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Abstract

Quantum information studies how information is encoded éecbded in quantum me-
chanical systems. In this paper, we study the basic scendeoe two classical bits are en-
coded into a quantum state. We prove a “learning lemma,” vpiovides a new upper bound
on the average probability of decoding each bit that dependbke probability of learning the
XOR of the two bits. Moreover, we give bounds on how well eaititén be decoded when
their XOR is hidden and generalize these concepts to strings

Our learning lemmata have strong connections to cryptdgrapd nonlocality. In partic-
ular, we show a set of equivalences between secure oblitiansfer protocolsCHSH-type
games, and quantum encodings hiding the XOR. These equéedallow us to use results in
one area to prove results in another. For example, we usamatmn bounds to give bounds
on the values o€HSH-type games and also on the “correctness” of certain sedligaus
transfer protocols. We also use results of quantum XOR gaongsow that secure oblivious
transfer admits perfect parallel repetition. Last, ourdéag lemmata enable us to improve the
lower bounds on the cheating probabilities of any quantuliviolis transfer protocol.

1 Introduction

Quantum information studies how information is encoded dacbded in quantum mechanical
systems. There are many examples where encoding informiatiQuantum states can be much
more efficient than classical ones. For example, one carhadadt that am-dimensional quantum
system has an exponential description in order to “enc@detlassical bits in it, for example in
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a quantum fingerprint state [BCWdWO01]. However, quanturorimiation does not always offer
some advantage, since the uncertainty principle postuldi@ every time an external observer
measures a quantum system, the state of the system collajpseshe measurement and some
information may become irretrievable. This intricate iptay between these two properties has
been at the basis of some of the most fundamental resultsaimtgu information, from quantum
encodings, to non-locality, and to quantum cryptography.

Our goal is to study the relation between these areas andproew insight on the power and
limitations of quantum information, by looking at it thrdughese various lenses. After describing
in more detail the different concepts that we study, we pemrae precise quantitative equivalences
between them and provide a number of applications.

1.1 Quantum encodings and learning the XOR

One of the fundamental results in quantum information iseMok theorem[[Hol73] which, in
high level, says that if one wants to transmit classical rimi@tion, then encoding the classical
information into quantum bits is no more efficient than eriegdt into classical bits. In other
words, classical information cannot be compressed usiagtgm information. The same negative
result holds for the weaker task that is referred to as Rantlotess Codes. Here, one is looking
for an encoding of: classical bits into a quantum state, where each bit can bedddowith high
probability from a single copy of the encoding (but not neegity all of them at the same time).
Again, quantum encodings are no more efficient than classis [Nay99].

However, the extraordinary power of quantum informatios b@en proven in a variety of mod-
els: for example, in communication complexity, there is mbar of distributed tasks, where quan-
tum encodings are exponentially more efficient than classices[BCWdWO0!, BJK04, GKKOS,
[RK11]. Moreover, it is possible to encode two classical iitsne quantum bit such that either bit
can be correctly decoded with probabilitys? (7 /8), see [BBBW83, ANTV99].

Let us focus on the following simple scenario: The quantuatest,, ., encodes two classi-
cal bitszy andz; that are drawn from some known distribution. Imagine thediste a decoding
procedure (i.e. a quantum measurement) to deegdbat provides the correct answer with prob-
ability py and a different decoding procedure that decodewith probability p;. We would like
to analyse th@verage decoding probability.e. the quantitypo + p1)/2.

One way to bound this quantity is through entropic uncetyaigalations, which can provide
upper bounds on this probability that depend on the decaalingedures but not on the encoding
(see for exampld_ [OW10]). For example, if the first decodingcpdure is a measurement in the
computational basis and the second in the Hadamard basegdisy to see that no matter what
quantum encoding we use, there is always some entropy inishédtion of outcomes of these
two measurements. This, in turn, implies that the averagedieg probability cannot be 1.

Here, we study the average decoding probability by relating the probability of decoding
some other functiorf (x, x1) of the bits, for example the one that outputs both bits or tK@R.
Classically, it is straightforward to relate the probapibf decodingf(z¢, z1) to the probabilities
of decoding each bit;. If one has some partial information abdut), 1) then it is easy to find



the optimal guess fofxo,z1). However, the situation is more delicate in the quantum avorl
Suppose we try to determingx, x1) by decoding each bit;. Once the first bit is decoded,
the encoding collapses to some eigenstate of the decodergtop hence the probability of then
correctly decoding the second bit may have changed. In athats, getting information about
could destroy the information abouwt.

We provide new upper bounds on the average decoding prabatfiltwo classical bits that
depend on the probability of correctly decoding both bitsher XOR of the two bits. We also
extend these results to strings and discuss their relaticorhplementarity.

Theorem 1 (XOR learning lemmata) Let{p,, ., : o, z1} be a quantum encoding of two classi-
cal bits (or bit strings)zq, x1 drawn from some known probability distribution. Denote élverage
decoding probability of:y andz, by c := %Pr[learningxo] + %Pr[learningml]. Then

1. Pr[learningzo ® x1] > (2¢ — 1) whenzg, z; € {0, 1},

2. Prllearningzo @ x1] > ¢(2¢ — 1)?, if ¢ > 1/2, whenzg, 1 € {0,1}".
In fact, Pr[learning(zo, #1)] > c¢(2¢ — 1)2, if ¢ > 1/2, whenzg, z; € {0, 1}".

The probability of learning a value is defined as the maximuwer all decoding procedures of
the probability that the output of the decoding procedurisal to the correct value.

As a consequence of the previous theorem, in the case wiespedbability of learning:o & 1
is exactly1/2, i.e. the encoding reveals no information about the XOR, axelthe following
theorem.

