabolic network analysis is derived. This sim-
plification allows for an efficient analysis of metabolic networks,
since metabolite concentrations and time do not need to be
modelled anymore. For example, the constraint =Sw 0 is used in
methods such as FBA to predict biomass yields and growth rates.

In FBA we use only one steady-state flux to describe the whole
growth cycle. This is what we call a time-global steady-state flux.
However, metabolic fluxes are not constant in time. For instance,
during the cell cycle the cell goes through different phases (G1, S,
G2 and M) during which the metabolic activity is different.
Therefore, the metabolism can be considered to use different time-
local steady-state fluxes that follow the division cycle. Since the
sum of steady-state fluxes yields another steady-state flux (i.e., if

=Sw 0 and =Sv 0, then ( + ) =S w v 0), by combining the time-
local steady-state fluxes we can obtain a time-global steady-state
flux for the whole growth cycle.

1.2. The perspective based on long time periods

However, we do not need time-local steady-states to obtain a
time-global steady-state. For example the steady-state assumption
is also often motivated by stating that no metabolite can accu-
mulate or deplete on the long run (Fell, 1997). The aim of this
paper is to provide a general mathematical framework based on
this idea. In particular, we will generalize the approach used in
Steuer and Junker (2009), and Knoke et al. (2008, 2010). They
observe that, if after a time T no net change Δ ( ) =Tc 0 has occurred

in the metabolite concentrations, we obtain ∫ ( ) =S t dtv 0.
T

0
Hence,

in this case, the average flux

∫˜( ) = ( ) ( )T
T

t dtv v:
1 AVGV

T

0

is also a steady-state flux. In contrast to the fluxes derived via the
quasi-steady-state assumption, it applies globally over the time
interval [ ]T0, . In particular, in cases where the quasi-steady-state
assumption is not entirely justified (see e.g. Song and Ramkrishna,
2009), one can still obtain a time-global steady-state.

Building upon the ideas in Section 1.5.2 of Steuer and Junker
(2009), we observe that, if we consider a long enough time period
T, we do not necessarily need to come back to the same con-
centration. In order to obtain an average steady-state flux we only
require that the concentrations stay bounded (see Fig. 1). While
this is implied by physical laws, it should also happen because
accumulation of metabolites in very high amounts is toxic for a
cell. Therefore, on the long run, to avoid such toxicity, every me-
tabolite should be produced, on average, at the same rate at which
it is consumed (Fell, 1997). Moreover, even if deterministic chaos is
rare in metabolic systems (Goldbeter et al., 2001), it is worth
noting that the theory developed here is also applicable to chaotic
and quasi-periodic systems if the attractor is bounded. Some ideas
in this direction can be found in Knoke et al. (2008).

As already pointed out in Eker and Krummenacker (2013), if we
consider long time periods, we also have to model the fact that
molecule counts per cell change because of cell growth. Therefore,
in the differential equation that models the change of concentra-
tions in time we also need to consider an additional term that
represents dilution via cell growth. Schuster et al. (2004) propose
to neglect this term since it is anyway “small” compared to the
intracellular fluxes.

Based on these observations, we present in Section 3 a math-
ematical perspective on the steady-state assumption that does not
need the quasi-steady-state argument, but instead considers flux
averages over time. Using this model we compute for how long
we have to observe the system to obtain a sufficiently good



Fig. 1. Fluxes vi and average fluxes ṽi for the example system discussed in Section 6.
While the fluxes continue oscillating indefinitely, the average fluxes converge to a
steady-state.

A.-M. Reimers, A.C. Reimers / Journal of Theoretical Biology 406 (2016) 176–186178
steady-state distribution on the example of three model organ-
isms. In Section 4 we include dilution of metabolites via cell
growth into the steady-state model. We also estimate the error
that we make by neglecting metabolite dilution via cell growth.
From these two aspects we conclude that indeed the steady-state
assumption can be considered satisfied in practice even for oscil-
lating and growing systems. The proofs of our mathematical re-
sults can be found in Appendix A.

The mathematical framework presented here is not only an-
other justification for the steady-state assumption, but can also be
used to mathematically show when FBA gives upper bounds on
yield and growth rate as shown in Section 5.

However, there are also some caveats when dealing with the
steady-state assumption for long time periods. In Section 6 we
present a simple, artificial mass-action system, where the con-
straints implied by kinetic rate laws are violated by the average
concentrations and fluxes. We conclude by posing the question
whether a metabolic system can be more efficient by utilizing
oscillations than with simple steady-state fluxes.
2. Notation

In the following we use = { … }m1, , to denote the set of
metabolites, = { … }r1, , to denote the set of reactions,

= { … }k1, , to denote the set of enzymes, and S to denote the
stoichiometric matrix of a given metabolic network model. We use

= ( … )v vv , , r1 to denote the fluxes (reaction rates), and
= ( … )c cc , , m1 to denote the metabolite concentrations. Further-

more, we use = ( … )e ee , , k1 to denote enzyme concentrations,
  × →f : k m r to denote deterministic kinetic rate laws, and μ to

denote the growth rate.
Note that the fluxes v, the concentrations c and e, and the

growth rate μ can depend on time. Furthermore, ( ) ∈tv r ,
( ) ∈ ≥tc m

0, and ( ) ∈ ≥te k
0 are vectors and thus written in boldface,

as all other vectors appearing in this paper.

3. The steady-state assumption for long time periods

Since no metabolite can accumulate or deplete indefinitely, it
follows intuitively that production and consumption of all
metabolites must balance. We will now formulate this argument
mathematically.

