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We introduce detector-level entanglement, a unified entanglement concept for identical particles that takes
into account the possible deletion of many-particle which-way information through the detection process. The
concept implies a measure for the effective indistinguishability of the particles, which is controlled by the mea-
surement setup and which quantifies the extent to which the (anti-)symmetrization of the wave-function impacts
on physical observables. Initially indistinguishable particles can gain or loose entanglement on their transition
to distinguishability, and their quantum statistical behavior depends on their initial entanglement. Our results
show that entanglement cannot be attributed to a state of identical particles alone, but that the detection process
has to be incorporated in the analysis.

I. INTRODUCTION

Entanglement and the indistinguishability of particles lead to a variety of counter-intuitive quantum many-body phenomena.
Entanglement manifests itself most prominently in measurements at remote detectors that exhibit stronger correlations than
allowed by local and realistic theories [1]. Such quantum correlations imply the principle impossibility to assign a physical
reality [2], i.e. a complete set of physical properties, to an entangled particle individually – a virtually unsettling consequence
[3]. For example, the polarization of a photon that is entangled to the electronic state of an atom does not possess a value before
its measurement.

Similarly, it is impossible to assign an identifying label to any particle in a system of two or more identical particles, and
the many-body wave-function has to be (anti)symmetrized for (fermions) bosons [4]. Again, a postulate of quantum mechanics
dictates our very description of reality and sets strict bounds on the information that we can retrieve from a quantum system. In
this article, we deal with the physical consequences of the symmetrization postulate for entanglement, which are insinuated by
the aforementioned analogy.

For different types of particles, like electrons and protons, i.e. non-identical particles, entanglement can be defined rigorously
[5]. Since the particles that carry the entangled degrees of freedom are intrinsically distinct, they have an undetachable, definite
identity and can thus be labeled: they possess well-defined properties such as rest mass or charge by which they can be discrim-
inated unambiguously. Consequently, any measurement on one particle can be assigned to the density matrix that acts on the
Hilbert space of this particle. The abstract quantum-information paradigm of parties that control quantum systems [6] – here:
particle properties measured by detectors – can be applied immediately for an analysis of the physical situation.

The identification of particles and Hilbert spaces, however, breaks down as soon as identical particles are involved. Other
distinctive properties are thus necessary to discriminate the particles. If they are localized far from each other, the particles
define two distinguishable entities, related unambiguously to one local detector each. Between these entities, entanglement can
then be defined. The (anti)symmetrization procedure does not affect any observable defined on these entities, and can thus be
neglected [7]. This is already realized in quantum mechanics textbooks, e.g. [8] states that

“No quantum prediction, referring to an atom located in our laboratory, is affected by the mere presence of
similar atoms in remote parts of the universe.”

For example, in a scenario with an atom on the moon that is possibly entangled to an atom on the earth, one can safely neglect
the (anti)symmetrization procedure, since the atom on the moon never triggers the detector on the earth, and vice-versa.

Dealing with the (anti)symmetry of the many-particle wave-function is therefore a rather formal problem when particles are
spatially well-separated and clearly distinguishable by this preparation. The apparent correlations in the particle labels must not
be accounted for as physical, while correlations between remote detectors should. This is achieved by entanglement definitions
for identical particles provided in [9–13], which we will refer to as a priori entanglement.

∗ Corresponding author E-mail: tichy@phys.au.dk,

ar
X

iv
:0

90
2.

16
84

v6
  [

qu
an

t-
ph

] 
 1

7 
A

pr
 2

01
2

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301648934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Yet, in other settings, such clear differentiation is sometimes ambiguous or even impossible. Electrons that leave an ionizing
helium atom, photons passing simultaneously through the input arms of a beam splitter in a Hong-Ou-Mandel setting (HOM)
[14], or atoms in a BEC [15] are strongly overlapping in space, such that their external states, i.e. their spatial preparation, do not
allow to address the particles individually. Their indistinguishability then becomes relevant and affects the results of correlation
measurements. In such situations, the impossibility to assign a label to a particle may indeed imply the impossibility to assign
a physical reality to a particle that is measured in a detector. The (anti)symmetrization of the wave-function then results in
quantum correlations, and cannot be neglected by any means. Quite in general, the dynamical behavior of entanglement during
transitions from overlapping, indistinguishable, to well localized, distinguishable particles is heretofore barely understood, while
the interest in its role in atomic and molecular [16] as well as in biological systems [17] is growing. Since such natural systems
do not conform to a clear paradigmatic setting of remote parties, as in quantum information, it is necessary to include the
measurement prescription in the description of entanglement.