Theorem 2 (Hidden XOR lemmata) Let {p,, », : xo, 21} be a quantum encoding of two clas-
sical bits (or bit strings)xg, z; drawn from some known probability distribution. If the edim
reveals no information abouty @ x1, then

1. § Pr[learningzo] + & Pr{learningz:] < cos?(7/8) whenzg, z; € {0,1},

2. 3 Pr[learningzo] + 1 Pr[learningz;] < § + ﬁ whenz, z1 € {0,1}".

In order to prove the above theorems, we study how the disiito of the measurement out-
comes changes when we perform the two measurements sedjyeanti the same quantum state.
We say that two measurements are perfectly complementafeif having performed the first
measurement, no more information can be extracted by peirigrthe second measurement on
the post-measured state. On the other hand, they are noresoegary if after measuring with
one, the probabilities of the outcomes of the second ardaatadl (which is the case for classical
measurements). For example, the measurements on the ctiopat and Hadamard bases are
complementary while the measurements on different subisysof a product state are non com-
plementary. Our theorems provide a quantitive way of stuglyiie notion of complementarity (see
Appendix[8). We also show how our lemmata are related to a murobfundamental properties
of quantum information, including non-local games and dquisncryptographic primitives.
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1.2 The CHSH game

The CHSH game is a well-known tool for studying quantum non-locablityd the power of en-
tanglement[[CHSHE9]. It is a game between Alice and Bob wiitially share a quantum state
and are not allowed to communicate any further. Alice rexe® randomx € {0, 1} and outputs
a € {0,1}. Bob receives a random € {0,1} and outputd € {0,1}. The value of the game,
denotedw* (CHSH), is the maximum probability that & b = yx, which can be proven to be
strictly higher than the value when Alice and Bob do not aiiyi share any quantum state.

One can recast the CHSH game in the framework of quantum emgsoand show that the value
of the game is equal to Bob’s average decoding probabilipedding on whether he receivgs= 0
ory = 1. For example, once Alice receivesand measures to leatnthe post-measured state Bob
has is an encoding af andx. We can thus write the value of the game as

Pr[Bob receiveg; = 0]Pr[Bob outputsh = a] + Pr[Bob receives, = 1]Pr[Bob outputsh = adx]
which can be rewritten as

1 1
5 Pr[Bob can learm| + 3 Pr[Bob can learm & z].

Note also that the non-signalling condition of the CHSH gaags that the probability that Bob
can guess Alice’s input is/2 can be equivalently stated as the fact that the maximum piiitipa
of correctly decoding the XOR af anda @ x (the two bits Bob wishes to learn in this case) /8.
With this perspective, we can see how the CHSH game is relatgdantum encodings where the
XOR is hidden.

In [OW10], they explore this idea further by providing soniese relations between special
types of uncertainty relations and the value of the CHSH gemnggiantum but also more general
theories.

1.3 Oblivious transfer

Oblivious transfer is a fundamental cryptographic priv@tiwhere Alice sends to Bob one of two
bits (x, 1) but is oblivious to the bit Bob receives. We wish to desigrtgeols to accomplish the
following three (conflicting) tasks: Alice cannot learn whibit is received by Bob, Bob cannot
learn the XOR of Alice’s two bits, Bob learns the correct value when bothtipa are honest.

Let us defineOT, with cheating probabilities as follows (formal definitionfall primitives
and games used in this paper can be found in Selction 2):

e Alice outputs(zy, z1) and Bob output$b, w), wherezy, z;, b are uniformly random bits and
w = z, With probability p,

!Note that most definitions enforce the stronger conditiootwating Bob, that he has no (or very little) information
about Alice’s other bit (instead of the XOR of her bits). He®e in the classical world, if Bob cannot guess the XOR
then he does not know one of the two bjts [DFSS06]. In the qumanworld, we show that this definition of cheating
Bob relates directly to the CHSH game.



e Aot is the maximum probability Alice can guessvithout being caught cheating,
e Bor is the maximum probability Bob can guegs® z; without being caught cheating,
e A protocol issecureif Aoy = Bor = 1/2 andperfectif p = 1.

Oblivious transfer was first introduced as a “multiplexingannel” by Wiesner [Wie83] al-
though the cryptographic relevance was not known at the. titveas first used in a cryptographic
sense by Rabiri [RabB1] as a way to share secrets. Rabinisrvarfsoblivious transfer was not
exactly as described above, however it was shown to be dgoivay Crépeau [Cré87]. Oblivious
transfer is a fundamental primitive because it can be usembnstruct arbitrary secure function
evaluation protocols [Kil88].

There are many quantum protocols for variants of oblivioasdfer [BBBWS83], [DFSS08],
[WSTOE], [Sch10], [[Sik1R2],[[CKS13]. In particulad, [BBBWA3 showed a secure protocol where
Bob gets the correct value with probabilitys?(7/8). On the other hand, when Bob gets the
correct value with probability, then Alice or Bob can cheat with probabilisg.52%, independent
of what function of(x, z1) Bob wishes to learn [CKS13].

In this paper, we are using the stand-alone definition ofvihls transfer, which does not
guarantee composability. This makes our lower bounds onttbating probabilities stronger, and
in addition, this definition highlights the relations betmenon-locality, cryptography, and quantum
encodings.

To further discuss composability, let us consider a noerattiveOT,, protocol where Alice
sends to Bob a quantum encoding and Bob can choose whichléértoby measuring in a partic-
ular basis. Consider using such a protocol to accomplistiolf@ving cryptographic task, known
as imperfect Rabin OT (the perfect version was introducd®ab81]), as follows:

¢ Alice and Bob use a non-interacti¥&T’,, protocol so that Bob learns, with probability p.

e Alice sends to Bob a random hitand outputs the value.. If b = ¢, Bob outputsz,. (with
probability p). If b # ¢, he outputs#.

We see that Bob need only delay his choiceé ¢and his measurement) to always leaprwith
probability p. If Bob was forced to measure at the end of @€, protocol, before learning, then

he would knowz,. (with probability p) only if ¢ = b. Therefore, the protocols we consider in this
paper, even if secure and non-interactive, are not nedgssamposable. It should be clear that our
goal is to relate this cryptographic primitive to non-logaimes and the notion of complementarity
of quantum measurements, and not to construct real-lifergesystems.

