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Abstract

Quantum information studies how information is encoded anddecoded in quantum me-
chanical systems. In this paper, we study the basic scenariowhere two classical bits are en-
coded into a quantum state. We prove a “learning lemma,” which provides a new upper bound
on the average probability of decoding each bit that dependson the probability of learning the
XOR of the two bits. Moreover, we give bounds on how well each bit can be decoded when
their XOR is hidden and generalize these concepts to strings.

Our learning lemmata have strong connections to cryptography and nonlocality. In partic-
ular, we show a set of equivalences between secure oblivioustransfer protocols,CHSH-type
games, and quantum encodings hiding the XOR. These equivalences allow us to use results in
one area to prove results in another. For example, we use information bounds to give bounds
on the values ofCHSH-type games and also on the “correctness” of certain secure oblivious
transfer protocols. We also use results of quantum XOR gamesto show that secure oblivious
transfer admits perfect parallel repetition. Last, our learning lemmata enable us to improve the
lower bounds on the cheating probabilities of any quantum oblivious transfer protocol.

1 Introduction

Quantum information studies how information is encoded anddecoded in quantum mechanical
systems. There are many examples where encoding information in quantum states can be much
more efficient than classical ones. For example, one can use the fact that ann-dimensional quantum
system has an exponential description in order to “encode”2n classical bits in it, for example in
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a quantum fingerprint state [BCWdW01]. However, quantum information does not always offer
some advantage, since the uncertainty principle postulates that every time an external observer
measures a quantum system, the state of the system collapsesafter the measurement and some
information may become irretrievable. This intricate interplay between these two properties has
been at the basis of some of the most fundamental results in quantum information, from quantum
encodings, to non-locality, and to quantum cryptography.

Our goal is to study the relation between these areas and provide new insight on the power and
limitations of quantum information, by looking at it through these various lenses. After describing
in more detail the different concepts that we study, we provesome precise quantitative equivalences
between them and provide a number of applications.

1.1 Quantum encodings and learning the XOR

One of the fundamental results in quantum information is Holevo’s theorem [Hol73] which, in
high level, says that if one wants to transmit classical information, then encoding the classical
information into quantum bits is no more efficient than encoding it into classical bits. In other
words, classical information cannot be compressed using quantum information. The same negative
result holds for the weaker task that is referred to as RandomAccess Codes. Here, one is looking
for an encoding ofn classical bits into a quantum state, where each bit can be decoded with high
probability from a single copy of the encoding (but not necessarily all of them at the same time).
Again, quantum encodings are no more efficient than classical ones [Nay99].

However, the extraordinary power of quantum information has been proven in a variety of mod-
els: for example, in communication complexity, there is a number of distributed tasks, where quan-
tum encodings are exponentially more efficient than classical ones [BCWdW01, BJK04, GKK+08,
RK11]. Moreover, it is possible to encode two classical bitsin one quantum bit such that either bit
can be correctly decoded with probabilitycos2(π/8), see [BBBW83, ANTV99].

Let us focus on the following simple scenario: The quantum stateρx0,x1
encodes two classi-

cal bitsx0 andx1 that are drawn from some known distribution. Imagine there exists a decoding
procedure (i.e. a quantum measurement) to decodex0 that provides the correct answer with prob-
ability p0 and a different decoding procedure that decodesx1 with probability p1. We would like
to analyse theaverage decoding probability, i.e. the quantity(p0 + p1)/2.

One way to bound this quantity is through entropic uncertainty relations, which can provide
upper bounds on this probability that depend on the decodingprocedures but not on the encoding
(see for example [OW10]). For example, if the first decoding procedure is a measurement in the
computational basis and the second in the Hadamard basis, itis easy to see that no matter what
quantum encoding we use, there is always some entropy in the distribution of outcomes of these
two measurements. This, in turn, implies that the average decoding probability cannot be 1.

Here, we study the average decoding probability by relatingit to the probability of decoding
some other functionf(x0, x1) of the bits, for example the one that outputs both bits or their XOR.
Classically, it is straightforward to relate the probability of decodingf(x0, x1) to the probabilities
of decoding each bitxi. If one has some partial information about(x0, x1) then it is easy to find
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the optimal guess for(x0, x1). However, the situation is more delicate in the quantum world.
Suppose we try to determinef(x0, x1) by decoding each bitxi. Once the first bit is decoded,
the encoding collapses to some eigenstate of the decoding operator, hence the probability of then
correctly decoding the second bit may have changed. In otherwords, getting information aboutx0
could destroy the information aboutx1.

We provide new upper bounds on the average decoding probability of two classical bits that
depend on the probability of correctly decoding both bits orthe XOR of the two bits. We also
extend these results to strings and discuss their relation to complementarity.

Theorem 1 (XOR learning lemmata) Let{ρx0,x1
: x0, x1} be a quantum encoding of two classi-

cal bits (or bit strings)x0, x1 drawn from some known probability distribution. Denote theaverage
decoding probability ofx0 andx1 by c := 1

2 Pr[learningx0] + 1
2 Pr[learningx1]. Then

1. Pr[learningx0 ⊕ x1] ≥ (2c− 1)2 whenx0, x1 ∈ {0, 1},

2. Pr[learningx0 ⊕ x1] ≥ c(2c − 1)2, if c ≥ 1/2, whenx0, x1 ∈ {0, 1}n.
In fact,Pr[learning(x0, x1)] ≥ c(2c − 1)2, if c ≥ 1/2, whenx0, x1 ∈ {0, 1}n.

The probability of learning a value is defined as the maximum over all decoding procedures of
the probability that the output of the decoding procedure isequal to the correct value.

