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Abstract. It is shown that for every p ∈ (1,∞) there exists
a Banach space X of finite cotype such that the projective ten-
sor product ℓp⊗̂X fails to have finite cotype. More generally, if

p1, p2, p3 ∈ (1,∞) satisfy 1

p1

+ 1

p2

+ 1

p3

6 1 then ℓp1
⊗̂ℓp2

⊗̂ℓp3
does

not have finite cotype. This is a proved via a connection to the
theory of locally decodable codes.

1. introduction

Throughout this paper all Banach spaces are assumed to be over the
reals, though our results apply (with the same proofs) to complex Ba-
nach spaces as well. We shall use standard Banach space notation and
terminology, e.g., as in [1]. We shall also use the asymptotic notation
.,& to indicate the corresponding inequalities up to universal con-
stant factors, and we shall denote equivalence up to universal constant
factors by ≍, i.e., A ≍ B is the same as (A . B) ∧ (A & B).
The projective tensor product of two Banach spaces (X, ‖ · ‖X) and

(Y, ‖ · ‖Y ), denoted X⊗̂Y , is the completion of their algebraic tensor
product X ⊗ Y , equipped with the norm

‖z‖X⊗̂Y = inf

{
n∑

i=1

‖xi‖X · ‖yi‖Y : ∃n ∈ N, ∃{(xi, yi)}ni=1 ⊆ X × Y,

such that z =
n∑

i=1

xi ⊗ yi

}
.

Thus, if X, Y are finite dimensional then the unit ball of X⊗̂Y is the
convex hull in X ⊗ Y of all the vectors of the form x ⊗ y, where x is
a unit vector in X and y is a unit vector in Y . To state two concrete
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visiting Université Pierre et Marie Curie, Paris, France. O. R. was supported by a
European Research Council (ERC) Starting Grant.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301649026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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examples of this construction, one always has ℓ1⊗̂X = ℓ1(X), and
ℓ2⊗̂ℓ2 can be naturally identified with the Schatten trace class S1, i.e.,
the space of all compact operators T : ℓ2 → ℓ2, equipped with the norm
‖T‖S1

= trace(
√
T ∗T ). For these facts, and much more information on

projective tensor products, we refer to [15, 24, 12].
The literature contains a significant amount of work on the perma-

nence of various key Banach space properties under projective tensor
products; see the survey [11] for some of the known results along these
lines. Here we will be mainly concerned with geometric properties of
projective tensor products with Lp(µ) spaces, p ∈ (1,∞), in which case
examples of known results include that Lp⊗̂X is weakly sequentially
complete iff X is [18], Lp⊗̂X has the Radon-Nikodým property iff X
does [9, 8], and Lp⊗̂X contains a copy of c0 iff X does [10].
When one does not consider projective tensor products with Lp(µ)

spaces, the above permanence properties are known to fail [21, 7].
Specifically, Bourgain and Pisier [7] showed that there exist a weakly
sequentially complete Banach space X with the Radon-Nikodým prop-
erty, such that X⊗̂X contains a copy of c0 (thus X⊗̂X fails weak
sequential completeness and the Radon-Nikodým property).
Here we will be concerned with the permanence of finite cotype under

projective tensor products. For q ∈ [2,∞), a Banach space (X, ‖ · ‖X)
is said to have cotype q if there exists C ∈ (0,∞) such that for every
n ∈ N and every x1, . . . , xn ∈ X we have

(
n∑

i=1

‖xi‖qX

)1/q

6 C


E



∥∥∥∥∥

n∑

i=1

εixi

∥∥∥∥∥

2

X






1/2

, (1)

where the expectation in (1) is taken with respect to uniformly dis-
tributed ε = (ε1, . . . , εn) ∈ {−1, 1}n. Thus Lp has cotype max{p, 2} for
for every p ∈ [1,∞) (see, e.g., [1]). The infimum over those C ∈ (0,∞)
for which (1) holds true is denoted Cq(X, ‖ · ‖X), or, if the norm is
clear from the context, simply Cq(X). Given k ∈ N and a norm ‖ · ‖
on R

