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Abstract

We consider online learning algorithms that guarantee worst-case regret rates
in adversarial environments (so they can be deployed safely and will perform
robustly), yet adapt optimally to favorable stochastic environments (so they will
perform well in a variety of settings of practical importance). We quantify the
friendliness of stochastic environments by means of the well-known Bernstein
(a.k.a. generalized Tsybakov margin) condition. For two recent algorithms (Squint
for the Hedge setting and MetaGrad for online convex optimization) we show that
the particular form of their data-dependent individual-sequence regret guarantees
implies that they adapt automatically to the Bernstein parameters of the stochastic
environment. We prove that these algorithms attain fast rates in their respective
settings both in expectation and with high probability.

1 Introduction

We consider online sequential decision problems. We focus on full information settings, encompassing
such interaction protocols as online prediction, classification and regression, prediction with expert
advice or the Hedge setting, and online convex optimization (see Cesa-Bianchi and Lugosi 2006). The
goal of the learner is to choose a sequence of actions with small regret, i.e. such that his cumulative
loss is not much larger than the loss of the best fixed action in hindsight. This has to hold even in
the worst case, where the environment is controlled by an adversary. After three decades of research
there exist many algorithms and analysis techniques for a variety of such settings. For many settings,
adversarial regret lower bounds of order

√
T are known, along with matching individual sequence

algorithms [Shalev-Shwartz, 2011].

A more recent line of development is to design adaptive algorithms with regret guarantees that scale
with some more refined measure of the complexity of the problem. For the Hedge setting, results of
this type have been obtained, amongst others, by Cesa-Bianchi et al. [2007], De Rooij et al. [2014],
Gaillard et al. [2014], Sani et al. [2014], Even-Dar et al. [2008], Koolen et al. [2014], Koolen and
Van Erven [2015], Luo and Schapire [2015], Wintenberger [2015]. Interestingly, the price for such
adaptivity (i.e. the worsening of the worst-case regret bound) is typically extremely small (i.e. a
constant factor in the regret bound). For online convex optimization (OCO), many different types of
adaptivity have been explored, including by Crammer et al. [2009], Duchi et al. [2011], McMahan
and Streeter [2010], Hazan and Kale [2010], Chiang et al. [2012], Steinhardt and Liang [2014],
Orabona et al. [2015], Van Erven and Koolen [2016].

Here we are interested in the question of whether such adaptive results are strong enough to lead to
improved rates in the stochastic case when the data follow a “friendly” distribution. In specific cases
it has been shown that fancy guarantees do imply significantly reduced regret. For example Gaillard
et al. [2014] present a generic argument showing that a certain kind of second-order regret guarantees
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implies constant expected regret (the fastest possible rate) for i.i.d. losses drawn from a distribution
with a gap (between expected loss of the best and all other actions). In this paper we significantly
extend this result. We show that a variety of individual-sequence second-order regret guarantees
imply fast regret rates for distributions under much milder stochastic assumptions. In particular, we
will look at the Bernstein condition (see Bartlett and Mendelson 2006), which is the key to fast rates
in the batch setting. This condition provides a parametrised interpolation (expressed in terms of the
Bernstein exponent κ ∈ [0,1]) between the friendly gap case (κ = 1) and the stochastic worst case
(κ = 0). We show that appropriate second-order guarantees automatically lead to adaptation to these
parameters, for both the Hedge setting and for OCO. In the Hedge setting, we build on the guarantees
available for the Squint algorithm [Koolen and Van Erven, 2015] and for OCO we rely on guarantees
achieved by MetaGrad [Van Erven and Koolen, 2016]. In both cases we obtain regret rates of order
T

1−κ
2−κ (Theorem 2). These rates include the slow worst-case

√
T regime for κ = 0 and the fastest

(doubly) logarithmic regime for κ = 1. We show all this, not just in expectation (which is relatively
easy), but also with high probability (which is much harder). Our proofs make use of a a convenient
novel notation (ESI, for exponential stochastic inequality) which allows us to prove such results
simultaneously, and which is of independent interest (Definition 5). Our proofs use that, for bounded
losses, the Bernstein condition is equivalent to the ESI-Bernstein condition, which we introduce.