We now examine how the correctness is related to the seafriplivious transfer. In partic-
ular, we answer the question of whether it is possible toifseem little security for the sake of
gaining much correctness by showing a lower bound curveimgléhe three quantities, Ao,
andBor.



Theorem 3 (Lower bound curve for imperfect oblivious transfer) For any OT, protocol, the
correctness parameterand cheating probabilitiesior and Bot satisfy

p§A0T<\/B—OT+1).

When we setAor = Bor = 1/2, we get that for secure protocgis< cos?(r/8), which is
attainable by the secure protocol mentioned abové in [BBBW8&herefore, the curve contains
the point corresponding to the largest correctness of as@tlivious transfer protocol. However,
not every point on this curve is optimal. If we get= 1, i.e., the protocol is perfect, we get that
max{Aor, Bor} > 56.98%. In fact, we prove a stronger lower bound58£9% as well as extend
the bound 058.52% to oblivious string transferdenotedOT”, which is the same &9T),, except
Alice outputsn-bit strings instead of single bits.

Theorem 4 (Security lower bounds on perfect oblivious tranfers) In any perfectOT; proto-
col, one party can cheat with probability at leas0.9%. Also, for anyn € N and anyOT7}
protocol, one party can cheat with probability at le@st52% regardless of the function of Alice’s
two strings Bob wishes to learn.

This shows that the security of perfect oblivious transgmrot be amplified to get arbitrarily
close to50% without sacrificing some correctness. The proofs of the aliawo theorems are
similar to the lower bound proof in [CKSIL3] and are detailed\ppendiXB.

1.4 Equivalences between CHSH games and secure OT protocols

The learning and hiding lemmata appear to have strong ctinnsavith non-local games as well as
cryptographic primitives. In Sectidd 4, we make this expbnd prove (or in some cases reprove)
some bounds for CHSH-type games as well as variations oftgumnblivious transfer. In fact,
we prove two equivalences, each involving three differesttams: quantum information theory,
guantum games, and quantum cryptography. The first eqoi@leve prove involves quantum
encodings hiding the XOR of two strings; the primitiel’,;; and the gam&HSH,,, where Alice
receives random € {0,1}" and outputs: € {0,1}", Bob receives randorit y € {0,1} and
outputsb € {0,1}", and they win ifa; © b; = yz; foralli € {1,...,n} (the XOR is bitwise
andy z; is scalar multiplication). Formal definitions of the gamesl @rimitives can be found in
Sectior 2.

Theorem 5 (Equivalence of secur®T[ and CHSH,, strategies) The following four statements
are equivalent for every € N:

1. There exists a set of quantum staftes, ., : zo,z1 € {0,1}"} and a probability distribution
{T2o.21 : o, 21 € {0,1}"} such that when givep,,, ., with probability 7, ,,:

. 1 1 . 1 .
Pr[learningzo & z1] = o and 3 Pr[learningzo| + 3 Pr[learningz;] = p;



2. There exists a secure, non-interactivé’; protocol;
3. There exists a secuf@T; protocol;

4. There exists a strategy fofHSH,, that succeeds with probability.

We also prove another equivalence between quantum ensodfmgpairs of bits hiding each
XOR; OT;‘?", then-fold parallel repetition of oblivious transfer; ai@HSH®", then-fold parallel
repetition of CHSH. Again, p is the correctness parameter of the oblivious transfeopobt

Theorem 6 (Equivalence of secur@T;‘?“ and CHSH®") The following four statements are equiv-
alent for everyn € N:

1. There exists a set of quantum staftes, ., : zo,z1 € {0,1}"} and a probability distribution
{72021 0,21 € {0,1}"} such that when givep,,, .., with probability 7, ., :

. 1 1 .
Prllearningr & a1] = o and > Prflearninga] = p,
ce{0,1}n

wherez, is the string withi'th bit being thei'th bit of the stringz,,;
2. There exists a secure, non—interact@@;‘?” protocol,
3. There exists a secu@T?" protocol,

4. There exists a strategy faHHSH®™ that succeeds with probabiliy.

Note that in our equivalences, apart from translating thenieg probabilities, we conserve the
notions of security/non-signalling/hidden XOR througle tieductions and we also deal with the
interactivity and aborting of oblivious transfer protagol

In related work, Wolf and Wullschleger [WW05] showed that-BBxes, imaginary boxes
that win the CHSH game with probability 1, are equivalent &of@ct secure oblivious transfer.
However, there is a timing issue as pointed out in [B@3] that makes the OT non-composable.
Our results also extend these connections to the quantufd.wor

1.5 Applications of the equivalences

Our equivalences provide new ways of looking at quantumtographic primitives, quantum non-
local games, and quantum encodings. They also allow forastieg, or even surprising, conse-
quences. One reason is that we can use previous results iareado prove bounds in another.
For example, instead of proving a bound directly for oblingdransfer, one could use a bound for
CHSH to obtain a bound for oblivious transfer. Take for exampke semidefinite programs used
to show perfect parallel repetition of XOR games [CSUUOdje3e seem to have no connections



with interactive oblivious transfer protocols, howevesylare intricately linked through our second
equivalence result and therefore can be used to say somethaut oblivious transfer.

Using Theoreni]2 and the equivalences in Theorém 5, we havéteanative proof of the
optimality of CHSH and an upper bound addHSH,,. We discuss the optimality of our bound on
CHSH,, in AppendixD.

Corollary 1 (Bounds on CHSH and CHSH,) For anyn € N, w*(CHSH,,) < § + ﬁ Fur-
thermorew*(CHSH) < cos?(7/8), which is attainable bfCHSHE9]

Moreover, we have the following bounds on secure oblivioasdfer.