k, it will also be convenient to denote C
(q)
‖·‖ = Cq(R

k, ‖ · ‖). If X

has cotype q for some q ∈ [2,∞) then we say that X has finite cotype,
or simply that X has cotype. The Maurey-Pisier theorem [19] implies
that X fails to have finite cotype if and only if it is universal in the
sense that there exists K ∈ (0,∞) such that all finite dimensional Ba-
nach spaces embed into X with distortion at most K (equivalently, ℓn∞
embeds into X with distortion at most K for all n ∈ N). We are there-
fore interested in the permanence under projective tensor products of
the failure of the above universality property.
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Tomczak-Jaegermann proved [25] that ℓ2⊗̂ℓ2 = S1 has cotype 2,
and Pisier proved [22, 23] that if p, q ∈ [2,∞) then Lp⊗̂Lq has cotype
max{p, q} (see [22] for a more general result along these lines). Other
than these facts and the easy fact that L1⊗̂X = L1(X) always inherits
the cotype of X , we do not know of other permanence results for cotype
under projective tensor products. In particular, it is open whether
Lp⊗̂Lq has finite cotype when p ∈ (1, 2) and q ∈ (1, 2], and whether
ℓ2⊗̂S1 = ℓ2⊗̂ℓ2⊗̂ℓ2 has finite cotype (these questions are stated in [23]).
A remarkable theorem of Pisier [21] asserts that there exist two Ba-

nach spaces X and Y of finite cotype such that X⊗̂Y does not have
finite cotype. Specifically, by a famous theorem of Bourgain [5], L1/H

1

has cotype 2 (H1 is the closed span of {θ 7→ e2πinθ}∞n=0 ⊆ L1), and Pisier
constructs [21] a Banach space Z of cotype 2 such that Z⊗̂(L1/H

1)
contains a copy of c0.
We have seen that projective tensor products with Lp(µ) spaces pre-

serve a variety of geometric properties, but that similar results often fail
for projective tensor products between general Banach spaces. In this
vein, for p ∈ (1,∞) it was unknown whether Lp⊗̂X has finite cotype if
X has finite cotype. This question was explicitly asked in [11, p. 59],
and here we answer it negatively by showing that for every p ∈ (1,∞)
there exists a Banach space X of finite cotype such that ℓp⊗̂X fails to
have finite cotype. Thus, Lp⊗̂X contains copies {ℓn∞}∞n=1 with distor-
tion bounded by a constant independent of n; contrast this statement
with the theorem of Bu and Dowling [10] quoted above that asserts
that Lp⊗̂Y contains a copy of c0 iff Y itself contains a copy of c0. Note
that when p = 2 we see that even the projective tensor product with
Hilbert space need not preserve finite cotype.
Our main result is the following theorem.

Theorem 1.1. Fix p1, p2, p3 ∈ (1,∞) such that

1

p1
+

1

p2
+

1

p3
6 1. (2)

Then ℓp1⊗̂ℓp2⊗̂ℓp3 does not have finite cotype. Moreover, there exists
a universal constant c ∈ (0,∞) such that for every p1, p2, p3 ∈ (1,∞)
satisfying (2), every q ∈ [2,∞), and every integer n > 15 we have

Cq

(
ℓnp1⊗̂ℓnp2⊗̂ℓnp3

)
&

1

logn
· exp

(
c

q
· (log log n)

2

log log log n

)
. (3)

It follows from Theorem 1.1 that for every p ∈ (1,∞), if we set
X = ℓ2p/(p−1)⊗̂ℓ2p/(p−1) then ℓp⊗̂X fails to have finite cotype. By the
result of Pisier [22] quoted above, X has finite cotype. Another notable
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consequence of Theorem 1.1 is that there exists a Banach space Y such
that Y ⊗̂Y has finite cotype yet Y ⊗̂Y ⊗̂Y fails to have finite cotype.
We conjecture that (3) is not sharp, leaving open the determination of
the asymptotic behavior of, say, Cq

(
ℓn3⊗̂ℓn3 ⊗̂ℓn3

)
.

