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Consider the following collection of six-sided dice:

There are four faces, each present at least once:
clubs ♣, spades ♠, diamonds ♢, and hearts ♡.
A face only becomes visible after applying a drop
of white wine to its side. There are at least three
black faces. There are either more hearts than di-
amonds or an equal number of clubs and spades.
A die is fair unless it has more black than white-
faced sides, then each of the latter is equally
more likely to land up than each of the former.

Because of the exclusive disjunctions—either/or state-
ments—in this description, the uncertainty we must model
when gambling with dice from this collection cannot be
handled using a single convex credal set, set of desirable
gambles, preference order, or other such uncertainty model.
Arguably, also non-convex credal sets are inadequate here.

I wish to discuss the following conceptual approach for
dealing with this modeling issue:

• The possibility space is restricted to observables only
(♣, ♢, ♠, and ♡) and so should not involve, e.g., the die
variant. (There are three such variants; see the gray boxes
in the top row of the diagram.)

• We consider the partial order X generated by the exclu-
sive disjunctions. (See the gray boxes and their intercon-
nections in what is in fact a Hasse diagram.)

• We attach an uncertainty model to each element of X , e.g.,
a partial preference order, that reflects the information
common to its upset in X . (In the diagram we use ⪰ for
non-strict acceptance, » for strict preference, and ≃ for
indifference [1]. Also, in the expressions, the faces denote
the corresponding indicator gamble.)

• We can furthermore assign an optimality criterion to each
element of X . Maximality and maximin variants thereof
are natural candidates, E-admissibility perhaps less so,
due to its use of individual probability measures, which
can be replaced by exclusive disjunctions.

• With any set of decision options, we can then asso-
ciate the corresponding partial order of optimal options.
Choice functions [cf. 2] may be derived as functions
thereof, for example the union of optimal options for the
maximal elements of X .
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