3.1. Modelling assumptions (without dilution)

Our result applies to a very general setting. We essentially only
ignore stochastic effects and thus require the following modelling
assumptions:

� In this section we assume that the volume stays constant and
changes in concentrations are only reaction-driven, i.e., we do
not yet consider dilution of metabolites due to cell growth. The
case when the volume can change is discussed in Section 4.
While enzyme concentrations can be varied arbitrarily (e.g. due
to regulatory control), metabolite concentrations and fluxes
have to satisfy the following relationship, mentioned already
in the Introduction, for every ≥t 0:

̇( ) = ( ) ( ) = ( ( ) ( )) ( )t S t t f t tc v v e c, , . KM1

� Concentrations are measured in number of molecules per fixed
volume. Hence, enzyme and metabolite concentrations are
bounded, i.e., there exist cmax and emax with ∥ ( )∥ ≤t cc max,
∥ ( )∥ ≤t ee max for every time ≥t 0, where ∥ ∥x denotes the Eu-
clidean norm of the vector x .

� We assume that the function f that represents the kinetic rate
laws is continuous.

� We assume that c is differentiable and e is a continuous func-
tion of time.

Since f is continuous, and c and e are bounded and continuous,
it follows that v must also be bounded and continuous.
3.2. Average fluxes

For a given time period T, we define the average fluxes ṽ , as
introduced above, as:

∫˜( ) = ( ) ( )T
T

t dtv v:
1

. AVGV
T

0

To mathematically analyse long time periods, we consider the
case when → ∞T . Unfortunately, it can happen that

¯ = ˜( ) ( )
→∞

Tv v: lim 1
T

does not exist (see Appendix B for an example). For simplicity, we
assume in the following that the limit exists. Even in the case
when the limit does not exist, the results hold in a similar fashion
as described in Appendix A.

In the following we observe that average fluxes are steady-state
fluxes:

Theorem 1. ¯ =Sv 0.

Proof. The proof follows directly from Theorem 3 in Appendix A,
since there is exactly one accumulation point of ˜ ( )Tv because we
assume here that the limit exists. □

3.3. Violation of the steady-state condition for finite time T

For obtaining the statement of Theorem 1 we have assumed
that → ∞T . However, in practice we do not run the experiments
for infinitely long time. We are therefore interested in how large
do we have to choose T so that the fluxes violate the steady-state
condition by at most ε.

We observe that with =
ε

T : cmax
we get
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∫ ∫

ε

∥ ˜( )∥ = ( ) = ̇( )

= ∥ ( ) − ( )∥ ≤ =
( )

S T
T

S t dt
T

t dt

T
T

c
T

v v c

c c

1 1

0
,

2

T T

0 0
max

where ∥ ∥x denotes the Euclidean norm of the vector x .
We consider the three organisms Escherichia coli, Sacchar-

omyces cerevisiae and Homo sapiens (HeLa cells) and compute in
each case the averaging time T so that we obtain a relative viola-
tion of the steady-state condition of at most 1% in the approx-
imation of fluxes.

3.4. Escherichia coli

For E. coli the average glucose uptake flux is
· −1.63 10 18 ( · )mol/ s cell (Jain and Srivastava, 2009; Loferer-

Krößbacher et al., 1998). Since we would like to have a violation of
at most 1%, our ε is then · = ( · )− −0. 01 10 10 mol/ s cell18 20 . The
maximum metabolite concentration measured in this organism is
96 mM (Bennett et al., 2009). We will therefore consider cmax as

= = · · = ·− − −c 100
mmol

L
10

mol
L

0.6 10
L

cell
0.6 10

mol
cell

,max 1 15 16

where = · −1 cell 0.6 10 L15 is the volume of an E. coli cell (Ku-
bitschek, 1990). Therefore, if we average the fluxes of this organ-

ism over a period = = ≃
ε

T 6000 s 2 hcmax
the steady-state condi-

tion will be violated by at most 1%.
Note that this means that we would have to average over six to

eight generations in the case of E. coli. This is reasonable con-
sidering the fact that we need to average out fluctuations arising
from the cell cycle.

3.5. Saccharomyces cerevisiae

In the case of S. cerevisiae, the average intracellular fluxes are
around · ( · )−1.38 10 mol/ s cell18 (Stewart et al., 2010; Mitchison,
1958). Our ε in this case is therefore again ( · )−10 mol/ s cell20 . Ac-
cording to Canelas et al. (2008) and Finka and Goloubinoff (2013),
we can choose = −c 10 mol/cellmax 16 . Thus, the minimum time
period for averaging so that we violate the steady-state condition
by at most 1% is = ≃T 10 000 s 3 h.

3.6. Homo sapiens (HeLa cells)

Finally, for HeLa cells we have a glucose uptake flux of about
· ( · )−4.5 10 mol/ s cell17 (Mojena et al., 1985), and thus we choose

ε = ( · )−10 mol/ s cell19 . By the findings of Mojena et al. (1985), we
can choose = −c 10 mol/cellmax 15 . Thus, in this case = ≃T 10 s 3 h4 .
4. Dilution

We recall that concentration is defined as the number of mo-
lecules n of a substance present in a certain volume V of a solution,
i.e., ( ) = ( )

( )
c t n t

V t
. While in Section 3 we assumed a constant volume,

we now allow the volume to change over time. This happens for
example in the case of cell growth, when the total volume of all
cells grows.

The metabolic network typically consumes and produces me-
tabolites as described in the stoichiometric matrix S. The product

( )S tv then gives the change in metabolite concentrations when the
volume stays constant. This product reflects the net production of
each metabolite by the metabolic network. In case the volume
changes, we also obtain a dilution term. Following the derivation
in Goelzer et al. (2011), which we repeat for the reader's
convenience in Appendix C, we get

μ̇( ) = ( ) − ( ) ( ) ( )t S t t tc v c , KM2a

where the growth rate μ( )t is defined as

μ( ) =
̇ ( )
( )

( )t
V t
V t

: . 3

Note that this is the same definition as the one used in Kacser and
Beeby (1984), Heinrich and Schuster (1996) and Goelzer et al.
(2011). We observe that

∫μ μ˜( ) = ( ) ( )T
T

t dt:
1

. AVGM
T

0

is the average growth rate:

Proposition 1. It holds for all ≥T 0 that

μ( ) = ( ) ( ˜( )· )V T V T T0 exp .