Our proof of Theorem 1.1 is based on a connection between cotype of
tensor products and results from theoretical computer science, namely
the theory of locally decodable codes. This link allows us to use (as
a “black box”) delicate constructions that are available in the com-
puter science literature in order to prove Theorem 1.1. Our initial
hope was to use this connection in the reverse direction, namely, to
use Banach space theory to address an important question about the
length of locally decodable codes, but it turned out that instead locally
decodable codes can be used to address the question in Banach space
theory described above. Nevertheless, there is hope that the connec-
tion presented below, when combined with geometric insights about
tensor norms, might lead to improved lower bounds for locally decod-
able codes. This hope will be made explicit in the following section.

1.1. Locally decodable codes and cotype. Definition 1.2 below
is due to Katz and Trevisan [16]; see the surveys [26, 29] for more
information on this notion (and the closely related notion of private
information retrieval), as well as a description of some of its many
applications in cryptography and computational complexity theory. We
note that in the present paper no reference to Definition 1.2 will be
made other than through the conclusion of Lemma 3.1 below.

Definition 1.2 (3-query locally decodable code). Fix m,n ∈ N and
φ, θ ∈ (0, 1/2). A function

C : {−1, 1}m → {−1, 1}n

is called a 3-query locally decodable code of quality (φ, θ) if for every
t ∈ {1, . . . , m} there exists a distribution At over 4-tuples (i, j, k, g),
where i, j, k ∈ {1, . . . , n} and g : {−1, 1}3 → {−1, 1}, with the property
that for every ε ∈ {−1, 1}m and every δ ∈ {−1, 1}n that differs from
C(ε) in at most φ · n coordinates, with probability (with respect to the
distribution At) at least

1
2
+ θ we have g(δi, δj, δk) = εt.

The motivation behind Definition 1.2 is as follows. Just like standard
error correcting codes, locally decodable codes provide a way to encode
an m-bit message into a longer n-bit codeword in a way that allows
one to recover the original message from the codeword, even if it is
corrupted in any set of coordinates that isn’t too large. However, while
standard error correcting codes typically require reading essentially all
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the n bits of the corrupted codeword in order to recover even one bit
of the message, a 3-query locally decodable code allows one to do this
while reading only 3 bits.
It is an important open question to determine the asymptotic be-

havior in m of the smallest n for which 3-query locally decodable codes
exist (for some fixed φ, θ, say, φ = θ = 1/16). The best known upper
bound, due to Efremenko [13] using in part key ideas of Yekhanin [28]
and a combinatorial construction of Grolmusz [14], is that for every
m ∈ N there exists an integer n ∈ N satisfying

log logn ≍
√
logm log logm, (4)

for which there exists a code C : {−1, 1}m → {−1, 1}n which is 3-query
locally decodable of quality

(
φ, 1

2
− 6φ

)
for all φ ∈ (0, 1/12). See [3] for

an improvement of the implicit constant factor in (4).
The best known lower bound, due to Woodruff [27] as a logarithmic

improvement over a lower bound of Kerenidis and de Wolf [17], is that
for, say, φ = θ = 1/16 we necessarily have

n &
m2

logm
. (5)

In what follows, given n ∈ N we let e1, . . . , en be the standard coor-
dinate basis of Rn. Let ‖·‖ be a norm on R

n⊗R
n⊗R

n. For K ∈ [1,∞)
say that ‖ · ‖ is K-tensor-symmetric if for every choice of permutations
π, σ, τ ∈ Sn, every choice of sign vectors ε, δ, η ∈ {−1, 1}n, and every
choice of scalars {ai,j,k}ni=1 ⊆ R, we have

∥∥∥∥∥

n∑

i=1

n∑

j=1

n∑

k=1

εiδjηkaπ(i),σ(j),τ(k)ei ⊗ ej ⊗ ek

∥∥∥∥∥

6 K

∥∥∥∥∥

n∑

i=1

n∑

j=1

n∑

k=1

ai,j,kei ⊗ ej ⊗ ek

∥∥∥∥∥ . (6)