In the present article, we introduce a such unified view on entanglement, which allows the consistent quantification of the
entanglement between identical particles in arbitrary settings: Our description comprises the aforementioned situation with
separately prepared, thus distinguishable particles, but also any possible scenario with particles that strongly overlap in space
and that do not suggest any natural subsystem structure, i.e. when they indeed constitute indistinguishable particles. In order
to quantify the impact of the indistinguishability on the measured quantum correlations, appropriate physical quantities are
identified. We show that the indistinguishability of the particles depends on the experimental context, and that it has a manifold
impact: Particles can gain or loose quantum correlations through the measurement process.

We first review a priori entanglement in Section II and discuss an experimental situation in which this concept fails. Section
III then introduces detector-level entanglement and the quantities that govern its behavior. By means of a model-system, we
discuss the implications of the indistinguishability of particles for measured correlations in Section IV, and conclude in Section
V.

II. A PRIORI ENTANGLEMENT

In previous approaches to the entanglement of identical particles [9–11, 13], which we refer to as a priori entanglement, the
problem of the (anti)symmetrization of the many-particle wave-function is tackled by effectively labeling the particles by some
distinctive properties, e.g. their external state. In analogy to the Schmidt coefficients, Refs. [9, 10] use the Slater coefficients to
determine the entanglement of identical particles. For example, if the minimal number of Slater determinants needed to describe
a many-fermion state is not unity, the state is said entangled [13].

Much like distinguishable particles, two a priori non-entangled, identical particles will remain always unentangled unless an
interaction between them takes place. The interaction between the particles may be direct, or mediated through ancilla particles.
While the states of the particles may change in time, their identity, as given by their initially chosen distinctive properties, will
be preserved through unitary time evolution.

The absence of a priori entanglement implies that it is, in principle, possible to perform measurements on a particle in the
system by which one obtains a certain known result deterministically, i.e. one merely reads off a pre-existing value of a physical
property – a situation well in accordance with local realism [2]. A strong and crucial assumption is, however, made here: it is
taken for granted that experimentalists are indeed able and willing to always choose those detectors that address the well-defined
properties of the particles.

Particles can be distinguished by their external preparation when they are spatially well separated, such that the assumption
is then well justified, since each detector is then assigned exactly one particle. Such situation is also depicted in Figure 1(a),
where the spatial wave-functions of two particles have a finite overlap with exactly one detector each. The experimentalists then
simply read off the preparation of the spin state of the particle in one of the detectors. We will refer to such a situation as an
unambiguous setup.

In many situations, like, e.g., the one depicted in Figure 1(b,c), the external degrees of freedom and the detectors do, however,
not coincide anymore, and the a priori assumption is no longer justified – the experimentalists then choose to not merely read
off pre-existing, known values, but to use an ambiguous detector setting in which the particles appear as indistinguishable. In
an HOM-experiment, illustrated in Figure 1(d), entanglement in the output arms of a beam splitter is created by the passage of
two unentangled photons of opposite polarization through both input arms, and further post-selection on the coincident events
[14, 18]. The initial state of the system reads

|ΨHOM,ini〉 =
1√
2

(|A,H;B, V 〉+ |B, V ;A,H〉) , (1)

where |A,H〉 (|B, V 〉) denotes the quantum state of a photon in the input mode A (B) with horizontal (vertical) polarization,
and |Ψ; Φ〉 is the short-hand notation for |Ψ〉1 ⊗ |Φ〉2. At first sight, |ΨHOM,ini〉 might seem to be entangled since it cannot be
written as a single factor. It is, however, correctly recognized as non-entangled by the a priori definitions [9–11]: a measurement
of the polarization of the photons at the input arms indeed does not exhibit any correlations, the photon in mode A(B) is always
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horizontally (vertically) polarized. The correlations in the particle labels in (1) – particle “1” seems to be entangled with particle
“2” – are not physical, since no physical operator can be implemented to measure the property of a particle that is specified by
the mere label.

The time evolution of the external quantum states induced by the scattering on the beam splitter reads, by virtue of Fresnel’s
equations [19],

|A〉 → 1√
2

(|L〉+ |R〉) =: |Ã〉 , (2)

|B〉 → 1√
2

(|L〉 − |R〉) =: |B̃〉 , (3)

where |L〉 , |R〉 denote the output modes of the beam splitter. With the above definition of |Ã〉 and |B̃〉, the final state of the
photons in the output arms becomes

|ΨHOM,fin〉 =
1√
2

(
|Ã,H; B̃, V 〉+ |B̃, V ; Ã,H〉

)
. (4)

The functional form of (1) and (4) is apparently unchanged during the scattering, and we can understand (4) with a mere re-
labeling of the modes applied on (1). This is also immediate from the fact that only one-particle unitary evolutions occur, and
no interaction between the photons takes place: initially orthogonal quantum states of two particles will necessarily remain
orthogonal in the absence of mutual interaction. Entanglement measures such as in [9–11], which only account for the form
of the quantum state, vanish, both for the initial state (1) and for the final state (4). The physical situation before and after the
scattering on the beam splitter is, however, totally distinct: Both photons have a finite probability to be detected by the same
local detector after the scattering process, whereas before, a local detector placed at one local optical mode can only detect one
of the particles.

