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Abstract

In a two player game, two cooperating but non communicating players, Alice and Bob,
receive inputs taken from a probability distribution. Each of them produces an output and
they win the game if they satisfy some predicate on their inputs/outputs. The entangled value
ω∗(G) of a game G is the maximum probability that Alice and Bob can win the game if they
are allowed to share an entangled state prior to receiving their inputs.

The n-fold parallel repetition Gn of G consists of n instances of G where Alice and Bob
receive all the inputs at the same time and must produce all the outputs at the same time.
They win Gn if they win each instance of G.

In this paper we show that for any game G such that ω∗(G) = 1−ε < 1, ω∗(Gn) decreases ex-
ponentially in n. First, for any game G on the uniform distribution, we show that ω∗(Gn) = (1−
ε2)Ω(

n
log(|I||O|)

−| log(ε)|), where |I| and |O| are the dimensions of the input and output space. From

this result, we show that for any entangled game G, ω∗(Gn) = (1 − ε2)
Ω( n

Q4 log(Q·|O|)
−| log(ε/Q)|)

where p is the input distribution of G and Q = max(⌈ 1

minxy:pxy 6=0(
√

pxy)
⌉, |I|).

This is the first time exponential decay is shown for the parallel repetition of any entangled
game. To prove this parallel repetition, we introduce the concept of Superposed Information
Cost for entangled games which is inspired from the information cost used in communication
complexity.

1 Introduction

A two player (nonlocal) game is played between two cooperating parties Alice and Bob which are
not allowed to communicate. This game G is characterized by an input set I, an output set O, a
probability distribution p in I2 and a result function V : O2 × I2 → {0, 1}. The game proceeds as
follows: Alice receives x ∈ I, Bob receives y ∈ I where (x, y) is taken according to p. Alice outputs
a ∈ O and Bob outputs b ∈ O. They win the game if V (a, b|x, y) = 1. The value of the game ω(G)
is the maximum probability with which Alice and Bob can win the game.

The n-fold parallel repetition Gn of G consists of the following. Alice and Bob get n inputs re-
spectively x1, . . . , xn and y1, . . . , yn. Each (xi, yi) is taken according to p. They output respectively
a1, . . . , an and b1, . . . , bn. They win the game iff ∀i, V (ai, bi|xi, yi) = 1. In order to win the n-fold
repetition, Alice and Bob can just use the best strategy for G and use it in n times. If they do so,
they will win Gn with probability (ω(G))n which shows that ω(Gn) ≥ (ω(G))n.

Parallel repetition of games studies how the quantity ω(Gn) behaves. For example, if ω(Gn) =
(ω(G))n for each n then we say that G admits perfect parallel repetition. However, we know some
games for which this does not hold. It was a long standing open question to determine whether the
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value of ω(Gn) decreases exponentially in n. This was first shown by Raz [Raz98]. Afterwards, a
series of works showed improved results for specific types of games [Hol07, Rao08, AKK+08, Raz11].
Parallel repetition for games has many applications, from direct product theorems in communication
complexity [PRW97] to hardness of amplification results [BGS98].

In the quantum setting, it is natural to consider entangled games where Alice and Bob are
allowed to share some quantum state at the beginning of the game. Entangled games exhibit Bell
violations which are a witness of quantum non-locality. The study of entangled games is also greatly
related to our understanding of quantum entanglement.

Perfect parallel repetition has been shown for entangled XOR games [CSUU08]. It was also
shown that entangled unique games [KRT08] admit a parallel repetition with exponential decay.
Finally, it was shown that any entangled game admits a parallel repetition [KV11]. However, this
last parallel repetition only shows a polynomial decay of ω∗(Gn). It was unknown for a large class
of games whether this decay is exponential or not. Very recently, a new parallel repetition result
with exponential decay has been shown for entangled projection games [DSV13].

1.1 Contribution

The main contribution of this paper is the following theorem.

Theorem 1 For any game G on the uniform distribution with ω∗(G) ≤ 1− ε, we have:

ω∗(Gn) = (1− ε2)
Ω
(

n
log(|I||O|)

−| log(ε)|
)

.

where |I| and |O| are respectively the dimension on the input and the output space.

The class of entangled games with a uniform distribution is a large class of entangled games for
which such parallel repetition was unknown. We can extend this result to any entangled game.

Corollary 1 For any game G such that ω∗(G) ≤ 1− ε, we have that

ω∗(Gn) = (1− ε2)
Ω( n

Q4 log(Q·|O|)
−| log(ε/Q)|)

,

where |O| is the dimension of the output space of G and Q = max(⌈ 1

minxy:pxy 6=0(
√

pxy)
⌉, |I|).

This corollary can be obtained directly from the previous theorem. The above corollary is the
first general parallel repetition theorem for any entangled game with exponential decay. It is not
as strong as usual parallel repetition theorems with exponential decay because of this dependency
in Q. Notice however that Q depends only on the game G and not on n.

In order to prove this theorem, we introduce the concept of Superposed Information Cost of a
game which is a very powerful concept and the cornerstone of our proof.

1.2 Superposed Information cost

This concept is derived from the notion of information cost widely used in communication com-
plexity [CSWY01, BYJKS04, Bra12, KLL+12]. In the setting of communication complexity, we
consider a function f(x, y) and suppose that Alice has some input x and Bob some input y. They
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want to determine the outcome of f(x, y) for a certain function f with the minimal amount of com-
munication. The interactive information cost IC of f describes the least amount of information
that Alice and Bob need to have about each other’s inputs in order to compute f(x, y).

We want to follow a similar approach for entangled games. In entangled games, the quantum
state Alice and Bob share is usually independent of the inputs x, y. We now give extra resources
to Alice and Bob: advice states. Alice and Bob are given an advice state |φxy〉 that can depend
on their inputs. This can greatly increase their winning probability. For example, Alice could have
perfect knowledge of Bob’s input y, and vice-versa.

We define (informally) the information cost of a game as follows:

Information Cost for entangled games
Alice and Bob are given advice states |φxy〉 to share that can depend on their inputs. What
is the minimal amount of information that these states have to give Alice and Bob about
each other’s input, in order to allow them to win the game with probability 1?

This is a natural extension of the information cost to entangled games. However, it is a limited
notion since we cannot relate it to the entangled value of the game. (A simple counterexample can
be obtained from the CHSH game.) Therefore, we extended this notion to the case where we allow
the players to be in a superposition of their inputs.

Superposed Information Cost (SIC) for entangled games
We extend the notion of information cost by allowing the players to have a superposition of
their inputs. We then consider the amount of information that advice states have to give
Alice and Bob about each other’s input, in order to allow them to win with probability 1.

1.3 Properties of the information cost

Lower bounding the value of entangled games using the superposed information cost
The reason we introduce the superposed information cost for entangled games is that we want to
have an information theoretic characterization of the value of entangled games. The next theorem
states that the value of any entangled game on the uniform distribution can be lower bounded by
the superposed information cost (but this does not hold for the non-superposed one).

Theorem 2 For any game G with a uniform input distribution, we have SIC(G) ≥ 1−ω∗(G)
32 ln(2) or

equivalently ω∗(G) ≥ 1− 32 ln(2) · SIC(G).

The Superposed information cost is additive when considering parallel repetition:

Proposition 1 SIC(Gn) = nSIC(G).

Putting these two results together, we have SIC(Gn) ≥ n(1−ω∗(G))
32 ln(2) . This result shows that

SIC(Gn) is large when n increases and can be seen as a first evidence that the game Gn is hard to
win and that ω∗(Gn) decreases fast.
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Using the superposed information cost to show our parallel repetition theorem We
fix a game G with ω∗(G) = 1− ε and ω∗(Gn) = 2−t for some t. In order to prove our theorem, we
consider a quantity S which is strongly related to SIC(Gn). We show that

Ω(nε) ≤ S ≤ O

(

t log(|I||O|)
ε

)

. (1)

The lower bound is a natural extension of the above argument about the additivity of SIC. The
ingredient we need to show the upper bound is the following communication task :

• Alice and Bob use the optimal strategy for Gn and win with probability ω∗(Gn) = 2−t.

• Alice sends m = O( t log(|I||O|)
ε ) bits to Bob.

• Using this message, Bob’s goal is to determine with high probability whether they won most
of the games or not.

Switching to a communication task and to a related quantity S seems much weaker than showing
directly an upper bound on SIC(Gn), but it will be enough for us. Combining these two results,

we conclude that t = Ω( nε2

log(|I||O|)) or equivalently ω
∗(Gn) = (1− ε2)

Ω( n
log(|I|(|O|)

)
.

1.4 Organization of the paper

Section 2 contains preliminaries about measure distances on quantum states, quantum information
theory and entangled games. In Section 3, we define the key concept of the superposed information
cost for a game and show that this quantity is additive when repeating games in parallel. In
Section 4, we provide a brief organization of the main proof. In Section 5, we show Theorem 2 and
some generalizations. In Sections 6 and 7, we derive the upper and lower bounds of (1). Finally,
in Section 8 we prove our main theorem.

2 Preliminaries

2.1 Useful facts about the fidelity and trace distance of two quantum states.

We start by stating a few properties of the trace distance ∆ and fidelity F between two quantum
states. These two notions characterize how close two quantum states are.

Trace distance between two quantum states

Definition 1 For any two quantum states ρ, σ, the trace distance ∆ between them is given by
∆(ρ, σ) = ∆(σ, ρ) = 1

2‖ ρ− σ ‖tr

where the used trace norm may be expressed as ‖ X ‖tr =
√
X†X = maxU |tr(XU)|, where the

maximization is taken over all unitaries of the appropriate size.

Proposition 2 For any two states ρ, σ, and a POVM E = {E1, . . . , Em} with pi = tr(ρEi)
and qi = tr(σEi), we have ∆(ρ, σ) ≥ 1

2

∑

i |pi − qi|. There exists a POVM (even a projective
measurement) for which this inequality is an equality.
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Proposition 3 [Hel67] Suppose Alice has a uniformly random bit c ∈ {0, 1}, unknown to Bob.
She sends a quantum state ρc to Bob. We have

Pr[Bob guesses c] ≤ 1

2
+

∆(ρ0, ρ1)

2
.

There is a strategy for Bob that achieves the value 1
2 +

∆(ρ0,ρ1)
2 .

Fidelity of quantum states

Definition 2 For any two states ρ, σ, their fidelity F is given by F (ρ, σ) = F (σ, ρ) = tr(

√

ρ
1
2σρ

1
2 )

Proposition 4 For any two states ρ, σ, and a POVM E = {E1, . . . , Em} with pi = tr(ρEi) and
qi = tr(σEi), we have F (ρ, σ) ≤ ∑

i
√
piqi. There exists a POVM for which this inequality is an

equality.

Definition 3 We say that a pure state |ψ〉 in A ⊗ B is a purification of some state ρ in B if
TrA(|ψ〉〈ψ|) = ρ.

