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Abstract

The absolute separability problem asks for a characterization of the quantum states ρ ∈ Mm ⊗Mn
with the property that UρU† is separable for all unitary matrices U. We investigate whether or not
it is the case that ρ is absolutely separable if and only if UρU† has positive partial transpose for all
unitary matrices U. In particular, we develop an easy-to-use method for showing that an entanglement
witness or positive map is unable to detect entanglement in any such state, and we apply our method
to many well-known separability criteria, including the range criterion, the realignment criterion, the
Choi map and its generalizations, and the Breuer–Hall map. We also show that these two properties
coincide for the family of isotropic states, and several eigenvalue results for entanglement witnesses
are proved along the way that are of independent interest.

1 Introduction

In quantum information theory, a quantum state ρ ∈ Mm ⊗ Mn (where Mn denotes the space of n× n
complex matrices) is called separable [1] if there exist constants pi ≥ 0 and states ρ

(1)
i ∈ Mm and

ρ
(2)
i ∈ Mn such that ∑i pi = 1 and

ρ = ∑
i

piρ
(1)
i ⊗ ρ

(2)
i .

Finding methods for determining whether a given quantum state is separable or entangled (i.e., not
separable) is one of the most active areas of quantum information theory research [2, 3]. Although this
problem is believed to be difficult in general [4, 5], many partial results are known. For example, the
positive-partial-transpose (PPT) criterion states that if ρ is separable then (idm ⊗ T)(ρ) ≥ 0, where
≥ 0 indicates positive semidefiniteness, idm : Mm → Mm is the identity map, and T : Mn → Mn is
the transpose map [6]. However, the converse of the PPT criterion only holds when mn ≤ 6 [7, 8], so
additional tests for separability are required in higher dimensions.

The most natural generalization of the PPT criterion says that a state ρ ∈ Mm ⊗ Mn is separable if
and only if (idm ⊗ Φ)(ρ) is positive semidefinite for all positive maps Φ : Mn → Mm [9]. Thus each
fixed positive Φ : Mn → Mm gives a necessary condition for separability.

The absolute separability problem [10] (sometimes called the separability from spectrum problem
[11]) asks for a characterization of the states ρ ∈ Mm ⊗ Mn with the property that UρU† is separa-
ble for all unitary matrices U ∈ Mm ⊗ Mn, which is equivalent to asking which sets of real numbers
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{λ1, λ2, . . . , λmn} are such that every state ρ ∈ Mm ⊗Mn with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λmn ≥ 0
is separable. This question was first answered in the m = n = 2 case in [12], where it was shown that
ρ ∈ M2 ⊗M2 is absolutely separable if and only if its eigenvalues satisfy λ1 ≤ λ3 + 2

√
λ2λ4, however

the problem remains open in general.
One motivation for this problem comes from the fact that it is sometimes easier to determine the

eigenvalues of a quantum state than it is to determine the entire structure of that state [13, 14]. Thus,
the absolute separability problem asks for the strongest separability test that can be devised given this
restricted information. In another direction, the exact largest size of a ball of separable states centered at
the maximally-mixed state 1

mn (I⊗ I) ∈ Mm⊗Mn is known [15], and it is not difficult to show that every
state within this ball is absolutely separable. However, there are also absolutely separable states outside
of this ball, and it would be nice to have a characterization of where they are. Alternatively, we can think
of states that are not absolutely separable as those that can be used to generate entanglement when the
operations at our disposal are global unitary channels [16].

One approach to characterizing the states that are absolutely separable would be to instead fix some
necessary test for separability and determine the set of states ρ ∈ Mm ⊗Mn with the property that UρU†

satisfies that separability test for all unitary matrices U ∈ Mm ⊗Mn. This approach was initiated in [17],
where the set of states ρ ∈ Mm ⊗Mn that are absolutely PPT (i.e., states such that (idm ⊗ T)(UρU†) is
positive semidefinite for all unitary U) were completely characterized. Similarly, the very recent paper [18]
investigated states ρ with the property that UρU† satisfies the reduction criterion for all unitary matrices
U (because the reduction criterion is weaker than the partial transpose criterion, we do not explicitly
consider it in the present paper). We continue this work by considering the same problem for several other
separability criteria.

It was shown in [19] that the set of absolutely PPT states coincides with the set of absolutely separable
states when m = 2 and n is arbitrary, despite the fact that the set of PPT states is strictly larger than the
set of separable states when m = 2 and n ≥ 4. The question was then asked whether or not the set of
absolutely PPT states and absolutely separable states coincide when m, n ≥ 3. In the present paper, we
demonstrate that several standard methods of entanglement detection are unable to answer this question.

More specifically, we introduce a general method (Lemma 2) that can be used to show that a given
entanglement witness or positive map cannot detect entanglement in any absolutely PPT state. Using this
method, we prove several results of the form “if ρ is absolutely PPT, then it is also absolutely <other sep-
arability criterion>”. For example, we show that every absolutely PPT ρ ∈ Mm ⊗Mn is also “absolutely
realignable”—i.e., UρU† always satisfies the realignment criterion introduced in [20, 21], even though
there are PPT states ρ that violate the realignment criterion. This difference between the usual separability
problem and the absolute separability problem is illustrated in Figure 1. We also prove that the absolute
separability and absolute PPT properties coincide when restricted to the well-known family of isotropic
states.

2 Preliminaries

The proofs of our results rely heavily on semidefinite programming. Given Hermitian matrices A ∈ Mn
and B ∈ Mm and a Hermiticity-preserving linear map Φ : Mn → Mm (i.e., a map such that Φ(X†) =
Φ(X)† for all X ∈ Mn), the semidefinite program associated with the triple (A, B, Φ) is the following
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PPT abs

Rabs

SEP

R

PPT

Figure 1: The figure on the left represents the relationship between the set of separable states SEP , the set
of PPT states PPT , and the set of states that satisfy the realignment criterion R. The figure on the right
represents the relationship between the set of absolutely PPT states PPT abs and the setRabs of states that
are “absolutely realignable” (see Theorem 1).

pair of optimization problems:

Primal problem Dual problem
maximize: Tr(AX) minimize: Tr(BY)
subject to: Φ(X) ≤ B subject to: Φ†(Y) ≥ A

X ≥ 0 Y ≥ 0,

where Φ† : Mm → Mn is the dual map of Φ defined by Tr(Φ(X)Y) = Tr(XΦ†(Y)) for all X ∈ Mn
and Y ∈ Mm. Semidefinite programs can be efficiently solved [22], and furthermore weak duality always
holds, which tells us that Tr(AX) ≤ Tr(BY) for all feasible points X ∈ Mn and Y ∈ Mm. In particular,
this means that we can get upper bounds on the optimal value of the primal problem by simply finding
a single feasible point for the dual problem (and similarly, feasible points of the primal problem give
lower bounds on the optimal value of the dual problem). For a more thorough introduction to semidefinite
programming, see [23, 24].

Given a linear map Φ : Mn → Mm, we recall that its Choi matrix is the operator

J(Φ)
def
= n(idn ⊗Φ)(|ψ+〉〈ψ+|) ∈ Mn ⊗Mm,

where |ψ+〉 = 1√
n ∑n

i=1 |i〉 ⊗ |i〉 ∈ Cn ⊗ Cn is the standard maximally-entangled pure state. It is well-
known that Φ is completely positive (i.e., satisfies (idn ⊗Φ)(X) ≥ 0 whenever 0 ≤ X ∈ Mn ⊗Mn) if
and only if J(Φ) is positive semidefinite [25].

Our proofs will also be heavily reliant on the notion of entanglement witnesses, which are Hermitian
operators W ∈ Mm ⊗ Mn with the property that Tr(Wσ) ≥ 0 for all separable σ ∈ Mm ⊗ Mn, but
Tr(Wρ) < 0 for some (necessarily entangled) ρ ∈ Mm ⊗Mn. Here we say that W detects the entangle-
ment in ρ, and we note that every entangled ρ is detected by some entanglement witness W. Finally, we
will also make frequent use of the family of Schatten p-norms, defined for p ∈ [1, ∞] by

‖X‖p :=
[
Tr
(
(X†X)p/2

)]1/p
,

where we define ‖X‖tr := ‖X‖1, ‖X‖F := ‖X‖2, and ‖X‖ := ‖X‖∞ (and in these special cases, these
norms are often called the trace norm, Frobenius norm, and operator norm, respectively).