As a consequence of the previous theorem, in the case where the probability of learningx0⊕x1
is exactly1/2, i.e. the encoding reveals no information about the XOR, we have the following
theorem.

Theorem 2 (Hidden XOR lemmata) Let {ρx0,x1
: x0, x1} be a quantum encoding of two clas-

sical bits (or bit strings)x0, x1 drawn from some known probability distribution. If the encoding
reveals no information aboutx0 ⊕ x1, then

1. 1
2 Pr[learningx0] + 1

2 Pr[learningx1] ≤ cos2(π/8) whenx0, x1 ∈ {0, 1},

2. 1
2 Pr[learningx0] + 1

2 Pr[learningx1] ≤ 1
2 + 1√

2n+1
whenx0, x1 ∈ {0, 1}n.

In order to prove the above theorems, we study how the distribution of the measurement out-
comes changes when we perform the two measurements sequentially on the same quantum state.
We say that two measurements are perfectly complementary ifafter having performed the first
measurement, no more information can be extracted by performing the second measurement on
the post-measured state. On the other hand, they are non complementary if after measuring with
one, the probabilities of the outcomes of the second are unaffected (which is the case for classical
measurements). For example, the measurements on the computational and Hadamard bases are
complementary while the measurements on different subsystems of a product state are non com-
plementary. Our theorems provide a quantitive way of studying the notion of complementarity (see
Appendix A). We also show how our lemmata are related to a number of fundamental properties
of quantum information, including non-local games and quantum cryptographic primitives.
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1.2 The CHSH game

TheCHSH game is a well-known tool for studying quantum non-localityand the power of en-
tanglement [CHSH69]. It is a game between Alice and Bob who initially share a quantum state
and are not allowed to communicate any further. Alice receives a randomx ∈ {0, 1} and outputs
a ∈ {0, 1}. Bob receives a randomy ∈ {0, 1} and outputsb ∈ {0, 1}. The value of the game,
denotedω∗(CHSH), is the maximum probability thata ⊕ b = yx, which can be proven to be
strictly higher than the value when Alice and Bob do not initially share any quantum state.

One can recast the CHSH game in the framework of quantum encodings and show that the value
of the game is equal to Bob’s average decoding probability depending on whether he receivesy = 0
or y = 1. For example, once Alice receivesx and measures to learna, the post-measured state Bob
has is an encoding ofa andx. We can thus write the value of the game as

Pr[Bob receivesy = 0]Pr[Bob outputsb = a] +Pr[Bob receivesy = 1]Pr[Bob outputsb = a⊕x]

which can be rewritten as

1

2
Pr[Bob can learna] +

1

2
Pr[Bob can learna⊕ x].

Note also that the non-signalling condition of the CHSH gamesays that the probability that Bob
can guess Alice’s input is1/2 can be equivalently stated as the fact that the maximum probability
of correctly decoding the XOR ofa anda⊕x (the two bits Bob wishes to learn in this case) is1/2.
With this perspective, we can see how the CHSH game is relatedto quantum encodings where the
XOR is hidden.

In [OW10], they explore this idea further by providing some close relations between special
types of uncertainty relations and the value of the CHSH gamein quantum but also more general
theories.

1.3 Oblivious transfer

Oblivious transfer is a fundamental cryptographic primitive, where Alice sends to Bob one of two
bits (x0, x1) but is oblivious to the bit Bob receives. We wish to design protocols to accomplish the
following three (conflicting) tasks: Alice cannot learn which bit is received by Bob, Bob cannot
learn the XOR1 of Alice’s two bits, Bob learns the correct value when both parties are honest.

Let us defineOTp with cheating probabilities as follows (formal definitionsof all primitives
and games used in this paper can be found in Section 2):

• Alice outputs(z0, z1) and Bob outputs(b, w), wherez0, z1, b are uniformly random bits and
w = zb with probabilityp,

1Note that most definitions enforce the stronger condition oncheating Bob, that he has no (or very little) information
about Alice’s other bit (instead of the XOR of her bits). However, in the classical world, if Bob cannot guess the XOR
then he does not know one of the two bits [DFSS06]. In the quantum world, we show that this definition of cheating
Bob relates directly to the CHSH game.
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• AOT is the maximum probability Alice can guessb without being caught cheating,

• BOT is the maximum probability Bob can guessz0 ⊕ z1 without being caught cheating,

• A protocol issecureif AOT = BOT = 1/2 andperfectif p = 1.

Oblivious transfer was first introduced as a “multiplexing channel” by Wiesner [Wie83] al-
though the cryptographic relevance was not known at the time. It was first used in a cryptographic
sense by Rabin [Rab81] as a way to share secrets. Rabin’s version of oblivious transfer was not
exactly as described above, however it was shown to be equivalent by Crépeau [Cré87]. Oblivious
transfer is a fundamental primitive because it can be used toconstruct arbitrary secure function
evaluation protocols [Kil88].

There are many quantum protocols for variants of oblivious transfer [BBBW83], [DFSS08],
[WST08], [Sch10], [Sik12], [CKS13]. In particular, [BBBW83] showed a secure protocol where
Bob gets the correct value with probabilitycos2(π/8). On the other hand, when Bob gets the
correct value with probability1, then Alice or Bob can cheat with probability58.52%, independent
of what function of(x0, x1) Bob wishes to learn [CKS13].

In this paper, we are using the stand-alone definition of oblivious transfer, which does not
guarantee composability. This makes our lower bounds on thecheating probabilities stronger, and
in addition, this definition highlights the relations between non-locality, cryptography, and quantum
encodings.