Proposition 5 (Uhlmann’s theorem) For any two quantum states ρ, σ, there exists a purifica-
tion |φ〉 of ρ and a purification |ψ〉 of σ such that |〈φ|ψ〉| = F (ρ, σ).

Proposition 6 For any two quantum states ρ, σ and a completely positive trace preserving opera-
tion Q, we have F (ρ, σ) ≤ F (Q(ρ), Q(σ)).

Proposition 7 ([SR01, NS03]) For any two quantum states ρ, σ

max
ξ

(

F 2(ρ, ξ) + F 2(ξ, σ)
)

= 1 + F(ρ, σ).

Proposition 8 ([FG99]) For any quantum states ρ, σ, we have

1− F (ρ, σ) ≤ ∆(ρ, σ) ≤
√

1− F 2(ρ, σ).

As direct corollaries of Proposition 7, we have

Proposition 9 Let |A〉, |B〉, |C〉 three quantum states. We have

|〈A|C〉| ≥ |〈A|B〉|2 + |〈B|C〉|2 − 1.

and

Proposition 10 For any 3 quantum states ρ1, ρ2, ρ3, we have

(1− F (ρ1, ρ2)) + (1− F (ρ2, ρ3)) ≥
1

2
(1− F (ρ1, ρ3)),

or equivalently F (ρ1, ρ3) ≥ 1− 2(1 − F (ρ1, ρ2) + 1− F (ρ2, ρ3)).
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Proof: Using Proposition 7, we have

1 + F (ρ1, ρ3) = max
ξ

(

F 2(ρ1, ξ) + F 2(ξ, ρ3)
)

≥ F 2(ρ1, ρ2) + F 2(ρ2, ρ3),

which gives

1− F (ρ1, ρ3) ≤ 1− F 2(ρ1, ρ2) + 1− F 2(ρ2, ρ3) ≤ 2(1− F (ρ1, ρ2)) + 2(1− F (ρ2, ρ3)).

Hence 1− F (ρ1, ρ2) + 1− F (ρ2, ρ3) ≥ 1
2(1− F (ρ1, ρ3)).

Proposition 11 For two quantum states ρ =
∑

x px|x〉〈x|⊗ρx and ρ′ =
∑

x p
′
x|x〉〈x|⊗ρ′x, we have

F (ρ, ρ′) =
∑

x
√
pxpx′F (ρx, ρx′).

Proof: We use the following definition of the fidelity: F (ρ, ρ′) = ||√ρ
√
ρ′||1. From there, we

immediately have that

F (ρ, ρ′) =
∑

x

√
pxpx′ ||√ρx

√

ρ′x||1 =
∑

x

√
pxpx′F (ρx, ρx′)

2.2 Information Theory

For a quantum state ρ, the entropy of ρ is H(ρ) = −tr(ρ log(ρ)). For a quantum state ρ ∈ X ⊗ Y,
H(X)ρ is the entropy of the quantum register in the space X when the total underlying state is ρ.
In other words, H(X)ρ = H(TrY(ρ)).

H(X|Y )ρ = H(XY )ρ −H(Y )ρ is the conditional entropy of X given Y on ρ and I(X : Y )ρ =
H(X)ρ +H(Y )ρ −H(XY )ρ is the mutual information between X and Y on ρ.

We define Hmin(ρ) = − log(λmax) where λmax is the maximum eigenvalue of ρ. For ρ in X ⊗Y,
we define

Hmin(X|Y )ρ = max
σ∈Y

sup{λ : ρ ≤ 2−λIX ⊗ σ}

We have Hmin(X|Y )ρ ≤ H(X|Y )ρ [MDS+13]. In the case where Alice and Bob share ρ =
∑

x px|x〉〈x|X ⊗ ρ(x)Y , where Alice has register X and Bob has register Y, we have Hmin(X|Y )ρ =
− log(Pr[Bob can guess x]).

Claim 1 (Subadditivity of the conditional entropy)

H(AB|C) ≤ H(A|C) +H(B|C)

Claim 2 ([KNTSZ07])

I(A : B)ρ ≥ 2

ln(2)
(1− F (ρ, ρA ⊗ ρB))

where ρA = TrB(ρ) and ρB = TrA(ρ)

Claim 3 (from [Vad99]) For any distribution p on a universe U , If H(p) ≥ log(|U |) − ε then
∆(p,Unif.) ≤ ε, where Unif. is the uniform distribution.
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2.3 Entangled Games

2.3.1 The value of an entangled game

We now define the notion of an entangled game and its value.

Definition 4 An entangled game G = (I,O, V, p) is defined by finite input and output sets I and O
as well as an accepting function V : O2 × I2 → {0, 1} and a probability distribution p : I2 → [0, 1].

The game proceeds as follows. Alice and Bob can share any quantum state. Then, Alice receives
an input x ∈ I and Bob receives an input y ∈ I where these inputs are sampled according to p.
They can perform any quantum operation but are not allowed to communicate. Alice outputs
a ∈ O and Bob outputs b ∈ O. They win the game if V (a, b|x, y) = 1.

The entangled value of a game G is the maximal probability with which Alice and Bob can
win the game. From standard purification techniques, we can assume that w.l.o.g., Alice and
Bob can share a pure state |φ〉. Moreover, their optimal strategy can be described as projective
measurements Ax = {Ax

a}a∈O and By = {By
b }b∈O.

This means that after receiving their inputs, they share a state of the form

ρ =
∑

x,y∈I
pxy|x〉〈x| ⊗ |φ〉〈φ| ⊗ |y〉〈y|,

for some state |φ〉.
Definition 5 The entangled value of a game G is

ω∗(G) = sup
|φ〉,Ax,By

∑

x,y,a,b

pxyV (a, b|x, y)〈φ|Ax
a ⊗By

b |φ〉.

Definition 6 We say that a game G = (I,O, V, p) is on the uniform distribution if I = [k] for
some k and ∀x, y ∈ [k], pxy = 1

k2
. We will write p = Unif. when this is the case.

2.3.2 Value of a game with advice states

Consider a game G = (I,O, V, p). We are interested in the value of the game when the two players
share an advice state |φxy〉 additionally to their inputs x, y. This means that Alice and Bob share
a state of the form

ρ =
∑

x,y,a,b

pxy|x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y|.

Definition 7 The entangled value of G, given that Alice and Bob share the above state ρ is

ω∗(G|ρ) = max
Ax,By

∑

x,y

pxyV (a, b|x, y)〈φxy |Ax
a ⊗By

b |φxy〉.

2.3.3 Repetition of entangled games

In the n-fold parallel repetition of a game G, each player gets n inputs from I and must produce
n outputs from O. Each instance of the game will be evaluated as usual by the function V . The
players win the parallel repetition game if they win all the instances. More formally, for a game
G = (I,O, V, p) we define Gn = (I ′, O′, V ′, q), where I ′ = I×n, O′ = O×n, qxy = Πi∈[n]pxi,yi and
V ′(a, b|x, y) = Πi∈[n]V (ai, bi|xi, yi). While playing Gn, we say that Alice and Bob win game i if
V (ai, bi|xi, yi) = 1.
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2.3.4 Majority game

For a game G = (I,O, V, p), we define Gn
α = (I ′, O′, V ′, p′) as follows: I ′ = I×n, O′ = O×n,

p′xy = Πi∈[n]pxi,yi as in G
n. We define V ′ as follows:

V ′(a, b|x, y) = 1 ⇔ #{i : V (ai, bi|xi, yi) = 1} ≥ αn.

3 Advice states, superposed players and information cost

The notion of information cost has been very useful for communication complexity. Here we derive
a similar notion for entangled games.

Consider a game with advice state as defined in Section 2.3.2. The advice state can potentially
greatly help the players. For example, Alice could know y and Bob could know x. We ask ourselves
the following question:
For a game G = (I = [k], O, V, p) such that ω∗(G) = 1−ε < 1 and a state ρ =

∑

x,y∈[k] pxy|x〉〈x|X ⊗
|φxy〉〈φxy|AB ⊗ |y〉〈y|Y , what is the minimum dependency that the states {|φxy〉}xy must have on
x, y to have ω∗(G|ρ) = 1?

There are different ways of characterizing this dependency in x, y. A first possibility would be
to consider the information that Alice has about y and Bob has about x while sharing ρ. However,
there are cases where Alice and Bob can win a game with probability 1 using an advice state while
still not learning anything about each other’s input.

For example, take the CHSH game and consider the states |φ00〉 = |φ01〉 = |φ10〉 = 1√
2
(|00〉 +

|11〉)AB and |φ11〉 = 1√
2
(|01〉+ |10〉). If the two players share the state ρ =

∑

x,y∈{0,1} 1/4|x〉〈x|X ⊗
|φxy〉〈φxy|AB ⊗ |y〉〈y|Y , Alice has no information about y and Bob has no information about x.
On the other side, if both players measure their registers A and B in the computational basis and
output the results, they will win the CHSH game with probability 1 hence ω∗(CHSH|ρ) = 1 while
ω∗(CHSH) = cos2(π/8).

We must consider a slightly different scenario so that Alice or Bob can learn something about the
other player’s input. When considering the amount of information that Alice has about Bob’s input
y, we allow Alice to have a coherent superposition of her inputs. Similarly, we will be interested
in the amount of information that Bob has about x when he has a coherent superposition of his
inputs.

This approach leads to the definition of the superposed information cost of a game. In the next
section, we give formal definitions of this notion.

3.1 The superposed information cost

Consider any state ρ =
∑

xy∈[k] pxy|x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y|. Let px· =
∑

y pxy and p·y =
∑

x pxy.

Let |LB
x 〉 = 1√

px·

∑

y
√
pxy|φxy〉|y〉 and |LA

y 〉 = 1√
p·y

∑

x
√
pxy|x〉|φxy〉. Consider the two super-

posed states:

σA =
∑

y∈[k]
p·y|LA

y 〉〈LA
y |XAB ⊗ |y〉〈y|Y

σB =
∑

x∈[k]
px·|x〉〈x|X ⊗ |LB

x 〉〈LB
x |ABY .

8



σA (resp. σB) corresponds to ρ where Alice’s input (resp. Bob’s input) is put in a coherent
superposition.

Remark: The above definition is not uniquely defined for ρ since it depends on the phases applied
on |φxy〉. When we fix a state ρ, we also fix a description of the states |φxy〉 in all the definitions
we use.

We first define the superposed information cost of a state ρ of the above form.

Definition 8 The superposed information cost SIC(ρ) of ρ is defined as

SIC(ρ)1 = I(Y : XA)σA + I(X : BY )σB .

We now define the superposed information cost of an entangled game.

Definition 9 For any entangled game G = (I,O, V, p), we define SIC(G) = infρ SIC(ρ) where
the infimum is taken over all ρ of the form ρ =

∑

xy pxy|x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y| such that
ω∗(G|ρ) = 1.