The remainder of this article is organized as follows. In Section 3, we briefly review the characteri-
zation of states that are absolutely PPT that was originally derived in [17]. We then formally present the
question in which we are interested in Section 4, and briefly discuss the implications of an answer to this
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question. The next sections are dedicated to showing that several well-known separability criteria are un-
able to detect entanglement in any absolutely PPT state, and are thus unable to answer the our question. In
Section 6, we show that for specific classes of states that absolute separability and absolute PPT coincide.
Finally, in Section 7, we conclude and list a number of open problems and directions for future research.

3 Absolute Positive Partial Transpose

We now briefly recall some of the key points of the characterization of absolutely PPT states given in
[17]. Indeed, the main result of that paper shows that, for each m, n ∈ N, there exists a finite family of
linear matrix inequalities (LMIs) with the property that ρ ∈ Mm ⊗Mn is absolutely PPT if and only if its
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λmn satisfy each of the LMIs.

In the m = 2 case, the LMI that determines absolute PPT is

L1 :=
[

2λ2n λ2n−1 − λ1
λ2n−1 − λ1 2λ2n−2

]
≥ 0,

which is easily seen to be equivalent to the previously-discussed inequalities λ1 ≤ λ3 + 2
√

λ2λ4 when
n = 2 and λ1 ≤ λ5 + 2

√
λ4λ6 when n = 3.

In the m = 3 case, there are two LMIs that determine absolute PPT:

L1 :=

 2λ3n λ3n−1 − λ1 λ3n−3 − λ2
λ3n−1 − λ1 2λ3n−2 λ3n−4 − λ3
λ3n−3 − λ2 λ3n−4 − λ3 2λ3n−5

 ≥ 0,

L2 :=

 2λ3n λ3n−1 − λ1 λ3n−2 − λ2
λ3n−1 − λ1 2λ3n−3 λ3n−4 − λ3
λ3n−2 − λ2 λ3n−4 − λ3 2λ3n−5

 ≥ 0.

(1)

That is, ρ ∈ M3⊗Mn is absolutely PPT if and only if its eigenvalues satisfy both of the positive semidef-
initeness conditions (1).

In general, once we have fixed m, n we use L1, L2, L3, . . . to denote the matrices of eigenvalues whose
positive semidefiniteness determine absolute PPT, and these matrices always look quite similar to the
matrices (1) from the m = 3 case. For example, each Li is of size min{m, n} ×min{m, n}, the diagonal
entry of each Li is 2 times one of the λj’s, and each off-diagonal entry is the difference of two of the λj’s.
Furthermore, the top-left 2× 2 sub-matrix of L1 is always of the form[

2λmn λmn−1 − λ1
λmn−1 − λ1 2λmn−2

]
, (2)

so positive semidefiniteness of (2) is a necessary (but not sufficient when m, n ≥ 3) condition for ρ to be
absolutely PPT.

We note that the number of Li’s that must be checked to be positive semidefinite grows exponentially
in min{m, n} (for example, when min{m, n} = 7 the number of Li’s is 107, 498 [26]), and their exact
construction is slightly complicated. However, it is not important for our purposes to be familiar with their
exact construction—the properties of these matrices that we presented above are all we need.

We now present, without proof, a lemma that is well-known in matrix analysis (see, for example, [27,
Problem III.6.14]).
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Lemma 1. Let A, B ∈ Mn be Hermitian matrices with eigenvalues λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µn,
respectively. Then

min
{

Tr(AUBU†) : U ∈ Mn is unitary
}
=

n

∑
j=1

λjµn−j+1.

We can make use of Lemma 1 to see that semidefinite programming can be used to determine whether
or not a given entanglement witness is capable of detecting entanglement in an absolutely PPT state. In
particular, if we have an entanglement witness W ∈ Mm ⊗Mn with eigenvalues µ1 ≥ · · · ≥ µmn then W
can detect the entanglement in some absolutely PPT state if and only if the optimal value of the following
semidefinite program is strictly less than zero:

minimize:
mn

∑
j=1

λjµmn−j+1

subject to: Li ≥ 0 ∀ i
λj ≥ λj+1 ≥ 0 ∀ 1 ≤ j ≤ mn− 1
mn

∑
j=1

λj = 1.

(3)

Indeed, the constraints in the SDP (3) are simply enforcing the fact that λ1 ≥ · · · ≥ λmn ≥ 0 are the
eigenvalues of some absolutely PPT state. It then follows from Lemma 1 that the SDP (3) computes

min
{

Tr(Wρ) : ρ ∈ Mm ⊗Mn is absolutely PPT
}

.

4 The Absolute PPT Question

We now present the question that is at the heart of this work. Recall that the answer to this question was
already shown to be “yes” in the m = 2 case in [19].

Question 1. Is it true that a quantum state ρ ∈ Mm ⊗ Mn is absolutely separable if and only if it is
absolutely PPT?

The rest of the paper is devoted to investigating Question 1. In particular, we show that many of the
standard techniques from entanglement theory cannot be used to help answer this question. We first need
the following proposition.

Proposition 1. Suppose that there exists a state ρ ∈ Mm ⊗Mn that is absolutely PPT but not absolutely
separable. Then ρ has full rank.

Proof. Suppose that ρ is absolutely PPT with eigenvalues λ1 ≥ · · · ≥ λmn = 0 (notice that we set the
smallest eigenvalue equal to 0, so that ρ does not have full rank). Our goal is to show that ρ is absolutely
separable.

We recall from Section 3 that the matrix (2) must be positive semidefinite. However, by using the
fact that λmn = 0, we then see that λ1 = λmn−1, which implies that (up to a positive scalar multiple),
ρ = I − |v〉〈v| for some pure state |v〉 ∈ Cm ⊗ Cn. We now use [15, Theorem 1], which says that
every operator of the form I − X with ‖X‖F ≤ 1 is separable (and even absolutely separable). Since
‖|v〉〈v|‖F = 1, it follows that ρ is absolutely separable, as desired.
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We note that the proof of Proposition 1 shows that the only rank-deficient absolutely PPT states are
(up to normalization) the orthogonal projections of rank nm− 1, and these states are even in the Gurvits–
Barnum ball of separability.

Proposition 1 immediately implies that the range criterion [28] for detecting entanglement, which
states that the range of a separable state is spanned by product pure states, cannot possibly detect entan-
glement in any absolutely PPT state. To see this, simply note that the range of a full-rank state is the
entire Hilbert space, which is always spanned by product states (such as the standard basis). Furthermore,
Proposition 1 also shows that most of the “usual” ways of creating PPT entangled states cannot possibly
create absolutely PPT entangled states, since many such methods result in states that are not of full rank
(e.g., chessboard states [29], states constructed by unextendible product bases [30], the 1-parameter family
of states constructed by the Horodeckis [31], and so on). Relatively few families of bound entangled states
with full rank are known [32, 33], and we have not been able to find any that are absolutely PPT (see
Section 6.3, for example).

5 The Absolute Separablity “Collapse”

In this section, we present the main results of the paper, which show that the set of absolutely PPT states is
“closer” to the set of absolutely separable states than the set of PPT states is to the set of separable states
in the following sense: there are (many) separability criteria that are capable of detecting entanglement in
PPT states, but become weaker than the PPT criterion in the “absolute” regime (see Figure 1, for example).
We already saw this for the range criterion in the previous section. We now prove that the same result holds
for the realignment criterion [20, 21], the Choi map [25] and its generalizations [34], and the Breuer–Hall
map [35, 36]. That is, each of these separability criteria are incapable of detecting any entanglement in
absolutely PPT states.

Before dealing with any specific separability criteria, we first need the following very important lemma,
which we will make repeated use of. This lemma lets us determine that an entanglement witness cannot
detect entanglement in absolutely PPT states, based only on very limited information about the eigenvalues
of the witness (specifically, its largest eigenvalue and the sum of its negative eigenvalues).

Lemma 2. Let W ∈ Mm ⊗ Mn be a Hermitian operator with Tr(W) = 1. Let µ1 be the maximum
eigenvalue of W and define ` to be the sum of its negative eigenvalues:

`
def
= (1− ‖W‖tr)/2.

Furthermore, define a function f : [− 1
2 , 0]→ [ 1

2 , 1] by:

f (x) def
=

1
4


√

1− 4x2 − 2x + 1 if − 1
2 ≤ x ≤ − 1

2
√

2

1 +
√

2 if − 1
2
√

2
< x < 1−

√
2

2√
1 + 4x− 4x2 − 2x + 3 if 1−

√
2

2 ≤ x ≤ 0.

If ` ≥ − 1
2 and µ1 ≤ f (`) then Tr(Wρ) ≥ 0 for all absolutely PPT states ρ ∈ Mm ⊗Mn.