Corollary 2 (Bounds on OTp and OTp,) For anyn € N, the correctness of any secu@I’;

protocol satisfiep < % + \/% Furthermore, the correctness of any secure obliviousdfan

protocol OT,, must satisfy < cos?(7/8), which is attainable byBBBW83].

Using perfect parallel repetition of CHSH[CSUUO08], we have following corollary of The-
orem[®.

Corollary 3 (Perfect parallel repetition of oblivious tran sfer) For anyn € N, the correctness
of any securé)Tf?" protocol satisfiep < (cos?(7/8))", which is attainable by using instances
of a secureD T .s2(x/g) Protocol. That is, secure oblivious transfer admits perfearallel repeti-

tion.

On the other hand, we get another variation of the hiding lamren the XOR of Alice’s two
strings are hidden.

Lemma 1 (Hidden XOR string lemma, version 2) Let{p,, ., : o, x1} be a quantum encoding
of two classicaln-bit strings xg, z1 that are drawn from some known probability distribution. If
the encoding reveals no information abayt® =, then

1

o Z Prllearningz,] < (cos?(r/8))" .

ce{0,1}n

2 Cryptographic primitives and quantum game definitions
We give formal definitions of the cryptographic primitivesdagquantum games used in this paper.

Definition 1 (Imperfect oblivious transfer) A quantum oblivious transfer protocol with correct-
nessp, denoted here a®T,, is an interactive protocol, with no inputs, between Alicel &8ob
such that:

e Alice outputs two independent, uniformly random HBitg, z;) or Abort and Bob outputs
uniformly random bit and another bitv or Abort.
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e If Alice and Bob are honesty = z;, with probability p (for either value o) and neither
party aborts.

e If p = 1 we say the protocol iperfect

We say that the oblivious transfer protocol has cheatindpphilities Aot and Bot where
e Aot := Pr[Alice can learrh without Bob aborting
e Bot := Pr[Bob can learny & z; without Alice aborting,

e If Aor = 1/2 andBor = 1/2 we say the protocol isecure

The choice to have the information as outputs instead ofténjsufor convenience since Alice
and Bob can always derandomize their outputs while retgitine same cheating probabilities

(see[CKS1B] for details).

Definition 2 (Imperfect oblivious string transfer) A quantum oblivious string transfer protocol
with correctnesg, denoted here a®'T;;, with cheating probabilitiesior» and Bor-, is defined
analogously to an imperfect oblivious transfer protocateptzy and z; are n-bit strings. We say
an OT;, protocol is secure ifAor» = 1/2 and Bor» = 1/2", noting that Bob wishes to learn
20 P z1.

Definition 3 (n-fold repetition of oblivious transfer) A quantumn-fold repetition of oblivious
transfer protocol with correctness, denoted here a@Tf}’", with cheating probabilitiesA ypen
and Byraen, is defined analogously to an imperfect oblivious stringngfar protocol except is
an n-bit string (soz, takes values from each of Alice’s strings according)toWe say arOTf?"
protocol is secure ifdypen = 1/2" and Byrer = 1/2", noting that Bob wishes to learmy @ z;.

Definition 4 (Imperfect coin flipping) A quantum coin flipping protocol with correctnessde-
noted here a$’F,, is an interactive protocol, with no inputs, between Alicel 8ob such that:

e The protocol is aborted with probability — p when Alice and Bob are honest.
o If the protocol is not aborted, then they both output a ranijogenerated bit.

We say that the coin flipping protocol has cheating prob&begiAcr and Bcr where
e Acr := max.c( 1} Pr[Alice can force Bob to accept outcomg

e Bcr = max. o1y Pr[Bob can force Alice to accept outcomg

Definition 5 (Bit commitment) A quantum bit commitment protocol, denoted herd345 is an
interactive protocol with no inputs, between Alice and Baeith two phases:

e Commit phase: Bob chooses a randband interacts with Alice to commit o
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e Reveal phase: Alice and Bob interact to reveéb Alice.

o If the parties are honest, Alice accepts the valué afid neither party aborts.
We say that the bit commitment protocol has cheating proaitiaki Az and Bgc where

e Bpo =Y 4cq0.1) 3 Pr[Bob can force Alice to accept outcorhe

e Apc := Pr[Alice can learn after commit phase

Note that the roles of Alice and Bob are usually inverted, &y this definition is more
convenient for the analysis in this paper.

Definition 6 (CHSH,, game) TheCHSH,, gameis a game between Alice and Bob where:

¢ Alice and Bob are allowed to create and share an entanglet gta before the game starts.
Once the game starts, there is no further communication dmtvAlice and Bob.

e Alice receives a random € {0, 1}" and Bob receives a randogn € {0, 1}.
e Alice outputsz € {0,1}™ and Bob output$ € {0,1}".
e Alice and Bob win ify; ® b; = yx;, foralli € {1,...,n}.

The value of the game, denoted herevA8CHSH,, ), is the maximum probability which Alice and
Bob can win.

The CHSH game is the special case wher= 1 (we omit the subscript in this case).

Definition 7 (n-fold repetition of CHSH) Ann-fold repetition of CHSH, denoted here aSHSH®",
is a game between Alice and Bob where:

¢ Alice and Bob are allowed to create and share an entanglet gta before the game starts.
Once the game starts, there is no further communication dmtvAlice and Bob.

e Alice receives arandom € {0, 1}" and Bob receives a randoge {0, 1}".
e Alice outputsz € {0,1}™ and Bob output$ € {0,1}".
e Alice and Bob win ify; ® b; = z; y;, foralli € {1,...,n}.

The value of the game, denoted heresa8CHSH®™), is the maximum probability which Alice and
Bob can win.
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3 Learning and hiding lemmata

3.1 Proofs of theorems

In order to prove Theoref 1 and TheorEm 2, we need the follpwiaim about performing two
projective measurements in sequence that could be of indepeinterest.