To further discuss composability, let us consider a non-interactiveOTp protocol where Alice
sends to Bob a quantum encoding and Bob can choose which bit tolearn by measuring in a partic-
ular basis. Consider using such a protocol to accomplish thefollowing cryptographic task, known
as imperfect Rabin OT (the perfect version was introduced in[Rab81]), as follows:

• Alice and Bob use a non-interactiveOTp protocol so that Bob learnszb with probabilityp.

• Alice sends to Bob a random bitc and outputs the valuezc. If b = c, Bob outputszc (with
probabilityp). If b 6= c, he outputs#.

We see that Bob need only delay his choice ofb (and his measurement) to always learnzc with
probabilityp. If Bob was forced to measure at the end of theOTp protocol, before learningc, then
he would knowzc (with probabilityp) only if c = b. Therefore, the protocols we consider in this
paper, even if secure and non-interactive, are not necessarily composable. It should be clear that our
goal is to relate this cryptographic primitive to non-localgames and the notion of complementarity
of quantum measurements, and not to construct real-life security systems.

We now examine how the correctness is related to the securityof oblivious transfer. In partic-
ular, we answer the question of whether it is possible to sacrifice a little security for the sake of
gaining much correctness by showing a lower bound curve relating the three quantitiesp, AOT,
andBOT.
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Theorem 3 (Lower bound curve for imperfect oblivious transfer) For any OTp protocol, the
correctness parameterp and cheating probabilitiesAOT andBOT satisfy

p ≤ AOT

(

√

BOT + 1
)

.

When we setAOT = BOT = 1/2, we get that for secure protocolsp ≤ cos2(π/8), which is
attainable by the secure protocol mentioned above in [BBBW83]. Therefore, the curve contains
the point corresponding to the largest correctness of a secure oblivious transfer protocol. However,
not every point on this curve is optimal. If we setp = 1, i.e., the protocol is perfect, we get that
max{AOT, BOT} ≥ 56.98%. In fact, we prove a stronger lower bound of59.9% as well as extend
the bound of58.52% to oblivious string transfer, denotedOTn

p , which is the same asOTp, except
Alice outputsn-bit strings instead of single bits.

Theorem 4 (Security lower bounds on perfect oblivious transfers) In any perfectOT1 proto-
col, one party can cheat with probability at least59.9%. Also, for anyn ∈ N and anyOTn

1

protocol, one party can cheat with probability at least58.52% regardless of the function of Alice’s
two strings Bob wishes to learn.

This shows that the security of perfect oblivious transfer cannot be amplified to get arbitrarily
close to50% without sacrificing some correctness. The proofs of the above two theorems are
similar to the lower bound proof in [CKS13] and are detailed in Appendix B.

1.4 Equivalences between CHSH games and secure OT protocols

The learning and hiding lemmata appear to have strong connections with non-local games as well as
cryptographic primitives. In Section 4, we make this explicit and prove (or in some cases reprove)
some bounds for CHSH-type games as well as variations of quantum oblivious transfer. In fact,
we prove two equivalences, each involving three different notions: quantum information theory,
quantum games, and quantum cryptography. The first equivalence we prove involves quantum
encodings hiding the XOR of two strings; the primitiveOTn

p ; and the gameCHSHn, where Alice
receives randomx ∈ {0, 1}n and outputsa ∈ {0, 1}n, Bob receives randombit y ∈ {0, 1} and
outputsb ∈ {0, 1}n, and they win ifai ⊕ bi = y xi for all i ∈ {1, . . . , n} (the XOR is bitwise
andy xi is scalar multiplication). Formal definitions of the games and primitives can be found in
Section 2.

Theorem 5 (Equivalence of secureOTn

p
and CHSHn strategies) The following four statements

are equivalent for everyn ∈ N:

1. There exists a set of quantum states{ρx0,x1
: x0, x1 ∈ {0, 1}n} and a probability distribution

{πx0,x1
: x0, x1 ∈ {0, 1}n} such that when givenρx0,x1

with probabilityπx0,x1
:

Pr[learningx0 ⊕ x1] =
1

2n
and

1

2
Pr[learningx0] +

1

2
Pr[learningx1] = p;
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2. There exists a secure, non-interactiveOTn
p protocol;

3. There exists a secureOTn
p protocol;

4. There exists a strategy forCHSHn that succeeds with probabilityp.

We also prove another equivalence between quantum encodings ofn pairs of bits hiding each
XOR;OT⊗n

p , then-fold parallel repetition of oblivious transfer; andCHSH⊗n, then-fold parallel
repetition ofCHSH. Again,p is the correctness parameter of the oblivious transfer protocol.

Theorem 6 (Equivalence of secureOT⊗n

p
andCHSH⊗n) The following four statements are equiv-

alent for everyn ∈ N:

1. There exists a set of quantum states{ρx0,x1
: x0, x1 ∈ {0, 1}n} and a probability distribution

{πx0,x1
: x0, x1 ∈ {0, 1}n} such that when givenρx0,x1

with probabilityπx0,x1
:

Pr[learningx0 ⊕ x1] =
1

2n
and

1

2n

∑

c∈{0,1}n
Pr[learningxc] = p,

wherexc is the string withi’th bit being thei’th bit of the stringxci ;

2. There exists a secure, non-interactiveOT⊗n
p protocol;

3. There exists a secureOT⊗n
p protocol;

4. There exists a strategy forCHSH⊗n that succeeds with probabilityp.

Note that in our equivalences, apart from translating the learning probabilities, we conserve the
notions of security/non-signalling/hidden XOR through the reductions and we also deal with the
interactivity and aborting of oblivious transfer protocols.