The next section introduces the two settings we consider and the individual sequence guarantees we
will use in each. It also reviews the stochastic criteria for fast rates and presents our main result.
In Section 3 we consider a variety of examples illustrating the breadth of cases that we cover. In
Section 4 we introduce ESI and give a high-level overview of our proof.

2 Setup and Main Result

2.1 Hedge Setting

We start with arguably the simplest setting of online prediction, the Hedge setting popularized by
Freund and Schapire [1997]. To be able to illustrate the full reach of our stochastic assumption
we will use a minor extension to countably infinitely many actions k ∈ N = {1,2, . . .}, customarily
called experts. The protocol is as follows. Each round t the learner plays a probability mass function
wt = (w1

t ,w
2
t , . . .) on experts. Then the environment reveals the losses `t = (`1t , `

2
t , . . .) of the

experts, where each `kt ∈ [0,1]. The learner incurs loss ⟨wt, `t⟩ = ∑k w
k
t `
k
t . The regret after T rounds

compared to expert k is given by

RkT ∶=
T

∑
t=1

(⟨wt, `t⟩ − `
k
t ) .

The goal of the learner is to keep the regret small compared to any expert k. We will make use
of Squint by Koolen and Van Erven [2015], a self-tuning algorithm for playing wt. Koolen and
Van Erven [2015, Theorem 4] show that Squint with prior probability mass function π = (π1, π2, . . .)
guarantees

RkT ≤

√

V kTK
k
T +K

k
T where Kk

T = O(− lnπk + ln lnT ) for any expert k. (1)

Here V kT ∶= ∑
T
t=1 (⟨wt, `t⟩ − `

k
t )

2
is a second-order term that depends on the algorithm’s own pre-

dictions wt. It is well-known that with K experts the worst-case lower bound is Θ(
√
T lnK)

[Cesa-Bianchi and Lugosi, 2006, Theorem 3.7]. Taking a fat-tailed prior π, for example πk = 1
k(k+1)

,

and using V kT ≤ T , the above bound implies RkT ≤ O (
√
T (lnk + ln lnT )), matching the lower

bound in some sense for all k simultaneously.

The question we study in this paper is what becomes of the regret when the sequence of losses
`1, `2, . . . is drawn from some distribution P, not necessarily i.i.d. But before we expand on such
stochastic cases, let us first introduce another setting.

2.2 Online Convex Optimization (OCO)

We now turn to our second setting called online convex optimization [Shalev-Shwartz, 2011]. Here
the set of actions is a compact convex set U ⊆ Rd. Each round t the learner plays a point wt ∈ U .
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Then the environment reveals a convex loss function `t ∶ U → R. The loss of the learner is `t(wt).
The regret after T rounds compared to u ∈ U is given by

RuT ∶=
T

∑
t=1

(`t(wt) − `t(u)) .

The goal is small regret compared to any point u ∈ U . A common tool in the analysis of algorithms is
the linear upper bound on the regret obtained from convexity of `t (at non-differentiable points we
may take any sub-gradient)

RuT ≤ R̃uT ∶=
T

∑
t=1

⟨wt − u,∇`t(wt)⟩.

We will make use of (the full matrix version of) MetaGrad by Van Erven and Koolen [2016]. In their
Theorem 8, they show that, simultaneously, R̃uT ≤ O (DG

√
T) and

R̃uT ≤
√
V uT KT +DGKT where KT = O(d lnT ) for any u ∈ U , (2)

where D bounds the two-norm diameter of U , G bounds ∥∇`t(wt)∥2 the two-norm of the gradients
and V uT ∶= ∑

T
t=1⟨wt −u,∇`t(wt)⟩

2. The first bound matches the worst-case lower bound. The second
bound (2) may be a factor

√
KT worse, as V uT ≤ G2D2T by Cauchy-Schwarz. Yet in this paper

we will show fast rates in certain stochastic settings arising from (2). To simplify notation we will
assume from now on that DG = 1 (this can always be achieved by scaling the loss).