Since the two two-particle paths (A→ R,B → L) and (A→ L,B → R) are indistinguishable, they are coherently superim-
posed, and entanglement between the particles is recorded for those detection events where both detectors click coincidentally
[14, 20]. The emerging quantum correlations are also immediate when we consider the state obtained upon post-selection of the
coincident events, i.e. when one particle is found in each output arm:

|ΨHOM,fin,proj〉 =
1

2
(− |L,H;R, V 〉+ |L, V ;R,H〉 − |R, V ;L,H〉+ |R,H;L, V 〉) . (5)

This form shows that the polarization of the photon found in the state |L〉 is correlated with the polarization of the one detected
in |R〉. The quantum correlations recorded by the detectors can be explained by the ambiguity of the detector setting: Particles
are not distinguished by their spatial states |Ã〉 , |B̃〉, but they are measured by the detectors, |L〉 〈L| and |R〉 〈R|, with which
each photon has a finite overlap.

It is important to retain that the entanglement in the state (5) crucially relies on the symmetrization of the two-photon wave-
function, which results in the indistinguishability of the two two-particle paths shown in Figure 1(b) and in a coherent super-
position as in (5). If non-identical particles are initially prepared in both input arms of the beam splitter, one still looses the
information on the internal state of the measured particles and finds anti-correlations between the local measurement outcomes.
The nature of these anti-correlations, however, is then purely classical: The setup corresponds to a classical machine that ran-
domly distributes pairs of particles to the two detectors. An every-day analogy with colored marbles or socks then captures the
essence of the process [21].

In view of this experiment and of similar situations in which the spatial states of particles do not have an unambiguous, one-to-
one relationship with the detectors, a characterization of entanglement that incorporates the measurement process as described
above is necessary to overcome the discrepancies between hitherto available entanglement measures and entanglement that is
actually detected in a specific experimental situation.

III. DETECTOR-LEVEL ENTANGLEMENT

For this very purpose, we introduce detector-level entanglement, which incorporates the effects of the measurement process
itself, and therefore does not suffer from the problems mentioned above. In contrast to earlier treatments [2], we do not assign
an absolute value of entanglement to a state on its own. Instead, we identify the particles as those entities which are eventually
measured by some specified, distinct detectors, which we assume to have 100% detection efficiency and to be represented by
mutually orthogonal projection operators. For an unambiguous detector scheme, each detector is associated with exactly one of
the particles, which can then be treated as distinguishable such that detector level entanglement reduces to the one determined by
the previously introduced criteria [11]. In contrast, an ambiguous detector setting, in which each particle can trigger each detector
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FIG. 1: Setups for the measurement of identical particles. (a) Unambiguous scheme, each particle is assigned to exactly one detector. The
A (B)-particle will always be detected by the left (right) detector, denoted by ÔL (ÔR). (b) Ambiguous scheme, both particles can trigger
either detector. The two two-particle paths are depicted by the solid and the dashed arrows. (c) The generic situation of (b) is realized by two
wave-functions that overlap in space, such that either detector can be triggered by either particle. (d) Hong-Ou-Mandel setup, two photons
prepared in A and B scatter off the beam splitter (BS) and fall into each output mode with equal amplitude. This setup also realizes the
ambiguous scheme shown in (b).

with a certain probability, can erase information about the provenience of the particles: the identification of the particles measured
by the detectors with the particles prepared in the external states breaks down, since two distinct and possibly indistinguishable
two-particle paths contribute to the event characterized by the detection of one particle in each detector, as illustrated in Figure
1(b).

Our subsequent considerations apply for a general setting of arbitrarily many detectors, which we assume to detect particles
in states of their external, i.e. spatial, degrees of freedom. The particles additionally carry an internal degree of freedom such as
spin, in which they may be entangled. For the sake of clarity, we restrict ourselves hereafter to the case of two particles and two
detectors. While the first- and second-quantized formulations of the problem lead to the same physical picture [22], it is here
most convenient to use the suggestive language of first quantization in which most mathematical expressions possess a simple,
intuitive form.