Proof. We define ( ) = ( ( ))W t V t: ln for all ≥t 0. It follows that

μ̇ ( ) =
̇ ( )
( )

= ( ) ( )W t
V t
V t

t 4

∫ ∫μ⇒ ( ) = ̇ ( ) = ( ) − ( ) ( )t dt W t dt W T W 0 5
T T

0 0

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∫ μ⇒ ( )

( )
= ( ) − ( ) = ( ) ( )V T

V
W T W t dt

0
exp 0 exp . 6

T

0

The proposition follows by definition of μ̃. □

4.1. Modelling assumptions (with dilution)

Following the derivation from above based on (KM2a), we now
consider the new kinetic model

μ̇( ) = ( ) − ( ) ( ) ( ) = ( ( ) ( )) ( )t S t t t t f t tc v c v e c, , , KM2

which now also models dilution of internal metabolites via cell
growth. The rest of the assumptions are the same as in Section 3.1.
In addition we assume that the growth rate μ( )t is positive,
bounded and continuous for all time points ≥t 0.

4.2. Average fluxes and average concentrations

For a given time period T, we additionally define the average
concentrations c̃ as:

∫ μ
μ

˜( ) = ( )
˜( )

( ) ( )T
T

t
T

t dtc c:
1

. AVGC
T

0

Note that we scale the concentrations by the growth rate μ. The
motivation for this is that, in order to avoid depletion of meta-
bolite pools, it is much more important to overproduce metabo-
lites in fast-growing periods than in slow-growing ones. We ob-
serve that ˜( )Tc can be considered an average over growth rates
rather than over time since

∫

∫

μ

μ
˜( ) =

( ) ( )

( )
( )T

t c t dt

t dt
c . 7

T

T
0

0

As in the case for the average fluxes v̄ , it can happen that

¯ = ˜( ) ( )
→∞

Tc c: lim , 8
T
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μ μ¯ = ˜( ) ( )
→∞

T: lim 9
T

do not exist. Hence we again assume, for simplicity, that the limits
v̄ , c̄, and μ̄ exist and detail in Appendix A the case where they do
not exist.

We observe in the following that, if we consider dilution, the
steady-state condition for the average fluxes changes slightly:

Theorem 2. μ¯ = ¯ ¯Sv c .

Proof. The proof follows directly from Theorem 3 in Appendix A
because we assume here that all limits exist. □

One way to understand Theorem 2 is to think of c̄ as the
composition of the biomass reaction, which is typically used in
constraint-based metabolic network analysis to mimic the con-
sumption of key-metabolites for growth purposes (Feist and
Palsson, 2010). μ̄ is then the flux through the biomass reaction.
Because c̄ includes in our case all metabolites that are present in
the cell, these metabolites also have to be duplicated upon cellular
division. If DNA, RNA, lipids, and proteins are not explicitly mod-
elled in the metabolic network, we can understand them as re-
presented in c̄ in the form of precursors such as nucleic acids,
amino acids, etc. This way, the dilution term also enforces the
production of all macromolecules present in the cell.

We observe here a shortcoming in the construction of typical bio-
mass reactions. The biomass reactions in FBA models do not usually
include all metabolites, but only those that are needed to build mac-
romolecules. This is done because the concentrations of internal me-
tabolites are typically unknown and their overproduction is neglected
in order to avoid overconstraining the solution space.

4.3. Violation of the steady-state condition by dilution

Since biomass reactions in FBA models do not involve all me-
tabolites, they give rise to violations of the steady-state condition
in Theorem 2. In the following we estimate the order of magnitude
of this violation relative to the fluxes. For this purpose let us as-
sume that the FBA model uses a biomass function b that ap-
proximates c̄ with an error of 1 mM, i.e., | − ¯| =b c 1 mM. We again
use the three organisms Escherichia coli, Saccharomyces cerevisiae
and Homo sapiens as examples.

The detailed calculations for the three organisms are presented
in Appendix D. Other examples where the same trend can be
observed can be found in Stephanopoulos et al. (1998).

4.4. Escherichia coli

E. coli has an average cell volume of μ0.6 m3 (Kubitschek, 1990),
a dry weight of 0.489 pg (Loferer-Krößbacher et al., 1998), an
average growth rate on glucose of −0.9 h 1 (Andersen and Von
Meyenburg, 1980), and a glucose uptake rate of ( · )12 mmol/ gDW h
(Jain and Srivastava, 2009). Using these values it follows that an
approximation error of 1 mM for c̄ implies a violation of the
steady-state condition in the order of 10�4 relative to the fluxes.

4.5. Saccharomyces cerevisiae

A similar result is obtained in the case of S. cerevisiae, which has
an average growth rate on glucose of −0.4 h 1 (Waldron and La-
croute, 1975), average intracellular fluxes of ( · )0.5 mmol/ gDW h
(Stewart et al., 2010), a dry weight of approximately

=−10 g 10 pg11 (Mitchison, 1958), and a volume of μ20 m3 (Tyson
et al., 1979). These values imply that an approximation error of
1 mM for c̄ leads to a violation of the steady-state condition in the
order of 10�3 relative to the fluxes.
4.6. Homo sapiens (HeLa cells)

In the case of HeLa cells we obtain a similar order of magnitude for
the violation. HeLa cells have an average growth rate of −0.06 h 1 (Kumei

et al., 1989), glucose uptake flux of about
·

18 nmol
min mg protein

(Mojena et al.,

1985), approximately 150 pg protein (Finka and Goloubinoff, 2013), and
a volume of μ2600 m3 (Luciani et al., 2001; Finka and Goloubinoff, 2013).
With these values, an approximation error of 1 mM for c̄ implies a
steady-state condition violation in the order of 10�3 relative to the fluxes.
5. Applications to yield optimization

In the previous sections we have seen that, given a kinetic
model, the average fluxes satisfy the steady-state assumption. This
also applies to optimal control problems, which might be very
hard or impossible to solve directly. However, since we know that
the average flux is a steady-state flux we can build a much simpler
FBA model to bind the results of the optimal control problem. Let
us consider the optimum of the following FBA problem:

=

=
≤ ≤

( )

⁎v v

Sv 0
l v u

: max

s.t.
,

FBA1
FBA biomass

v

where vbiomass is the flux through the biomass reaction. Consider in
addition the optimum of the following optimal control problem
formulated based on the kinetic model (KM1):

∫¯ = ( )

̇( ) = ( ) ∀ ≥

( ) = ( ( ) ( )) ∀ ≥

≤ ( ) ≤ ∀ ≥

( )

⁎

→∞
v

T
v t dt

t S t t

t f t t t

t t

c v

v e c

l v u

: max lim
1

s.t. 0

, 0

0

OCP1

T

T

biomass
v c e, , 0

We observe that the FBA optimum is an upper bound for all
steady-state solutions and hence also for average fluxes:

Corollary 1. ≥ ¯⁎ ⁎v v .FBA

Proof. We recall from (1) that

∫ ( ) = ¯ ( )
→∞ T

v t dt vlim
1

. 10
T

T

biomass biomass
0

If the limit v̄ in (1) exists, then by Theorem 1, v̄ satisfies ¯ =Sv 0. It
is also easy to see that v̄ also satisfies ≤ ¯ ≤l v u. Hence v̄ is a
feasible solution of (FBA1).

If v̄ does not exist, we instead can use Theorem 3 and any
accumulation point will be a feasible solution of (FBA1). □

A similar result holds in the case when we take dilution via cell
growth into account. Let μ⁎

FBA denote the optimum of the following
FBA problem using as biomass function b:

μ μ

μ

=

=

≤ ≤

( )
μ

⁎

Sv b

l v u

: max

s.t.

,

FBA2

FBA v,

Consider in addition μ̄⁎ to be the optimum of the following optimal
control problem formulated based on the kinetic model (KM2),
where we enforce that the biomass composition ( c̄) of the or-
ganism is b:
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∫

∫

μ μ

μ

μ
μ

¯ = ( )

̇( ) = ( ) − ( ) ( ) ∀ ≥

( ) = ( ( ) ( )) ∀ ≥

= ( )
˜( )

( )

≤ ( ) ≤ ∀ ≥

( )

μ

⁎

→∞

→∞

T
t dt

t S t t t t

t f t t t

T
t
t

t dt

t t

c v c

v e c

b c

l v u

: max lim
1

s.t. 0

, 0

lim
1

0

OCP2

T

T

T

T

v c e, , , 0

0

In this case it also holds that the FBA optimum gives an upper
bound for the growth rate if the correct biomass function b is
used:

Corollary 2. For every 3b it holds that μ μ≥ ¯⁎ ⁎
FBA .

Proof. Since the optimization problem for μ̄⁎ is feasible, it follows
that ∫ ( )μ

μ→∞
( )

˜( )
t dtclimT T

T t
t

1
0

has to exist. Thus, by the definition of c̄,
= ¯b c. The rest of the argument follows as in the proof of Corollary

1, by interpreting μ as the flux through the biomass reaction. □
6. Kinetic constraints

In many cases additional constraints next to the steady-state
condition are employed (Shlomi et al., 2011; Waldherr et al., 2015;
Beard et al., 2002; Müller et al., 2014; Wortel et al., 2014). For
example, let us assume we want to use the actual kinetic rate laws
encoded by f to also constrain the average steady-state solution by
the average enzyme and substrate concentrations. Our kinetically
constrained steady-state model will then have the form:

= = ( ) ≥ ( )S fw 0 w e c e c 0, , , , KSS

Can the results from the previous sections also applied to this model?
Let us assume we have measured average fluxes v̄ and enzyme

concentrations ē in an experiment (or from a simulation of the
dynamic model). In the previous sections we have found that

¯ =Sv 0. Can we also always find concentrations ′c such that we get
a feasible solution to the kinetically constrained steady-state
model (KSS)? If we cannot, then kinetically constrained steady-
state models may be overconstrained. The answer is not easy,
since in the next subsection we will observe that ′ = ¯c c does not
always give a feasible solution.

To formulate the problem mathematically precisely we define
the average enzyme concentrations

∫˜( ) = ( ) ( )T
T

t dte e:
1

. AVGE
T

0

Again, the average enzyme concentrations might not exist. But
for simplicity, we assume here that

¯( ) = ˜( ) ( )
→∞

T Te e: lim 11
T

exists. For the general case we refer the reader to Appendix A.2.
We can now formulate the problem as:

Problem 1. Does there always exist a ′ ∈ ≥c m
0 such that

¯ = (¯ ′)fv e c, ?

In the next subsection we illustrate the difficulties posed by
Problem 1 using a toy example.
Fig. 2. Trajectory of our toy model with starting point ( ) =c 0 21 , ( ) =c 0 22 . The cross
marks the average concentration for → ∞T .
6.1. Average concentrations can be inconsistent with average fluxes

We consider the following toy metabolic network.
+ →
+ → +

→ +

r B A A

r A A A A

r A A C

: 2 3

: 2 2 3

: 2

1 1 1

2 1 2 1 2

3 2 2

For simplicity we assume that the system is subject to mass-
action kinetics and enzyme concentrations have no effect. B and C
are boundary metabolites and are kept at a constant concentration
of 1. Considering all kinetic constants to be 1, we get the following
system of ordinary differential equations:

̇ = − =

̇ = − =

=

( )

c v v v c

c v v v c c

v c ,

Ex1
1 1 2 1 1

2

2 2 3 2 1
2

2
2

3 2
2

where c1 and c2 denote the concentrations of metabolites A1 and
A2 respectively, and v v v, ,1 2 3 denote the fluxes through r r r, ,1 2 3,
respectively.