3.2 Additivity of the superposed information cost

Our goal here is to prove the additivity of the superposed information cost, i .e. that SIC(Gn) =
nSIC(G). Before the proof, we introduce some notation and prove a Lemma.

Let G = (I,O, V, p) and let Gn = (In, On, Vn, q). For a string x = x1, . . . , xn ∈ In, let x−i

be the string in In−1 where we remove xi from x. Let ρ =
∑

x,y∈In qxy|x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y|
satisfying ω∗(Gn|ρ) = 1. As in Section 3.1, we define |LA

y 〉, |LB
x 〉, σA, σB for ρ. We first prove the

following Lemma:

Lemma 1 For all i ∈ [n] we have that

I(Yi : XA)σA + I(Xi : Y B)σB ≥ SIC(G).

Proof: By definition of Gn, we have qxy = Πjpxj ,yj . We define q−i
xy = Πj 6=ipxj ,yj . For each i, we

can rewrite ρ as:

ρ =
∑

x,y∈In
qxy|xi〉〈xi|Xi

⊗ |x−i〉〈x−i|X−i
⊗ |φxy〉〈φxy|AB ⊗ |y−i〉〈y−i|Y−i

⊗ |yi〉〈yi|Yi
.

We define

|Zi
xi,yi〉 =

∑

x′,y′∈In:x′
i=xi,y′i=yi

√

q−i
x′y′ |x′−i〉 ⊗ |φx′y′〉 ⊗ |y′−i〉.

Let ρi =
∑

xi,yi∈I pxi,yi |xi〉〈xi|⊗ |Zi
xi,yi〉〈Zi

xi,yi |⊗ |yi〉〈yi|. ρi corresponds to ρ where the registers
in X−i,Y−i are put in superposition. Hence, Alice and Bob can go from ρi to ρ by measuring the
registers X−i and Y−i in the computational basis. Using ρ, Alice and Bob can win the ith instance
of G with probability 1. This means that they can also win this ith instance of G when sharing ρi
and ω∗(G|ρi) = 1.

1This definition is suitable when the input distribution of is a product distribution or close to a product distribution.

One may want to consider a more general definition when considering any distributions
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We define

|LB
xi
(i)〉 = 1

√
pxi·

∑

yi∈I

√
pxi,yi |Zi

xi,yi〉|yi〉

|LA
yi(i)〉 =

1
√
p·yi

∑

xi∈I

√
pxi,yi |xi〉|Zi

xi,yi〉.

We now also define the two new superposed states of ρi

σBi =
∑

xi∈I
pxi·|xi〉〈xi|Xi

⊗ |LB
xi
(i)〉〈LB

xi
(i)|X−iABY

σAi =
∑

yi∈I
p·yi |LA

yi(i)〉〈L
A
yi(i)|XABY−i

⊗ |yi〉〈yi|Yi
.

ω∗(G|ρi) = 1 implies implies SIC(ρi) ≥ SIC(G) hence

I(Yi : XA)σA
i
+ I(Xi : BY )σB

i
≥ SIC(G).

σAi corresponds to σA where the input registers Y−i are put in a coherent superposition. From
there, we have TrY−i

(σAi ) = TrY−i
(σA) and I(Yi : XA)σA

i
= I(Yi : XA)σA . Similarly, we have

I(Xi : BY )σB
i
= I(Xi : BY )σB , which gives

I(Yi : XA)σA + I(Xi : Y B)σB ≥ SIC(G).

We can now prove our proposition:

Proposition 12 SIC(Gn) = nSIC(G).

Proof: We have:

SIC(ρ) = I(Y : XA)σA + I(X : BY )σB

= S(Y )σA − S(Y |XA)σA + S(X)σB − S(X|BY )σB

=
∑

i∈[n]
S(Yi)σA − S(Y |XA)σA +

∑

i∈[n]
S(Xi)σB − S(X|BY )σB

≥
∑

i∈[n]
S(Yi)σA −

∑

i∈[n]
S(Yi|XA)σA +

∑

i∈[n]
S(Xi)σB −

∑

i∈[n]
S(Xi|BY )σB

=
∑

i∈[n]
I(Yi : XA)σA + I(Xi : BY )σB

≥ nSIC(G),

where the first inequality comes from the subadditivity of the quantum conditional entropy and
the last inequality comes from Lemma 1. Since this holds for any state ρ satisfying ω∗(Gn|ρ) = 1,
we conclude that SIC(Gn) ≥ nSIC(G).

We can also notice that SIC(Gn) ≤ nSIC(G). Indeed, consider a state ρ such that ω∗(G|ρ) = 1.
We have ω∗(Gn|ρ⊗n) = 1. Moreover, SIC(ρ⊗n) = nSIC(ρ). From there, we have SIC(Gn) ≤
nSIC(G). We conclude that SIC(Gn) = nSIC(G).
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4 Organisation of the proof of Theorem 1

In Section 5, we show how to use the Superposed Information Cost of a game G to bound its
entangled value ω∗(G). We first show:

Theorem 2 For any game G with a uniform input distribution, we have SIC(G) ≥ 1−ω∗(G)
32 ln(2) .

We will also extend this theorem as follows:

Theorem 3 There exists a small constant c0 such that for any game G = (I = [k], O, V,Unif.)
satisfying ω∗(G) = 1 − ε, for any game G′ = (I = [k], O, V, p) satisfying 1

2

∑

x,y |pxy − 1
k2
| ≤ c0ε

and any state ρ =
∑

xy pxy|x〉〈x| ⊗ |φxy〉〈φxy | ⊗ |y〉〈y| such that ω∗(G′|ρ) ≥ 1 − ε
4 , we have that

SIC(ρ) = Ω(ε).

If ω∗(G) = 1 − ε, the Theorem 2 claims that SIC(G) ≥ ε
32 ln(2) which gives by additivity of

the superposed information cost that SIC(Gn) ≥ nε
32 ln(2) . Ideally, we would like to upper bound

SIC(Gn) with a function of ω∗(Gn). Unfortunately, we are not able to do this directly. In Section 6,
we show the following weaker statement:

Theorem 4 Consider a game G = (I,O, V,Unif.) such that ω∗(G) = 1− ε and ω∗(Gn) = 2−t. Let
Gn

1−ε/32 = (In, On, V ′,Unif.) as defined in Section 2.3.4. There exists a game G′ = (In, On, V ′, p)
and a state ξ =

∑

xy pxy|x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y| satisfying the following properties:

1. H(XY )ξ ≥ 2n log(k)− t− 1

2. ω∗(G′|ξ) ≥ 1− ε/32

3. SIC(ξ) ≤ 32 log(|I||O|)
ε ((t+ 1) + | log(ε)| + 5) + 2t+ 2.

The first condition states that p is in some sense close to the uniform distribution hence G′ is
close to Gn

1−ε/32. This theorem is weaker than an upper bound on SIC(G′) which itself is weaker

than an upper bound on SIC(Gn), but this kind of upper bound will be enough.
In Section 7, we prove a matching lower bound

Theorem 5 Consider a game G = (I = [k], O, V,Unif.) such that ω∗(G) = 1−ε and ω∗(Gn) = 2−t

with t ≤ c0εn
4 − 1 where c0 is the absolute constant of Theorem 3. Let also Gn

1−ε/32 = (In =

[kn], On, V ′,Unif.) as defined in Section 2.3.4. For any game G′ = (I ′ = [kn], O′, V ′, p) and any
state ρ =

∑

x,y∈[kn] pxy|x〉〈x|X ⊗ |φxy〉〈φxy |AB ⊗ |y〉〈y|Y , satisfying

1. H(XY )ρ ≥ 2n log(k) − t− 1

2. ω∗(G′|ρ) ≥ 1− ε/32

we have SIC(ρ) ≥ Ω(nε).

The way we prove this theorem is very similar to the proof of the additivity of the superposed
information cost, but we use Theorem 3 instead of Theorem 2. In Section 8, we show how to use
the two above theorems to conclude and show the following:

Theorem 1 For any game G = (I,O, V,Unif.) with ω∗(G) ≤ 1− ε, we have

ω∗(Gn) = (1− ε2)
Ω
(

n
log(|I||O|)

−| log(ε)|
)

.
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5 Relating the superposed information cost and the value of en-

tangled games

5.1 Overview

The goal of this Section is to show the following theorem:

Theorem 2 For any game G with a uniform input distribution, we have SIC(G) ≥ 1−ω∗(G)
32 ln(2) .

The proof goes as follows. We fix a gameG = (I = [k], O, V,Unif.) and a state ρ =
∑

x,y
1
k2
|x〉〈x|X⊗

|φxy〉〈φxy|AB ⊗ |y〉〈y|Y such that ω∗(G|ρ) = 1. As in Section 3.1, we define |LA
y 〉, |LB

x 〉, σA, σB . Let
ρAy = TrB|LA

y 〉〈LA
y | and ρBx = TrA|LB

x 〉〈LB
x |. Intuitively, ρAy (resp. ρBx ) corresponds to the input-

superposed state that Alice (resp. Bob) has, conditioned on Bob getting y (resp. Alice getting
x).

1. First we show that SIC(ρ) ≥ 1
4 ln(2) (1− 1

k2
∑

y,y′ F
2(ρAy , ρ

A
y′)+1− 1

k2
∑

x,x′ F 2(ρBx , ρ
B
x′)) (Propo-

sition 13).

2. Then we show that

1− 1

k2

∑

y,y′

F 2(ρAy , ρ
A
y′) + 1− 1

k2

∑

x,x′

F 2(ρBx , ρ
B
x′) ≥ 1

8
(1−max

|Ω〉

∑

x,y∈[k]

1

k2
|〈Ω|Ux ⊗ Vy|φxy〉|2)

for some unitaries {Ux}x, {Vy}y (Proposition 14).

3. Finally, we show that (1−max|Ω〉
∑

x,y∈[k]
1
k2
|〈Ω|Ux ⊗ Vy|φxy〉|2) ≥ 1− ω∗(G) (Corollary 2 of

Proposition 15).

Putting the three inequalities together, we get

SIC(ρ) ≥ 1

4 ln(2)
(1− 1

k2

∑

y,y

F 2(ρAy , ρ
A
y′) + 1− 1

k2

∑

x,x′

F 2(ρBx , ρ
B
x′))

≥ 1

32 ln(2)
(1−max

|Ω〉

∑

x,y∈[k]

1

k2
|〈Ω|Ux ⊗ Vy|φxy〉|2) for some {Ux}x{Vy}y

≥ 1− ω∗(G)
32 ln(2)

.

Since this holds for any ρ satisfying ω∗(G|ρ) = 1, we conclude that SIC(G) ≥ 1−ω∗(G)
32 ln(2) .

We then extend Theorem 2 as follows.