Theorem 1.3. Fix m,n ∈ N and φ, θ ∈ (0, 1/2). Suppose that there
exists a 3-query locally decodable code C : {−1, 1}m → {−1, 1}n of
quality (φ, θ). For every K ∈ [1,∞), if ‖ · ‖ is a K-tensor-symmetric
norm on R

3n ⊗ R
3n ⊗ R

3n then for every q ∈ [2,∞) we have

K2C
(q)
‖·‖ ·

∥∥∥
∑3n

i=1

∑3n
j=1

∑3n
k=1 ei ⊗ ej ⊗ ek

∥∥∥
∥∥∑3n

i=1 ei ⊗ ei ⊗ ei
∥∥ &

φθ2m1/q

log(n + 1)
.
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Theorem 1.3 implies that if, say, φ = θ = 1/16 then there exists a
universal constant c ∈ (0,∞) such that

n > sup
‖·‖

sup
q∈[2,∞)

exp


 cm1/q

∥∥∑3n
i=1 ei ⊗ ei ⊗ ei

∥∥

C
(q)
‖·‖

∥∥∥
∑3n

i=1

∑3n
j=1

∑3n
k=1 ei ⊗ ej ⊗ ek

∥∥∥


 , (7)

where the first supremum in (7) is taken over all the 1-tensor-symmetric
norms ‖ · ‖ on R

3n ⊗ R
3n ⊗ R

3n. While our initial hope was to use (7)
to narrow the large gap between (4) and (5), we do not know if there
exists a norm on R

3n ⊗ R
3n ⊗ R

3n with respect to which (7) exhibits
an asymptotic improvement over (5). This question is arguably the
most important question that the present paper leaves open. However,
Theorem 1.3 contains new information when one contrasts it with Efre-
menko’s upper bound (4), thus yielding the following corollary.

Corollary 1.4. There exists a universal constant c ∈ (0,∞) such that
for every integer n > 15, every q ∈ [2,∞) and every K ∈ [1,∞), any
K-tensor-symmetric norm ‖ · ‖ on R

n ⊗ R
n ⊗ R

n satisfies

C
(q)
‖·‖ &

‖
∑n

i=1 ei ⊗ ei ⊗ ei‖∥∥∥
∑n

i=1

∑n
j=1

∑n
k=1 ei ⊗ ej ⊗ ek

∥∥∥
·
exp

(
c
q
· (log logn)2

log log logn

)

K2 logn
.

Suppose that p1, p2, p3 ∈ (1,∞) satisfy (2) and define r ∈ [1,∞) by

1

r

def
=

1

p1
+

1

p2
+

1

p3
.

Denoting e =
∑n

i=1 ei ∈ R
n, we have

∥∥∥∥∥

n∑

i=1

n∑

j=1

n∑

k=1

ei ⊗ ej ⊗ ek

∥∥∥∥∥
ℓnp1 ⊗̂ℓnp2 ⊗̂ℓnp3

= ‖e⊗ e⊗ e‖ℓnp1⊗̂ℓnp2 ⊗̂ℓnp3

= ‖e‖ℓnp1 · ‖e‖ℓnp2 · ‖e‖ℓnp3 = n1/p1 · n1/p2 · n1/p3 = n1/r. (8)

It is also well known (see, e.g., Theorem 1.3 in [2]) that
∥∥∥∥∥

n∑

i=1

ei ⊗ ei ⊗ ei

∥∥∥∥∥
ℓnp1⊗̂ℓnp2 ⊗̂ℓnp3

= n1/r. (9)

Since ℓnp1⊗̂ℓnp2⊗̂ℓnp3 is 1-tensor-symmetric, it follows from (8) and (9)
that Theorem 1.1 is a consequence of Corollary 1.4.
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2. Preliminaries

In this section we briefly recall some standard notation and results
on vector-valued Fourier analysis.
For n ∈ N, the Walsh functions {WA : {−1, 1}n → {−1, 1}}A⊆{1,...,n}

are given by WA(ε) =
∏

i∈A εi. If (X, ‖ · ‖X) is a Banach space then for
every f : {−1, 1}n → X and A ⊆ {1, . . . , n} we write

f̂(A) = E [WA(ε)f(ε)] , (10)

where the expectation in (10) is with respect to ε ∈ {−1, 1}n chosen
uniformly at random. Then,

∀ ε ∈ {−1, 1}n, f(ε) =
∑

A⊆{1,...,n}

WA(ε)f̂(A).