The only steady-state solutions of this system are = =c c01 2
and = =c c11 2. If we do not start in such a steady-state, the system
will oscillate. This can be seen as follows. The function

( ) = + + + ( )H c c c
c

c
c

,
1 1

121 2 1
1

2
2

is a Hamiltonian of the considered ODE system, since its derivative
( ( ))H tcd

dt
is zero for all ≥t 0. We observe that the system cannot

explode since for any ( ) >c c 0,1 2 the Hamiltonian has a finite
constant value and hence both ( )c t1 and ( )c t2 stay bounded for all

≥t 0. Furthermore, we observe that, for any other starting point
that is not a steady-state, the Hamiltonian has a value different
from 4, which is the minimum achieved at = =c c 11 2 .

The trajectory of this system (obtained from numerical in-
tegration) with the starting point ( ) = ( )c c, 2, 21 2 is shown in Fig. 2.
As (unweighted) average concentrations and fluxes we approxi-
mated numerically:

∫¯ = ( ) ≈ ( ) ( )
→∞ T

t dtc clim
1

0.82, 0.82 13
T

T

0

∫¯ = ( ) ≈ ( ) ( )
→∞ T

t dtv vlim
1

1.00, 1.00, 1.00 14
T

T

0

We therefore conclude that in the toy example, the average
concentrations are not compatible with the average fluxes, i.e.,
¯ ≠ (¯)fv c where f denotes the kinetic rate laws of the toy system. In
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particular, the average concentrations do not even correspond to
any steady-state flux distribution. This has also been observed and
mathematically analysed by Knoke et al. (2010) for oscillations of
Ca2þ in non-excitable cells using Jensen's inequality (Jensen,
1906).

Note that Problem 1 remains open since there exists a con-
centration vector ( ) = ( )c c, 1, 11 2 in the toy example that is con-
sistent with the average fluxes.

6.2. Linear kinetic constraints remain consistent

Because of the problem described above, we consider kinetic
constraints as used in Shlomi et al. (2011) and Waldherr et al.
(2015). As an example, consider the simple reaction

⟶A B
ei

that is subject to Michaelis–Menten kinetics. Then the flux through
this reaction is bounded as

≤
+

( )
+

v
k e c
K c

, MMi
cat i A

M A

where +kcat and KM are kinetic constants. Note that we use here an
inequality rather than an equality to account for regulatory effects
resulting in only part of the enzyme being available for catalysis.
The argument below works however even if the equality version
of the rate law is used.

We observe that ≤
+

1c
K c

A

M A
always. Our bound can thus be

simplified as

≤ ( )+v k e . ubMMi cat i

For reversible reactions, we get the additional bound

≥ − ( )−v k e , lbMMi cat i

where −kcat is the turnover rate for the reverse direction of the
reaction.

Therefore, we assume in the following that for a set of reactions
⊆ we have constants + −k k,i i such that

− ( ) ≤ ( ) ≤ ( ) ≥ ∈ ( )− +k e t v t k e t t ifor all 0 and . 15i i i i i

This form gives us enough flexibility to also constrain the
average fluxes using the average enzyme concentrations:

Proposition 2. It holds that − ¯ ≤ ¯ ≤ ¯− +k e v k ei i i i i for all ∈i .

Proof. The result follows directly from Proposition 4 in Appendix
A.2.

Therefore, results similar to those in Section 5 can also be ob-
tained in this setting for the growth maximization case.
7. Discussion

One of the main arguments against using the steady-state as-
sumption in models of biochemical reaction networks is that, if
one assumes steady-state, oscillations that are biologically im-
portant will not be observed in the simulation results (Goldbeter,
1997; Sowa et al., 2014).

7.1. Average fluxes satisfy the steady-state assumption

However, in many cases we might not be interested in these
oscillations, because they increase the complexity of the model, or
even make it computationally intractable. In these cases, where
only average fluxes over long time periods are of interest (e.g. if we
are interested in predicting the lethality of gene knockout
experiments), we have shown that the steady-state assumption
can still be applied, i.e., we still get a reasonably good description
of the metabolic system by computing a steady-state flux. In par-
ticular, it is also valid for oscillating systems that are not at steady-
state at any point in time. The only condition is that the system is
averaged over a long enough time period.

For example, FBA computes an upper bound on the biomass
yield, which applies to all steady-state solutions. Hence it also
applies to the average fluxes. Therefore, the system cannot obtain
a higher yield using oscillations.

We showed that an average over 3 h is sufficient to obtain
fluxes that only slightly violate the steady-state assumption for E.
coli, S. cerevisiae, and HeLa cells. Since the estimate was rather
pessimistic, much shorter averaging times might be sufficient in
practice. Furthermore, the violation we obtained lies within the
error range of current measurement technology for concentrations
and fluxes.

7.2. Dilution of metabolites via cell growth and the biomass reaction

We observed that, depending on the organism, the steady-state
condition gets violated by 0.01–0.1% for an error of 1 mM in the
biomass composition. Since amino acid concentrations (including
the amino acids in proteins) are in the order of 100 mM (Bennett
et al., 2009), this implies that neglecting amino-acid over-
production would also only violate the steady-state condition by
1%. However, ignoring their overproduction during growth would
mean that we would completely disregard protein production,
which cannot lead to any biologically meaningful results. There-
fore, the fact that the error we make by neglecting dilution via cell
growth is small is not a sufficient argument for not taking dilution
into account.

Furthermore, there are metabolites that appear in similarly
high concentrations but are not part of the biomass reaction. An
example is citrate, which according to Bennett et al. (2009) is
present in E. coli at concentrations that are very close to those of
amino acids. Therefore, this metabolite should in fact take part in
the biomass reaction, which is not always the case in current
genome-scale metabolic network reconstructions. We would like
to point out that which metabolites are present at high con-
centration strongly depends on the growth conditions (Bennett
et al., 2009). This is one more reason to always consider biomass
compositions that are dependent on the growth medium.

We conclude that, in theory, the model should be capable of
overproducing all metabolites in order to account for dilution via
cell growth. While this condition can be qualitatively enforced as
done in Eker and Krummenacker (2013), we have observed that
quantitative effects can also play an important role as in the case
of citrate.