Theorem 3 There exists a small constant c0 such that for any game G = (I = [k], O, V,Unif.)
satisfying ω∗(G) = 1 − ε, for any game G′ = (I = [k], O, V, p) satisfying 1

2

∑

x,y |pxy − 1
k2 | ≤ c0ε

and any state ρ =
∑

xy pxy|x〉〈x| ⊗ |φxy〉〈φxy | ⊗ |y〉〈y| such that ω∗(G′|ρ) ≥ 1 − ε
4 , we have that

SIC(ρ) = Ω(ε).

12



5.2 First inequality

We will show this inequality for any input distribution. Let ρ =
∑

x,y∈[k] pxy|x〉〈x|X⊗|φxy〉〈φxy|AB⊗
|y〉〈y|Y . As in Section 3.1, we define |LA

y 〉, |LB
x 〉, σA, σB . Let ρAy = TrB|LA

y 〉〈LA
y | and ρBx =

TrA|LB
x 〉〈LB

x |. Intuitively, ρAy (resp. ρBx ) corresponds to the input-superposed state that Alice
(resp. Bob) has, conditioned on Bob getting y (resp. Alice getting x). We prove the following.

Proposition 13 SIC(ρ) ≥ 1
4 ln(2)(1−

∑

y,y′ p·yp·y′F
2(ρAy , ρ

A
y′) + 1−

∑

x,x′ px·px′·F 2(ρBx , ρ
B
x′)).

Proof: Let ξA = TrB(σ
A) and ξB = TrA(σ

B). This means that ξA =
∑

y p·yρ
A
y ⊗ |y〉〈y| and

ξB =
∑

x px·|x〉〈x| ⊗ ρBx . We have SIC(ρ) = I(XA : Y )ξA + I(X : BY )ξB . Using Claim 2, we get

SIC(ρ) ≥ 2

ln(2)
(1− F (ξA, ξAXA ⊗ ξAY ) + 1− F (ξB , ξBX ⊗ ξBBY)). (2)

where ξAXA =
∑

y p·yρ
A
y and ξAY =

∑

y p·y|y〉〈y|. Next, using Proposition 11, we have F (ξA, ξAXA ⊗
ξAY ) =

∑

y p·yF (ρ
A
y , ξ

A
XA). From there, we have:

1− F (ξA, ξAXA ⊗ ξAY ) = 1−
∑

y∈[k]
p·yF (ρ

A
y , ξ

A
XA)

=
1

2
(1−

∑

y∈[k]
p·yF (ρ

A
y , ξ

A
XA) + 1−

∑

y′∈[k]
p·y′F (ρ

A
y′ , ξ

A
XA))

=
1

2

∑

y,y′∈[k]
p·yp·y′ [1− F (ρAy , ξ

A
XA) + 1− F (ρAy′ , ξ

A
XA)]

≥ 1

4

∑

y,y′∈[k]
p·yp·y′(1− F (ρAy , ρ

A
y′)) using Proposition 10

≥ 1

8

∑

y,y′∈[k]
p·yp·y′(1− F 2(ρAy , ρ

A
y′))

Similarly, we can show that 1− F (ξB , ξBX ⊗ ξBBY) ≥ 1
8

∑

x,x′∈[k] px·px′·(1 − F 2(ρBx , ρ
B
x′)). Combining

these with Eq. 2, we conclude that

SIC(ρ) ≥ 1

4 ln(2)
(1−

∑

y,y′

p·yp·y′F
2(ρAy , ρ

A
y′) + 1−

∑

x,x′

px·px′·F
2(ρBx , ρ

B
x′)).

5.3 Second inequality

Let ρ = 1
k2

∑

x,y∈[k] |x〉〈x|X ⊗|φxy〉〈φxy|AB⊗|y〉〈y|Y . As in Section 3.1, we define |LA
y 〉, |LB

x 〉, σA, σB .
Let ρAy = TrB|LA

y 〉〈LA
y | and ρBx = TrA|LB

x 〉〈LB
x |. We define:

εA = 1−
∑

y,y′

1

k2
F 2(ρAy , ρ

A
y′) = 1− E

y,y′
[F 2(ρAy , ρ

A
y′)]

εB = 1−
∑

x,x′

1

k2
F 2(ρBx , ρ

B
x′) = 1− E

x,x′
[F 2(ρAx , ρ

A
x′)].

13



The expectations will always be taken on the uniform distribution. We first show the following
lemma.

Lemma 2 There exist i, j ∈ [k] as well as unitaries {Ux}x and {Vy}y acting respectively in A and
B such that if we define |Ωxy〉 = (Ux ⊗ Vy)|φxy〉, we have:

E
xy
[|〈Ωxy|Ωxj〉|2] ≥ E

y,y′
[F 2(ρAy , ρ

A
y′)] = 1− εA

E
xy
[|〈Ωxy|Ωiy〉|2] ≥ E

x,x′
[F 2(ρBx , ρ

B
x′)] = 1− εB .

Proof: Let j ∈ [k] that maximizes Ey′ [F
2(ρAj , ρ

A
y′)]. We have

E
y′
[F 2(ρAj , ρ

A
y′)] ≥ E

y,y′
[F 2(ρAy , ρ

A
y′)] ≥ 1− εA. (3)

For each y, consider the unitary Uy acting on B such that |〈LA
j |(IXA⊗Uy)|LA

y 〉| = F (ρAj , ρ
A
y ). Such

a unitary exists by Uhlmann’s theorem. We also choose Uj = IB. Since |LA
j 〉 = 1√

k

∑

x |x〉|φxj〉 and
(IXA ⊗ Uy) acts only on space B, we can write (IXA ⊗ Uy)|LA

y 〉 = 1√
k

∑

x |x〉|ξxy〉 for some |ξxy〉.
Therefore, we have:

F (ρAj , ρ
A
y ) = |〈LA

j |(IXA ⊗ Uy)|LA
y 〉| = |1

k

∑

x

〈ξxy|φxj〉| = |E
x
[〈ξxy|φxj〉]| ≤ E

x
[|〈ξxy|φxj〉|].

Since we took Uj = IB, we have |ξxj〉 = |φxj〉 for all x. We can hence rewrite for all y

F (ρAj , ρ
A
y ) ≤ E

x
[〈ξxy|ξxj〉]. (4)

We now analyze Bob’s side of the state similarly. Let |MB
x 〉 = ∑

y
1√
k
|ξxy〉|y〉. We have |MB

x 〉 =
(
∑

y IA ⊗ Uy ⊗ |y〉〈y|)|LB
x 〉. Let νBx = TrA|MB

x 〉〈MB
x |. We have νBx = (

∑

y U
†
yUy ⊗ |y〉〈y|) · ρBx .

Hence for all x, x′, we have

F (νBx , ν
B
x′) = F (ρBx , ρ

B
x′). (5)

Let i ∈ [k] such that Ex′ [F 2(νBi , ν
B
x′)] is maximal. We have

E
x′
[F 2(νBi , ν

B
x′)] ≥ 1− εB . (6)

For each x, consider the unitary Vx acting on A such that |〈MB
i |(Vx ⊗ IBY)|MB

x 〉| = F (νBi , ν
B
x ).

Such a unitary exists by Uhlmann’s theorem. We take Vi = IA. Since |MB
x 〉 = 1√

k

∑

y |ξxy〉|y〉 and
(Vx ⊗ IBY) acts only on space A, we can write (Vx ⊗ IBY)|MB

x 〉 = 1√
k

∑

y |Ωxy〉|y〉 for some |Ωxy〉.
Therefore, we have:

F (νBi , ν
B
x ) = |〈MB

i |(Vx ⊗ IBY)|MB
x 〉| = |1

k

∑

y

〈ξiy|Ωxy〉| = |E
y
[〈ξiy|Ωxy〉]| ≤ E

y
[|〈ξiy|Ωxy〉|].
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Using F (νBi , ν
B
i ) = 1, we have |ξiy〉 = |Ωiy〉 for all y. Using Eq. 5, we can hence rewrite for all

x:

F (ρBi , ρ
B
x ) = F (νBi , ν

B
x ) ≤ E

y
[|〈Ωiy|Ωxy〉|]. (7)

Note finally that for all x, (Vx⊗IB)(|ξxy〉) = |Ωxy〉 hence we have for all x and for all y, y 〈Ωxy|Ωxy′〉 =
〈ξxy|ξxy′〉. Using Eq. 4, we have

F (ρAj , ρ
A
y ) = E

x
[|〈ξxy|ξxj〉|] = E

x
[|〈Ωxy|Ωxj〉|]. (8)

Equations 7 and 8 give

F 2(ρAj , ρ
A
y ) = E

x
[|〈Ωxy|Ωxj〉|]2 ≤ E

x
[|〈Ωxy|Ωxj〉|2]

F 2(ρBi , ρ
B
x ) = E

y
[|〈Ωxy|Ωiy〉|]2 ≤ E

x
[|〈Ωxy|Ωiy〉|2].

Combining this with equations 3 and 6, we conclude

1− εA ≤ E
y
[F 2(ρAj , ρ

A
y )] ≤ E

xy
[|〈Ωxy|Ωxj〉|2]

1− εB ≤ E
x
[F 2(ρBi , ρ

B
x )] ≤ E

xy
[|〈Ωxy|Ωiy〉|2].

We can now prove the main proposition of this section.

Proposition 14 For any state ρ = 1
k2

∑

x,y∈[k] |x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y|, there exist unitaries
{Ux}x and {Vy}y such that

εA + εB ≥ 1

8
(1−max

|Ω〉

∑

x,y∈[k]

1

k2
|〈Ω|Ux ⊗ Vy|φxy〉|2),

where εA = 1−∑

y,y′
1
k2
F 2(ρAy , ρ

A
y′) and ε

B = 1−∑

x,x′
1
k2
F 2(ρBx , ρ

B
x′).

Proof: Fix ρ = 1
k2

∑

x,y∈[k] |x〉〈x|⊗ |φxy〉〈φxy|⊗ |y〉〈y|. Using Lemma 2, let {Ux}x, {Vy}y, i, j such
that

E
xy
[|〈Ωxy|Ωxj〉|2] ≥ 1− εA

E
xy
[|〈Ωxy|Ωiy〉|2] ≥ 1− εB ,

with |Ωxy〉 = Ux ⊗ Vy|φxy〉. Using Proposition 9, we have

E
x,y,y′

[|〈Ωxy|Ωxy′〉|] ≥ E
x,y,y′

[|〈Ωxy|Ωxj〉|2 + |〈Ωxj|Ωxy′〉|2]− 1

≥ 1− εA + 1− εA − 1 = 1− 2εA.
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It follows that

E
x,y,y′

[|〈Ωxy|Ωxy′〉|2] ≥ E
x,y,y′

[|〈Ωxy|Ωxy′〉|]2 ≥ (1− 2εA)2 ≥ 1− 4εA.