In related work, Wolf and Wullschleger [WW05] showed that PR-Boxes, imaginary boxes
that win the CHSH game with probability 1, are equivalent to perfect secure oblivious transfer.
However, there is a timing issue as pointed out in [BCU+05] that makes the OT non-composable.
Our results also extend these connections to the quantum world.

1.5 Applications of the equivalences

Our equivalences provide new ways of looking at quantum cryptographic primitives, quantum non-
local games, and quantum encodings. They also allow for interesting, or even surprising, conse-
quences. One reason is that we can use previous results in onearea to prove bounds in another.
For example, instead of proving a bound directly for oblivious transfer, one could use a bound for
CHSH to obtain a bound for oblivious transfer. Take for example the semidefinite programs used
to show perfect parallel repetition of XOR games [CSUU08]. These seem to have no connections
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with interactive oblivious transfer protocols, however they are intricately linked through our second
equivalence result and therefore can be used to say something about oblivious transfer.

Using Theorem 2 and the equivalences in Theorem 5, we have an alternative proof of the
optimality ofCHSH and an upper bound onCHSHn. We discuss the optimality of our bound on
CHSHn in Appendix D.

Corollary 1 (Bounds on CHSH and CHSHn) For anyn ∈ N, ω∗(CHSHn) ≤ 1
2 + 1√

2n+1
. Fur-

thermore,ω∗(CHSH) ≤ cos2(π/8), which is attainable by[CHSH69].

Moreover, we have the following bounds on secure oblivious transfer.

Corollary 2 (Bounds onOTn

p
and OTp) For any n ∈ N, the correctness of any secureOTn

p

protocol satisfiesp ≤ 1
2 + 1√

2n+1
. Furthermore, the correctness of any secure oblivious transfer

protocolOTp must satisfyp ≤ cos2(π/8), which is attainable by[BBBW83].

Using perfect parallel repetition of CHSH [CSUU08], we havethe following corollary of The-
orem 6.

Corollary 3 (Perfect parallel repetition of oblivious tran sfer) For anyn ∈ N, the correctness
of any secureOT⊗n

p protocol satisfiesp ≤ (cos2(π/8))n, which is attainable by usingn instances
of a secureOTcos2(π/8) protocol. That is, secure oblivious transfer admits perfect parallel repeti-
tion.

On the other hand, we get another variation of the hiding lemma when the XOR of Alice’s two
strings are hidden.

Lemma 1 (Hidden XOR string lemma, version 2) Let{ρx0,x1
: x0, x1} be a quantum encoding

of two classicaln-bit stringsx0, x1 that are drawn from some known probability distribution. If
the encoding reveals no information aboutx0 ⊕ x1, then

1

2n

∑

c∈{0,1}n
Pr[learningxc] ≤

(

cos2(π/8)
)n
.

2 Cryptographic primitives and quantum game definitions

We give formal definitions of the cryptographic primitives and quantum games used in this paper.

Definition 1 (Imperfect oblivious transfer) A quantum oblivious transfer protocol with correct-
nessp, denoted here asOTp, is an interactive protocol, with no inputs, between Alice and Bob
such that:

• Alice outputs two independent, uniformly random bits(z0, z1) or Abort and Bob outputs
uniformly random bitb and another bitw or Abort.
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• If Alice and Bob are honest,w = zb with probability p (for either value ofb) and neither
party aborts.

• If p = 1 we say the protocol isperfect.

We say that the oblivious transfer protocol has cheating probabilitiesAOT andBOT where

• AOT := Pr[Alice can learnb without Bob aborting],

• BOT := Pr[Bob can learnz0 ⊕ z1 without Alice aborting],

• If AOT = 1/2 andBOT = 1/2 we say the protocol issecure.

The choice to have the information as outputs instead of inputs is for convenience since Alice
and Bob can always derandomize their outputs while retaining the same cheating probabilities
(see [CKS13] for details).

Definition 2 (Imperfect oblivious string transfer) A quantum oblivious string transfer protocol
with correctnessp, denoted here asOTn

p , with cheating probabilitiesAOTn andBOTn , is defined
analogously to an imperfect oblivious transfer protocol exceptz0 andz1 aren-bit strings. We say
an OTn

p protocol is secure ifAOTn = 1/2 andBOTn = 1/2n, noting that Bob wishes to learn
z0 ⊕ z1.

Definition 3 (n-fold repetition of oblivious transfer) A quantumn-fold repetition of oblivious
transfer protocol with correctnessp, denoted here asOT⊗n

p , with cheating probabilitiesAOT⊗n

andBOT⊗n , is defined analogously to an imperfect oblivious string transfer protocol exceptb is
ann-bit string (sozb takes values from each of Alice’s strings according tob). We say anOT⊗n

p

protocol is secure ifAOT⊗n = 1/2n andBOT⊗n = 1/2n, noting that Bob wishes to learnz0 ⊕ z1.

Definition 4 (Imperfect coin flipping) A quantum coin flipping protocol with correctnessp, de-
noted here asCFp, is an interactive protocol, with no inputs, between Alice and Bob such that:

• The protocol is aborted with probability1− p when Alice and Bob are honest.

• If the protocol is not aborted, then they both output a randomly generated bitc.

We say that the coin flipping protocol has cheating probabilitiesACF andBCF where

• ACF := maxc∈{0,1} Pr[Alice can force Bob to accept outcomec],

• BCF := maxc∈{0,1} Pr[Bob can force Alice to accept outcomec].