Claim 1 Let|¢) be a pure state andlC, I — C} and{D, I — D} be two projective measurements
such that

cos’(a) = [Cl)ll3 > 5 and  cos®(8) := [ D|¥)5 >

N —
N —

Then we have
cos®(a = B) 2 |ICD) I3+ (1 = C)I = D)|$)]3 > cos*(a + ).
Proof We first prove the lower bound. Define the following states

IC1)I, 1T =)l D15 I = D)[¥)l,

We have|y)) = cos(a)|X) + sin(a)|X’) = cos(8)[Y) + sin(8)|Y”). Since|X) is an eigen-
vector ofC, we can writeC' = | X) (X |+ II¢ and similarly we can writd — C' = | X') (X'| 4 I1¢v,
such that

X) = X =

(e, |X) (X)) = (e, [ X)(X]) = (e, [ XNX]) = (Her, [X)NX]) =0.

We now write
V) =70l X) +7|X") + 72| 2)

where|||Z)[|, = 1, (X|Z) = (X'|Z) = 0 and|y| = \/z0, |71| = /21, and|yz| = |/z; for some
xo, 1,22 € [0, 1]. Using this expression fat"), we have

|CDIEM = cos*(8) [ CIY) 3 = cos*(8) (o + w2 [Tc| 2)113) -
Since|y) = cos(a)| X) + sin(a)| X’) = cos(B)[Y) + sin(B)|Y”), we can write
Y') = 7| X) + AIX) +12Z)

with |vo| = v/, |71 = /2, and|s| = /2, for somex(, 2, 24 € [0, 1]. Using this expression
for |Y'), we have

1(1 = O)(1 = D)) = sin?(8) [[(1 = ONY")[3 = sin(8) (a1} + % | TIr|2)2)

Notice that
1= (ICI12)|13+ (T = C)Z)|5 = [Tc|2)|5 + ITer | Z) 5.
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We defined := ||Tl¢|Z) |3 = 1 — ||[TIc#| Z)||3. This gives us
ICDI)II5 + (1 = C)(1 = D))l
= cos(8) (w0 + w2 [To|2)113) +sin*(8) (4 + 2 Icr | 2)]3)
— cos(8) (wo + 224) + sin?(8) («; + (1 — A))
= cos?(B)xzo + sin?(B) (2] +a5) + A (cosz(ﬁ):ng - Sin2(5):13/2)
= cos?(B)mg + sin®*(B) (1 — zf)) + A (cos®(B)zz — sin?(3)h) . (1)

Define A(p, o) := arccos F'(p, o) to be the angle between two stajeand o, which is a metric
(see p413 in [NCOQ]). Since(Y'|Y') = 0, we have

A(Y'),1X)) = /2 = A(1X),[Y)).

This implies that

\/ 2 = cos (arccos [ (Y| X)[) < cos (7/2 — arccos /) = sin (arccos /7o) = /1 — zo.
This yieldsz{, < 1 — zy. Also, notice tha{y|Z) = 0, which implies that

(Z] (cos(B)Y) +sin(B)[Y)) = 0
= cos’(B)[(Z]Y)]? = sin*(B)[(Z|Y")[?
> cos?(B)xy = sin®(B) ).

This gives us the bound
ICDI)3 + [I(1 = C)(1 = D)[3)]|3 > xo. 2
To conclude, we have
arccos(v/zo) = A(|X),[Y)) < A(|X), [¢)) + A([¢), [Y)) < a+ B,

yielding 2o > cos?(a + ) which concludes the proof of the lower bound.
For the upper bound, we haw§ < 1 — ¢ andcos?(8)xy = sin?(3)x}, hence,

ICDI)II5 + (1 = C)(1 = D)5 < 1 — ap,
from (@). We now showl — z, < cos?(8 — «). Sincey/z), = [(Y’|X)|, we have

arccos ( $6> = A([Y"),1X)) < A(1X), [¥) + A(Y"), [)) = 7/2 = (B — ).

SO
\/;’0 > cos(n/2 — (B —a)) =sin(B —a) = 1 —x) < cos’(f —a),

as desired. O

12



Proof of Theorem[1 The proof of the first statement in the theorem relies on theviing decod-
ing strategy: First, we apply the decoding procedure famnieg the first bit and then we apply the
second decoding procedure on the post-measurement steggardbability of decoding the XOR
is the probability that both decoding procedures succedideyrboth fail.

We prove the theorem using the following (equivalent) sgttiWWe suppose two parties, Al-
ice and Bob, share a joint pure staf®) 45 such that Alice performs a projective measurement
M = {Mzy 2, }20,01€{0,1} ON A to determinerg andz; and the post-measured state is Bob's en-
coding ofzy andx;. Let p; be the maximum probability that Bob can learn hjt for i € {0,1}.

We note that without loss of generality, Bob can perform ggutive measurement to guess the
value ofz; with maximum probability [NCQO0]. Le®” = {F,, P;} be Bob’s projective measure-
ment that allows him to guess with probability py = cos?(a) > % and@ = {Qo, @1} be Bob’s
projective measurement that allows him to guesswith probability p; = cos?(3) > % (these
measurements are ¢honly). Consider the following projections (o ® B):

C= Mys @Py and D= My . @ Q.

0,T1 x0,T1

C (resp. D) is the projection on the subspace where Bob guesses dprrgc{resp. x) after
applying P (resp. Q). Consider the strategy where Bob applies the two measumsmeand
one after the other to learfxo, 1), from which he can calculate, & z;. If both guesses are
correct or if both guesses are incorrect then his guessyfer x; is correct.