Similarly, we get Ex,x′,y[|〈Ωxy|Ωx′y〉|2] ≥ 1− 4εB . Using Proposition 9 again, we have

E
x,x′,y,y′

[|〈Ωxy|Ωx′y′〉|] ≥ E
x,x′,y,y′

[|〈Ωxy|Ωx′y〉|2 + |〈Ωx′y|Ωx′y′〉|2]− 1

≥ 1− 4εA + 1− 4εB − 1 = 1− 4(εA + εB).

This gives us

E
x,x′,y,y′

[|〈Ωxy|Ωx′y′〉|2] ≥ E
x,x′,y,y′

[|〈Ωxy|Ωx′y′〉]2 ≥ (1− 4εA − 4εB)2 ≥ 1− 8εA − 8εB .

Using

E
x,y,x′,y′

[|〈Ωxy|Ωx′y′〉|2] ≤ max
x′y′

E
x,y

[|〈Ωxy|Ωx′y′〉|2] ≤ max
|Ω〉

E
x,y

[|〈Ωxy|Ω〉|2],

we have
max
|Ω〉

E
x,y

[|〈Ω|Ωxy〉|2)] ≥ E
x,x′,y,y′

[|〈Ωxy|Ωx′y′〉|2] ≥ 1− 8εA − 8εB ,

hence

εA + εB ≥ 1

8
(1−max

|Ω〉
(E
x,y

[|〈Ω|Ωxy〉|2])) =
1

8
(1−max

|Ω〉
( E
x,y

[|〈Ω|Ux ⊗ Vy|φxy〉|2])).

5.4 Last inequality

Proposition 15 Consider a game G = (I,O, V, p) and a state

ρ =
∑

x,y∈I
pxy|x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y|

such that ω∗(G|ρ) = 1. We have that max|Ω〉
∑

x,y∈I pxy|〈Ω|φxy〉|2 ≤ ω∗(G).

Proof: Consider strategies {Ax
a}x∈I,a∈O and {By

b }y∈I,b∈O such that
∑

x,y,a,b

pxyV (a, b|x, y)〈φxy |Ax
a ⊗By

b |φxy〉 = 1.

Let |Ω0〉 that maximizes
∑

x,y∈I pxy|〈Ω0|φxy〉|2. For any x, y, since
∑

ab V (a, b|x, y)〈φxy |Ax
a ⊗By

b |φxy〉 = 1, we have:
∑

a,b

V (a, b|x, y)〈Ω0|Ax
a ⊗By

b |Ω0〉 ≥ |〈Ω0|φxy〉|2.

From there, we have:

ω∗(G) ≥
∑

xyab

pxyV (a, b|x, y)〈Ω0|Ax
a ⊗By

b |Ω0〉

≥
∑

xy

pxy|〈Ω0|φxy〉|2 = max
|Ω〉

∑

xy

pxy|〈Ω|φxy〉|2.
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This proposition has a useful corollary:

Corollary 2 Consider a game G = (I,O, V, p) and a state

ρ =
∑

x,y∈I
pxy|x〉〈x|X ⊗ |φxy〉〈φxy|AB ⊗ |y〉〈y|Y

such that ω∗(G|ρ) = 1. We have

max
|Ω〉,{Ux},{Vy}

∑

x,y∈I
pxy|〈Ω|(Ux ⊗ Vy)|φxy〉|2 ≤ ω∗(G),

for unitaries {Ux}x and {Vy}y acting respectively on A and B.

Proof: Let {Ux}x,{Vy}y that maximize max|Ω〉
∑

x,y∈I pxy|〈Ω|(Ux ⊗ Vy)|φxy〉|2. Let |ψxy〉 =
Ux⊗Vy|φxy〉. Let η =

∑

xy pxy|x〉〈x|⊗|ψxy〉〈ψxy|⊗|y〉〈y|. Since Alice and Bob can go from η to ρ by

applying respectively U †
x and V †

y , we conclude that ω∗(G|η) = ω∗(G|ρ) = 1. Using Proposition 15,
we have max|Ω〉

∑

x,y∈I pxy|〈Ω|(Ux ⊗ Vy)|φxy〉|2 = max|Ω〉
∑

x,y∈I pxy|〈Ω|ψxy〉|2 ≤ ω∗(G).

We now prove a similar statement in the case ω∗(G|ρ) < 1.

Proposition 16 Consider a game G = (I,O, V, p) and a state

ρ =
∑

x,y∈I
pxy|x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y|.

If ω∗(G|ρ) ≥ 1− γ and max|Ω〉
∑

x,y∈I pxy|〈Ω|φxy〉|2 ≥ 1− γ′, then

ω∗(G) ≥ 1− 2(γ + γ′).

Proof: Consdier strategies {Ax
a}x∈I,a∈O and {By

b }y∈I,b∈O such that

∑

x,y,a,b

pxyV (a, b|x, y)〈φxy |Ax
a ⊗By

b |φxy〉 = 1− γ.

Let Mxy =
∑

a,b V (a, b|x, y)Ax
a ⊗ By

b and let |Cxy〉 =
Mxy |φxy〉

||Mxy|φxy〉|| . We have tr(Mxy|φxy〉〈φxy|) =

|〈Cxy|φxy〉|2. Let qxy = |〈Cxy|φxy〉|2. This gives us immediately

∑

x,y

pxyqxy = 1− γ.

Let |Ω〉 such that
∑

x,y∈I pxy|〈Ω|φxy〉|2 ≥ 1−γ′. Also, let rxy = |〈Ω|φxy〉|2 and sxy = |〈Ω|Cxy〉|2.
We have that

∑

xy

pxyrxy ≥ 1− γ′,

as well as

ω∗(G) ≥
∑

xy

pxytr(M
xy|Ω〉〈Ω|) ≥

∑

xy

pxy|〈Ω|Cxy〉|2 =
∑

xy

pxysxy.
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Using Proposition 9, we have that for all x, y sxy ≥ (qxy + rxy − 1)2. Let mxy = 1− qxy + 1− rxy.
We have by defintion that

∑

xy pxymxy ≤ γ + γ′. Moreover, we have:

∑

xy

pxysxy ≥
∑

xy

pxy(qxy + rxy − 1)2

=
∑

xy

pxy(1−mxy)
2

≥
∑

xy

pxy(1− 2mxy) ≥ 1− 2(γ + γ′).

We conclude that ω∗(G) ≥
∑

xy pxysxy ≥ 1− 2(γ + γ′).

We derive two corollaries from this proposition.

Corollary 3 Consider a game G = (I,O, V, p) and a state

ρ =
∑

x,y∈I
pxy|x〉〈x|X ⊗ |φxy〉〈φxy|AB ⊗ |y〉〈y|Y .

If ω∗(G|ρ) ≥ 1− γ and

max
|Ω〉,{Ux},{Vy}

∑

x,y∈I
pxy|〈Ω|(Ux ⊗ Vy)|φxy〉|2 ≥ 1− γ′,

for unitaries {Ux}x and {Vy}y acting respectively on A and B, then

ω∗(G) ≥ 1− 2(γ + γ′).

Proof: Let {Ux},{Vy} such that max|Ω〉
∑

x,y∈I pxy|〈Ω|(Ux ⊗ Vy)|φxy〉|2 = 1 − γ′. Let |ψxy〉 =
Ux ⊗ Vy|φxy〉. Let η =

∑

xy pxy|x〉〈x| ⊗ |ψxy〉〈ψxy | ⊗ |y〉〈y|. Since Alice and Bob can go from η

to ρ by applying respectively U †
x and V †

y , we conclude that ω∗(G|η) = ω∗(G|ρ) ≥ 1 − γ. Using
Proposition 16, we conclude that ω∗(G) ≥ 1− 2(γ + γ′).

Taking a counterpostitive of the above Corollary we get the following

Corollary 4 Consider a game G = (I,O, V, p) and a state

ρ =
∑

x,y∈I
pxy|x〉〈x|X ⊗ |φxy〉〈φxy|AB ⊗ |y〉〈y|Y .

If ω∗(G|ρ) ≥ 1− γ and ω∗(G) ≤ 1− ε, then

max
|Ω〉,{Ux},{Vy}

∑

x,y∈I
pxy|〈Ω|(Ux ⊗ Vy)|φxy〉|2 ≤ 1− (ε/2 − γ),

for unitaries {Ux}x and {Vy}y acting respectively on A and B.
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5.5 Putting it together

We can now show our theorems

Theorem 2 For any game G with a uniform input distribution, we have SIC(G) ≥ 1−ω∗(G)
32 ln(2) .

Proof: Consider a game G = (I = [k], O, V,Unif.) and ρ = 1
k2

∑

x,y |x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y|
such that ω∗(G|ρ) = 1. Using Proposition 13 and Proposition 14, take {Ux}x and {Vy}y such that

SIC(ρ) ≥ 1

32 ln(2)
(1−max

|Ω〉

∑

xy

1

k2
|〈Ω|(Ux ⊗ Vy)|φxy〉|2).

Using Corollary 2, we have

max
|Ω〉

∑

xy∈[k]

1

k2
|〈Ω|(Ux ⊗ Vy)φxy〉|2 ≤ ω∗(G).

From there, we have SIC(ρ) ≥ 1−ω∗(G)
32 ln(2) . Since this holds for any ρ satisfying ω∗(G|ρ) = 1, we can

conclude that SIC(G) ≥ 1−ω∗(G)
32 ln(2) .

We now proceed to prove a similar result for the case where ω∗(G|ρ) < 1.

Proposition 17 For any game G with a uniform input distribution, and any state ρ such that
ω∗(G|ρ) = 1− γ, we have SIC(ρ) ≥ 1

32 ln(2) (
ε
2 − γ) where ε = 1− ω∗(G).

Proof: The proof will be similar to the previous one. Consider a game G = (I = [k], O, V,Unif.)
and ρ = 1

k2
∑

x,y |x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y| such that ω∗(G|ρ) = 1 − γ. Using Proposition 13 and
Proposition 14, take {Ux} and {Vy} such that

SIC(ρ) ≥ 1

32 ln(2)
(1−max

|Ω〉

∑

xy

1

k2
|〈Ω|(Ux ⊗ Vy)φxy〉|2).

Using Corollary 4, we have that

1−max
|Ω〉

∑

xy

1

k2
|〈Ω|(Ux ⊗ Vy)φxy〉|2 ≥ ε

2
− γ,

where ε = 1 − ω∗(G). From there, we have SIC(ρ) ≥ 1
32 ln(2)(

ε
2 − γ). Since this holds for any ρ

satisfying ω∗(G|ρ) = 1, we can conclude that SIC(G) ≥ 1−ω∗(G)
32 ln(2) .

Our last extension is the following theorem, which is the one we will use for parallel repetition.