Before proving the lemma, we note that we have numerically found that the function f described by
Lemma 2 is optimal at least in the m = n = 3 case. That is, given any choice of ` and µ1 such that
µ1 > f (`), we can numerically find a Hermitian operator W ∈ M3 ⊗ M3 and an absolutely PPT state
ρ ∈ M3 ⊗ M3 such that Tr(W) = 1, W has a single negative eigenvalue equal to `, the maximum
eigenvalue of W is µ1, and Tr(Wρ) < 0.

The function f (x) is plotted in Figure 2, where we have highlighted some important special cases. For
example, f (− 1

2 ) =
1
2 , f (− 2

5 ) =
3
5 , f (− 1

5 ) =
9
10 , and f ((1−

√
2)/2) = (2 +

√
2)/4.
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Figure 2: A plot of the upper bound f (`) given by Lemma 2. For example, point (i) is (− 1
2 , 1

2 ), which
tells us that if the sum of the negative eigenvalues (`) of W equals − 1

2 then W cannot detect entanglement
in absolutely PPT states if the largest eigenvalue (µ1) of W is ≤ 1

2 . Point (ii) corresponds to ` = − 2
5 and

µ1 ≤ 3
5 , (iii) corresponds to ` = − 1

2
√

2
and µ1 ≤ 1

4 (1 +
√

2), (v) corresponds to ` = 1
2 (1−

√
2) and

µ1 ≤ 1
4 (2 +

√
2), (vi) corresponds to ` = − 1

5 and µ1 ≤ 9
10 , and (vii) corresponds to ` = 0 and µ1 ≤ 1

(in which case the result is trivial).

Proof of Lemma 2. We prove the result by showing that the semidefinite program (3) has optimal value
≥ 0 whenever ` ≥ − 1

2 and µ1 ≤ f (`). First, we replace the complicated set of LMI constraints Li ≥ 0
for all i in this SDP with the single constraint that the 2× 2 matrix (2) is positive semidefinite. Since this
new SDP is a minimization problem subject to a weaker set of constraints, its optimal value is no larger
than the optimal value of the SDP (3).

Second, we will make some simplifying assumptions about the eigenvalues µ1, µ2, . . . , µmn. To this
end, for now we fix some ` and λ1, λ2, . . . , λmn ≥ 0 satisfying the constraints of the SDP (3), and consider
the following SDP, where we optimize over µ1, µ2, . . . , µmn:

minimize:
mn

∑
j=1

λjµmn−j+1

subject to: (1−
mn

∑
j=1
|µj|)/2 ≥ `

µj ≥ µj+1 ∀ 1 ≤ j ≤ mn− 1
mn

∑
j=1

µj = 1.

(4)

It is straightforward to see that the optimal solution of the SDP (4) occurs when µmn = ` (i.e., rather
than having multiple negative µj’s, we just have one of them as negative as possible). Similarly, increasing
µ1 (subject to the constraints of the SDP (4)), or increasing µ2 while fixing µ1 will also decrease the
value of the objective function, and similarly for increasing µ3 while fixing µ1 and µ2. For example,
when ` = −2/5 and µ1 ≤ f (−2/5) = 3/5, it suffices to consider the case when µmn = −2/5, µ1 =
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3/5, µ2 = 3/5, µ3 = 1/5 (µ1, µ2, µ3 are determined by making µ1 as large as possible subject to µ1 ≤
f (`), then µ2 as large as possible while subject to µ2 ≤ µ1, and so on until ∑i µi = 1). In general, we set
µ2 = min{µ1, 1− µ1 − `}, and µ3 = max{0, 1− 2µ1 − `} (and µi = 0 for all 4 ≤ i ≤ mn− 1).

Since the optimal solution µ1, . . . , µmn of the SDP (4) satisfies the conditions described in the previ-
ous paragraph regardless of λ1, . . . , λmn, we can assume without loss of generality in the SDP (3) that
µ1, . . . , µmn satisfy those same conditions. That is, it suffices to show that the optimal value of the fol-
lowing SDP is ≥ 0, where we recall that µ1 and ` are fixed constants in this SDP, and we optimize over
λ1, λ2, . . . , λmn:

Primal problem
minimize: µ1λmn + min{µ1, 1− µ1 − `}λmn−1 + max{0, 1− 2µ1 − `}λmn−2 + `λ1

subject to:
[

2λmn λmn−1 − λ1
λmn−1 − λ1 2λmn−2

]
≥ 0

λi ≥ λi+1 ≥ 0 ∀ 1 ≤ i ≤ mn− 1
mn

∑
i=1

λi = 1.

(5)

The dual problem can be constructed using standard techniques of semidefinite programming as found
in [24].

Dual problem
maximize: t
subject to: t− 2b + y1 = `

t + 2b + ymn−1 − ymn−2 = min{µ1, 1− µ1 − `}
t + 2c + ymn−2 − ymn−3 = max{0, 1− 2µ1 − `}
t + 2a− ymn−1 ≤ µ1
t + yi+1 − yi = 0 ∀ 1 ≤ i ≤ mn− 4
yi ≥ 0 ∀ 1 ≤ i ≤ mn− 1[

a b
b c

]
≥ 0.

(6)

It thus suffices to find a feasible point of the above dual problem with t = 0. We note that code that
implements the above SDP in MATLAB via the CVX package [37] can be downloaded from [38]. We
now split into three cases, depending on which branch of f we are working with.

Case a): − 1
2 ≤ ` ≤ − 1

2
√

2
. In this case, we have µ1 = (

√
1− 4`2 − 2`+ 1)/4, min{µ1, 1− µ1 −

`} = µ1, and max{0, 1− 2µ1 − `} = 1− 2µ1 − `. It is then straightforward to verify the following
defines a feasible point of the dual problem of the semidefinite program (5):

t = 0, a =
`+ 2µ1

2
, b = − `

2
, c =

1− 2µ1 − `

2
yi = 0 ∀ 1 ≤ i ≤ mn− 2, ymn−1 = µ1 + `.

The only condition in the dual problem that is not obviously satisfied is the fact that
[

a b
b c

]
≥ 0. However,

this follows from the fact that b2 = ac for this particular choice of a, b, c, and µ1. Since this dual feasible
point has t = 0, it follows that the semidefinite program (5) has optimal value ≥ 0, as desired.

Case b): − 1
2
√

2
< ` < 1−

√
2

2 . This case follows immediately from choosing ` = − 1
2
√

2
in case a) and

noting that we can choose the function f described by the lemma to be non-decreasing.
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Case c): 1−
√

2
2 ≤ ` ≤ 0. In this case, we have µ1 = (

√
1 + 4`− 4`2 − 2`+ 3)/4, min{µ1, 1−

µ1 − `} = 1− µ1 − `, and max{0, 1− 2µ1 − `} = 0. It is then straightforward to verify the following
defines a feasible point of the dual problem of the semidefinite program (5):

t = 0, a =
µ1

2
, b =

1− µ1 − `

2
, c =

1− µ1

2
yi = 1− µ1 ∀ 1 ≤ i ≤ mn− 3, ymn−2 = ymn−1 = 0.

Similar to case a), we have b2 = ac for this particular choice of a, b, c, and µ1, so the above point indeed
satisfies all of the constraints of the dual problem. Since t = 0, it follows that the semidefinite program (5)
has optimal value ≥ 0, which completes the proof.

5.1 The Realignment Criterion

The realignment criterion [20, 21] for entanglement states that all separable states ρ ∈ Mm ⊗Mn satisfy
‖R(ρ)‖tr ≤ 1, where R : Mm ⊗ Mn → Mm,n ⊗ Mm,n is the linear “realignment” map defined on
elementary tensors by R(|i〉〈j| ⊗ |k〉〈`|) = |i〉〈k| ⊗ |j〉〈`|. Thus if ‖R(ρ)‖tr > 1 then we know that ρ
is entangled, and we say that the realignment criterion detected the entanglement in ρ. This criterion is
particularly useful, as it is one of the simplest tests that can detect entanglement in PPT states. The main
result of this section shows that the realignment criterion cannot detect entanglement in any absolutely
PPT states.

To phrase our result in another way, we can consider the sets of absolutely PPT states and “absolutely
realignable” states:

PPT abs
def
=
{

ρ : (idm ⊗ T)(UρU†) ≥ 0 ∀ unitary U
}

,

Rabs
def
=
{

ρ : ‖R(UρU†)‖tr ≤ 1 ∀ unitary U
}

.