To talk about stochastic settings we will assume that the sequence `t of loss functions (and hence the
gradients ∇`t(wt)) are drawn from a distribution P, not necessarily i.i.d. This includes the common
case of linear regression and classification where `t(u) = loss(⟨u,xt⟩, yt) with (xt, yt) sampled i.i.d.
and loss a fixed one-dimensional convex loss function (e.g. square loss, absolute loss, log loss, hinge
loss, . . . ).

2.3 Parametrised Family of Stochastic Assumptions

We now recall the Bernstein [Bartlett and Mendelson, 2006] stochastic condition. The idea behind
this assumption is to control the variance of the excess loss of the actions in the neighborhood of the
best action.

We do not require that the losses are i.i.d., nor that the Bayes act is in the model. For the Hedge
setting it suffices if there is a fixed expert k∗ that is always best, i.e. E[`k

∗

t ∣Gt−1] = infk E [`kt ∣Gt−1]

almost surely for all t. (Here we denote by Gt−1 the sigma algebra generated by `1, . . . , `t−1, and the
almost surely quantification refers to the distribution of `1, . . . , `t−1.) Similarly, for OCO we assume
there is a fixed point u∗ ∈ U attaining minu∈U E [`t(u)∣Gt−1] at every round t. In either case there
may be multiple candidate k∗ or u∗. In the succeeding we assume that one is selected. Note that
for i.i.d. losses the existence of a minimiser is not such a strong assumption (if the loss functions
`t are continuous, it is even automatic in the OCO case due to compactness of U), while it is very
strong beyond i.i.d. Yet it is not impossible (and actually interesting) as we will show by example in
Section 3.

Based on the loss minimiser, we define the excess losses, a family of random variables indexed by
time t ∈ N and expert/point k ∈ N/u ∈ U as follows

xkt ∶= `kt − `
k∗

t (Hedge) and xut ∶= ⟨u − u∗,∇`t(u)⟩ (OCO). (3)

Note that for the Hedge setting we work with the loss directly. For OCO instead we talk about the
linear upper bound on the excess loss, for this is the quantity that needs to be controlled to make use
of the MetaGrad bound (2). With these variables in place, from this point on the story is the same for
Hedge and for OCO. So let us write F for either the set N of experts or the set U of points, and f∗

for k∗ resp. u∗, and let us consider the family {xft ∣ f ∈ F , t ∈ N}. We call f ∈ F predictors. With
this notation the Bernstein condition is the following.
Condition 1. Fix B ≥ 0 and κ ∈ [0,1]. The family (3) satisfies the (B,κ)-Bernstein condition if

E [(xft )
2
∣Gt−1] ≤ BE [xft ∣Gt−1]

κ
almost surely for all f ∈ F and rounds t ∈ N.

3



The point of this stochastic condition is that it implies that the variance in the excess loss gets smaller
the closer a predictor gets to the optimum in terms of expected excess loss.

Some authors refer to the κ = 1 case as the Massart condition. Van Erven et al. [2015] have shown
that the Bernstein condition is equivalent to the central condition, a fast-rate type of condition that has
been frequently used (without an explicit name) in density estimation under misspecification. Two
more equivalent conditions appear in our proof sketch Section 4. We compare all four formulations
in Appendix B.

2.4 Main Result

In the stochastic case we evaluate the performance of algorithms by Rf
∗

T , i.e. the regret compared
to the predictor f∗ with minimal expected loss. The expectation E[Rf

∗

T ] is sometimes called the
pseudo-regret. The following result shows that second-order methods automatically adapt to the
Bernstein condition. (Proof sketch in Section 4.)