A. Detector-level density matrix

Experimentally observed expectation values are associated with the observable

Ôd(α̂, β̂) = ÔL ⊗ α̂︸ ︷︷ ︸
1

⊗ ÔR ⊗ β̂︸ ︷︷ ︸
2

+ ÔR ⊗ β̂︸ ︷︷ ︸
1

⊗ ÔL ⊗ α̂︸ ︷︷ ︸
2

, (6)

where ÔL and ÔR are two external, mutually orthogonal projectors and describe spatial detectors we call left and right, respec-
tively. α̂ and β̂ are (not necessarily distinct) observables on the internal spaces of the particles. The terms labeled by 1 (2) act
on the external and internal spaces of the first (second) particle.

The two detectors assign an identity (left and right) to each of the detected particles, and thereby specify the entities which may
or may not carry entanglement. The detector-level entanglement of a state ρ̂a, with respect to a given set of detectors, can thus
be inferred by application of any entanglement measure on the detector-level density matrix ρ̂d, reconstructed by quantum state
tomography [23] in the local basis defined by the detectors. This corresponds to the measurement of a complete orthonormal set
of observables, χ̂i, χ̂j , on the internal degrees of freedom of the particles, with the two external detectors given by (6):

ρ̂d = N
∑
i,j

χ̂i ⊗ χ̂jTr
(
Ôd(χ̂i, χ̂j)ρ̂a

)
, (7)

where the normalization N ensures that Tr(ρ̂d) = 1. Thus, (7) describes the density matrix of the internal degrees of freedom as
reconstructed by the detection procedure. In contrast to previous approaches, our formulation takes into account that the spatial
overlap of identical particles, and hence their distinguishability, might change with time, even if their quantum state may not.
The density matrix ρd obtained in (7) possesses a subsystem structure which always reflects the actual experimental setting. It
is thus sensitive to the dynamics of the structure of the state – and thus to the a priori entanglement of the system –, and to the
particle-detector relationship.
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Thereby the problem of the indistinguishability of particles is overcome: Entanglement measures applied on ρ̂d determine the
detector-level entanglement of ρ̂a and reproduce the entanglement measured between the two detectors. The encountered quan-
tum correlations may already be present as a priori entanglement in the state, or they may also be induced by the measurement
process itself. As we will see below, also an interplay of a priori and measurement-induced entanglement may take place.

B. Path weights

In the actual reconstruction (7) of the detector-level density matrix ρd, several terms appear, which can be given physical
interpretation.

In the first place, the probability for two particles injected into the (not necessarily orthogonal) external quantum states |A〉
and |B〉 to trigger a coincident event is governed by the following quantities:

DLR ≡ 〈A| ÔL |A〉 〈B| ÔR |B〉 , (8)

DRL ≡ 〈A| ÔR |A〉 〈B| ÔL |B〉 . (9)

DLR (DRL) is the probability for the particle prepared in |A〉 (|B〉) to be detected in the left detector, while the particle prepared
in |B〉 (|A〉) is detected in the right detector. We will refer to these quantities as path weights. The two distinct two-particle paths
shown in Figure 1(b) correspond to these two events. If one path weight vanishes, a coincident event in the detectors reveals
full information about which external state the particles were initially prepared in. The scheme is then unambiguous, and the
situation boils down to the scheme depicted in Figure 1(a). If both path weights, DLR and DRL, are non-zero, a click in one of
the detectors does not completely reveal the provenience of the particles anymore, which corresponds to an ambiguous setting.

C. Effective indistinguishability

Even in the ambiguous case, however, particles can still be effectively distinguishable, since one may discriminate the ini-
tial preparations by a further measurement: If 〈B| Ô†L/RÔL/R |A〉 = 0, the scalar product of the projected states ÔL/R |A〉
and ÔL/R |B〉 vanishes, the states are orthogonal after detection. They can thus be distinguished in the sense that their pre-
vious preparation could be inferred by another measurement, i.e. the which-way information has not been deleted. At the
same time, expectation values for measurements on the internal degrees of freedom at the detectors are not affected by the
(anti)symmetrization of the wave-function since all cross-terms involving expressions with factors like 〈A| ÔL |B〉 〈B| ÔR |A〉
necessarily vanish. An analogous scenario with distinguishable particles and symmetrized observables would hence yield the
very same expectation values. The (anti)symmetrization of the state only plays a role if the overlap of the projected states
ÔR/L |A〉 and ÔR/L |B〉 does not vanish at both detectors. A quantitative description for the impact of indistinguishability is
therefore given by the product of the overlaps at both detectors:

γ ≡ 〈A| ÔL |B〉 〈B| ÔR |A〉 , (10)

where we used that Ô†L/RÔL/R = ÔL/R, for projector-valued ÔL/R. We baptize γ the effective indistinguishability. It quantifies
how strongly the measurement process erases information about the previous preparation of the particles, and thus provides a
measure for the indistinguishability of the particles. In other words, the larger γ is, the more coherent the two two-particle paths
(A → L,B → R) and (A → R,B → L) – see Fig. 1(b) – are super-imposed. The effective indistinguishability includes, in
contrast to previous approaches [24] to distinguishability, the dependence on the detector setting. The case γ = 0 corresponds
to the situation above in which particles are effectively distinguishable, and the information on the provenience of the particles
is preserved during the detection process. For γ 6= 0, the (anti)symmetrization of the wave-function does, however, affect
expectation values of physical observables.

We stress that the path weights DLR, DRL and the effective indistinguishability γ constitute independent parameters. Only
the maximal modulus of γ depends on the path weights, which follows from the Cauchy-Schwarz inequality:

|γ| = | 〈A| ÔL |B〉 〈B| ÔR |A〉 |
= | 〈A| ÔLÔL |B〉 〈B| ÔRÔR |A〉 |
≤ |ÔL |A〉 | · |ÔR |B〉 | · |ÔL |B〉 | · |ÔR |A〉 |
=
√
DLRDRL =: γmax (11)

The absolute value of γ measures how strongly which-way information is erased by a measurement: For |γ| = γmax, the
two states ÔR/L |A〉 , ÔR/L |B〉 are linearly dependent. Hence, one cannot design any discriminating measurement in this case.
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For particles which are prepared initially in linearly independent external quantum states, such detection erases the information
about their provenience. They are hence completely indistinguishable for such a detector setting.

For particles with some spatial overlap at the detectors, situations occur in which γ 6= 0, even if 〈A|B〉 = 0. In other words,
the detection setup can effectively inhibit the differentiation of the particles that was possible before the measurement process.
In turn, for any non-orthogonal states with 0 < |〈A|B〉| < 1, there are projectors which do differentiate the two states. Physical
distinguishability hence strongly depends on the settings of the detectors. For our purpose of exploring the consequences of
indistinguishability on entanglement, it is sufficient to consider real and negative γ, which corresponds to the case of HOM
interferometry.

Physically speaking, the balance of the path weights DLR and DRL governs the ambiguity of the setup, whereas the effective
indistinguishability γ quantifies the coherence of the two two-particle paths. The (anti)symmetrization of the wave-function has
an impact on observables only if the path weights do both not vanish and γ 6= 0.

IV. APPLICATIONS

Let us now discuss the implications of the above for two identical particles prepared in external quantum states |A〉, |B〉. We
assume that 〈A|B〉 = 0 and take the internal degree of freedom of the particles to be equivalent to a spin-1/2-system. The
following paradigmatic state will turn out to be strongly affected by ambiguous detector settings:

|Ψ〉 =
1√
2
{cos ε |A, ↑;B, ↓〉+ sin ε |A, ↓;B, ↑〉+ δ (cos ε |B, ↓;A, ↑〉+ sin ε |B, ↑;A, ↓〉)} (12)

The parameter δ = 1(−1) refers to bosons (fermions), ε is real and continuous and controls the a priori entanglement between
the particles. The entanglement measure concurrence [25] of (12) reads

Ca(ε) = 2| cos ε sin ε|. (13)

For ε = 0, π/2, the state is a priori non-entangled, and the particles in |A〉 and |B〉 can each be assigned a certain definite spin.
For ε = π/4, the state is maximally entangled, no information at all is available on the results of a spin-measurement on either
particle.

A. Exchange interaction

Let us first investigate the interplay of a priori entanglement and the bosonic/fermionic nature of the particles. For this purpose,
we transfer a text-book example for the exchange interaction [26] to the realm of a priori entangled identical particles in the state
(12). The expectation value of the squared distance of the particles, (x̂1 ⊗ 12 − 11 ⊗ x̂2)2, reads

〈Ψ| (x̂1 ⊗ 12 − 11 ⊗ x̂2)2 |Ψ〉 =

(∆xclass)
2︷ ︸︸ ︷

〈A| x̂2 |A〉+ 〈B| x̂2 |B〉 − 2 〈A| x̂ |A〉 〈B| x̂ |B〉
−δ4 cos ε sin ε| 〈A| x̂ |B〉 |2, (14)

where the identity 1s that acts on the spin degree of freedom is omitted, for readability.
The first line equates the intuitive expectation value for the squared distance (∆xclass)

2 for a state |A;B〉 of distinguishable
particles. In addition, we find a correction that makes the particles appear closer together or further apart, depending on the sign
of δ cos ε sin ε. This term is similar to the contribution that is found for non-entangled identical bosons and fermions [26], and
it appears only when there is a finite spatial overlap of the particles, such that 〈A| x̂ |B〉 does not vanish, hence it matches the
common sense interpretation of “exchange interaction”.