Our result states that PPT abs ⊆ Rabs, so the realignment criterion becomes a weaker entanglement test
than the PPT criterion in the “absolute” setting:

Theorem 1. If ρ ∈ Mm ⊗Mn is absolutely PPT then ‖R(ρ)‖tr ≤ 1. That is, the realignment criterion
cannot detect entanglement in any absolutely PPT state.

It will be helpful to note that for any state ρ ∈ Mm ⊗Mn, one can write ρ in terms of its operator-
Schmidt decomposition, which is defined as

ρ = ∑
i

λi Ai ⊗ Bi,

where λi ≥ 0 for all i and the sets of operators {Ai} and {Bi} form orthonormal bases of Mm and
Mn in the Hilbert–Schmidt inner product. There is a well-known correspondence between the realignment
criterion and the operator-Schmidt decomposition of any state ρ. Specifically, it is the case that ‖R(ρ)‖tr =

∑i λi (a proof of this fact can be found in [39]), so any state with ∑i λi > 1 is entangled. In this case, it is
straightforward to see that the operator

W := I −∑
i

Ai ⊗ Bi (7)

is an entanglement witness that detects the entanglement in ρ, since orthonormality of {Ai} and {Bi}
implies that Tr(Wρ) = 1− ∑i λi < 0. Thus, to show that ‖R(ρ)‖tr ≤ 1 for all absolutely PPT states,
it suffices to show that operators W of the form (7) have Tr(Wρ) ≥ 0 whenever ρ is absolutely PPT. In
order to prove this result, we first need the following two auxiliary lemmas.
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Lemma 3. Let {Ai}m2

i=1 ⊂ Mm and {Bi}n2

i=1 ⊂ Mn be orthonormal sets in the Hilbert–Schmidt inner
product. Then

∣∣Tr
(

∑k
i=1 Ai ⊗ Bi

)∣∣ ≤ √mn for all k ≤ min{m2, n2}.

Proof. Define vectors u, v ∈ Ck by ui := Tr(Ai) and vi := Tr(Bi). By the Cauchy–Schwarz inequality,
it follows that ∣∣∣∣∣Tr

(
k

∑
i=1

Ai ⊗ Bi

)∣∣∣∣∣ = ∣∣〈u, v〉
∣∣ ≤ ‖u‖ · ‖v‖.

To prove our result, we show that ‖u‖ ≤
√

m, with a similar argument holding for ‖v‖ ≤
√

n. We first
rewrite ui as ui = 〈I, Ai〉. Note that the identity operator can be rewritten as

I =
m2

∑
i=1
〈Ai, I〉Ai. (8)

Computing the norms of the quantities in Equation (8), we obtain

‖I‖2
F =

m2

∑
i=1
|〈Ai, I〉|2 ≥

k

∑
i=1
|ui|2 = ‖u‖2,

where the first equality follows from the definition of the Frobenius norm, and by noting that the set of
operators {Ai}m2

i=1 are orthonormal. Since ‖I‖2
F = m, it directly follows that ‖u‖ ≤

√
m, as desired.

Lemma 4. Let W ∈ Mm ⊗Mn be an entanglement witness of the form (7), scaled so that Tr(W) = 1.
Then

‖W‖F ≤
√

2
mn−

√
mn

.

Proof. Consider the Hermitian operator W̃ := I − ∑k
i=1 Ai ⊗ Bi and let W be its normalization: W =

W̃/Tr(W̃). For brevity, define t := Tr
(

∑k
i=1 Ai ⊗ Bi

)
. Then

‖W‖2
F = Tr(W†W) =

mn− 2t + k
Tr(W̃)2

≤ 2mn− 2t
(mn− t)2 =

2
mn− t

≤ 2
mn−

√
mn

,

where the first inequality above comes from simply noting that k ≤ min{m2, n2} ≤ mn and the second
inequality comes from Lemma 3 and noting that 2/(mn − t) is an increasing function of t (for t <
mn).

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Our goal is to make use of Lemma 2, so we want to find bounds on ` := (1 −
‖W‖tr)/2 and the maximum eigenvalue µ1 of W, where W is an entanglement witness of the form (7),
scaled so that Tr(W) = 1. Bounds on both of these quantities follow straightforwardly from Lemma 4.
More specifically, it is always the case that ‖ · ‖tr ≤

√
d‖ · ‖F for d× d matrices, so Lemma 4 immediately

implies that

‖W‖tr ≤
√

mn‖W‖F ≤

√
2
√

mn√
mn− 1

.
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Similarly, ‖ · ‖ ≤ ‖ · ‖F always, so we get the following bounds on ` and µ1:

` ≥ 1
2

(
1−

√
2
√

mn√
mn− 1

)
,

µ1 ≤ ‖W‖ ≤ ‖W‖F ≤
√

2
mn−

√
mn

.

Furthermore, when m, n ≥ 3 (which is the only case we need to consider, since it is already known that
absolute separability and absolute PPT coincide when min{m, n} ≤ 2) we then have the looser bounds
` ≥ 1

2 (1−
√

3) and µ1 ≤ 1√
3
. Since f ( 1

2 (1−
√

3)) ≈ 0.6033 . . . ≥ 0.5773 . . . ≈ 1√
3
≥ µ1, it follows

from Lemma 2 that if ρ is absolutely PPT then Tr(Wρ) ≥ 0, so ‖R(ρ)‖tr ≤ 1, as desired.

5.2 The Choi Map

The Choi map [40] is a positive map on M3 that is defined as follows:

ΦC(X)
def
=

1
2

x11 + x22 −x12 −x13
−x21 x22 + x33 −x23
−x31 −x32 x33 + x11

 .

This map is one of the most well-known positive maps because it was one of the first maps found with the
property that there are states ρ ∈ M3⊗M3 such that (id3⊗ T)(ρ) ≥ 0, but (id3⊗ΦC)(ρ) 6≥ 0. In other
words, the Choi map was one of the first known examples of a positive map that can detect entanglement
in PPT states. Furthermore, it is extremal in the set of positive maps [41].

Our main result of this section is that the Choi map cannot detect entanglement in absolutely PPT
states. Equivalently, we show that the set of “absolutely Choi map” states:

Cabs
def
=
{

ρ : (id3 ⊗ΦC)(UρU†) ≥ 0 ∀ unitary U
}

is a superset of the absolutely PPT states: PPT abs ⊆ Cabs. Thus the Choi map is a weaker entanglement
test than the PPT criterion in the “absolute” setting:

Theorem 2. If ρ ∈ M3 ⊗M3 is absolutely PPT then (id3 ⊗ΦC)(ρ) ≥ 0.

As with the previous section, our first goal here is to rephrase the condition (id3 ⊗ ΦC)(ρ) 6≥ 0 in
terms of entanglement witnesses, so that we can make use of Lemma 2. To this end, simply note that if
(id3 ⊗ ΦC)(ρ) 6≥ 0 then there exists a pure state |v〉 ∈ C3 ⊗ C3 such that 〈v|(id3 ⊗ ΦC)(ρ)|v〉 < 0.
Thus Tr((id3 ⊗Φ†

C)(|v〉〈v|)ρ) < 0, so

W := (id3 ⊗Φ†
C)(|v〉〈v|) (9)

is a witness that detects entanglement in ρ. It thus suffices to show that witnesses of the form (9) cannot
detect entanglement in absolutely PPT states ρ. In order to prove this claim, we present the following
lemma, which bounds the eigenvalues of (id3 ⊗Φ†

C)(|v〉〈v|).

Lemma 5. Let |v〉 ∈ C3⊗C3 be a unit vector. Then the eigenvalues of (id3⊗Φ†
C)(|v〉〈v|) are contained

within the interval [−1/6, 2/3].
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Before proving this result, we note that both of its bounds on the eigenvalues are tight. A minimal
eigenvalue of −1/6 is obtained when |v〉 = |ψ+〉 (the standard maximally-entangled state), and a maxi-
mal eigenvalue of 2/3 is obtained when |v〉 = 1√

3
|0〉 ⊗ (|0〉+

√
2|1〉).

Proof. Let µ1 ≥ · · · ≥ µ9 be the eigenvalues of (id3 ⊗ Φ†
C)(|v〉〈v|). Our first goal is to show that

µ9 ≥ −1/6. To this end, first notice that Φ†
C is trace-preserving, so we have

9

∑
i=1

µi = 1. (10)

Also notice that (
8

∑
i=1

µi

)
− µ9 ≤

9

∑
i=1
|µi| ≤

∥∥Φ†
C
∥∥
�, (11)

where ‖ · ‖� is the diamond norm [42] defined by∥∥Φ
∥∥
�

def
= sup

{∥∥(id3 ⊗Φ)(X)
∥∥

tr :
∥∥X
∥∥

tr ≤ 1
}

.