Definition 5 (Bit commitment) A quantum bit commitment protocol, denoted here asBC, is an
interactive protocol with no inputs, between Alice and Bob,with two phases:

• Commit phase: Bob chooses a randomb and interacts with Alice to commit tob.

9



• Reveal phase: Alice and Bob interact to revealb to Alice.

• If the parties are honest, Alice accepts the value ofb and neither party aborts.

We say that the bit commitment protocol has cheating probabilities ABC andBBC where

• BBC :=
∑

b∈{0,1}
1
2 Pr[Bob can force Alice to accept outcomeb],

• ABC := Pr[Alice can learnb after commit phase].

Note that the roles of Alice and Bob are usually inverted, however this definition is more
convenient for the analysis in this paper.

Definition 6 (CHSHn game) TheCHSHn gameis a game between Alice and Bob where:

• Alice and Bob are allowed to create and share an entangled state |ψ〉 before the game starts.
Once the game starts, there is no further communication between Alice and Bob.

• Alice receives a randomx ∈ {0, 1}n and Bob receives a randomy ∈ {0, 1}.

• Alice outputsa ∈ {0, 1}n and Bob outputsb ∈ {0, 1}n.

• Alice and Bob win ifai ⊕ bi = y xi, for all i ∈ {1, . . . , n}.

The value of the game, denoted here asω∗(CHSHn), is the maximum probability which Alice and
Bob can win.

TheCHSH game is the special case whenn = 1 (we omit the subscript1 in this case).

Definition 7 (n-fold repetition of CHSH) Ann-fold repetition ofCHSH, denoted here asCHSH⊗n,
is a game between Alice and Bob where:

• Alice and Bob are allowed to create and share an entangled state |ψ〉 before the game starts.
Once the game starts, there is no further communication between Alice and Bob.

• Alice receives a randomx ∈ {0, 1}n and Bob receives a randomy ∈ {0, 1}n.

• Alice outputsa ∈ {0, 1}n and Bob outputsb ∈ {0, 1}n.

• Alice and Bob win ifai ⊕ bi = xi yi, for all i ∈ {1, . . . , n}.

The value of the game, denoted here asω∗(CHSH⊗n), is the maximum probability which Alice and
Bob can win.
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3 Learning and hiding lemmata

3.1 Proofs of theorems

In order to prove Theorem 1 and Theorem 2, we need the following claim about performing two
projective measurements in sequence that could be of independent interest.

Claim 1 Let |ψ〉 be a pure state and{C, I −C} and{D, I −D} be two projective measurements
such that

cos2(α) := ‖C|ψ〉‖22 ≥
1

2
and cos2(β) := ‖D|ψ〉‖22 ≥

1

2
.

Then we have

cos2(α − β) ≥ ‖CD|ψ〉‖22 + ‖(I − C)(I −D)|ψ〉‖22 ≥ cos2(α+ β).

Proof We first prove the lower bound. Define the following states

|X〉 := C|ψ〉
‖C|ψ〉‖2

, |X ′〉 := (I − C)|ψ〉
‖(I − C)|ψ〉‖2

, |Y 〉 := D|ψ〉
‖D|ψ〉‖2

, |Y ′〉 := (I −D)|ψ〉
‖(I −D)|ψ〉‖2

.

We have|ψ〉 = cos(α)|X〉 + sin(α)|X ′〉 = cos(β)|Y 〉 + sin(β)|Y ′〉. Since|X〉 is an eigen-
vector ofC, we can writeC = |X〉〈X|+ΠC and similarly we can writeI−C = |X ′〉〈X ′|+ΠC′ ,
such that

〈ΠC , |X〉〈X|〉 = 〈ΠC′ , |X〉〈X|〉 = 〈ΠC , |X ′〉〈X ′|〉 = 〈ΠC′ , |X ′〉〈X ′|〉 = 0.

We now write
|Y 〉 = γ0|X〉+ γ1|X ′〉+ γ2|Z〉

where‖|Z〉‖2 = 1, 〈X|Z〉 = 〈X ′|Z〉 = 0 and|γ0| =
√
x0, |γ1| =

√
x1, and|γ2| =

√
x2 for some

x0, x1, x2 ∈ [0, 1]. Using this expression for|Y 〉, we have

‖CD|ψ〉‖22 = cos2(β) ‖C|Y 〉‖22 = cos2(β)
(

x0 + x2 ‖ΠC |Z〉‖22
)

.

Since|ψ〉 = cos(α)|X〉 + sin(α)|X ′〉 = cos(β)|Y 〉+ sin(β)|Y ′〉, we can write

|Y ′〉 = γ′0|X〉 + γ′1|X ′〉+ γ′2|Z〉

with |γ′0| =
√

x′0, |γ′1| =
√

x′1, and|γ′2| =
√

x′2 for somex′0, x
′
1, x

′
2 ∈ [0, 1]. Using this expression

for |Y ′〉, we have

‖(1− C)(1−D)|ψ〉‖22 = sin2(β)
∥

∥(1− C)|Y ′〉
∥

∥

2

2
= sin2(β)

(

x′1 + x′2 ‖ΠC′ |Z〉‖2
)

.

Notice that
1 = ‖C|Z〉‖22 + ‖(I − C)|Z〉‖22 = ‖ΠC |Z〉‖22 + ‖ΠC′ |Z〉‖22 .