Let Bob perform the following projective measurement tahelaoth bits

R = {Rwo,wl = QmPrOQ:Dl}:cg,xle{O,l}-

The measurement where Bob guesses both bits correctly vapdyirag R is

E=Y" Myge ® Roga, = DCD

Z0,%1

with outcome probability Q2| E|Q) = ||C'D|Q)||5. The measurement where Bob guesses both bits
incorrectly when applying? is

F= Z MSU()7551 ®Rfo,f1 = ([_D)(I_C)(I_D)

Z0,T1

with outcome probability Q| F|Q2) = ||(I — C)(I — D)|Q>||§. With this strategy, Bob can guess
xo @ x1 With probability

ICDIQ)IZ + (I = C)I = D)IQ)[[3 > cos*(a + B)

by Claim[d1. Note that

e PotpL cos® (@) + cos*(B) S 1
2 2 )
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and by Clain{B (in AppendikIC), we haves(a + 3) > cos?(a) + cos?(3) — 1. From this, we
conclude that
Pr[Bob can learm:y @ 1] > cos?(a + ) > (2¢ — 1)%

For the second statement, ideally, we would like to extendpoaof approach from bits to
strings, but unfortunately this statement is not true amgnmior, andx; are strings. Instead, the
analysis in[[CKS13] can be generalized to strings to show

<cos2(a) + cos2(B)

Prllearning(zo, z1)] > 5

> cos?(a + ).

If ¢ > 1/2, then by ClainiB (in AppendikIC), we hawr[learning(zg, z1)] > ¢(2¢ — 1)2. The
statement about the XOR follows directly from the aboveestent. O

Proof of Theorem[2 By rearranging the XOR learning lemma for bits, we have

1 . 1 . 1 1 -
3 Pr[learningxo] + 5 Pr[learningz;] < 5t 5\/Pr[learn|ngxo ® z1].
SettingPr[learningzy & z1] = 1/2 yields the first statement of the theorem.

For the string version, we know that if the encoding reveasdnformation aboutry & 1,
thenPr[learningzo & x1] = 5= If ¢ := § Pr[learningzo] + 1 Prllearningz;] < 1,2, the theorem
statement is clearly true. ¢f> 1/2, we getPr[Bob guesses,®x1] > ¢(2c—1)? from Theorenf L.
This yields

. 1
o = Prlleamingzo © 1] > ¢(2c — 1)% > 52— 1)2
which impliesc < 3 + \/% as desired. O

Note that this bound for strings is not tight. In particufar, n = 1, this bound gives ug < 1
instead ofos?(7/8) ~ 0.854. However, the probability goes exponentially fast f@ asn grows.
3.2 Applications

Using Theoreni]l and Theorem 2, we prove some new lower boumdsbfivious transfer. We
first prove Theorerm]3 by showing how to construct an imperéeat flipping protocol from an
imperfect oblivious transfer protocol.

Protocol 1 (CFy, from OTy)
1. Alice and Bob perform th® T, protocol so they have outputsy, 1) and (b, w) respectively.
2. If no one aborted, then Alice sends randomly chaesen; {0, 1} to Bob.

3. Bob send$ andw to Alice.

14



4. If z, from Bob is inconsistent with Alice’s bits then Alice abofherwise, they both output
c=bdd.

We see that this is @F), protocol since when both players are honest, therelis-a chance
of aborting (from Alice’s side), and otherwise the outcomeandom.

Using our XOR learning lemma for bits, and an analysis sintdahe one in[[CKS13], we can
show that

Aor = Acrp and
Kitaev’s lower bound for coin flippind [Kit03] states that
AcrBcr > Pr[Alice and Bob honestly outpui.

In the case of imperfect coin flipping, we have that Alice ansbBoth output either bit with
probability p/2 (since the protocol is aborted with probability- p). Therefore, we have

vBor +1
2

Aot > AcrBcr > g = Aot ( Bor + 1> > p,
proving Theorem13.

In Appendix[B, we construct a bit commitment protocol fromahiivious transfer protocol
and by our XOR learning lemmata and the bit commitment loveemiols in [CK11] we prove the
stronger lower bounds in Theorém 4.

4 Equivalences of secure oblivious transfer and CHSH

We give four reductions in order to prove TheorEim 5, the riédos to prove Theorer] 6 fol-
low similarly. We show the reduction from hidden XOR to sexunon-interactive oblivious
string transfer(1. = 2.); from secure, non-interactive oblivious string transfer(tHSH,,
strategies(2. = 4.); from secure oblivious string transfer to hidden XQR — 1.);
and from CHSH,, to hidden XOR(4. = 1.). Since(2. = 3.) is obvious, we have
(1. = 2. = 3.,4. = 1.) allowing us to conclude all four statements are equivalent.

Hidden XOR to secure, non-interactiveOTp (1. = 2.):  Let {py, 4 : 20,21 € {0,1}"}
be a set of quantum states afnd,, ., : zo,z1 € {0,1}"} be a probability distribution satisfying
the properties of statement 1 of Theorlem 5. Alice choages; with probability 7, ., and sends
Pxo.z; 10 BOb. Alice outputs

(z0,21) := (1 — a)xp + azxy + dy, (1 — a)z1 + axg + da)

wherea is a randomly chosen bit andl, d; are independent randomly chosen bit strings. She

sendsa, dy, ds to Bob. The first bit randomizes the success probabilitieBfab (so he has an
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equal chance of learning, as forz;) and thed;, d, bit strings ensure that Alice’s outcomes are
random. Bob picks a uniformly random biend measures to leat depending om, dy, ds from
Alice. In particular, we have

1 1
Pr[Bob learnsz,] = = Pr[Bob learnsy,|a = 0] + = Pr[Bob learnsz;|a = 1
2 2 b

1 1
=3 Pr[Bob learnseg| + 5 Pr[Bob learnst |

=D

for b € {0,1}. Note thatzg @ z; = 29 @ 1 ® d; ® dz is hidden from Bob and Alice cannot learn
b, thus this protocol is secure.