By subtracting Inequality (11) from Equation (10), we see that

µ9 ≥
1
2

(
1−

∥∥Φ†
C
∥∥
�

)
. (12)

The diamond norm
∥∥Φ†

C

∥∥
� can be computed via semidefinite programming [43], and in particular is

equal to the optimal value of the following problem [44]:

minimize:
1
2

∥∥Tr2(Y0)
∥∥+ 1

2

∥∥Tr2(Y1)
∥∥

subject to:
[

Y0 −J(Φ†
C)

−J(Φ†
C)

† Y1

]
≥ 0

Y0, Y1 ≥ 0,

(13)

where we optimize over Y0, Y1 ∈ M3⊗M3 and denote Tr2(·) as the partial trace with respect to the second
subsystem. It is straightforward to verify that the following are feasible values of Y0 and Y1, written with
respect to the standard basis of C3 ⊗C3:

Y0 = Y1 =
1
6



5 · · · −1 · · · −1
· 3 · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
−1 · · · 5 · · · −1
· · · · · 3 · · ·
· · · · · · 3 · ·
· · · · · · · · ·
−1 · · · −1 · · · 5


.

Since 1
2

∥∥Tr2(Y0)
∥∥+ 1

2

∥∥Tr2(Y1)
∥∥ = 4/3, it follows that

∥∥ΦC
∥∥
� ≤ 4/3 (it is not difficult to show that it

actually equals 4/3, but we only need the upper bound). By plugging this upper bound into Inequality (12),
we see that µ9 ≥ −1/6, as desired.
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Our next goal is to show that µ1 ≤ 2/3. To show this, we first note that

µ1 ≤ sup
|v〉∈C3⊗C3

{∥∥(id3 ⊗Φ†
C)(|v〉〈v|)

∥∥}.

By making use of [45, Theorem 4], we see that the id3 in this quantity can be omitted, giving

µ1 ≤ sup
|v〉∈C3

{∥∥Φ†
C(|v〉〈v|)

∥∥}. (14)

It was shown in [46] that the quantity on the right in Inequality (14) equals

sup
|v〉,|w〉∈C3

{
(〈v| ⊗ 〈w|)J(Φ†

C)(|v〉 ⊗ |w〉)
}

. (15)

Optimizing over separable states in general is expected to be difficult, but we can compute upper bounds of
the quantity (15) via the semidefinite programming methods of [46, 47]. In particular, the following SDP
takes the supremum over the set of PPT states, rather than the set of separable states, and thus computes
an upper bound of the quantity (15) (and hence of µ1):

Primal problem Dual problem
maximize: Tr(J(Φ†

C)ρ) minimize: λmax
(
(id3 ⊗ T)(Y) + J(Φ†

C)
)

subject to: (id3 ⊗ T)(ρ) ≥ 0 subject to: Y ≥ 0,
Tr(ρ) ≤ 1
ρ ≥ 0

(16)

where we optimize over density matrices ρ ∈ M3 ⊗ M3 in the primal problem and over Hermitian
Y ∈ M3 ⊗ M3 in the dual problem. It is straightforward to use semidefinite programming solvers to
numerically verify that the optimal value of this semidefinite program is 2/3, from which it follows that
µ1 ≤ 2/3. To obtain a completely analytic proof of this fact, it suffices to find a single positive semidefi-
nite Y ∈ M3 ⊗M3 such that λmax

(
(id⊗ T)(Y) + J(Φ†

C)
)
= 2/3. One such matrix is as follows:

Y =
1
6



· · · · · · · · ·
· 1 · 2 · · · · ·
· · 4 · · · 2 · ·
· 2 · 4 · · · · ·
· · · · · · · · ·
· · · · · 1 · 2 ·
· · 2 · · · 1 · ·
· · · · · 2 · 4 ·
· · · · · · · · ·


.

With the above lemma in hand, we are now in a position to prove the main result of this section.

Proof of Theorem 2. By Lemma 5, we know that every entanglement witness W of the form W = (id3 ⊗
Φ†

C)(|v〉〈v|) has eigenvalues in the interval [−1/6, 2/3]. Since ΦC can be written in the form ΦC =
(Φ− id3)/2 for some completely positive map Φ, we see that W = ((id3 ⊗Φ†)(|v〉〈v|)− |v〉〈v|)/2,
which has at most 1 negative eigenvalue, so we know that ` := (1− ‖W‖tr)/2 ≥ −1/6 as well. Since
f (−1/6) = 1

12 (10+
√

2) ≈ 0.9512 . . . ≥ 2
3 , it follows from Lemma 2 that W cannot detect entanglement

in any absolutely PPT state, so neither can the Choi map ΦC.
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5.3 Generalized Choi Maps

In the proof of Theorem 2, there was a rather large gap between the largest eigenvalue of (id3⊗Φ†
C)(|v〉〈v|)

(which was 2/3) and the quantity that we needed to bound this eigenvalue by (which was 1
12 (10+

√
2) ≈

0.9512 . . .). This suggests that any positive map that is sufficiently close to the Choi map also cannot detect
entanglement in absolutely PPT states, since perturbing the Choi map will only slightly change both of
these values. This section is devoted to making this statement more rigorous and precise, by investigating
a well-known family of positive maps that generalize the Choi map.

We now introduce an infinite family of positive maps based on two real parameters b, c ≥ 0 that were
first studied in [34] (see also [48, 49]). If we let a := 2− b− c, then these maps are defined as follows:

Φb,c(X)
def
=

1
2

ax11 + bx22 + cx33 −x12 −x13
−x21 cx11 + ax22 + bx33 −x23
−x31 −x32 bx11 + cx22 + ax33

 .

Notice that the Choi map ΦC is recovered in the (b, c) = (1, 0) case. Additionally, in the (b, c) = (1, 1)
case the map has the form Φ1,1(X) = 1

2

(
Tr(X)I − X

)
, which is the well-known reduction map [50].

It is known that Φb,c is positive but not completely positive (i.e., capable of detecting entanglement in
some state) if and only if (b, c) 6= (0, 0), and either b+ c ≤ 1 or bc ≥ (b+ c− 1)2 (or both). Furthermore,
it is indecomposable (i.e., it detects some PPT entanglement) if and only if b 6= c, and it is an exposed
point in the convex set of positive maps (and hence extreme and optimal) [51] if b 6= c, b + c > 1, and
bc = (b + c− 1)2 (see Figure 3).

0 1
3

2
3

1 4
3

0

1
3

2
3

1

4
3

b = c

(i)

(ii)
(iii)

(a)

(b) (c)

(d)

b

c

Figure 3: A plot of the set of positive but not completely positive maps Φb,c. The gray region indicates
the values of (b, c) for which Φb,c is positive. For every point (b, c) in the gray region, with the exception
of the dashed line b = c, the map Φb,c is indecomposible, and hence is able to detect entanglement in
some PPT state. The curved part of the boundary (i.e., the thick black line) consists of exposed positive
maps. The four points (a)–(d) are the points described by Theorem 3, and hence every map in the dark
gray region is incapable of detecting entanglement in absolutely PPT states. The point (i) is the Choi map
ΦC, (iii) is its dual Φ†

C, and (ii) is the reduction map. This figure is also reproduced and considered in the
following works [49, 48]

As with the previous sections, our goal is to show that the maps Φb,c cannot detect entanglement in
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any absolutely PPT state. While we are not able to prove this for all positive Φb,c, we are able to prove it
for most of them, including many of which are exposed in the set of positive maps.

Theorem 3. Suppose that the point (b, c) is contained within the convex hull of the following 4 points:

(a) (0, 0),

(b) (0, 3(
√

2− 1)),

(c) (6/5, 6/5),

(d) (3(
√

2− 1), 0).

If ρ ∈ M3 ⊗M3 is absolutely PPT then (id3 ⊗Φb,c)(ρ) ≥ 0.

As with Theorem 2, our method of proof is to come up with bounds on the eigenvalues of (id3 ⊗
Φ†

b,c)(|v〉〈v|). By convexity arguments, it would suffice for our purposes to prove these bounds only for
the four points described by Theorem 3, but we prove bounds that hold for all (b, c) since it is not much
more work.

Lemma 6. Let |v〉 ∈ C3 ⊗ C3 and suppose b, c ≥ 0 satisfy b + c ≤ 3. Then the eigenvalues of (id3 ⊗
Φ†

b,c)(|v〉〈v|) are no smaller than − 1
6 (b + c).