Theorem 2. In any stochastic setting satisfying the (B,κ)-Bernstein Condition 1, the guarantees (1)
for Squint and (2) for MetaGrad imply fast rates for the respective algorithms both in expectation
and with high probability. That is,

E[Rf
∗

T ] = O (K
1

2−κ

T T
1−κ
2−κ ) ,

and for any δ > 0, with probability at least 1 − δ,

Rf
∗

T = O ((KT − ln δ)
1

2−κT
1−κ
2−κ ) ,

where for Squint KT ∶=K
f∗

T from (1) and for MetaGrad KT is as in (2).

We see that Squint and MetaGrad adapt automatically to the Bernstein parameters of the distribution,
without any tuning. Theorem 2 only uses the form of the second-order bounds and does not depend
on the details of the algorithms, so it also applies to any other method with a second-order regret
bound. In particular it holds for Adapt-ML-Prod by Gaillard et al. [2014], which guarantees (1) with
KT = O(ln∣F ∣+ ln lnT ) for finite sets of experts. Here we focus on Squint as it also applies to infinite
sets. Appendix D provides an extension of Theorem 2 that allows using Squint with uncountable F .

Crucially, the bound provided by Theorem 2 is natural, and, in general, the best one can expect.
This can be seen from considering the statistical learning setting, which is a special case of our
setup. Here (xt, yt) are i.i.d. ∼ P and F is a set of functions from X to a set of predictions A, with
`ft ∶= `(yt, f(xt)) for some loss function ` ∶ Y ×A → [0,1] such as squared, 0/1, or absolute loss.
In this setting one usually considers excess risk, which is the expected loss difference between the
learned f̂ and the optimal f∗. The minimax expected (over training sample (xt, yt)) risk relative
to f∗ is of order T −1/2 (see e.g. Massart and Nédélec [2006], Audibert [2009]). To get better risk
rates, one has to impose further assumptions on P. A standard assumption made in such cases is a
Bernstein condition with exponent κ > 0; see e.g. Koltchinskii [2006], Bartlett and Mendelson [2006],
Audibert [2004] or Audibert [2009]; see Van Erven et al. [2015] for how it generalizes the Tsybakov
margin and other conditions.

If F is sufficiently ‘simple’, e.g. a class with logarithmic entropy numbers (see Appendix D), or, in
classification, a VC class, then, if a κ-Bernstein condition holds, ERM (empirical risk minimization)
achieves, in expectation, a better excess risk bound of order O((logT ) ⋅ T −

1
2−κ ). The bound

interpolates between T −1/2 for κ = 0 and T −1 for κ = 1 (Massart condition). Results of Tsybakov
[2004], Massart and Nédélec [2006], Audibert [2009] suggest that this rate can, in general, not be
improved upon, and exactly this rate is achieved by ERM and various other algorithms in various
settings by e.g. Tsybakov [2004], Audibert [2004, 2009], Bartlett et al. [2006]. By summing from
t = 1 to T and using ERM at each t to classify the next data point (so that ERM becomes FTL,
follow-the-leader), this suggests that we can achieve a cumulative expected regret E[Rf

∗

T ] of order
O((logT ) ⋅ T

1−κ
2−κ ). Theorem 2 shows that this is, indeed, also the rate that Squint attains in such

cases if F is countable and the optimal f∗ has positive prior mass πf
∗

> 0 (more on this condition
below)— we thus see that Squint obtains exactly the rates one would expect from a statistical
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learning/classification perspective, and the minimax excess risk results in that setting suggests that
these cumulative regret rates cannot be improved in general. It was shown earlier by Audibert
[2004] that, when equipped with an oracle to tune the learning rate η as a function of t, the rates
O ((logT ) ⋅ T

1−κ
2−κ ) can also be achieved by Hedge, but the exact tuning depends on the unknown

κ. Grünwald [2012] provides a means to tune η automatically in terms of the data, but his method
— like ERM and all algorithms in the references above — may achieve linear regret in worst-case
settings, whereas Squint keeps the O(

√
T ) guarantee for such cases.