Theorem 3 There exists a small constant c0 such that for any game G = (I = [k], O, V,Unif.)
satisfying ω∗(G) = 1 − ε, for any game G′ = (I = [k], O, V, p) satisfying 1

2

∑

x,y |pxy − 1
k2 | ≤ c0ε

and any state ρ =
∑

xy pxy|x〉〈x| ⊗ |φxy〉〈φxy | ⊗ |y〉〈y| such that ω∗(G′|ρ) ≥ 1 − ε
4 , we have that

SIC(ρ) = Ω(ε).
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Proof: Fix any G,G′, ρ. We also fix a small constant c0 that will be specified later in the proof.
Let ρ(U) = 1

k2
∑

xy |x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y|.
Let σA, σB the superposed states of ρ. As in Proposition 13, we define ξB = TrA(σB). This

means that ξB =
∑

x px·|x〉〈x| ⊗ ρBx for some ρBx . Let also ξ
B
X = TrBY (ξ

B) and ξBBY = TrX(ξB).
Similarly, let σA(U), σB(U) the superposed states of ρ(U) and let ξB(U) = TrA(σB(U)). This

means that ξB(U) = 1
k

∑

x |x〉〈x| ⊗ ρBx (U) for some ρBx (U). Let also ξBX (U) = TrBY (ξ
B(U)) and

ξBBY(U) = TrX(ξB(U)).
We want to upper bound SIC(ρ) = I(Y : XA)σA + I(X : BY )σB . Let δ = 1

2

∑

x,y |pxy − 1
k2
| ≤

c0ε. We proceed as in Proposition 13. Using Claim 2, we have I(X : BY )σB ≥ 2
ln(2)(1−F (ξB , ξBX ⊗

ξBBY)). Notice that ∆(σB , σB(U)) ≤ δ which implies ∆(ξB(U), ξB) ≤ δ ; ∆(ξBX (U), ξBX ) ≤ δ and
∆(ξBBY(U), ξBBY ) ≤ δ. The two last inequalities give us ∆(ξBX (U) ⊗ ξBBY(U), ξBX ⊗ ξBBY) ≤ 2δ. From
there, by using Claim 2 and Propositions 8 and 10, we have:

I(X : BY )σB = I(X : BY )ξB ≥ 2

ln(2)
(1− F (ξB , ξBX ⊗ ξBBY))

≥ 2

ln(2)
(
1

2
(1− F (ξB(U), ξBX ⊗ ξBBY))− (1− F (ξB , ξB(U))))

≥ 2

ln(2)
(
1

2
(1− F (ξB(U), ξBX ⊗ ξBBY))− δ).

Then, we have:

1− F (ξB(U), ξBX ⊗ ξBBY) ≥
1

2
(1− F (ξB(U), ξBX (U)⊗ ξBBY(U))) − (1− F (ξBX ⊗ ξBBY , ξ

B
X (U)⊗ ξBBY(U)))

≥ 1

2
(1− F (ξB(U), ξBX (U)⊗ ξBBY(U))) − 2δ,

which gives us

I(X : BY )σB ≥ 2

ln(2)
(
1

4
(1− F (ξB(U), ξBX (U)⊗ ξBBY(U))) − 2δ).

Let εB = 1− 1
k2

∑

x,x′ F 2(ρBx (U), ρBx′(U)). As in Proposition 13, we can show that

(1− F (ξB(U), ξBX (U)⊗ ξBBY(U))) ≥ εB

8
,

hence I(X : BY )σB ≥ 2
ln(2)(

εB

32 − 2δ). Similarly, if we define εA = 1 − 1
k2

∑

y,y′ F
2(ρAy (U), ρAy′(U))

we can show that I(Y : XA)σA ≥ 2
ln(2)(

εA

32 − 2δ), which gives

SIC(ρ) ≥ 2

ln(2)
(
εA + εB

32
− 4δ).

Using Proposition 14, we have:

SIC(ρ) ≥ 2

ln(2)
(

1

256
max

|Ω〉,{Ux},{Vy}

1

k2

∑

x,y

|〈Ω|φxy〉|2 − 4δ).
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We have ω(G) = 1− ε and ω(G|ρ(U)) ≥ 1− ε/4 − δ. Using Corollary 4, we have:

max
|Ω〉,{Ux},{Vy}

1

k2

∑

x,y

|〈Ω|φxy〉|2 ≤ 1− (ε/2 − ε/4 − δ) = 1− ε/4 + δ.

From there, we conclude:

SIC(ρ) ≥ 2

ln(2)
(

1

256
(ε/4 − δ)− 4δ).

By taking c0 =
1

8092 , which implies δ ≤ ε
8092 , we obtain SIC(ρ) = Ω(ε).

6 Upper Bound

In the previous section, we showed how the superposed information cost of a game G can be used
to bound its entangled value ω∗(G). As we showed with Proposition 12, the superposed information
cost of Gn grows linearly in n. If we could manage to upper bound SIC(Gn) by a quantity involving
ω∗(Gn), we could be able to lower bound ω∗(Gn) as a function of n. Unfortunately, we are not able
to directly upper bound SIC(Gn), but working on a slightly different game will be enough for us.
The goal of this Section is to prove the following weaker upper bound:

Theorem 4 Consider a game G = (I,O, V,Unif.) such that ω∗(G) = 1− ε and ω∗(Gn) = 2−t. Let
Gn

1−ε/32 = (In, On, V ′,Unif.) as defined in Section 2.3.4. There exists a game G′ = (In, On, V ′, p)

and a state ξ =
∑

xy pxy|x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y| satisfying the following properties

1. H(XY )ξ ≥ 2n log(k)− t− 1

2. ω∗(G′|ξ) ≥ 1− ε/32

3. SIC(ξ) ≤ 32 log(|I||O|)
ε ((t+ 1) + | log(ε)| + 5) + 2t+ 2.

The first condition states that p is in some sense close to the uniform distribution hence G′ is close
to Gn

1−ε/32. The above theorem is weaker than an upper bound on SIC(G′) which itself is weaker

than an upper bound on SIC(Gn), but this kind of upper bound will be enough.
We first present a construction of a state ξ and then we show that this state satisfies the above

properties.

6.1 Constructing ξ

The construction of ξ will directly be inspired by a communication task that we now present.

6.1.1 The communication task

Fix a game G = (I,O, V,Unif.) satisfying ω∗(G) = 1 − ε. Let Gn = (In, On, Vn,Unif.) such that
ω∗(Gn) = 2−t for some t. We now consider the following task H(p,m).
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Task H(p,m)

• Alice and Bob are allowed to share any quantum state |φ〉.

• Alice and Bob get random inputs x = x1, . . . , xn and y = y1, . . . , yn, with x, y ∈ In.

• Alice is allowed to send m bits to Bob

• Then Alice outputs some value a ∈ On and Bob outputs some value b ∈ On or ’Abort’.

For each index i, we say that Alice and Bob win game i if Bob does not abort and
V (ai, bi|xi, yi) = 1. We require the following

1. Pr[Bob does not abort] ≥ p

2. Pr[Alice and Bob win ≥ (1− ε/32)n games | Bob does not abort] ≥ (1− ε/32).

Showing how to perform this task with a small amount of communication is a first step towards
the construction of ξ. We consider the following protocol P that efficiently performs this task.

Protocol P for the task H(p,m)

1. Alice and Bob have some shared randomness that correspond to v random (not nec-
essarily different) indices i1, . . . , iv ∈ [n] as well as a state |φ〉 that allows them to win

Gn with probability at least ω∗(Gn)
2 = 2−(t+1).

2. Alice and Bob receive random inputs x, y. They perform a strategy that wins all n
games with probability 2−(t+1) and have some outputs a = a1, . . . , an and b = b1, . . . , bn.

3. For each index i ∈ {i1, . . . , iv}, Alice sends xi and ai to Bob.

4. For each of these indices i, Bob looks at xi, yi, ai, bi and checks whether they win on
all of these v games i.e. he checks that for all these indices, V (ai, bi|xi, yi) = 1.

5. If they do win on all of these games, Bob outputs b. Otherwise, Bob outputs ’Abort’.

Proposition 18 The above protocol performs the task H(p,m) with p ≥ 2−(t+1) and

m = 32 log(|I||O|)
ε ((t+ 1) + | log(ε)| + 5).

Proof: We have:

Pr[Bob does not abort] = Pr[Alice and Bob win Gi ∀i ∈ {i1, . . . , iv}]
≥ Pr[Alice and Bob win Gi ∀i ∈ [n]] = 2−(t+1),
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hence p ≥ 2−(t+1).
For a random index i, we have:

Pr[Alice and Bob win Gi| Alice and Bob win ≤ (1− ε/32)n games ] ≤ 1− ε/32.

Since the indices in {i1, . . . , iv} are independent random indices in [n], we have

Pr[Bob does not abort | Alice and Bob win ≤ (1− ε/32)n games]

= Pr[Alice and Bob win Gi ∀i ∈ {i1, . . . , iv}| Alice and Bob win ≤ (1− ε/32)n games]

≤ (1− ε/32)v .

Next, we have:

Pr[A and B win ≤ (1− ε/32)n games|B does not abort] · Pr[B does not abort]

= Pr[B does not abort | A and B win ≤ (1− ε/32)n games] · Pr[A and B win ≤ (1− ε/32)n games]

≤ Pr[B does not abort | A and B win ≤ (1− ε/32)n games]

≤ (1− ε/32)v .

This gives us:

Pr[A and B win ≤ (1− ε/32)n games|B does not abort] ≤ (1− ε/32)v

Pr[B does not abort]

≤ (1− ε/32)v

2−(t+1)
.

We can take v = 32
ε ((t+ 1) + | log(ε)|+ 5), such that we have

Pr[A and B win ≤ (1− ε/32)n games|B does not abort] ≤ ε/32.

Notice that m = v · log(|I||O|). Therefore, if Alice sends m = 32 log(|I||O|)
ε ((t+1)+ | log(ε)|+5) bits

to Bob,

Pr[A and B win ≥ (1− ε/32)n games|B does not abort] ≥ 1− ε/32.

6.1.2 Actually constructing ξ

• Alice and Bob perform protocol P where the inputs are classical but the randomness, the
message and the outputs are left in a quantum superposition. To maintain the ’classicality
of the message sent by Alice, we ask Alice to have a quantum register which acts as a copy
of the message.

• We ask Bob to determine whether he aborts or not. The state ξ will be the state Alice and
Bob share conditioned on Bob not aborting.

• Using Proposition 18, we prove that ξ has the desired properties
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We first present the actual construction of ξ and then show it has the desired properties required
for Theorem 4.

Procedure for constructing ξ

1. Alice and Bob pick random inputs x, y ∈R In = [kn]. They also share a state
∑

r γr|r〉RA
⊗ |φ〉AB ⊗ |r〉RB

where |φ〉 is the same as in protocol P and r corresponds
to the shared randomness in protocol P .