Proof. We note that the nuts and bolts of the proof are almost identical to the proof of the lower bound
given in Lemma 5, so it suffices to just present a solution to the semidefinite program (13) that works for
all Φb,c rather than just ΦC. Indeed, it is straightforward to check that the following is a feasible point of
the semidefinite program:

Y0 = Y1 =
1
6



6− b− c · · · 2b + 2c− 3 · · · 2b + 2c− 3
· 3b · · · · · · ·
· · 3c · · · · · ·
· · · 3c · · · · ·

2b + 2c− 3 · · · 6− b− c · · · 2b + 2c− 3
· · · · · 3b · · ·
· · · · · · 3b · ·
· · · · · · · 3c ·

2b + 2c− 3 · · · 2b + 2c− 3 · · · 6− b− c


,

where we have used the constraints on b and c given in the statement of the lemma to ensure that the
positive semidefiniteness requirements of the SDP (13) are satisfied. The corresponding value of the
objective function is

∥∥Tr2(Y0)
∥∥ =

1
3

∥∥∥∥∥∥
3 + b + c 0 0

0 3 + b + c 0
0 0 3 + b + c

∥∥∥∥∥∥
=

1
3
(3 + b + c).

It follows that ‖Φ†
b,c‖� ≤

1
3 (3 + b + c), so from Equation (12) it follows that if µ9 is the minimal eigen-

value of (id3 ⊗Φ†
b,c)(|v〉〈v|) then µ9 ≥ 1

2 (1− ‖Φ†
b,c‖�) ≥ −

1
6 (b + c), as desired.
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Upper bounds on the eigenvalues of (id3 ⊗ Φ†
b,c)(|v〉〈v|) seem to be much messier than the lower

bound given by Lemma 6, so we defer their discussion to Appendix A, where we complete the proof of
Theorem 3.

Theorem 3 shows analytically that all of the maps in the dark shaded region of Figure 3 are unable
to detect entanglement in absolutely PPT states. It is natural to ask whether or not the same is true of
the positive maps in the light shaded region. We do not have an analytic proof that this is the case,
but numerical evidence suggests that it is. In particular, we randomly generated 108 pure states |v〉 and
values of (b, c) in the light shaded region of Figure 3, and found that every time the eigenvalues of (id3 ⊗
Φ†

b,c)(|v〉〈v|) satisfied the hypotheses of Lemma 2.

5.4 Breuer–Hall Map

The Breuer–Hall map [35, 36] is a positive map on Mn, where n ≥ 4 is even, that is defined as follows:

ΦBH(X)
def
=

1
n− 2

(
Tr(X)I − X−VXTV†

)
,

where V ∈ Mn is a given unitary matrix that is skew symmetric (anti-symmetric), i.e. VT = −V. We
note that the reason for restricting to even n is because such unitary matrices exist if and only if n is even.
One such unitary matrix is as follows:

V =


0 0 · · · 0 1
0 0 · · · 1 0
...

... ··
· ...

...
0 −1 · · · 0 0
−1 0 · · · 0 0

 ,

and it follows straightforwardly from [52, Theorem 2.3] that for our purposes it suffices to restrict attention
to this particular V (i.e., there exists a Breuer–Hall map detecting entanglement in some absolutely PPT
state if and only if the Breuer–Hall map that arises from this particular V detects entanglement in some
absolutely PPT state).

Much like the Choi map and generalized Choi maps, the Breuer–Hall map is capable of detecting
entanglement in PPT states. We now show, in a manner similar to the proof of Theorem 2, that these
maps cannot detect entanglement in absolutely PPT states. Phrased differently, we show that the set of
“absolutely Breuer–Hall” states:

BHabs
def
=
{

ρ : (idn ⊗ΦBH)(UρU†) ≥ 0 ∀ unitary U
}

is a superset of the absolutely PPT states: PPT abs ⊆ BHabs.

Theorem 4. Let n ≥ 4 be even. If ρ ∈ Mn ⊗Mn is absolutely PPT then (idn ⊗ΦBH)(ρ) ≥ 0.

Just like in the proof of Theorem 2, our goal is to bound the eigenvalues of operators of the form
(idn ⊗Φ†

BH)(|v〉〈v|). The following lemma provides such a bound.

Lemma 7. Let |v〉 ∈ Cn ⊗Cn, where n ≥ 4 is even. Then the eigenvalues of (idn ⊗Φ†
BH)(|v〉〈v|) are

contained within the interval [−1/n, 1/(n− 2)].

Proof. The proof follows the same construction as the proof of Theorem 2 and uses the same semidefinite
programs. Let µ1 ≥ · · · ≥ µn2 be the eigenvalues of (idn ⊗ Φ†

BH)(|v〉〈v|). We first show that µ1 ≤

16



1/(n − 2). To achieve this, we must find a feasible point Y of the SDP (16) (replacing ΦC by ΦBH)
such that the objective function has the value 1/(n − 2) at that point. One choice of Y that works is
Y = n

n−2 (I ⊗V)|ψ+〉〈ψ+|(I ⊗V†), which is clearly positive semidefinite and thus a feasible point. The
corresponding value of the objective function is

λmax
(

J(Φ†
BH) + (idn ⊗ T)(Y)

)
=

1
n− 2

λmax
(

I − n|ψ+〉〈ψ+|
)
=

1
n− 2

,

as desired.
We next show that µn2 ≥ −1/n. To proceed, we calculate the diamond norm ‖Φ†

BH‖� using the
SDP (13), where we optimize over Y0, Y1 ∈ Mn ⊗Mn. We now show that the following choice of Y0 and
Y1 is a dual feasible point that achieves this bound:

Y0 = Y1 = J(Φ†
BH) + 2|ψ+〉〈ψ+|.

It is straightforward to show that P := Y0 − |ψ+〉〈ψ+| is (up to scaling) an orthogonal projection, so Y0
is positive semidefinite. Next observe that[

Y0 −J(Φ†
BH)

−J(Φ†
BH)

† Y1

]
=

[
P −P
−P P

]
+

[
|ψ+〉〈ψ+| |ψ+〉〈ψ+|
|ψ+〉〈ψ+| |ψ+〉〈ψ+|

]
≥ 0,

from which it follows that the given choice of Y0, Y1 is a feasible point of the SDP (13).
To compute the corresponding value of the objective function, we note that Tr2(Y0) =

n
n−2 I− 1

n−2 I−
1

n−2 I + 2
n I = n+2

n I, so 1
2

∥∥Tr2(Y0)
∥∥+ 1

2

∥∥Tr2(Y1)
∥∥ = n+2

n . It follows that
∥∥Φ†

BH

∥∥
� ≤

n+2
n . By plugging

this upper bound into Inequality (12) we see that µn2 ≥ −1/n, as desired, which concludes the proof.

Now that we have bounds on the eigenvalues of the witnesses of the form (idn ⊗Φ†
BH)(|v〉〈v|), we

can prove the main result of this section.

Proof of Theorem 4. By Lemma 7, we know that every entanglement witness W of the form W = (idn ⊗
Φ†

BH)(|v〉〈v|) has eigenvalues in the interval [−1/n, 1/(n − 2)]. From the definition of ΦBH it is
straightforward to see that every such W has at most 1 negative eigenvalue, so we know that ` :=
(1− ‖W‖tr)/2 ≥ −1/n as well.

For all n ≥ 4, we have f (`) = f (−1/n) ≥ f (−1/4) = (1 +
√

2)/4 ≈ 0.6035 . . . ≥ 1/2 ≥
1/(n − 2) = µ1. It follows from Lemma 2 that W cannot detect entanglement in any absolutely PPT
state, so neither can ΦBH.

6 Special Classes of States

Up until now we have focused on proving that certain separability criteria are incapable of detecting
entanglement in absolutely PPT states. Now we shift focus a bit and prove that the absolute separability
and absolute PPT properties coincide on certain important families of quantum states.

6.1 Werner States

The first family of states that we investigate are the Werner states [1], which are defined via the single real
parameter α ∈ [−1, 1] by

ρ = (I − αS)/(n2 − nα) ∈ Mn ⊗Mn,
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where S ∈ Mn ⊗Mn is the swap operator defined by S(|a〉 ⊗ |b〉) = |b〉 ⊗ |a〉. It is well-known that the
Werner state ρ is separable if and only if it is PPT if and only if α ≤ 1/n. We now investigate when these
states are absolutely separable and absolutely PPT.

Theorem 5. Let ρ = (I− αS)/(n2− nα) ∈ Mn⊗Mn be a Werner state. Then ρ is absolutely separable
if −1/n ≤ α ≤ 1/n, and it is not absolutely PPT if α < −1/(n− 1) or α > 1/n.