Theorem 2 only gives the desired rate for Squint with infinite F if F is countable and πf
∗

> 0. The
combination of these two assumptions is strong or at least unnatural, and OCO cannot be readily used
in all such cases either, so in Appendix D we therefore show how to extend Theorem 2 to the case
of uncountably infinite F , which can have πf

∗

= 0, as long as F admits sufficiently small entropy
numbers. Incidentally, this also allows us to show that Squint achieves regret rate O ((logT ) ⋅ T

1−κ
2−κ )

when F = ⋃i=1,2,...Fi is a countably infinite union of Fi with appropriate entropy numbers; in such
cases there can be, at every sample size, a classifier f̂ ∈ F with 0 empirical error, so that ERM/FTL
will always over-fit and cannot be used even if the Bernstein condition holds; Squint allows for
aggregation of such models. In the remainder of the main text, we concentrate on applications for
which Theorem 2 can be used directly, without extensions.

3 Examples

We give examples motivating and illustrating the Bernstein condition for the Hedge and OCO settings.
Our examples in the Hedge setting will illustrate Bernstein with κ < 1 and non i.i.d. distributions.
Our OCO examples were chosen to be natural and illustrate fast rates without curvature.

3.1 Hedge Setting: Gap implies Bernstein with κ = 1

In the Hedge setting, we say that a distribution P (not necessarily i.i.d.) of expert losses {`kt ∣ t, k ∈ N}

has gap α > 0 if there is an expert k∗ such that

E [`k
∗

t ∣Gt−1] + α ≤ inf
k≠k∗

E [`kt ∣Gt−1] almost surely for each round t ∈ N.

It is clear that the condition can only hold for k∗ the minimiser of the expected loss.

Lemma 3. A distribution with gap α is ( 1
α
,1)-Bernstein.

Proof. For all k ≠ k∗ and t, we have E [(xkt )
2∣Gt−1] ≤ 1 = 1

α
α ≤ 1

α
E [xkt ∣Gt−1] .

By Theorem 2 we get the Rk
∗

T = O(KT ) = O(ln lnT ) rate. Gaillard et al. [2014] show constant
regret for finitely many experts and i.i.d. losses with a gap. Our alternative proof above shows that
neither finiteness nor i.i.d. are essential for fast rates in this case.

3.2 Hedge Setting: Any (1, κ)-Bernstein

The next example illustrates that we can sometimes get the fast rates without a gap. And it also shows
that we can get any intermediate rate: we construct an example satisfying the Bernstein condition for
any κ ∈ [0,1] of our choosing (such examples occur naturally in classification settings such as those
considered in the example in Appendix D).

Fix κ ∈ [0,1]. Each expert k = 1,2, . . . is parametrised by a real number δk ∈ [0,1/2]. The only
assumption we make is that δk = 0 for some k, and infk{δk ∣ δk > 0} = 0. For a concrete example let

us choose δ1 = 0 and δk = 1/k for k = 2,3, . . . Expert δk has loss 1/2 ± δk with probability 1±δ
2/κ−1
k

2

independently between experts and rounds. Expert δk has mean loss 1
2
+ δ

2/κ
k , and so δ1 = 0 is best,

with loss deterministically equal to 1/2. The squared excess loss of δk is δ2
k. So we have the Bernstein

condition with exponent κ (but no κ′ > κ) and constant 1, and the associated regret rate by Theorem 2.
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Note that for κ = 0 (the hard case) all experts have mean loss equal to 1
2

. So no matter which k∗

we designate as the best expert our pseudo-regret E[Rk
∗

T ] is zero. Yet the experts do not agree, as
their losses deviate from 1

2
independently at random. Hence, by the central limit theorem, with high

probability our regret Rk
∗

T is of order
√
T . On the other side of the spectrum, for κ = 1 (the best

case), we do not find a gap. We still have experts arbitrary close to the best expert in mean, but their
expected excess loss squared equals their expected excess loss.