2. Alice and Bob perform a strategy that allows them to win Gn with probability
2−(t+1) but keep their outputs in a coherent superposition instead of measuring.
They keep these outputs in registers OA and OB . They hence share the state
ρ1 =

∑

x,y
1

k2n
|x〉〈x|X ⊗ |Ω1

xy〉〈Ω1
xy| ⊗ |y〉〈y|Y , with

|Ω1
xy〉 =

∑

a,b,r

γxyrab|a〉OA
|r〉RA

|φxyab 〉AB|r〉RB
|b〉OB

,

for some states |φxyab 〉.

3. Alice sends the message M that depends on x, a, r corresponding to step 3 of protocol
P to Bob and keeps a copy of M to herself in superposition, which means that they
share a state ρ2 =

∑

x,y
1

k2n
|x〉〈x| ⊗ |Ω2

xy〉〈Ω2
xy| ⊗ |y〉〈y|, with

|Ω2
xy〉 =

∑

a,b,r,M

γxyrabM |a〉OA
|M〉MA

|r〉RA
|φxyab 〉AB |r〉RB

|M〉MB
|b〉OB

.

4. Bob copies in a new register Z whether he aborts or not. This means that they share
a state ρ3 =

∑

x,y
1

k2n |x〉〈x| ⊗ |Ω3
xy〉〈Ω3

xy| ⊗ |y〉〈y|, with

|Ω3
xy〉 =

∑

a,b,r,M

γxyrabM |a〉|M〉|r〉|φxyab 〉|r〉|M〉|b〉|NA〉Z+

∑

a,r,M

γxyra,AB,M |a〉|M〉|r〉|φxya,AB〉|r〉|m〉|AB〉|AB〉Z .

We can write |Ω3
xy〉 =

√

γ′xy|Y NA
xy 〉|NA〉 +

√

1− γ′xy|Y AB
xy 〉|AB〉, for some {γ′xy}xy and

states {|Y 〉NA
xy }xy and {|Y 〉AB

xy }xy.

Let ρ−Z = TrZ(ρ3). Since the probability of Bob not aborting is p, we can write

ρ−Z = p · ρNA + (1− p) · ρAB,

for some state ρAB . ρNA is of the form
∑

xy qxy|x〉〈x| ⊗ |Y NA
xy 〉〈Y NA

xy | ⊗ |y〉〈y|. We choose
ξ = ρNA.

In the above protocol, ρ2 corresponds to the state Alice and Bob share after Step 3 of proto-
col P except that the randomness, message and outputs are kept in a quantum superposition in
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the way described above.
Similarly, ξ = ρNA corresponds to the state at the end of protocol P , conditioned on Bob not

aborting. Again, the randomness, message and outputs are kept in a quantum superposition in the
way described above.

6.2 Showing the desired properties of ξ = ρNA

We now show that ξ = ρNA has the desired properties of Theorem 4.

1) H(XY )ξ ≥ 2n log(k) − t− 1.

Proof: H(XY )ρ−Z
= 2n log(k). Since Dim(XY ) = k2n, this means that Hmin(XY )ρ−Z

=
2n log(k). We have pρNA ≤ ρ−Z hence Hmin(XY )ρNA

− log(p) ≥ Hmin(XY )ρ−Z
= 2n log(k). This

gives us Hmin(XY )ρNA
≥ 2n log(k) + log(p). Since p ≥ 2−(t+1), we conclude that Hmin(XY )ρNA

≥
2n log(k)− t− 1, hence H(XY )ρNA

≥ 2n log(k)− t− 1.

2) ω∗(G′|ξ) ≥ 1− ε/32 where Gn
1−ε/32 = (I ′, O′, V ′,Unif.) and G′ = (I ′, O′, V ′, q).

Proof: This holds by construction of ξ. Indeed, ξ is the superposed version of the state Alice
and Bob share after protocol P conditionned on Bob not aborting. We know that in this case,
Pr[Alice and Bob win ≥ (1 − ε/32)n games | Bob does not abort] ≥ (1 − ε/32). From there, we
have ω∗(G′|ξ) ≥ (1− ε/32)

3) SIC(ξ) ≤ 32 log(|I||O|)
ε ((t+ 1) + | log(ε)|+ 5) + 2t+ 2.

Proof:
We upper bound the superposed information cost of the state ξ = ρNA. We are interested in

the superposed states σANA, σ
B
NA of ξ as defined in Section 3.1. Recall that ρNA =

∑

xy qxy|x〉〈x| ⊗
|Y NA

xy 〉〈Y NA
xy | ⊗ |y〉〈y| for some qxy. Let A′ = OA ⊗MA ⊗ RA ⊗ A and B′ = OB ⊗ RB ⊗ B. We

have SIC(ξ) = I(X :MBB
′Y )σB

NA
+ I(Y : XA′)σA

NA
. Let also σA2 , σ

B
2 the superposed states of ρ2.

To proceed with the proof, we need the following lemmas and proposition.

Lemma 3 I(X :MBB
′Y )σB

NA
≤ n log(k)−Hmin(X|MBB

′Y )σB
2
+ t+ 1

Proof: We have:

I(X :MBB
′Y )σB

NA
= H(X)σB

NA
−H(X|MBB

′Y )σB
NA

≤ n log(k)−H(X|MBB
′Y )σB

NA

≤ n log(k)−Hmin(X|MBB
′Y )σB

NA
.

By definition, we haveHmin(X|MBB
′Y )σB

2
= − log(Pr[ Bob guesses x | Alice and Bob share σB2 ]).

When Alice and Bob share σB2 , if Bob tries to determine whether he aborts or not, the state he
shares with Alice conditioned on not aborting is σBNA. Since Bob doesn’t abort with proability
greater than 2−t+1, we have

Pr[ Bob guesses x | Alice and Bob share σB2 ]) ≥ 2−(t+1) Pr[ Bob guesses x | Alice and Bob share σBNA]
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From there, we have

Hmin(X|MBB
′Y )σB

2
= − log(Pr[ Bob guesses x | Alice and Bob share σB2 ])

≤ − log(Pr[ Bob guesses x | Alice and Bob share σBNA]) + t+ 1

= Hmin(X|MBB
′Y )σB

NA
+ t+ 1.

We conclude that I(X :MBB
′Y )σB

NA
≤ n log(k)−Hmin(X|MBB

′Y )σB
NA

≤ n log(k)−Hmin(X|MBB
′Y )σB

2
+

t+ 1.

We now prove the following:

Lemma 4 Hmin(X|MBB
′Y )σB

2
≤ n log(k)−m.

Proof: Let σ′XMBB′Y = TrA′(σB2 ), σ
′
XB′Y = TrA′MB

(σB2 ), and σ
′
B′Y = TrXA′MB

(σB2 ). We have
Hmin(X|MBB

′Y )σB
2
= Hmin(X|MBB

′Y )σ′
XMBB′Y

. First notice that

σ′XB′Y =
IX
kn

⊗ σ′B′Y . (9)

Moreover, we can write σ′XMB′Y =
∑

M∈[m] rM |M〉〈M | ⊗ η(M)XB′Y for some states {η(M)}M and
∑

M rM = 1. Notice that σ′XB′Y =
∑

M rMη(M). We have:

σ′XMBB′Y =
∑

M∈[m]

rM |M〉〈M | ⊗ η(M)XB′Y ≤ IMB
⊗ σ′XB′Y . (10)

Using Equations 9 and 10, we have:

σ′XMBB′Y ≤ IMB
⊗ σ′XB′Y ≤ 1

kn
IX ⊗ IMB

⊗ σ′B′Y

≤ 2m

kn
IX ⊗

(

IMB

2sm
⊗ σ′B′Y

)

.

By definition of Hmin(Section 2.2), this gives Hmin(X|MBB
′Y )σ′

XMBB′Y
≤ n log(k)−m.

We now put everything together and prove the following.

Proposition 19 I(X :MBB
′Y )σB

NA
≤ m+ t+ 1.

Proof: Combining Lemma 3 and Lemma 4, we have

I(X :MBB
′Y )σB

NA
≤ n log(k)−Hmin(X|MBB

′Y )σB
2
+ t+ 1 ≤ m+ t+ 1.

Now let’s analyze σANA. Here, Alice does not receive any message from Bob hence I(Y : XA′)σA
2
= 0.

As in Lemma 3, we can show that I(Y : XA′)σA
NA

≤ I(Y : XA′)σA
2
+ t+ 1 = t+ 1.

Putting this all together, we have:

SIC(ξ) = I(Y : XA′)σA
NA

+ I(X :MBB
′Y )σB

NA
≤ m+ 2t+ 2.
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To conclude the proof, recall from Section 6.1.1 that m = 32 log(|I||O|)
ε ((t+ 1) + | log(ε)| + 5). From

there, we conclude that

SIC(ξ) ≤ 32 log(|I||O|)
ε

((t+ 1) + | log(ε)| + 5) + 2t+ 2,

which concludes the proof.

We showed that ξ satsfies all the desired properties of Theorem 4.

7 Lower Bound

We now give a lower bound complementary to the upper bound described in Theorem 4.

Theorem 5 Consider a game G = (I = [k], O, V,Unif.) such that ω∗(G) = 1 − ε and ω∗(Gn) =
2−t with t ≤ c0εn

4 where c0 is the absolute constant of Theorem 3. Let also Gn
1−ε/32 = (In =

[kn], On, V ′,Unif.) as defined in Section 2.3.4. For any game G′ = (I ′ = [kn], O′, V ′, p) and any
state ρ =

∑

x,y∈[kn] pxy|x〉〈x|X ⊗ |φxy〉〈φxy | ⊗ |y〉〈y|Y , satisfying

1. H(XY )ρ ≥ 2n log(k) − t

2. ω∗(G′|ρ) ≥ 1− ε/32

we have SIC(ρ) ≥ Ω(nε).

Proof: Fix any state ρ of the form

ρ =
∑

x,y∈[kn]
pxy|x〉〈x|X ⊗ |φxy〉〈φxy| ⊗ |y〉〈y|Y ,

satisfying properties 1. and 2. above. Property 2 tells us that there is strategy that allows Alice
and Bob to win G′ with high probability. We make them perform this stratregy.

We first show that there is a large number of indices i such that Alice and Bob win game i with
high probability with this stratagy and H(Xi,Yi)ρ is large.

Lemma 5 Let pi = Pr[Alice and Bob win game i using ρ]. Let K = {i : pi ≥ 1 − ε/4}. Let
L = {i : H(Xi, Yi)ρ ≥ 2 log(k)− 4t

n }. We have

|K| ≥ 3n/4, |L| ≥ 3n/4, which implies |K
⋂

L| ≥ n/2.