Proof. Throughout this proof, we work with the operator X := I − αS, which is equal to ρ up to normal-
ization (and thus has the same separability and PPT properties as ρ). We first prove that |α| ≤ 1/n implies
that X is absolutely separable. To this end, notice that UXU† = I − αUSU†. Since ‖αUSU†‖2 =
‖αS‖2 = |α|‖S‖2 = |α|n, it follows from [15, Theorem 1] that UXU† is separable whenever |α|n ≤ 1
(i.e., |α| ≤ 1/n).

To prove the claim about when the given state is not absolutely PPT, we split into two separate cases.
Case 1: α > 1/n. Our goal is to show that X is not absolutely PPT. Notice that the eigenvalues of

X are 1− α with multiplicity n(n + 1)/2 and 1 + α with multiplicity n(n − 1)/2. It follows from a
straightforward calculation that each of the LMIs described by [17] corresponding to the set of absolutely
PPT states is of the form 

2− 2α −2α −2α · · · −2α
−2α 2− 2α −2α · · · −2α
−2α −2α 2− 2α · · · −2α

...
...

...
. . .

...
−2α −2α −2α · · · 2− 2α

 ≥ 0.

It is straightforward to see that the minimum eigenvalue of the above matrix is 2− 2nα, so the matrix is
positive semidefinite if and only if 2− 2nα ≥ 0, which does not hold in this case.

Case 2: α < −1/(n− 1). Again, our goal is to show that X is not absolutely PPT. As in case 1 above,
the eigenvalues of X are 1− α with multiplicity n(n + 1)/2 and 1 + α with multiplicity n(n − 1)/2.
However, this time there are many different LMIs corresponding to the absolutely PPT condition, since it
is now the larger eigenvalue that has higher multiplicity. One of the LMIs is

L1 :=



2 + 2α 2α 2α · · · 2α 0
2α 2 + 2α 2α · · · 2α 0
2α 2α 2 + 2α · · · 2α 0
...

...
...

. . .
...

...
2α 2α 2α · · · 2 + 2α 0
0 0 0 · · · 0 2− 2α


≥ 0.

Similar to in case 1, the minimum eigenvalue of the above matrix is 2+ 2(n− 1)α, so the positive semidef-
initeness constraint is satisfied if and only if α ≥ −1/(n− 1). In particular, this one LMI shows that X is
not absolutely PPT when α < −1/(n− 1).

Theorem 5 leaves open the question of whether or not Werner states are absolutely separable (or
even absolutely PPT) when −1/(n− 1) ≤ α < −1/n. We have used Hildebrand’s characterization to
numerically show that these states are all indeed absolutely PPT for all n ≤ 140 (we note that even though
there are an astronomical number of constraints in Hildebrand’s characterization when n = 140, the vast
majority of them are identical since so many of the eigenvalues of these states are equal). Furthermore,
when n = 3 and α = −1/(n− 1), we have numerically tested 104 states of the form UρU†, and have not
been able to find entanglement in any of them, suggesting that these states are absolutely separable if and
only if they are absolutely PPT if and only if α ∈ [−1/(n− 1), 1/n].
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6.2 Isotropic States

The family of isotropic states is defined by the single real parameter α ∈
[
− 1

n2−1 , 1
]

via

ρ =
1− α

n2 I + α|ψ+〉〈ψ+| ∈ Mn ⊗Mn, (17)

where we recall that |ψ+〉 = 1√
n ∑n

i=1 |i〉 ⊗ |i〉 is the standard maximally-entangled state. It is well-known

that the isotropic state ρ is separable if and only if it is PPT if and only if α ≤ 1
n+1 . We now show that the

isotropic states that are absolutely separable and those that are absolutely PPT also coincide.

Theorem 6. Let ρ = 1−α
n2 I + α|ψ+〉〈ψ+| ∈ Mn ⊗ Mn be an isotropic state. Then ρ is absolutely

separable if and only if ρ is absolutely PPT if and only if α ≤ 2
2+n2 .

Proof. We first show that if ρ is absolutely PPT then α ≤ 2
2+n2 . Notice that the eigenvalues λ1 ≥ λ2 ≥

· · · ≥ λn2 of ρ are

λ1 = α +
1− α

n2 , λi =
1− α

n2 ∀ 2 ≤ i ≤ n2.

Since we are assuming that ρ is absolutely PPT, we can plug these eigenvalues into the LMIs described in
[17] to obtain

1
n2


2− 2α −n2α 0 · · · 0
−n2α 2− 2α 0 · · · 0

0 0 2− 2α · · · 0
...

...
...

. . .
...

0 0 0 · · · 2− 2α

 ≥ 0.

The positivity of the above matrix implies that n2α ≤ 2− 2α, so α ≤ 2
2+n2 , as desired.

We now prove that if α ≤ 2
2+n2 then ρ is absolutely separable. First notice that UρU† = 1−α

n2 I +
α|v〉〈v|, where |v〉 := U|ψ+〉. If we absorb constants in a different way, we obtain

UρU† = α

(
1− α

n2α
I + |v〉〈v|

)
, (18)

which we want to show is separable for all |v〉.
To this end, we recall that it was shown in [53] that the operator (18) is separable if and only if

1−α
n2α
≥ γ1γ2, where γ1 ≥ γ2 are the two largest Schmidt coefficients of |v〉. We can see that this is true

for all |v〉 simply by noting that 1−α
n2α
≥ 1/2 (which follows from the fact that α ≤ 2

2+n2 ), and 1/2 ≥ γ1γ2

(which can be seen by maximizing γ1γ2 subject to the constraint that γ2
1 + γ2

2 ≤ 1). It follows that ρ is
absolutely separable, as desired.

6.3 UPB States

One of the more well-known methods of constructing PPT entangled states comes from the notion of an
unextendible product basis (UPB) [30], which is a set of mutually orthogonal product states with no other
product state orthogonal to all of them. Given a UPB S ⊂ Cm ⊗Cn, it is straightforward to check that the
following state is PPT and entangled:

ρ =
1

mn− |S|

(
I − ∑

|vi〉∈S
|vi〉〈vi|

)
. (19)
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States of the form (19) cannot possibly be absolutely PPT since they are entangled yet have rank
mn− |S| < mn, which contradicts Proposition 1. However, we can follow the approach of [32] by letting
0 < p < 1 be a real number and considering the full-rank state ρp := pI/(mn) + (1 − p)ρ. As p
increases from 0 to 1, the state ρp becomes arbitrarily close to the maximally-mixed state I/(mn) and
thus becomes absolutely PPT (and even absolutely separable) when p is large enough. We now investigate
the question of whether or not there exists ρp that is absolutely PPT but not absolutely separable.

Theorem 7. Let ρ ∈ M3 ⊗ M3 be a state constructed via a UPB, as in Equation (19). Then ρp is
absolutely PPT if and only if p ≥ 9(10−

√
17)/83 ≈ 0.6373 . . . Furthermore, ρp is absolutely separable

if p ≥ 1− 1/
√

10 ≈ 0.6838 . . .

Proof. We first show that ρp is absolutely PPT if and only if p ≥ 9(10−
√

17)/83. We first recall that
all UPBs in C3 ⊗C3 have five states [54], so ρp has eigenvalues p/9 with multiplicity 5 and p/9 + (1−
p)/4 = (9− 5p)/36 with multiplicity 4. It follows that the two LMIs determining whether or not ρp is
absolutely PPT are both as follows:

1
36

 8p 9p− 9 9p− 9
9p− 9 8p 9p− 9
9p− 9 9p− 9 18− 10p

 ≥ 0. (20)

It is straightforward to check that the LMI (20) holds if and only if p ≥ 9(10−
√

17)/83, as claimed.
To see that ρp is absolutely separable when p ≥ 1 − 1/

√
10, note that it suffices to consider the

p = 1− 1/
√

10 case. Define the operator X := 8ρp = 8(1− 1/
√

10)I/9 + 8ρ/
√

10. Then

‖X− I‖2
F = ‖8ρ/

√
10− (1 + 8/

√
10)I/9‖2

F

= 4
(
2/
√

10− (1 + 8/
√

10)/9
)2

+ 5
(
(1 + 8/

√
10)/9

)2

= 1.

It follows from [15, Theorem 1] that X is absolutely separable, so ρp is too.