The Rademacher projection of f , denoted Rad(f) : {−1, 1}n → X ,
is defined by

∀ ε ∈ {−1, 1}n, Rad(f)(ε) =
n∑

i=1

εif̂({i}).

Pisier’s famous bound on the K-convexity constant [20] asserts that if
X is finite dimensional then every f : {−1, 1}n → X satisfies

√
E
[
‖Rad(f)(ε)‖2X

]
. log (dim(X) + 1) ·

√
E
[
‖f(ε)‖2X

]
. (11)

Recall that the implied constant in (11) is universal, and thus it does
not depend on n, f , (X, ‖ · ‖X) or dim(X). Bourgain proved [6] that
the logarithmic dependence on dim(X) in (11) cannot be improved in
general.

3. Relating locally decodable codes to cotype

Locally decodable codes will be used in what follows via the following
lemma which is a slight variant of a result that appears in Appendix B
of [4] (the proof in [4] is itself a variant of an argument in [17]).

Lemma 3.1 ([4]). Fix m,n ∈ N and φ, θ ∈ (0, 1/2). Suppose that
C : {−1, 1}m → {−1, 1}n is a 3-query locally decodable code of quality
(φ, θ). Then there exists a function C ′ : {−1, 1}m → {−1, 1}3n with
the following properties. For every i ∈ {1, . . . , m} there exist three
permutations πi, σi, τi ∈ S3n, and for every j ∈ {1, . . . , ⌈φθn/9⌉} there

exists a sign δji ∈ {−1, 1}, such that if ε ∈ {−1, 1}m is chosen uniformly
at random then with probability at least 1

2
+ θ

16
we have

C ′(ε)πi(j)C
′(ε)σi(j)C

′(ε)τi(j) = δji εi. (12)
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Proof. By Appendix B of [4], for every i ∈ {1, . . . , m} there exists a
family of nonempty disjoint subsets Fi of {1, . . . , n} such that

• |Fi| > φθn
9
,

• each S ∈ Fi satisfies |S| 6 3,
• for each S ∈ Fi there exists a sign δi(S) ∈ {−1, 1} such that if
ε ∈ {−1, 1}m is chosen uniformly at random then

Prob

[
∏

s∈S

C(ε)s = δi(S)εi

]
>

1

2
+

θ

16
. (13)

Define C ′ : {−1, 1}m → {−1, 1}3n by setting the first n coordinates
of C ′(x) to be equal to C(x), and defining the remaining 2n coordi-
nates of C ′(x) to be equal to 1. One can then add 3 − |S| elements
from {n + 1, . . . , 3n} to each set S ∈ Fi so that that Fi becomes
a family of disjoint subsets of {1, . . . , 3n} of size equal to 3, while
not changing the validity of (13) with C replaced by C ′. Now, there

are πi, σi, τi ∈ S3n such that Fi = {{πi(j), σi(j), τi(j)}}|Fi|
j=1. Writing

δji = δi({πi(j), σi(j), τi(j)}), the validity of (12) with probability at
least 1

2
+ θ

16
is the same as (13). �

Fix n ∈ N and let ‖ · ‖ be a seminorm on (Rn)⊗3 def
= R

n ⊗ R
n ⊗ R

n.
Write

O‖·‖
def
= max

ε∈{−1,1}n
‖ε⊗ ε⊗ ε‖. (14)

For α, β ∈ (0, 1) consider the subset S(α, β) ⊆ (Rn)⊗3 defined by

S(α, β)

def
=

⋃

π,σ,τ∈Sn

⌈βn⌉⋂

j=1

{
x ∈ (Rn)⊗3 :

∣∣〈eπ(j) ⊗ eσ(j) ⊗ eτ(j), x
〉∣∣ > α

}
, (15)

and write

S‖·‖(α, β)
def
= min

x∈S(α,β)
‖x‖. (16)

Theorem 3.2. Fix m,n ∈ N and φ, θ ∈ (0, 1/2). Suppose that there
exists a 3-query locally decodable code C : {−1, 1}m → {−1, 1}n of
quality (φ, θ). Then for every seminorm ‖ · ‖ on R

3n ⊗ R
3n ⊗ R

3n and
every q ∈ [2,∞) we have

m1/q

log(n + 1)
.