7.3. Pitfalls of averaging

We have seen that, if only average fluxes over long time periods
are of interest, the steady-state assumption, if combined with an
appropriate biomass function, is clearly a good model. While this
adds another argument why methods like FBA can indeed predict
the growth rates of some organisms accurately (Edwards et al.,
2001; Harcombe et al., 2013), the integration of nonlinear con-
straints should be done with care.

For instance, in methods like dynamic FBA (Mahadevan et al.,
2002) constraints including metabolite concentrations are often
integrated into the model. In dynamic FBA this is possible because
time-local steady-states are used. However, we might encounter
inconsistencies for time-global steady-state models, because
average concentrations can be inconsistent with average fluxes.

We cannot exclude that there exists a chemical reaction system
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(candidates are described in Knoke et al., 2010; Sowa et al., 2014;
Gottstein et al., 2014) where an oscillation can induce a higher
average flux than the flux that would be possible by assuming
steady-state. We have, however, shown that linear constraints,
such as those imposed by enzyme availability and enzyme capa-
city, do not introduce inconsistencies for average concentrations
and fluxes.

With the formalisms defined in this work, it is now possible to
mathematically analyse if and when oscillations can enhance
metabolic capabilities.
8. Conclusion

In the present paper we have introduced a new way of math-
ematically deriving the steady-state assumption as flux averages
over time. This approach does not require the quasi-steady-state
approximation, which is typically used as a motivation for using
the steady-state assumption in metabolic network analysis. Thus,
even results where the use of the quasi-steady-state approxima-
tion might not be entirely justified can now be strengthened since
this step is no longer needed in the argumentation. Every result
based on FBA is hence put on a stronger theoretical foundation.

However, the motivation behind our approach is different from
that of the quasi-steady-state approximation. Thus, when using
the approach we described here with the intuition of the quasi-
steady-state approximation in mind, one can run into pitfalls or
unintuitive effects.
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Appendix A. Mathematical theory

A.1. Average fluxes and concentrations

We observe that the modelling assumptions of Section 3 are a
special case of the assumptions in Section 4, where μ = 0. How-
ever, ˜( )Tc as defined in Eq. (AVGC) is not well defined if μ̃( ) =T 0.
Since the proofs of Theorem 1 and 2 are rather similar, we prove
here a slightly more general result (for μ( ) ≥t 0 for all ≥t 0) from
which these two theorems follow immediately. Therefore, we
define

⎧
⎨⎪
⎩⎪

λ
μ
μ

μ

μ
( ) =

( )
˜( )

˜( ) >

˜( ) =
( )t

t
T

T

T
:

if 0

1 if 0
A.1T

∫ λ˜( ) = ( ) ( ) ( )T
T

t t dtc c:
1

. A.2
T

T
0

We observe that for μ̃( ) >T 0 this definition of ˜( )Tc coincides
with the definition given in Eq. (AVGC) of Section 4. For μ̃( ) =T 0
this definition gives an unweighted average over time. Therefore,
˜( )Tc is always well defined. However, ˜( )Tc might not be con-
tinuous, even if μ, v, c, and e are.

Since it can happen that ˜ ( )→∞ TvlimT , μ̃( )→∞ TlimT , and
˜( )→∞ TclimT do not exist (see Appendix B for an example), we

consider the sets of accumulation points V̄ , M̄ , and C̄ of ˜ ( )Tv , μ̃( )T ,
and ˜( )Tc for → ∞T , respectively:







{ }
{ }
{ }

ε ε

ε ε

μ ε μ μ ε

¯ = ¯ ∈ ∀ > > ∃ > ∥ ¯ − ˜( )∥ <

¯ = ¯ ∈ ∀ > > ∃ > ∥ ¯ − ˜( )∥ <

¯ = ¯ ∈ ∀ > > ∃ > | ¯ − ˜( )| <

≥C T T T T

V T T T T

M T T T T

c c c

v v v

: 0, 0 : ,

: 0, 0 : ,

: 0, 0 : .

m

r

0 0 0

0 0

0 0

Proposition 3. C̄ , M̄ and V̄ are not empty.

Proof. Concentrations c e, and growth-rate μ are bounded by
assumption for every time ≥t 0. Since the fluxes v are given by a
continuous function of c and e, the fluxes are also bounded.

The result follows, because every bounded sequence in d

(with finite d) has accumulation points in d. □

We show in the following that every ¯ ∈ V̄v satisfies the steady-
state assumption perturbed by dilution. The following theorem is a
generalization of Theorems 1 and 2:

Theorem 3. For all ¯ ∈ V̄v there exists a ¯ ∈ C̄c and a μ̄ ∈ M̄ such that
μ¯ = ¯ ¯Sv c .

Note that if the limits c̄ in (8) and μ̄ in (9) exist, then C̄ and V̄
each contain only one element. Then Theorem 3 implies that for
all ¯ ∈ V̄v , for all ¯ ∈ C̄c , and for all μ̄ ∈ M̄ we have μ¯ = ¯ ¯Sv c .

Proof. (Theorem 3) Since the concentrations are non-negative
and bounded, i.e., ≤ ( )t0 c and ∥ ( )∥ ≤t cc max for all ≥t 0, it follows
by the main theorem of integration that

∫ ̇( ) = ∥ ( ) − ( )∥ ≤ ( )t dt T cc c c 0 A.3
T

0

max

∫⇒ ̇( ) ≤ ( )
T

t dt
c

T
c

1 A.4
T

0

max

∫⇒ ̇( ) ≤ = ( )
→∞ →∞T

t dt
c

T
c 0lim

1
lim . A.5

T

T

T0

max

Since the norm is only zero for the zero point, it follows that

∫ ̇( ) = □ ( )
→∞T

t dtc 0lim
1

. A.6
T

T

0

Lemma 1. ( )μ˜ ( ) − ˜( ) ˜( ) =→∞ S T T Tv c 0limT

Proof. If there exists a >T 0 with μ̃( ) >T 0, it follows that μ̃( ′) >T 0
for all ′ ≥T T . In this case, it follows by the definition (KM2) of ̇( )tc
that