From Theorem 7 we see that there is an interval approximately equal to [0.6373, 0.6838) for which
ρp is absolutely PPT, but we do not know whether or not it is absolutely separable. In the p = 0.6373
case, we have tried to detect entanglement in the state UρpU† for 105 randomly-generated (according to
Haar measure) unitary matrices U. We used every entanglement criterion that is known to us, includ-
ing the tests based on covariance matrices [55] and the extremely strong tests based on the 3-copy PPT
symmetric extensions [56], and no entanglement was ever detected in any of these states. These numer-
ical results seem to suggest that the state ρp is absolutely separable when p = 0.6373 (and thus for all
p ∈ [0.6373, 0.6838)).

7 Outlook

We have investigated the problem of detecting entanglement within absolutely PPT states. We have pro-
vided a general technique, in the form of Lemma 2, that can be used to prove that a given positive map or
entanglement witness cannot detect entanglement in any absolutely PPT state. We have successfully ap-
plied this technique to the Choi map and its generalization, the Breuer–Hall map, and even the realignment
criterion, but it could also be applied to other positive maps and entanglement witnesses in the literature
(see [57], for example).
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Certainly the most notable open problem resulting from this work is to answer Question 1, but other
interesting questions also arise from our work. For instance, are there other separability criteria that can be
shown to be incapable of detecting entanglement in absolutely PPT states? There are separability criteria
such as those based on covariance matrices [55] and symmetric extensions [56] for which we still do not
know the answer.

Other open problems in this work include proving that all of the generalized Choi maps Φb,c in Sec-
tion 5.3 are incapable of detecting absolutely PPT entanglement (including those in the light gray re-
gion of Figure 3), and proving that the UPB states of Section 6.3 are absolutely separable when p ∈
[0.6373, 0.6838). We have provided numerical evidence that both of these claims are true, but we have
been unable to find an analytic proof of either fact.

It would also be beneficial to develop other easily-checkable conditions that imply that a given en-
tanglement witness cannot detect entanglement in absolutely PPT states. Almost all of our results follow
from Lemma 2, which gives a test based on the witness’s maximal eigenvalue and the sum of its negative
eigenvalues. However, it suffers from the drawback that the function f (see Figure 2) is not continuous,
which makes it difficult to use sometimes. Are there other functions of the eigenvalues of an entanglement
witness that can be used in its place?
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8 Appendix A. Proof of Theorem 3

We now prove some upper bounds on the eigenvalues of (id3 ⊗ Φ†
b,c)(|v〉〈v|), which allow us to prove

Theorem 3. We note that these upper bounds are much more complicated than the lower bound given by
Lemma 6, so the upper bounds are illustrated in Figure 4 for clarity.

Lemma 8. Let |v〉 ∈ C3 ⊗C3 and suppose b, c ≥ 0 are such that b + c ≥ 2
3 . We split into two cases:

• If 2b + c ≥ 3 or b + 2c ≥ 3, then the eigenvalues of (id3 ⊗ Φ†
b,c)(|v〉〈v|) are no larger than

max{b, c}/2.

• Otherwise, the eigenvalues of (id3 ⊗Φ†
b,c)(|v〉〈v|) are no larger than

b2 + c2 − 6(b + c) + bc + 9
6(2− b− c)

.
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Figure 4: A plot of the best possible upper bound on the eigenvalues of (id3 ⊗Φ†
b,c)(|v〉〈v|), which was

computed numerically using the semidefinite program (16). This bound agrees with the bounds provided
by Lemma 8 whenever b + c ≥ 2

3 . The area above and to the right of the two dashed lines is covered by
the first case of that lemma, whereas the area below and to the left of the dashed lines is covered by the
second case of the lemma.

Proof. We can get an upper bound of the eigenvalues of (id3 ⊗Φ†
b,c)(|v〉〈v|) in a manner similar to that

which was used in the proof of Lemma 5. In particular, it suffices to give a feasible point for the dual
program of the SDP (16), with ΦC replaced by Φb,c.

To this end, we start by considering the first case (i.e., the case where 2b + c ≥ 3 or b + 2c ≥ 3). It
suffices to take Y = 0 in the dual program of the SDP (16). Then we can write J(Φ†

b,c) in the standard
basis of C3 ⊗C3 as follows:

1
2



2− b− c · · · −1 · · · −1
· b · · · · · · ·
· · c · · · · · ·
· · · c · · · · ·
−1 · · · 2− b− c · · · −1
· · · · · b · · ·
· · · · · · b · ·
· · · · · · · c ·
−1 · · · −1 · · · 2− b− c


,

from which it follows that λmax
(

J(Φ†
C)
)
= max{b, c, 3− b− c}/2. Since 2b + c ≥ 3 or b + 2c ≥ 3 it

follows that max{b, c, 3− b− c}/2 = max{b, c}/2, which shows that the SDP (16) has optimal value
no larger than max{b, c}/2 and competes the proof of this case.

We now consider the other case (i.e., we assume that 2b + c < 3 and b + 2c < 3). Define the two
quantities x := (3− 2b− c)2/(6(2− b− c)) and y := (3− b− 2c)2/(6(2− b− c)). Then consider
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the following operator, written with respect to the standard basis of C3 ⊗C3:

Y =



· · · · · · · · ·
· x · √

xy · · · · ·
· · y · · · √

xy · ·
· √xy · y · · · · ·
· · · · · · · · ·
· · · · · x · √

xy ·
· · √

xy · · · x · ·
· · · · · √xy · y ·
· · · · · · · · ·


.

It is straightforward to see that Y ≥ 0 and is thus a feasible point of the SDP (16). To see what the
corresponding value of the objective function is, we compute

(id⊗ T)(Y) + J(Φ†
b,c) =

1
2



2− b− c · · · 2
√

xy− 1 · · · 2
√

xy− 1
· b + 2x · · · · · · ·
· · c + 2y · · · · · ·
· · · c + 2y · · · · ·

2
√

xy− 1 · · · 2− b− c · · · 2
√

xy− 1
· · · · · b + 2x · · ·
· · · · · · b + 2x · ·
· · · · · · · c + 2y ·

2
√

xy− 1 · · · 2
√

xy− 1 · · · 2− b− c


.

It is straightforward to verify that b + 2x = c + 2y = 2− b− c− (2
√

xy− 1) for the given choice of x
and y, from which it follows that

(id⊗ T)(Y) + J(Φ†
b,c)

=
1
2

(
(b + 2x)I + 3(2

√
xy− 1)|ψ+〉〈ψ+|

)
.

Since 2
√

xy ≤ 1 whenever b and c satisfy the constraints of this case, we see that the maximum eigenvalue

of (id⊗ T)(Y) + J(Φ†
b,c) equals b/2 + x = b2+c2−6(b+c)+bc+9

6(2−b−c) , so this quantity is an upper bound on the
optimal value of the SDP (16), as desired.

Now that we have these upper bounds of Lemma 8 to work with, we are finally in a position to prove
Theorem 3.

Proof of Theorem 3. We first note that it suffices to prove Theorem 3 for the four maps Φb,c given by the
points (a)–(d) that it describes, since the result then immediately follows for any convex combination of
those maps. We consider these four maps now, one at a time.

Case (a): (b, c) = (0, 0). It is straightforward to check that Φ0,0 is completely positive, so the result
is trivial.

For each of the remaining cases, we follow the notation of Lemma 2 and use ` to denote the sum of
the negative eigenvalues of (id3 ⊗ Φ†

b,c)(|v〉〈v|), we use µ1 to denote its maximal eigenvalue, and we
use f to denote the function described by Lemma 2. Furthermore, we note that (id3 ⊗ Φ†

b,c)(|v〉〈v|)

26



has at most one negative eigenvalue whenever b + c ≤ 3, so any lower bound on the eigenvalues of
(id3 ⊗Φ†

b,c)(|v〉〈v|) immediately applies to ` as well.
Case (b): (b, c) = (0, 3(

√
2− 1)). We know from Lemma 6 that ` ≥ − 1

6 (b + c) = 1
2 (1−

√
2).

Furthermore, plugging this choice of b and c into Lemma 8 shows that µ1 ≤ 1
7 (9− 3

√
2). Since 1

7 (9−
3
√

2) ≈ 0.6796 . . . ≤ f ( 1
2 (1−

√
2)) = 1

4 (2 +
√

2) ≈ 0.8535 . . ., the result follows from Lemma 2.
Case (c): (b, c) = (6/5, 6/5). We know from Lemma 6 that ` ≥ − 1

6 (b + c) = − 2
5 . Furthermore,

plugging this choice of b and c into Lemma 8 shows that µ1 ≤ 3
5 . Since 3

5 ≤ f (− 2
5 ) = 3

5 , the result
follows from Lemma 2.

Case (d): (b, c) = (3(
√

2− 1), 0). Almost identical to case (b).
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