11



We defineA := ‖ΠC |Z〉‖22 = 1− ‖ΠC′ |Z〉‖22. This gives us

‖CD|ψ〉‖22 + ‖(1− C)(1−D)|ψ〉‖22
= cos2(β)

(

x0 + x2 ‖ΠC |Z〉‖22
)

+ sin2(β)
(

x′1 + x′2 ‖ΠC′ |Z〉‖22
)

= cos2(β) (x0 + x2A) + sin2(β)
(

x′1 + x′2(1−A)
)

= cos2(β)x0 + sin2(β)
(

x′1 + x′2
)

+A
(

cos2(β)x2 − sin2(β)x′2
)

= cos2(β)x0 + sin2(β)
(

1− x′0
)

+A
(

cos2(β)x2 − sin2(β)x′2
)

. (1)

DefineA(ρ, σ) := arccosF (ρ, σ) to be the angle between two statesρ andσ, which is a metric
(see p.413 in [NC00]). Since〈Y |Y ′〉 = 0, we have

A(|Y ′〉, |X〉) ≥ π/2−A(|X〉, |Y 〉).

This implies that
√

x′0 = cos
(

arccos |〈Y ′|X〉|
)

≤ cos (π/2− arccos
√
x0) = sin (arccos

√
x0) =

√
1− x0.

This yieldsx′0 ≤ 1− x0. Also, notice that〈ψ|Z〉 = 0, which implies that

〈Z|
(

cos(β)|Y 〉+ sin(β)|Y ′〉
)

= 0

⇐⇒ cos2(β)|〈Z|Y 〉|2 = sin2(β)|〈Z|Y ′〉|2

⇐⇒ cos2(β)x2 = sin2(β)x′2.

This gives us the bound

‖CD|ψ〉‖22 + ‖(1− C)(1−D)|ψ〉‖22 ≥ x0. (2)

To conclude, we have

arccos(
√
x0) = A(|X〉, |Y 〉) ≤ A(|X〉, |ψ〉) +A(|ψ〉, |Y 〉) ≤ α+ β,

yieldingx0 ≥ cos2(α + β) which concludes the proof of the lower bound.
For the upper bound, we havex′0 ≤ 1− x0 andcos2(β)x2 = sin2(β)x′2, hence,

‖CD|ψ〉‖22 + ‖(1−C)(1−D)|ψ〉‖22 ≤ 1− x′0,

from (1). We now show1− x′0 ≤ cos2(β − α). Since
√

x′0 = |〈Y ′|X〉|, we have

arccos

(

√

x′0

)

= A(|Y ′〉, |X〉) ≤ A(|X〉, |ψ〉) +A(|Y ′〉, |ψ〉) = π/2− (β − α).

so
√

x′0 ≥ cos(π/2 − (β − α)) = sin(β − α) =⇒ 1− x′0 ≤ cos2(β − α),

as desired. �
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Proof of Theorem 1 The proof of the first statement in the theorem relies on the following decod-
ing strategy: First, we apply the decoding procedure for learning the first bit and then we apply the
second decoding procedure on the post-measurement state. The probability of decoding the XOR
is the probability that both decoding procedures succeed orthey both fail.

We prove the theorem using the following (equivalent) setting. We suppose two parties, Al-
ice and Bob, share a joint pure state|Ω〉AB such that Alice performs a projective measurement
M = {Mx0,x1

}x0,x1∈{0,1} onA to determinex0 andx1 and the post-measured state is Bob’s en-
coding ofx0 andx1. Let pi be the maximum probability that Bob can learn bitxi, for i ∈ {0, 1}.
We note that without loss of generality, Bob can perform a projective measurement to guess the
value ofxi with maximum probability [NC00]. LetP = {P0, P1} be Bob’s projective measure-
ment that allows him to guessx0 with probabilityp0 = cos2(α) ≥ 1

2 andQ = {Q0, Q1} be Bob’s
projective measurement that allows him to guessx1 with probability p1 = cos2(β) ≥ 1

2 (these
measurements are onB only). Consider the following projections (onA⊗ B):

C =
∑

x0,x1

Mx0,x1
⊗ Px0

and D =
∑

x0,x1

Mx0,x1
⊗Qx1

.

C (resp. D) is the projection on the subspace where Bob guesses correctly x0 (resp. x1) after
applyingP (resp.Q). Consider the strategy where Bob applies the two measurementsP andQ
one after the other to learn(x0, x1), from which he can calculatex0 ⊕ x1. If both guesses are
correct or if both guesses are incorrect then his guess forx0 ⊕ x1 is correct.

Let Bob perform the following projective measurement to learn both bits

R = {Rx0,x1
:= Qx1

Px0
Qx1

}x0,x1∈{0,1}.

The measurement where Bob guesses both bits correctly when applyingR is

E =
∑

x0,x1

Mx0,x1
⊗Rx0,x1

= DCD

with outcome probability〈Ω|E|Ω〉 = ‖CD|Ω〉‖22. The measurement where Bob guesses both bits
incorrectly when applyingR is

F =
∑

x0,x1

Mx0,x1
⊗Rx̄0,x̄1

= (I −D)(I − C)(I −D)

with outcome probability〈Ω|F |Ω〉 = ‖(I − C)(I −D)|Ω〉‖22. With this strategy, Bob can guess
x0 ⊕ x1 with probability

||CD|Ω〉||22 + ||(I − C)(I −D)|Ω〉||22 ≥ cos2(α+ β)

by Claim 1. Note that

c :=
p0 + p1

2
=

cos2(α) + cos2(β)

2
≥ 1

2

13



and by Claim 3 (in Appendix C), we havecos(α + β) ≥ cos2(α) + cos2(β) − 1. From this, we
conclude that

Pr[Bob can learnx0 ⊕ x1] ≥ cos2(α+ β) ≥ (2c − 1)2.