In contrast to non-entangled bosons or fermions, the exchange term does not depend only on the species δ (bosonic or
fermionic) of the particles, but also on the parameter ε that governs the a priori entanglement. By suitably manipulating their
a priori entanglement properties, we can thus make bosons behave like fermions, and vice-versa. It is the interplay of the
(anti-)symmetrization of the wave-function with the a priori entanglement between the particles that leads to this impact on the
expectation value of the inter-particle distance. For ε = 0, the state describes two particles of definite and orthogonal spin, and
no exchange interaction takes place – indeed, this latter situation corresponds to two particles that can be distinguished by their
spin.

In our detection setting, we find an analogous effect, and the specific choice of the a priori entangled state affects the coincident
detection rate T . The latter is given by the expectation value of Od(1,1), and reads

T = DLR +DRL + 4δγ cos ε sin ε. (15)
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The last term in this sum is proportional both to the a priori concurrence Ca(ε), Eq. (13), and to the effective indistinguishability
γ, Eq. (10). Through the latter it includes the overlap of the single-particle states at the detectors, and the resulting (anti)bunching
effects can be interpreted as a further signature of exchange interaction, similar to the contribution in (14). The case DLR =
DRL = 1/4, γ = −γmax results in complete indistinguishability, corresponding to the situation in a HOM interferometer: Two
photons in the |Ψ+〉 Bell-state (ε = π/4) always bunch (T = 0), while in the |Ψ−〉 Bell-state (ε = 3π/4) they antibunch (T = 1)
[27].

B. Detector-level state

By virtue of (7), the state (12) yields the detector-level density matrix,

ρd =
1

2T

 0 0 0 0
0 T + a b 0
0 b T − a 0
0 0 0 0

 , (16)

in the detector level basis

{|L ↑, R ↑〉 , |L ↑, R ↓〉 , |L ↓, R ↑〉 , |L ↓, R ↓〉}, (17)

with

a = (DLR −DRL) cos 2ε, (18)
b = 2δγ + 2(DLR +DRL) sin ε cos ε. (19)

For unambiguous detector settings, DLR = 0, DRL = 1, we simply recover the spin properties of the a priori state, detecting
a particle in the left (right) detector amounts to detecting the particle that was prepared in the external state |A〉 (|B〉). In
general, however, the state at detector level, ρd, is possibly mixed. We stress that this loss of purity is not rooted in the detector
inefficiency or any decoherence mechanism, but it is born out by ambiguous detector settings with non-maximal γ, i.e. for which
the two two-particle paths are not super-imposed in a fully coherent way.

The quantitative and qualitative consequences of the loss of which-way information in the setup are captured by the following
quantities:

• The single-particle predictability P (R/L)
d [28] of the particle detected by the right/left detector,(

P
(R/L)
d

)2

=
∣∣Tr
(
σz%R/L

)∣∣2 , (20)

where %R/L is the reduced density matrix that describes the particle in the right/left detector, quantifies the observer’s
ability to predict the outcome of a measurement in the σz-basis. For our setup, the coherences of the reduced density
matrices %R/L always vanish by construction, since each single particle is never prepared in superpositions of eigenstates
of σz , according to (12). The product of the coherences can be interpreted as the visibility [29] or interference capability,
and this quantity thus also vanishes for the state under consideration. Consequently, the predictability quantifies all single-
particle information in our case, and its value is equal for the two detected particles,

P 2
d :=

(
P

(R)
d

)2

=
(
P

(L)
d

)2

=
(DLR −DRL)2 cos2 2ε

T 2
. (21)

When the setup is fully ambiguous,DLR = DRL, and no information on the provenience of a detected particle is available,
such that the predictability vanishes. Also when a maximally entangled state is prepared (cos 2ε = 0), no information on
the preparation of any particle is available, with the analogous consequence, P 2

d = 0.