⎛
⎝⎜

⎞
⎠⎟ ∫

∫

μ μ˜ ( ) − ˜( ) ˜( ) = ( ) − ( ) ( )

= ̇( ) =
( )→∞ →∞

→∞

S T T T
T

S t t t dt

T
t dt

v c v c

c 0

lim lim
1

lim
1

A.7
T T

T

T

T

0

0

If μ̃( ) =T 0 for all ≥T 0, we conclude because c is bounded that

∫ μ( ) ( ) = ≥ ( )t t dt Tc 0 for all 0. A.8
T

0

This implies

( )μ˜ ( ) − ˜( ) ˜( ) = ˜( ) ( )
→∞ →∞

S T T T S Tv c vlim lim A.9
T T
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∫ ∫ μ= ( ) = ( ) − ( ) ( ) ( )
→∞ →∞T

S t dt
T

S t t t dtv v clim
1

lim
1 A.10

T

T

T

T

0 0

∫= ̇( ) = ( )
→∞ T

t dtc 0lim
1

, A.11
T

T

0

and concludes the lemma. □

Let ¯ ∈ V̄v be arbitrary but fixed. By the definition of accumu-
lation point, it follows that there exists a sequence ( ′) ∈∈ ≥Tn n 0

with ′ = ∞→∞ Tlimn n and ∥ ¯ − ˜ ( ′)∥ <Tv v n n
1 for all ∈n . We observe

that, given ( ′) ∈∈ ≥Tn n 0, there exists an accumulation point
μ(¯ ¯) ∈ ¯ × ¯C Mc, of μ(˜( ′) ˜( ′)) ∈T Tc ,n n n . Thus, there exists a subsequence

( ) ∈Tn n of ( ′) ∈Tn n with

( ) ( ) ( )μ μ~ = ¯ ~ = ¯ ~ = ¯ ( )
→∞ →∞ →∞

T T Tv v c clim , lim , lim . A.12
n

n
n

n
n

n

It follows by Lemma 1 and by the existence of v̄ , μ̄, and c̄ that

μ μ

μ

¯ − ¯ ¯ = ˜( ) − ˜( ) ˜( )

= ˜( ) − ˜( ) ˜( ) =
( )→∞ →∞ →∞

→∞

S S T T T

S T T T

v c v c

v c 0

lim lim lim

lim ,
A.13n

n
n

n
n

n

n
n n n

which concludes the proof of Theorem 3. □

A.2. Kinetic constraints

Since the average enzyme concentrations might not exist, we
use the set of accumulation points

{ }ε ε¯ = ¯ ∈ ∀ > > ∃ > ∥ ¯ − ˜( )∥ <≥E T T T Te e e: 0, 0 : .r
0 0 0

For the linear kinetic constraints as used in Section 6.2, we get the
following result:

Proposition 4. It holds for all ¯ ∈ V̄v that there exists an ¯ ∈ Ēe such
that

− ¯ ≤ ¯ ≤ ¯ ∈ ( )− +k e v k e for all i . A.14i i i i i

Proof. Let ¯ ∈ V̄v be arbitrary but fixed. Using the same arguments
as in the proof of Theorem 3, it follows that there exists a sequence

( ) ∈∈ ≥Tn n 0 with = ∞→∞ Tlimn n and an ¯ ∈ Ēe with

( ) ( )~ = ¯ ~ = ¯ ( )
→∞ →∞

T Tv v e elim , lim . A.15
n

n
n

n

We conclude for all ∈i that

⎛
⎝⎜

⎞
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∫

¯ − ¯ = ˜ ( ) − ˜ ( )

= ( ) − ( ) ≥
( )

+

→∞

+

→∞

+

k e v k e T v T

T
k e t v t dt

lim

lim
1

0

A.16
i i i

n
i i n i n

n n

T

i i i
0

n

because ( ) ≤ ( )+v t k e ti i i for all ≥t 0. Thus, ¯ ≤ ¯+v k ei i i. The same ar-
gument also applies to show that − ¯ ≤ ¯−k e vi i i. □
Appendix B. Average fluxes and concentrations might not exist

Let us consider the following toy network consisting of two
reactions r1 and r2 without taking metabolite dilution into ac-
count. Reaction r1 is producing a metabolite A, which is consumed
by reaction r2. Hence, the change in the concentration c of A is
determined by

̇ = − ( )c v v , Ex2a1 2

where v1 and v2 are the fluxes through r1 and r2 respectively.
Furthermore, we assume that reaction r1 is catalysed by an

enzyme with enzyme concentration e and reaction r2 is a
spontaneous reaction subject to mass-action kinetics, i.e.,

=

=
( )

v e

v c

: ,

: .
Ex2b1

2

To obtain multiple accumulation points, we make the assumption
that the enzyme concentrations are as follows (note that we
choose a non-continuous e to make the analysis easier. e can be
smoothened without significantly changing the dynamics of the
system):

⎧⎨⎩( ) = ≤ ≤ ∈ ( )
+

e t t n1 if 2 2 ,
0 otherwise

Ex2c
n n2 2 1

We remark that such enzyme concentrations might be quite un-
realistic in a biological context, but they are not excluded by our
modelling assumptions.

Before we show that the average enzyme concentration ˜( )e T
and average metabolite concentration ˜( )c T have multiple accu-
mulation points for → ∞T , we observe some useful properties. We
would like to point out that, by the definitions of v1 and v2, it will
also follow that the average fluxes will have multiple accumulation
points.

Proposition 5. If ≤ ( ) ≤c0 0 1, then ≤ ( ) ≤c t0 1 for all ≥t 0.

Proof. Since ≤ ( ) ≤e t0 1 for all ≥t 0, this follows immediately
from the definition of ̇c, which implies (̇ ) = ( ) − ( )c t e t c t for all

≥t 0. □

In the following we assume that ≤ ( ) ≤c0 0 1.

Proposition 6. Let n be odd. Then it holds for < < +t2 2n n 1 that
( ) = ( ) −c t c e2n t2n

.