For the second statement, ideally, we would like to extend our proof approach from bits to
strings, but unfortunately this statement is not true anymore if x0 andx1 are strings. Instead, the
analysis in [CKS13] can be generalized to strings to show

Pr[learning(x0, x1)] ≥
(

cos2(α) + cos2(β)

2

)

cos2(α+ β).

If c ≥ 1/2, then by Claim 3 (in Appendix C), we havePr[learning(x0, x1)] ≥ c(2c − 1)2. The
statement about the XOR follows directly from the above statement. �

Proof of Theorem 2 By rearranging the XOR learning lemma for bits, we have

1

2
Pr[learningx0] +

1

2
Pr[learningx1] ≤

1

2
+

1

2

√

Pr[learningx0 ⊕ x1].

SettingPr[learningx0 ⊕ x1] = 1/2 yields the first statement of the theorem.
For the string version, we know that if the encoding reveals no information aboutx0 ⊕ x1,

thenPr[learningx0 ⊕ x1] =
1
2n . If c := 1

2 Pr[learningx0] + 1
2 Pr[learningx1] ≤ 1/2, the theorem

statement is clearly true. Ifc ≥ 1/2, we getPr[Bob guessesx0⊕x1] ≥ c(2c−1)2 from Theorem 1.
This yields

1

2n
= Pr[learningx0 ⊕ x1] ≥ c(2c − 1)2 ≥ 1

2
(2c− 1)2

which impliesc ≤ 1
2 +

1√
2n+1

, as desired. �

Note that this bound for strings is not tight. In particular,for n = 1, this bound gives usc ≤ 1
instead ofcos2(π/8) ≃ 0.854. However, the probability goes exponentially fast to1/2 asn grows.

3.2 Applications

Using Theorem 1 and Theorem 2, we prove some new lower bounds for oblivious transfer. We
first prove Theorem 3 by showing how to construct an imperfectcoin flipping protocol from an
imperfect oblivious transfer protocol.

Protocol 1 (CFp from OTp)

1. Alice and Bob perform theOTp protocol so they have outputs(z0, z1) and(b, w) respectively.

2. If no one aborted, then Alice sends randomly chosend ∈R {0, 1} to Bob.

3. Bob sendsb andw to Alice.
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4. If zb from Bob is inconsistent with Alice’s bits then Alice aborts. Otherwise, they both output
c = b⊕ d.

We see that this is aCFp protocol since when both players are honest, there is a1− p chance
of aborting (from Alice’s side), and otherwise the outcome is random.

Using our XOR learning lemma for bits, and an analysis similar to the one in [CKS13], we can
show that

AOT = ACF and

√
BOT + 1

2
≥ BCF.

Kitaev’s lower bound for coin flipping [Kit03] states that

ACFBCF ≥ Pr[Alice and Bob honestly output0].

In the case of imperfect coin flipping, we have that Alice and Bob both output either bit with
probabilityp/2 (since the protocol is aborted with probability1− p). Therefore, we have

AOT

√
BOT + 1

2
≥ ACFBCF ≥ p

2
=⇒ AOT

(

√

BOT + 1
)

≥ p,

proving Theorem 3.
In Appendix B, we construct a bit commitment protocol from anoblivious transfer protocol

and by our XOR learning lemmata and the bit commitment lower bounds in [CK11] we prove the
stronger lower bounds in Theorem 4.

4 Equivalences of secure oblivious transfer and CHSH

We give four reductions in order to prove Theorem 5, the reductions to prove Theorem 6 fol-
low similarly. We show the reduction from hidden XOR to secure, non-interactive oblivious
string transfer(1. =⇒ 2.); from secure, non-interactive oblivious string transfer to CHSHn

strategies(2. =⇒ 4.); from secure oblivious string transfer to hidden XOR(3. =⇒ 1.);
and fromCHSHn to hidden XOR(4. =⇒ 1.). Since(2. =⇒ 3.) is obvious, we have
(1. =⇒ 2. =⇒ 3., 4. =⇒ 1.) allowing us to conclude all four statements are equivalent.

Hidden XOR to secure, non-interactiveOTn

p
(1. =⇒ 2.): Let {ρx0,x1

: x0, x1 ∈ {0, 1}n}
be a set of quantum states and{πx0,x1

: x0, x1 ∈ {0, 1}n} be a probability distribution satisfying
the properties of statement 1 of Theorem 5. Alice choosesx0, x1 with probabilityπx0,x1

and sends
ρx0,x1

to Bob. Alice outputs

(z0, z1) := ((1− a)x0 + ax1 + d1, (1 − a)x1 + ax0 + d2)

wherea is a randomly chosen bit andd1, d2 are independent randomly chosen bit strings. She
sendsa, d1, d2 to Bob. The first bit randomizes the success probabilities for Bob (so he has an
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equal chance of learningz0 as forz1) and thed1, d2 bit strings ensure that Alice’s outcomes are
random. Bob picks a uniformly random bitb and measures to learnzb depending ona, d1, d2 from
Alice. In particular, we have

Pr[Bob learnszb] =
1

2
Pr[Bob learnszb|a = 0] +

1

2
Pr[Bob learnszb̄|a = 1]

=
1

2
Pr[Bob learnsx0] +

1

2
Pr[Bob learnsx1]

= p,

for b ∈ {0, 1}. Note thatz0 ⊕ z1 = x0 ⊕ x1 ⊕ d1 ⊕ d2 is hidden from Bob and Alice cannot learn
b, thus this protocol is secure.