ERM/FTL (and hence all approaches based on it, such as [Bartlett and Mendelson, 2006]) may fail
completely on this type of examples. The clearest case is when {k ∣ δk > ε} is infinite for some ε > 0.
Then at any t there will be experts that, by chance, incurred their lower loss every round. Picking any
of them will result in expected instantaneous regret at least ε2/κ, leading to linear regret overall.

The requirement δk = 0 for some k is essential. If instead δk > 0 for all k then there is no best expert
in the class. Theorem 19 in Appendix D shows how to deal with this case.

3.3 Hedge Setting: Markov Chains

Suppose we model a binary sequence z1, z2, . . . , zT with m-th order Markov chains. As experts we
consider all possible functions f ∶{0,1}m → {0,1} that map a history of length m to a prediction
for the next outcome, and the loss of expert f is the 0/1-loss: `ft = ∣f(zt−m, . . . , zt−1) − zt∣. (We
initialize z1−m = . . . = z0 = 0.) A uniform prior on this finite set of 22m experts results in worst-case
regret of order

√
T2m. Then, if the data are actually generated by an m-th order Markov chain with

transition probabilities P(zt = 1 ∣ (zt−m, . . . , zt−1) = a) = pa, we have f∗(a) = 1{pa ≥ 1
2
} and

E [(xft )
2
∣(zt−m, . . . , zt−1) = a] = 1, E [xft ∣(zt−m, . . . , zt−1) = a] = 2∣pa −

1
2
∣

for any f such that f(a) ≠ f∗(a). So the Bernstein condition holds with κ = 1 and B = 1

2 mina ∣pa−
1
2
∣
.

3.4 OCO: Hinge Loss on the Unit Ball

Let (x1, y1), (x2, y2), . . . be classification data, with yt ∈ {−1,+1} and xt ∈ Rd, and consider the
hinge loss `t(u) = max{0,1 − yt⟨xt, u⟩}. Now suppose, for simplicity, that both xt and u come
from the d-dimensional unit Euclidean ball, such that ⟨xt, u⟩ ∈ [−1,+1] and hence the hinge is never
active, i.e. `t(u) = 1 − yt⟨xt, u⟩. Then, if the data turn out to be i.i.d. observations from a fixed
distribution P, the Bernstein condition holds with κ = 1 (the proof can be found in Appendix C):

Lemma 4 (Unregularized Hinge Loss Example). Consider the hinge loss setting above, where
∣⟨xt, u⟩∣ ≤ 1. If the data are i.i.d., then the (B,κ)-Bernstein condition is satisfied with κ = 1 and
B = 2λmax

∥µ∥
, where λmax is the maximum eigenvalue of E [xx⊺] and µ = E[yx], provided that ∥µ∥ > 0.

In particular, if xt is uniformly distributed on the sphere and yt = sign(⟨ū, xt⟩) is the noiseless
classification of xt according to the hyper-plane with normal vector ū, thenB ≤ c

√
d

for some absolute
constant c > 0.

The excluded case ∥µ∥ = 0 only happens in the degenerate case that there is nothing to learn, because
µ = 0 implies that the expected hinge loss is 1, its maximal value, for all u.

3.5 OCO: Absolute Loss

Let U = [0,1] be the unit interval. Consider the absolute loss `t(u) = ∣u − xt∣ where xt ∈ [0,1] are
drawn i.i.d. from P. Let u∗ ∈ arg minuE∣u − x∣ minimize the expected loss. In this case we may
simplify ⟨w − u∗,∇`(w)⟩ = (w − u∗) sign(w − x). To satisfy the Bernstein condition, we therefore
want B such that, for all w ∈ [0,1],

E [((w − u∗) sign(w − x))
2
] ≤ BE [(w − u∗) sign(w − x)]

κ
.