C
(q)
‖·‖ · O‖·‖

S‖·‖(θ/8, φθ/27)
. (17)
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Proof. Let C ′ : {−1, 1}m → {−1, 1}3n be the function from Lemma 3.1.
Define f : {−1, 1}m → R

3n ⊗ R
3n ⊗ R

3n by

f(ε) = C ′(ε)⊗ C ′(ε)⊗ C ′(ε).

Recalling the definition (14), we have ‖f(ε)‖ 6 O‖·‖ for all ε ∈ {−1, 1}m.
Combined with Pisier’s bound on the K-convexity constant (11), we
therefore have

log
(
(3n)3 + 1

)
· O‖·‖ &


E

∥∥∥∥∥

m∑

i=1

εif̂({i})
∥∥∥∥∥

2



1/2

>
1

C
(q)
‖·‖

(
m∑

i=1

∥∥∥f̂({i})
∥∥∥
q
)1/q

, (18)

where in the last step of (18) we used the definition of the cotype q

constant C
(q)
‖·‖ .

Using the notation of Lemma 3.1, fix i ∈ {1, . . . , m} and for every
j ∈ {1, . . . , ⌈φθn/9⌉} write

P j
i

def
= Prob

[〈
eπi(j) ⊗ eσi(j) ⊗ eτi(j), f(ε)

〉
= δji εi

]
, (19)

where the probability in (19) is over ε ∈ {−1, 1}m chosen uniformly at
random. Recalling the definition of f , it follows from (12) that

∀(i, j) ∈ {1, . . . , m} × {1, . . . , ⌈φθn/9⌉}, P j
i >

1

2
+

θ

16
. (20)

Now, for every (i, j) ∈ {1, . . . , m} × {1, . . . , ⌈φθn/9⌉} we have

δji

〈
eπi(j) ⊗ eσi(j) ⊗ eτi(j), f̂({i})

〉

=
〈
δji eπi(j) ⊗ eσi(j) ⊗ eτi(j),E [εif(ε)]

〉

= E
[
δji εi

〈
eπi(j) ⊗ eσi(j) ⊗ eτi(j), f(ε)

〉]

(19)
= P j

i −
(
1− P j

i

) (20)

>
θ

8
. (21)

Recalling (15), it follows from (21) that f̂({i}) ∈ S(θ/8, φθ/27) for all
i ∈ {1, . . . , m}. The definition (16) therefore implies that

min
i∈{1,...,m}

∥∥∥f̂({i})
∥∥∥ > S‖·‖(θ/8, φθ/27),

which gives the desired estimate (17) due to (18). �

By substituting (4) into Theorem 3.2 we deduce that any seminorm
on R

n ⊗ R
n ⊗ R

n must obey the following nontrivial restriction.
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Corollary 3.3. There exist universal constants α, β, c ∈ (0, 1) such
that for every integer n > 15, if ‖ · ‖ is a seminorm on R

n ⊗ R
n ⊗ R

n

and q ∈ [2,∞) then

C
(q)
‖·‖ · O‖·‖

S‖·‖(α, β)
&

1

log n
· exp

(
c

q
· (log log n)

2

log log log n

)
, (22)

Proof. By Efremenko’s bound (4) combined with Theorem 3.2, there
exist universal constants α1, β1, c1 ∈ (0, 1) and a sequence of integers
{nm}∞m=3 ⊆ N satisfying

log lognm ≍
√
logm log logm, (23)

such that for every integer m > 3 and q ∈ [2,∞), if | · | is a seminorm
on R

3nm ⊗ R
3nm ⊗ R

3nm then

C
(q)
|·| · O|·|

S|·|(α1, β1)
&

m1/q

log nm

(23)