Proof: 1
n

∑

i∈[n] pi corresponds to the average number of games won by Alice and Bob. They win

G′ if they win at least (1− ε/32) games. Since they can win G′ with probability at least 1− ε/32,
we know that 1

n

∑

i∈[n] pi ≥ (1− ε/32)(1 − ε/32) ≥ 1− ε/16. We have:

∑

i

pi =
∑

i∈K
pi +

∑

i/∈K
pi ≤ |K|+ (n− |K|)(1 − ε/4) = n− (n − |K|)ε/4,

since
∑

i pi ≥ n(1− ε/16), we have n− (n − |K|)ε/4 ≥ n(1− ε/16) and |K| ≥ 3n
4 .
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Similarly, we have:

∑

i

H(XiYi)ρ =
∑

i∈L
H(XiYi)ρ +

∑

i/∈L
H(XiYi)ρ

≤ 2|L| log(k) + (n − |L|)(2 log(k)− 4t

n
)

= 2n log(k)− (n− |L|)4t
n
.

Since
∑

iH(XiYi)ρ ≥ H(XY )ρ = 2n log(k) − t, we have 2n log(k) − (n − |L|)4tn ≥ 2n log(k) − t
which gives |L| ≥ 3n

4 .
Putting this together, we have |K⋂

L| = |K|+ |L| − |K⋃

L| ≥ |K|+ |L| − n ≥ n/2.

The final step of the proof will be very similar to the proof of Proposition 12.
We start with a few notations. For a string x = x1, . . . , xn ∈ [kn], let x−i be the string in [kn−1]

where we remove xi from x. As in Section 3.1, we define |LA
y 〉, |LB

x 〉, σA, σB . Also, let

px· =
∑

y∈[kn]
pxy ; p·y =

∑

x∈[kn]
pxy

and

pixi,yi =
∑

x′,y′:x′
i=xi,y′i=yi

px′y′ ; p−i
x−i,y−i

=
∑

x′,y′:x′
−i=x−i,y′−i=y−i

px′y′ .

For each i, we rewrite ρ as:

ρ =
∑

x,y∈[kn]
pxy|xi〉〈xi|Xi

⊗ |x−i〉〈x−i|X−i
⊗ |φxy〉〈φxy|AB ⊗ |y−i〉〈y−i|Y−i

⊗ |yi〉〈yi|Yi
.

We define
|Zi

xi,yi〉 =
∑

x′,y′∈[kn]:x′
i=xi,y′i=yi

√

p−i
x′
i,y

′
i
|x′−i〉X−i

⊗ |φx′y′〉 ⊗ |y′−i〉Y−i
.

Now, let γi =
∑

xi,yi∈[k] p
i
xi,yi |xi〉〈xi|⊗ |Zi

xi,yi〉〈Zi
xi,yi |⊗ |yi〉〈yi|. The state γi corresponds to ρ where

the inputs in registers X−i,Y−i are in coherent superposition. In particular, Alice and Bob can go
from γi to ρ by measuring the registers X−i and Y−i in the computational basis.

Using ρ, Alice and Bob can win the ith instance of G with probability pi. This means that they
can win this ith instance of G when sharing γi with probability at least pi.

Now, consider σAi , σ
B
i the 2 superposed states of γi as defined in Section 3.1. We first show the

following:

Lemma 6 If t ≤ c0εn
4 then ∀i ∈ K

⋂

L, I(Yi : XA)σA
i
+ I(Xi : BY )σB

i
= Ω(ε).

Proof: Consider i ∈ K
⋂

L. Since i ∈ L, we have H(XiYi)γi ≥ 2 log(k) − 4t/n ≥ 2 log(k) − c0ε.
Using Claim 3, we have ∆(pi,Unif.) ≤ c0ε or in other words that 1

2

∑

xi,yi∈[k] |p
i
xi,yi − 1

k2 | ≤ c0ε.

Since i ∈ K, we have ω∗(G′
i|γi) ≥ 1 − ε/4 for G′

i = (I,O, V, pi). Using Theorem 3, we conclude
that SIC(γi) = I(Yi : XA)σA

i
+ I(Xi : BY )σB

i
= Ω(ε).
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We can now finish the proof. First notice that TrY−i
(σAi ) = TrY−i

(σA) hence I(Yi : XA)σA
i

=

I(Yi : XA)σA . Similarly, we have I(Xi : BY )σB
i
= I(Xi : BY )σB which gives

I(Yi : XA)σA
i
+ I(Xi : BY )σB

i
= I(Xi : BY )σA + I(Yi : XA)σB

and hence

∀i ∈ K
⋂

L, I(Xi : BY )σA + I(Yi : XA)σB = Ω(ε).

To conclude, we write

SIC(ρ) = I(Y : XA)σA + I(X : BY )σB

= H(Y )σA −H(Y |XA)σA +H(X)σB −H(X|BY )σB

=
∑

i∈[n]
H(Yi)σA −H(Y |XA)σA +

∑

i∈[n]
H(Xi)σB −H(X|BY )σB

≥
∑

i∈[n]
H(Yi)σA −H(Yi|XA)σA +

∑

i∈[n]
H(Xi)σB −H(Xi|BY )σB

=
∑

i∈[n]
I(Yi : XA)σA + I(Xi : BY )σB

≥
∑

i∈K
⋂

L

I(Yi : XA)σA + I(Xi : BY )σB

= Ω(nε) since |K ∩ L| ≥ n/2.

8 Final Theorem and conclusion

We can now prove our main theorem.

Theorem 1 For any game G = (I,O, V,Unif.) with ω∗(G) ≤ 1− ε, we have:

ω∗(Gn) = (1− ε2)
Ω
(

n
log(|I||O|)

−| log(ε)|
)

.

Proof: Let Gn
1−ε/32 = (In = [kn], On, Vn,Unif.) as defined in Section 2.3.4. Using Theorem 4, we

know there exists a state ξ =
∑

xy pxy|x〉〈x| ⊗ |φxy〉〈φxy| ⊗ |y〉〈y| and a game G′ = (In, On, Vn, p)
satisfying

1. S(XY )ξ ≥ 2n log(k)− t− 1

2. ω∗(G′|ξ) ≥ 1− ε/32

3. SIC(ξ) ≤ 32 log(|I||O|)
ε ((t+ 1) + | log(ε)| + 5),

where 2−t = ω∗(Gn). We now distinguish two cases

• If t ≥ c0εn
4 , then ω∗(Gn) = (1− ε)Ω(n) and the theorem holds directly.
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• If t ≤ c0εn
4 , we need the following argument. The state ξ satisfies all the properties of

Theorem 5 which implies that SIC(ξ) = Ω(nε). We combine the two inequalities and obtain

Ω(nε) ≤ SIC(ξ) ≤ 32 log(|I||O|)
ε

((t+ 1) + | log(ε)| + 5).

Putting the two equations together, we have t = Ω
(

nε2

log(|I||O|) − | log(ε)|
)

which allows us to

conclude

ω∗(Gn) = 2−t ≤ (1− ε2)
O
(

n
log(|I||O|)

−| log(ε)|
)

.

Finally, we extend this result to general games.

Corollary 1 For any game G = (I,O, V, p) such that ω∗(G) ≤ 1− ε, we have that

ω∗(Gn) = (1− ε2)
Ω( n

Q4 log(Q·|O|)
−| log(ε/Q)|)

,

where |O| is the dimension of the output space of G and Q = max(⌈ 1

minxy:pxy 6=0(
√

pxy)
⌉, |I|).

Proof: Fix G = (I,O, V, p). We consider a set I ′ such that I ⊆ I ′ and ∀x, y, st. pxy 6= 0,
pxy ≥ 1

|I′|2 . We can find such a set I ′ with |I ′| = Q. Let Π = {(x, y) ∈ I2 : pxy 6= 0}. Let

H = (I ′, O, V ′,Unif.) be the game defined as follows: V ′(a, b|x, y) = V (a, b|x, y) if (x, y) ∈ Π.
V ′(a, b|x, y) = 1 otherwise. We have:

ω∗(G) = sup
|φ〉,Ax,By

∑

a,b

∑

(x,y)∈Π
pxyV (a, b|x, y)〈φ|Ax

a ⊗By
b |φ〉

≤ sup
|φ〉,Ax,By

∑

a,b

∑

(x,y)∈Π

1

Q2
V (a, b|x, y)〈φ|Ax

a ⊗By
b |φ〉+

∑

a,b

∑

(x,y)∈Π
(pxy −

1

Q2
)V (a, b|x, y)〈φ|Ax

a ⊗By
b |φ〉

≤ sup
|φ〉,Ax,By

∑

a,b

∑

(x,y)∈Π

1

Q2
V (a, b|x, y)〈φ|Ax

a ⊗By
b |φ〉+

∑

(x,y)∈Π
(pxy −

1

Q2
) · 1

= sup
|φ〉,Ax,By

∑

a,b

∑

(x,y)∈Π

1

Q2
V (a, b|x, y)〈φ|Ax

a ⊗By
b |φ〉+ 1− |Π|

Q2
.

Moreover,

ω∗(H) = sup
|φ〉,Ax,By

∑

a,b

∑

x,y∈I′

1

Q2
V ′(a, b|x, y)〈φ|Ax

a ⊗By
b |φ〉

= sup
|φ〉,Ax,By

∑

a,b

∑

(x,y)∈Π

1

Q2
V ′(a, b|x, y)〈φ|Ax

a ⊗By
b |φ〉+

∑

a,b

∑

x,y 6∈Π

1

Q2
V ′(a, b|x, y)〈φ|Ax

a ⊗By
b |φ〉

= sup
|φ〉,Ax,By

∑

a,b

∑

(x,y)∈Π

1

Q2
V (a, b|x, y)〈φ|Ax

a ⊗By
b |φ〉+ 1− |Π|

Q2

≥ ω∗(G).
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Similarly, we have ω∗(Gn) ≤ ω∗(Hn). Moreover,

1− ω∗(H) = inf
|φ〉,Ax,By

∑

a,b

∑

x,y∈I′

1

Q2
(1− V ′(a, b|x, y))〈φ|Ax

a ⊗By
b |φ〉

= inf
|φ〉,Ax,By

∑

a,b

∑

x,y∈Π

1

Q2
(1− V (a, b|x, y))〈φ|Ax

a ⊗By
b |φ〉

≥ 1

Q2
inf

|φ〉,Ax,By

∑

a,b

∑

x,y∈Π
pxy(1− V (a, b|x, y))〈φ|Ax

a ⊗By
b |φ〉

=
ε

Q2
,

from which we have ω∗(H) ≤ 1 − ε
Q2 . Using the parallel repetition theorem on the uniform

distribution, we have that

ω∗(Gn) ≤ ω∗(Hn) = (1− ε2

Q4
)
Ω( n

log(|I′||O|)
−| log(ε/Q)|)

.

Therefore, we conclude that

ω∗(Gn) = (1− ε2)
Ω( n

Q4 log(Q·|O|)
−| log(ε/Q)|)

.
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