Secure, non-interactiveOT} to CHSH,, strategies(2. = 4.): Suppose there is a secure,
non-interactiveO'T) protocol with correctnesg. Without loss of generali@,AIice and Bob share
the following classical-quantum state

1
> 120, 21)(20, 21| ® Pz,
20,21€{0,1}™

for some quantum statgs, ., that are in Bob’s private spadg. Since Alice has no information
aboutb, the state sent by her is independentohence Bob can use this state to decode either
of Alice’s strings. Let{MSO}ZOe{Ql}n be Bob’s measurement to learn Alice’s first string and let
{M1}.,e(0,13» be his measurement to learn Alice’s second string. Sincedoblearn Alice’s
string with probabilityp, we have

1
p = Pr[Bob learnsy] = Z ﬁ(Mgo,sz,zJ (3)
20,21€4{0,1}7

1
p =Pr[Bobleamss] = ) 2%<lel,pz()7zl>. (4)
z0,21€{0,1}"

Now consider any purifications)., .,) € A ® B of p,, ., where A is a space controlled by
Alice. Let us define

1
€)== Z 2_n‘20 © 21) 4, |20) A ‘21>A3’¢20721>A57
20,21€{0,1}"

|2, to be the post-measured state assuming Alice measdiyed getz, and let Bob’s reduced
state onB bep, := Tra,.4,.4|2) (Q:|. We have thap, = p, for all z € {0,1}" since Bob has no
information abouty @ z;. By Uhlmann’s theorem, we have that for alle {0,1}", there exists
a unitaryU, acting onAs ® Az ® A such that(U, ® Ig)|Q2;) = [Q). We can now define the
strategy for Alice and Bob to win thé HSH,, game with probabilityp:

2For our purposes, we can assume Alice discards her quanatienesicept for the registers containing her values for
zo andzq.
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¢ Alice and Bob share the staf®,) and receive random € {0,1}" andy € {0, 1}, respec-
tively.

e Alice applies(U,)' such that Alice and Bob share the stiig). She measures the space
As in the computational basis to get her outcoime

» Bob applies the measuremeit/;/ },c (0.1}~ on his spacés to determine his outcore

We now analyze this strategy. Conditioned on Alice recgvirand outputting:, Bob has the state
Tr A|Ya,2@a) (Vazea| = Pazaa. |f BOb getsy = 0, he must outpub = a. If Bob getsy = 1, he
must outpub = a @ x. The probability they win th€ HSH,, game with this strategy is

1
Pr[Bob learns:] + 5 Pr[Bob learnst & a]

1 1 1
> gmMdipassa) +5 D 5z (Maga Passa)
z,a€{0,1}" z,a€{0,1}"
= D

N~ N

from Equations[(3) and{4).

Secure, interactive OT} to hidden XOR (3. = 1.): Let[Q)45 be the final joint state of
the interactiveOT}, protocol when Alice and Bob are honest. Suppose Alice meastor learn
(20, 21) which are both distributed uniformly. Let,, ., be Bob's post-measured state. \We now
argue{p., .., : 20,21} andr being the uniform probability distribution satisfy the tieh XOR
condition. Since Alice does not abort because both paraee been honest, and the protocol is
secure, we know the XOR is hidden from Bob. It now suffices &cdbe a decoding procedure to
learn each,, for ¢ € {0, 1}, with probability p.

We may assume Bob measures his part of the §tes (instead of decoding., .,) since it
does not matter if Alice measures before or after Bob. Sup§ag 45 is the post-measured joint
state when Bob partially measurg) 4 to obtain his index. Since Bob will not abort at this
stage and the protocol is secure, we kriois hidden from Alice. Again, by Uhlmann’s theorem,
we know that Bob can transforfty) to [€2;) and vice versa via a unitary acting #h Hence Bob
can measuré) 45 to learnb and collapse the state 1,) and then apply the unitary mapping
€2) t0|Q2). He then uses the decoding procedure ofi& protocol to learn:. with probability

p.

CHSH,, strategies to hidden XOR(4. — 1.): Let |Q) 45 be the state that Alice and Bob
share before receivingandy in aCHSH,, game strategy that succeeds with probabjlituppose
Alice measures to learm (conditioned onr). Let p, . be Bob’s post-measured state which occurs
with probability 7, .. We define the necessary states and probabilities by rétabel — x, and
x@®a — 1. Then, Bob has no information abotg ® z1 = a @ (z @ a) = = from non-signalling,
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and
1 1 1 1
3 Pr[Bob learnsrg] + 3 Pr[Bob learnsr, | = 3 Pr[Bob learnsz] + 3 Pr[Bob learnst & a] = p.

This concludes the proof of Theorém 5.

4.1 Applications of equivalences

As we have discussed in the introduction, our equivalenibes as to use results from one area to
prove new results in another area. More specifically, usingiddden XOR lemmata, we provide
an alternative proof of the optimality dfHSH and an upper bound o68HSH,, (Corollary[1)
and similar bounds for oblivious transfer (Corollddy 2). dddition, using known results about
the CHSH game, we prove an alternative Hidden XOR lemmavfqpairs of bits and a parallel
repetition result for secure oblivious transfer (Lenitha d Gorollary(3).
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A Bounds on the complementarity of measurements

Let us assume for a quantum state and two measurement§’, [ —C'} and{D, [ — D}, that mea-
suring the staté)) with the measuremediC, I — C'} yields the “correct” outcomé€' with proba-
bility cos?(a) and the “wrong” outcomé — C' with probability sin?(«); and similarly, measuring
the statdv)) with the measuremertD, I — D} yields the “correct” outcomé with probability
cos?(/3) and the “wrong” outcomé — D with probability sin?(3).

We would like to study how the effect of performing the firstamerement changes the infor-
mation we can extract through the second measurement. Tasurements are perfectly comple-
mentary, if after having performed the first measurementmooe information can be extracted
by performing the second measurement on the measured Satée other hand, they are non
complementary if after measuring with one, the probabsitof the outcomes of the second are
unaffected (which is the case for classical measurements).