• The two-particle linear entropy,

Sd = 1− Tr(ρ2
d), (22)

quantifies the impurity of the two-particle state. In our case, the pair of particles (12) is always fully anti-correlated (there
is always exactly one particle in each internal state, |↑〉 , |↓〉), such that measurements exhibit anti-correlations in the σz-
basis. The two-particle linear entropy Sd directly constitutes a measure for the classical correlations that are induced by
the ambiguous detection scheme. Note that only for |γ| 6= γmax can Sd assume a non-vanishing value, i.e. the only source
of classical correlations is the incoherent distribution of the particles among the detectors.
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• The detector-level concurrence Cd [25] measures the strength of the quantum correlations between the two detected
particles. For our specific detector-level state (16), it is proportional to the product of the non-diagonal elements of ρd,

C2
d =

(
b

T

)2

=
4 (δγ + (DLR +DRL) sin ε cos ε)

2

T 2
. (23)

For the state under consideration, the three quantities are complementary [29], by virtue of

1 = C2
d + P 2

d + 2Sd. (24)

Note that this relation does not hold for general density matrices [29], but only for the detector-level state ρd of the specific form
(16) .

We can thus understand a loss of predictability Pd as an increase of correlations, whose (quantum or classical) nature is defined
by the balance of C2

d and Sd.
If γ = 0, the detector-level concurrence equals the a-priori value (Ca = Cd), and ambiguous detector settings with DLR 6=

0 6= DRL can still manifest themselves, but only as a higher two-particle entropy and lower single-particle predictability with
respect to the unambiguous case. The identical particles behave distinguishably, hence just like particles of a different kind, and
classical correlations are induced by the ambiguous detector setting. In contrast, non-vanishing values of γ change the situation
dramatically, and the concurrence Cd will be affected as well. For illustration, let us discuss two exemplary transitions, and their
experimental implementations in HOM-type setups.

C. Vanishing predictability

First, we consider a scenario with vanishing predictability, Pd = 0, by settingDLR = DRL = 1/4, see (21). The setup is thus
maximally ambiguous, which corresponds to the balanced HOM-type beam-splitter setup shown in Figure 1(d). Each particle
has the same probability to trigger either detector. Neither party can predict at all any single spin measurement outcome, while
the measurement outcomes at the two detectors are perfectly anti-correlated.

The nature of these correlations depends on the effective indistinguishability γ and on the a priori entanglement defined by
ε. For a priori non-entangled (ε = 0) and effectively distinguishable (γ = 0) particles, the two-particle state (16) is maximally
mixed, since b = 0 by virtue of (19), and the uncertainty is purely classical, Cd = 0, 2Sd = 1, Eqs. (22) and (23). This situation
corresponds to a setup in which distinguishable particles are randomly distributed among the two detectors. The two two-particle
paths are not super-imposed coherently, and the induced correlations are purely classical.

For effectively indistinguishable particles (γ = −γmax), the two two-particle paths are super-imposed in a fully coherent way.
Consequently, the state at detector level ρd is pure, the single-particle predictability vanishes due to detector-level entanglement,
and the detector-level concurrence (23) attains its maximal value.

The case γ = −γmax is analogous to the situation in ideal HOM interferometry, in which pairs of maximally entangled particles
are created [14, 27]. If, on the other hand, the temporal delay between the photons is too large such that the provenience of the
particles could be in principle inferred by a time-resolved measurement (and γ = 0), the particles result not to be entangled.
That is, by variation of γ, the correlations are converted from merely classical correlations into detector-level entanglement!

For an a priori non-entangled state with ε = 0 or ε = π
2 , the detector-level concurrence increases monotonically with |γ|. The

less the particles can effectively be distinguished, the more they are entangled. In contrast, the dependence is non-monotonic
and therefore more intricate for a priori entangled states, as illustrated in Figure 2. This behavior is due to the competition
between the (measurement-induced) term proportional to γ, and that proportional to cos ε sin ε, i.e. the a priori concurrence, in
the parameter b (19).

D. Maximal indistinguishability

As a second example, we now fix the effective indistinguishability to γ = −γmax, and tune the detector bias from unam-
biguous to completely ambiguous, by variation of DLR between 0 and 1/4, while DRL = (1 −

√
DLR)2. This transition can

be implemented experimentally with several beam splitters that assume different transmission probabilities. Increasing DLR

corresponds to smoothly breaking the unambiguous bond between particle and detector, while always maintaining maximal
indistinguishability. The induced uncertainty for single spin-measurements is then maximal for DLR = DRL = 1/4.