&
1

lognm
· exp

(
c1
q
· (log log nm)

2

log log log nm

)
. (24)

Due to (23), there is N0 ∈ N such that if n > N0 then there exists
an integer m > 3 for which

3

(
1− β1

7

)
nm 6 n 6 3nm. (25)

Observe that by adjusting the constant c, the desired asymptotic in-
equality (22) holds true if n ∈ (15, N0). We may therefore assume that
n > N0, in which case we apply (24) to the trivial extension of ‖ · ‖ to
a seminorm | · | on R

3nm ⊗R
3nm ⊗R

3nm , i.e., for every {ai,j,k}3nm

i,j,k=1 set
∣∣∣∣∣

3nm∑

i=1

3nm∑

j=1

3nm∑

k=1

ai,j,kei ⊗ ej ⊗ ek

∣∣∣∣∣
def
=

∥∥∥∥∥

n∑

i=1

n∑

j=1

n∑

k=1

ai,j,kei ⊗ ej ⊗ ek

∥∥∥∥∥ .

Then C
(q)
|·| = C

(q)
‖·‖ and O|·| = O‖·‖, and due to (25) we also have

S|·|(α1, β1) > S‖·‖(α1, β1/2). The desired estimate (22) is therefore
a consequence of (24). �

Due to the following simple lemma, Theorem 1.3 and Corollary 1.4
follow from Theorem 3.2 and Corollary 3.3, respectively.

Lemma 3.4. Fix n ∈ N and α, β ∈ (0, 1). For K ∈ [1,∞), if ‖ · ‖ is
a K-tensor-symmetric norm on R

n ⊗ R
n ⊗ R

n then

O‖·‖ 6 K

∥∥∥∥∥

n∑

i=1

n∑

j=1

n∑

k=1

ei ⊗ ej ⊗ ek

∥∥∥∥∥ . (26)
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and

S‖·‖(α, β) >
αβ

K

∥∥∥∥∥

n∑

i=1

ei ⊗ ei ⊗ ei

∥∥∥∥∥ . (27)

Proof. (26) is an immediate consequence of the definitions (6) and (14).
Next, fix x ∈ S(α, β). Writing x =

∑n
i=1

∑n
j=1

∑n
k=1 ai,j,kei ⊗ ej ⊗ ek

for some {ai,j,k}ni,j,k=1 ⊆ R, and recalling (15), there exist π, σ, τ ∈ Sn

such that
∀ i ∈ {1, . . . , ⌈βn⌉} ,

∣∣aπ(i),σ(i),τ(i)
∣∣ > α. (28)

For ε, δ, η ∈ {−1, 1}n and ρ ∈ Sn define

xρ
ε,δ,η

def
=

n∑

i=1

n∑

j=1

n∑

k=1

εiδjsk(ε, δ, η, ρ)aπ◦ρ(i),σ◦ρ(j),τ◦ρ(k)ei ⊗ ej ⊗ ek, (29)

where

sk(ε, δ, η, ρ)
def
=

{
ηk if ρ(k) > ⌈βn⌉,
εkδksign(aπ◦ρ(k),σ◦ρ(k),τ◦ρ(k)) otherwise.

Thus, if (ε, δ, η, ρ) ∈ {−1, 1}n × {−1, 1}n × {−1, 1}n × Sn is chosen
uniformly at random then

E
[
xρ
ε,δ,η

]
=

∑⌈βn⌉
i=1

∣∣aπ(i),σ(i),τ(i)
∣∣

n

n∑

j=1

ej ⊗ ej ⊗ ej . (30)

Consequently,

αβ

∥∥∥∥∥

n∑

j=1

ej ⊗ ej ⊗ ej

∥∥∥∥∥
(28)∧(30)

6
∥∥E
[
xρ
ε,δ,η

]∥∥

6 E
[∥∥xρ

ε,δ,η

∥∥] (6)∧(29)

6 K‖x‖. (31)

Recalling (16), the validity of (31) for all x ∈ S(α, β) implies (27). �
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