That is,
∣w − u∗∣2−κ ≤ B2κ∣P(x ≤ w) − 1

2
∣
κ.
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For instance, if the distribution of x has a strictly positive density p(x) ≥ m > 0, then u∗ is the
median and ∣P(x ≤ w)− 1

2
∣ = ∣P(x ≤ w)−P(x ≤ u∗)∣ ≥m∣w −u∗∣, so the condition holds with κ = 1

and B = 1
2m

. Alternatively, for a discrete distribution on two points a and b with probabilities p and
1 − p, the condition holds with κ = 1 and B = 1

∣2p−1∣
, provided that p ≠ 1

2
, as can be seen by bounding

∣w − u∗∣ ≤ 1 and ∣P(x ≤ w) − 1
2
∣ ≥ ∣p − 1

2
∣.

4 Proof Ideas

This section builds up to prove our main result Theorem 2. We first introduce the handy ESI-
abbreviation that allows us to reason simultaneously in expectation and with high probability. We
then provide two alternative characterizations of the Bernstein condition that are equivalent for
bounded losses. Finally, we show how one of these, ESI-Bernstein, combines with individual-
sequence second-order regret bounds to give rise to Theorem 2.

4.1 Notation: Exponential Stochastic Inequality (ESI, pronounce easy)

Definition 5. A random variable X is exponentially stochastically negative, denoted X ⊴ 0, if
E[eX] ≤ 1. For any η ≥ 0, we write X ⊴η 0 if ηX ⊴ 0. For any pair of random variables X and Y ,
the exponential stochastic inequality (ESI) X ⊴η Y is defined as expressing X − Y ⊴η 0; X ⊴ Y is
defined as X ⊴1 Y .
Lemma 6. Exponential stochastic negativity/inequality has the following useful properties:

1. (Negativity). Let X ⊴ 0. As the notation suggests X is negative in expectation and with high
probability. That is E [X] ≤ 0 and P{X ≥ − ln δ} ≤ δ for all δ > 0.

2. (Convex combination). Let {Xf}
f∈F

be a family of random variables and let w be a

probability distribution on F . If Xf ⊴ 0 for all f then Ef∼w[Xf ] ⊴ 0.

3. (Chain rule). Let X1,X2, . . . be adapted to filtration G1 ⊆ G2 . . . (i.e. Xt is Gt-measurable
for each t). If Xt∣Gt−1 ⊴ 0 almost surely for all t, then ∑Tt=1Xt ⊴ 0 for all T ≥ 0.

Proof. Negativity: By Jensen’s inequality E [X] ≤ lnE [eX] ≤ 0, whereas by Markov’s inequal-
ity P{X ≥ − ln δ} = P{eX ≥ 1

δ
} ≤ δE [eX] ≤ δ. Convex combination: By Jensen’s inequality

E [eEf∼w[Xf ]] ≤ Ef∼w E [eX
f

] ≤ 1. Chain rule: By induction. The base case T = 0 holds trivially.

For T > 0 we have E [e∑
T
t=1Xt] = E [e∑

T−1
t=1 Xt E [eXT ∣GT−1]] ≤ E [e∑

T−1
t=1 Xt] ≤ 1.

4.2 The Bernstein Condition and Second-order Bounds

Our main result Theorem 2, bounds the regret Rf
∗

T compared to the stochastically optimal predictor
f∗ when the sequence of losses `1, `2, . . . comes from a Bernstein distribution P. For simplicity we
only consider the OCO setting in this sketch. Full details are in Theorem 11. Our starting point

will be the individual-sequence second-order bound (2), which implies Rf
∗

T ≤ R̃f
∗

T = O(

√

V f
∗

T KT ).