Proof. By definition it follows that ( ) =e t 0 for all t with
< < +t2 2n n 1. Thus, we get ̇ = −c c and the result follows im-

mediately. □

Proposition 7. Let n be even. Then it holds for < < +t2 2n n 1 that
( ) = − ( − ( )) −c t c e1 1 2n t2n

.

Proof. By definition it follows that ( ) =e t 1 for all t with
< < +t2 2n n 1. Thus, we get ̇ = −c c1 and the result follows im-

mediately. □

Proposition 8. Let n be odd. Then it holds for < < +t2 2n n 1 that

∫ ( ) < ( )
+

c t dt 1. B.1
2

2

n

n 1

Proof. By Proposition 6 it follows that

( )
∫ ∫ ∫( ) = ( ) = ( )

= ( ) −
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c t dt c e dt c e dt

c e

2 2

2 1 .
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We observe by Proposition 5 that ( )( ) − <−c e2 1 1n 2n
, which con-

cludes the proof. □

Proposition 9. Let n be even. Then it holds for < < +t2 2n n 1 that

∫ ( ) > − ( )
+

c t dt 2 1. B.3n

2

2

n

n 1

Proof. By Proposition 7 it follows that

∫ ∫ ( )( ) = − − ( ) ( )−
+ +

c t dt c e dt1 1 2 B.4n t
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2

2

2
2
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∫( )= − − ( ) ( )−c e dt2 1 2 B.5n n t

0

2n

( )( )= − − ( ) − ( )−c e2 1 2 1 . B.6n n 2n

We observe by Proposition 5 that ( )( )− ( ) − <−c e1 2 1 1n 2n
, which

concludes the proof. □

Theorem 4. ˜( )→∞ c TlimT does not exist.

Proof. We observe for all ∈n with ≥n 3 that
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Clearly there exist two sequences ( ) ∈Tn n and ( ′) ∈Tn n such that
˜( ) ≠ ˜( ′)→∞ →∞c T c Tlim limn n n n , which concludes the proof. □

Theorem 5. ˜( )→∞ e TlimT does not exist.

Proof. The proof is analogous to the proof of Theorem 4. □
Co 1 mM

Gro μ

Vo 1 cel
1cell

Flu v
Appendix C. Derivation of dilution term

As pointed out in Goelzer et al. (2011), during exponential
growth the volume of a bacterial cell population grows ex-
ponentially, following the law

μ( ) = ̇ ( ) = ( ) ( )μ·V t V e V t V t, , C.1t
0

where V0 is the initial volume of the population at time 0 and μ is
the growth rate.

The concentration of a metabolite i is defined as ( ) = ( )
( )

c t :i
n t
V t

i ,

where ni(t) is the number of moles of metabolite i. Therefore, the
change of the concentration ci is given by

( )
=

( )
( )

=
( )

− ( ) ( )
( )

=
( )

−
̇ ( )
( )

( )
( )

dc t
dt

d
dt

n t
V t

dn
dt V t

dV t
dt

n t

V t

dn
dt V t

V t
V t

c t

1

1
.

C.2

i i i i

i
i

2

The first term in the difference in (C.2) corresponds to the pro-
duction of metabolite i by the metabolic network, while the sec-
ond term corresponds to the dilution effect from growth.

We therefore obtain that the growth rate μ is given by
μ( ) =
̇ ( )
( )

( )t
V t
V t

. C.3

Appendix D. Calculation of dilution fluxes

All equalities in this section should be considered as rough
approximations.

Calculation for E. coli
lume:
 = μ = · −1cell 0. 6 m 0. 6 10 dm3 15 3
Vo
= · −0.6 10 L15
y weight:
 = = · −1cell 0.489pgDW 4.89 10 gDW13
x:
 | | = = ·
·

−
·

v 12 12 10mmol
gDW h

3 mol
gDW h
¼ · · ·− −
·

12 10 4.89 103 13 mol
cell h
¼ · ·
·

−12 4.89 10 mol
3600s cell

16
¼ · −
·

1.63 10 18 mol
s cell
ncentration:
 = −1 mM 10 3 mol
L

¼ · ·− −10 0.6 103 mol
L

15 L
cell
¼ · −0.6 10 18 mol
cell
wth:
 μ = = = ·− − −0.9h 2.5 10 s1 0.9
3600s

4 1
Gro
= · −
·

1.5 101 mM 22 mol
s cell
μ·

Calculation for S. cerevisiae
lume:
 = μ = · −20 m 2 10 L3 14
y weight:
 = −10 gDW11
x:
 =
·

0.5 mmol
h gDW
¼ · −
·

0.5 10 3 mol
h gDW
¼ · ·− −0.5 10 103 11mol
h

¼ · ·
·

− −0.5 10 10
3600

mol
s cell

3 11
¼ · −
·

1.38 10 18 mol
s cell
ncentration :
 = −10 3 mol
L

¼ · ·− −10 2 103 mol
L

14 L
cell
¼ · −2 10 17 mol
cell
wth:
 = =− −0.4h s1 0.4
3600

1

¼ · − −1.11 10 s4 1
= · −
·

2.22 10 21 mol
s cell
μ·1 mM

Calculation for H. sapiens (HeLa)
lume:
 l¼ μ = · −2600 m 2.6 10 L3 12
tein weight:
 = 150 pgProtein
Pro
¼ · −1.5 10 mgProtein7
x:
 ¼
·

18 nmol
min mgProtein
¼ · −
·

18 10 9 mol
min mgProtein
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Co 1 mM

Gro μ
¼ · · ·− −
·

18 10 1.5 109 7 mol
min cell
¼ · · ·
·

− −18 10 1.5 10
60

mol
s cell

9 7
¼ · −
·

4.5 10 1 mol
s cell
ncentration:
 = −10 3 mol
L

¼ · ·− −10 2.6 103 mol
L

12 L
cell
¼ · −2.6 10 15 mol
cell
wth:
 = =− −0.06h s1 0.06
3600

1

¼ · − −1.67 10 s5 1
= · −
·

4.34 10 20 mol
s cell
μ·1 mM
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