We provide a quantitative analysis for the case where tloerimdtion is correctly decoded when
both measurements output the correct outcome or both otltputrong outcome (as for example,
in the case of trying to learn the XOR of two bits by decoding after the other). Let us defirie
as the following measure

L= |CDI) 53+ (I = C)I = D)) 5 = ICIE) 5 D)5 = I = ) )3 1L = D)3 -

In the case of non complementary measureméhts,0. By Claim[1, we have
L. .
| < 5 sin(20) sin(2«). (5)

Note thatl’ can take both positive and negative values, since the a@rtdnmming the second mea-
surement on the post-measured state can increase or adettregsobability of correctly decoding.
The inequality [(b) can be tight, since whéh= D, we havel' = %sin(25) sin(2«) and when
C =1 — D, we havel' = —1 sin(23) sin(20).

B Lower bounds on the security of perfect oblivious transfes

We now define a bit commitment protocol where the commit pl&seperfect oblivious transfer
protocol and the reveal phase is classical.

Protocol 2 (Bit commitment from oblivious string transfer [[CKS13])

1. Commit phase: Alice and Bob perform t0&} protocol such that Alice gets the output
(20,21) € {0,1}™ x {0,1}"™ and Bob gets the outpuib, w) € {0,1} x {0,1}". Here,bis
the committed bit.

2. Reveal phase: If no one aborted, then Bob s€hds) to Alice.
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3. If (b, w) from Bob is inconsistent witfxy, z;) then Alice aborts. Otherwise, she accepés
the committed bit.

We havedpr» = Apc since both are equal to the amount Alice can lésinom the OT? pro-
tocol without Bob aborting. Itis clear that Bob must sénc:.) if he wants to reveat. Therefore,
by letting ¢ be the probability th©T?7 is not aborted by Alice using Bob’s optimal bit commitment
strategy, we hav®&pc = gc, where

c= L Z Pr[Bob can learr;|Alice did not abort theD'T?' protocol.
be{0,1}
From Theorenll, we know that Bob has a strategy to l€ayn;) with probability
Born > ge(2¢ - 1)?
noting thatBpc > 1/2 — ¢ >1/2.

Fact 1 (Lower bound for bit commitment [CK11]) For any bit commitment protocol, there is a
parametert € [0, 1] such that

B>111t2andA>1+t

Using FactlL, this yields the lower bounthx{ AgT", Bot» } > 0.5852, which is independent of
n. If n = 1, we can use the stronger bound in Theotém 1 to get

Bor > q(2¢ — 1)2

improving the lower bound tmax{Aor, Bor} > 0.599.

C Technical Claims
Claim 2 Supposé, 7 € [0, 7/2] satisfyd + 7 < 7/2. Thencos( + 7) > cos?(0) + cos?(7) — 1.
Proof Without loss of generality, suppose ttiat 7. Consider the function

f(8) = cos(f + 1) — cos?(A) — cos®(1) + 1

for fixed 7. Taking its derivative, we get'(6) = — sin(f + 7) + sin(26), which is nonnegative for
0 € [r,m/3 — /3] and nonpositive fof € [r/3 — 7/3,7/2 — 7|. Note thatr < n/3 —7/3 <
/2 — 7 sinceT < /4. So we conclude thaf is increasing orjr, 7/3 — 7/3] and decreasing
on(r/3 —7/3,m/2 — 7]. Sincef(r) = 0 and f(r/2 — 7) = 0, we have thatf is positive
for0 € [r,n/2 —7]. If 6,7 € [0,7/2] with & + 7 < 7/2 andé > 7, we have exactly that
6 € [r,7/2 — 7]. We conclude from the positivity of thatcos(6 + 7) > cos?(6) + cos?(1) — 1,
as desired. O
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Claim 3 Let, 7 € [0, 5] satisfycos?() +cos®(7) > 1. Thencos(§+7) > cos®(0)+cos?(7) — 1.
Proof Sincef, T € [0,7/2] satisfycos?(#) + cos?(7) > 1, we have
cos?(0) +sin?(f) = 1 < cos?(6) + cos?(7) = cos?(0) + sin?(7/2 — 7)

which gives directlyy < 7/2 — 7, or equivalentlyf +r < 7 /2. Claim[2 concludes the proof. [J

D Bounding the value of CHSH, using semidefinite programming

We discuss the tightness of our bound@©@HSH,,, i.e., that

1 1
* < Z
w*(CHSH,,) < 5 + Noas

This was proven using an equivalence to a Hidden XOR comdéia subsequently by our Hidden

XOR lemma. However, this is not the only way to bound the vafiguantum games. For in-

stance, one can upper bound the value of two-player, onedrgames using semidefinite program-

ming [KRT10]. We now compare our bound to the one given by defimite programs (SDPs).
We solved a relaxatihof this SDP to get numerical upper bounds on the valuelé$H,, for

n € {1,2,3,4,5}. These values can be found in Table 1 along with the values &or proven

upper bound and the classical value lower bound.

Table 1: Bounds on th€HSH,, game forn € {1,2,3,4,5}.

‘ Value anl‘an‘nzB‘n:4‘n:5‘
Classical Value | 0.7500 | 0.6250 | 0.5625 | 0.5312 | 0.5156
Conjectured Value| 0.8535 | 0.7500 | 0.6767 | 0.6250 | 0.5883
SDP Relaxation || 0.8535 | 0.7803 | 0.7437 | 0.7254 | 0.7163
Our Proven Boung 1 0.8535 | 0.7500 | 0.6767 | 0.6250

We can see that the SDP relaxation gives a tighter upper bitnwamdours form < 3, but the
numerical results suggest that our bound outperforms the Igiund for larger values of. This
implies that neither our bound nor the SDP one can be optioraalf n. In fact, we have the
following conjecture for the optimal value.

Conijecture 1 For everyn € N, the value o CHSH,, is w*(CHSH,,) = 3 + 31/

This provides the correct value far= 1 and is a stronger bound for all It remains open to
show whether our conjectured value is a lower and/or an uppend on the value adFHSH,,.

3This relaxation is faster to solve and gives the same nuaieritues as solving the semidefinite program for small
values ofn.
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