The crucial technical contribution of this paper is to establish that for Bernstein distributions V f
∗

T is
bounded in terms of R̃f

∗

T with high probability. Combination with the individual-sequence bound
then gives that R̃f

∗

T is bounded in terms of a function of itself. And solving the inequality for R̃f
∗

T

establishes the fast rates for Rf
∗

T .

To get a first intuition as to why V f
∗

T would be bounded in terms of R̃f
∗

T , we look at their relation
in expectation. Recall that V f

∗

T = ∑
T
t=1(x

ft
t )2 and R̃f

∗

T = ∑
T
t=1 x

ft
t where ft is the prediction of the

algorithm in round t. We will bound (xftt )2 in terms of xftt separately for each round t. The Bernstein
Condition 1 for κ = 1 directly yields

E [V f
∗

T ] =
T

∑
t=1

E [(xftt )
2
] ≤ B

T

∑
t=1

E [xftt ] = BE [R̃f
∗

T ] . (4)
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For κ < 1 the final step of interchanging expectation and sums does not work directly, but we may use
zκ = κκ(1 − κ)1−κ infε>0 {εκ−1z + εκ} for z ≥ 0 to rewrite the Bernstein condition as the following
set of linear inequalities:

Condition 7. The excess loss family (3) satisfies the linearized κ-Bernstein condition if there are
constants c1, c2 > 0 such that we have:

c1 ⋅ ε
1−κ

⋅E [(xft )
2
∣Gt−1] −E [xft ∣Gt−1] ≤ c2 ⋅ ε a.s. for all ε > 0, f ∈ F and t ∈ N.

This gives the following generalization of (4):

c1 ⋅ ε
1−κE [V f

∗

T ] ≤ E [R̃f
∗

T ] + c2 ⋅ T ⋅ ε. (5)

Together with the individual sequence regret bound and optimization of ε this can be used to derive
the in-expectation part of Theorem 2.

Getting the in-probability part is more difficult, however, and requires relating V f
∗

T and R̃f
∗

T in
probability instead of in expectation. Our main technical contribution does exactly this, by showing
that the Bernstein condition is in fact equivalent to the following exponential strengthening of
Condition 7:

Condition 8. The family (3) satisfies the κ-ESI-Bernstein condition if there are c1, c2 > 0 such that:

(c1 ⋅ ε
1−κ

⋅ (xft )
2
− xft ) ∣ Gt−1 ⊴ε1−κ c2 ⋅ ε a.s. for all ε > 0, f ∈ F and t ∈ N.

Condition 8 implies Condition 7 by Jensen’s inequality (see Lemma 6 part 1). The surprising converse
is proved in Lemma 9 in the appendix. By telescoping over rounds using the chain rule from Lemma 6,
we see that ESI-Bernstein implies the following substantial strengthening of (5):

c1 ⋅ ε
1−κ

⋅ V f
∗

T − R̃f
∗

T ⊴ε1−κ c2 ⋅ T ⋅ ε a.s. for all ε > 0, T ∈ N. (6)

Now the second-order regret bound (2) can be rewritten, using 2
√
ab = infγ γa + b/γ, as:

for every γ > 0 ∶ 2R̃f
∗

T ≤ 2
√

V f
∗

T ⋅KT + 2KT ≤ γ ⋅ V f
∗

T +
KT

γ
+ 2KT .

Plugging in γ = c1ε1−κ we can chain this inequality with (6) to give, for all ε > 0,

2R̃f
∗

T ⊴ε1−κ R̃
f∗

T + c2 ⋅ T ⋅ ε +
KT

c1 ⋅ ε1−κ
+ 2KT , (7)

and both parts of Theorem 2 now follow by rearranging, plugging in the minimiser ε ≍K
1

2−κ

T T
1−κ
2−κ ,

and using Lemma 6 part 1.
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