No classical uncertainty is created by the detection, since γ = −γmax, and ρd remains pure. In other words, the two two-
particle paths are always coherently super-imposed, whereas their amplitudes are varied by DLR and DRL. If DLR 6= DRL,
the occurrence of a coincident event itself contains some statistical information on the possible provenience of the particles, the
setup is then not maximally ambiguous and the detector-level entanglement is not maximal. While the measurement destroys
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FIG. 2: Detector-level concurrence of two bosons in the state (12), as a function of ε (which controls the a priori entanglement (13) of the
state), for DLR = DRL = 1/4, γ = 0 (dotted line), γ = −0.5γmax (dashed line), γ = −0.9γmax (solid line). For γ = 0, the detector-level
concurrence Cd, Eq. (23) equates the a priori concurrence (13), whereas for γ = −γmax, Cd = 1 for all values of ε. The transition between
distinguishable (γ = 0) and indistinguishable (γ 6= 0) particles is, however, not always monotonic.
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FIG. 3: Squared detector-level single particle predictability P 2
d as a function of DLR, for γ = −γmax, ε = 3π/8 (dotted line), ε = 0 (dashed

line) and ε = 5π/8 (solid line). The predictability is not always a monotonically decreasing function of DLR (DLR = 1/4 corresponds to a
completely ambiguous detector setting).

the information about the preparation of the detected particles totally (γ = −γmax), the probability for a certain type (|A〉
measured in the left or right detector) of coincident event to occur is biased, i.e. the two possible two-particle paths shown in
Figure 1(b) have different amplitudes. Again, predictability (and, due to the above-mentioned complementarity, concurrence)
does not depend on DLR monotonically, with remarkable implications: when bunching occurs, i.e. ε < π, the detector-level
concurrence Cd can be smaller than the a priori concurrence Ca, and the predictability (21) consequently grows. In other
words, an ambiguous spatial measurement that does not discriminate spins can actually enhance the probability of a certain
spin-measurement outcome with respect to the unambiguous case. We illustrate this behavior in Figure 3, where the squared
detector-level predictability is plotted for different values of ε, as a function of DLR.

Although we focused on bosons throughout this section, the same situation can be recovered for fermions, merely exchanging
the sign of the effective indistinguishability, γ → −γ. In other words, the species of the particles (bosonic or fermions) merely
boils down to the sign of a parameter, and it is the indistinguishability which is mainly responsible for the encountered coherent
many-particle effects [22].

V. CONCLUSIONS

Entanglement and the indistinguishability of particles interfere on several levels – in the literal and in the figurative sense of
the word: The very notion of entanglement needs to be adjusted in order to allow for the impossibility to label identical particles
and for the consequent loss of subsystem structure. Thus, discriminating degrees of freedom need to be incorporated explicitly.
This leads to the concept of a priori entanglement, which deals with the assignment of the notion of entanglement to a state
on its own. On the other hand, the indistinguishability of identical particles also comes with a many-body coherence property
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which drastically influences the observable entanglement in many situations. These physical consequences of the symmetrization
postulate were so far not captured by the available entanglement concepts in the literature.

Our here introduced notion of detector-level entanglement takes into account both aspects, such that it is suitable for the char-
acterization of entanglement in systems in which particles may overlap in space (and where this overlap may be time-dependent
under some nontrivial dynamics) and the assumptions for a priori entanglement are not met, since each detector can be triggered
by both particles. We introduced with (7) the density matrix of a quantum state of two identical particles at the level of the
detectors, such that in all situations, including the HOM setup described at the outset, the physical impact of indistinguishability
is taken into account. Our examples show the important discrepancy between a priori entanglement and detector-level entangle-
ment, and illustrate how the parameter γ provides a measure for the erasure of information on the particle preparation through
the detection process. For vanishing γ, particles can be treated as distinguishable, since the (anti)symmetrization does not affect
non-classical correlations. However, for γ 6= 0 the (anti)symmetrization is crucial for physical observables in general, and, in
particular, it affects the entanglement between the measured particles. Our quantitative definition of detector-level entanglement
incorporates these effects and thus matches the experimental reality.

Whereas the indistinguishability of particles is routinely exploited in linear-optics experiments with photons [30], it is usually
neglected in experiments with interacting constituents, in which the mutual interaction constitutes the source of quantum corre-
lations [31]. In the future, the combined action of these effects – interaction and indistinguishability – may be probed, e.g. in
experiments with cold atoms in optical lattices, whose indistinguishability and interaction are under control [32]: The internal
degrees of freedom provide tunable distinguishability, the interaction can be tuned via Feshbach resonances [33].

The understanding and the differentiation of the aforementioned effects is especially important for the characterization of
entanglement in systems that do not follow the paradigm of quantum information, such as atoms and molecules [16, 34, 35].
In these systems, the encountered correlations are typically rooted in, both, interaction-induced a priori entanglement, and
measurement-induced entanglement.
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