Secure, non-interactiveOTn

p
to CHSHn strategies(2. =⇒ 4.): Suppose there is a secure,

non-interactiveOTn
p protocol with correctnessp. Without loss of generality,2 Alice and Bob share

the following classical-quantum state
∑

z0,z1∈{0,1}n

1

22n
|z0, z1〉〈z0, z1| ⊗ ρz0,z1 ,

for some quantum statesρz0,z1 that are in Bob’s private spaceB. Since Alice has no information
aboutb, the state sent by her is independent ofb, hence Bob can use this state to decode either
of Alice’s strings. Let{M0

z0}z0∈{0,1}n be Bob’s measurement to learn Alice’s first string and let
{M1

z1}z1∈{0,1}n be his measurement to learn Alice’s second string. Since Bobcan learn Alice’s
string with probabilityp, we have

p = Pr[Bob learnsz0] =
∑

z0,z1∈{0,1}n

1

22n
〈M0

z0 , ρz0,z1〉 (3)

p = Pr[Bob learnsz1] =
∑

z0,z1∈{0,1}n

1

22n
〈M1

z1 , ρz0,z1〉. (4)

Now consider any purifications|ψz0,z1〉 ∈ A ⊗ B of ρz0,z1 whereA is a space controlled by
Alice. Let us define

|Ω〉 :=
∑

z0,z1∈{0,1}n

1

2n
|z0 ⊕ z1〉A1

|z0〉A2
|z1〉A3

|ψz0,z1〉AB,

|Ωx〉 to be the post-measured state assuming Alice measuredA1 to getx, and let Bob’s reduced
state onB beρx := TrA2A3A|Ωx〉〈Ωx|. We have thatρx = ρ0 for all x ∈ {0, 1}n since Bob has no
information aboutz0 ⊕ z1. By Uhlmann’s theorem, we have that for allx ∈ {0, 1}n, there exists
a unitaryUx acting onA2 ⊗ A3 ⊗ A such that(Ux ⊗ IB)|Ωx〉 = |Ω0〉. We can now define the
strategy for Alice and Bob to win theCHSHn game with probabilityp:

2For our purposes, we can assume Alice discards her quantum state except for the registers containing her values for
z0 andz1.
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• Alice and Bob share the state|Ω0〉 and receive randomx ∈ {0, 1}n andy ∈ {0, 1}, respec-
tively.

• Alice applies(Ux)
† such that Alice and Bob share the state|Ωx〉. She measures the space

A2 in the computational basis to get her outcomea.

• Bob applies the measurement{My
b }b∈{0,1}n on his spaceB to determine his outcomeb.

We now analyze this strategy. Conditioned on Alice receiving x and outputtinga, Bob has the state
TrA|ψa,x⊕a〉〈ψa,x⊕a| = ρa,x⊕a. If Bob getsy = 0, he must outputb = a. If Bob getsy = 1, he
must outputb = a⊕ x. The probability they win theCHSHn game with this strategy is

1

2
Pr[Bob learnsa] +

1

2
Pr[Bob learnsx⊕ a]

=
1

2

∑

x,a∈{0,1}n

1

22n
〈M0

a , ρa,x⊕a〉+
1

2

∑

x,a∈{0,1}n

1

22n
〈M1

x⊕a, ρa,x⊕a〉

= p,

from Equations (3) and (4).

Secure, interactiveOTn

p
to hidden XOR (3. =⇒ 1.): Let |Ω〉AB be the final joint state of

the interactiveOTn
p protocol when Alice and Bob are honest. Suppose Alice measures to learn

(z0, z1) which are both distributed uniformly. Letρz0,z1 be Bob’s post-measured state. We now
argue{ρz0,z1 : z0, z1} andπ being the uniform probability distribution satisfy the hidden XOR
condition. Since Alice does not abort because both parties have been honest, and the protocol is
secure, we know the XOR is hidden from Bob. It now suffices to describe a decoding procedure to
learn eachzc, for c ∈ {0, 1}, with probabilityp.

We may assume Bob measures his part of the state|Ω〉AB (instead of decodingρz0,z1) since it
does not matter if Alice measures before or after Bob. Suppose |Ωb〉AB is the post-measured joint
state when Bob partially measures|Ω〉AB to obtain his indexb. Since Bob will not abort at this
stage and the protocol is secure, we knowb is hidden from Alice. Again, by Uhlmann’s theorem,
we know that Bob can transform|Ω0〉 to |Ω1〉 and vice versa via a unitary acting onB. Hence Bob
can measure|Ω〉AB to learnb and collapse the state to|Ωb〉 and then apply the unitary mapping
|Ωb〉 to |Ωc〉. He then uses the decoding procedure of theOTn

p protocol to learnzc with probability
p.

CHSHn strategies to hidden XOR(4. =⇒ 1.): Let |Ω〉AB be the state that Alice and Bob
share before receivingx andy in aCHSHn game strategy that succeeds with probabilityp. Suppose
Alice measures to learna (conditioned onx). Let ρa,x be Bob’s post-measured state which occurs
with probabilityπa,x. We define the necessary states and probabilities by relabelling a → x0 and
x⊕a→ x1. Then, Bob has no information aboutx0⊕x1 = a⊕ (x⊕a) = x from non-signalling,
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and

1

2
Pr[Bob learnsx0] +

1

2
Pr[Bob learnsx1] =

1

2
Pr[Bob learnsa] +

1

2
Pr[Bob learnsx⊕ a] = p.

This concludes the proof of Theorem 5.

4.1 Applications of equivalences

As we have discussed in the introduction, our equivalences allow us to use results from one area to
prove new results in another area. More specifically, using our Hidden XOR lemmata, we provide
an alternative proof of the optimality ofCHSH and an upper bound onCHSHn (Corollary 1)
and similar bounds for oblivious transfer (Corollary 2). Inaddition, using known results about
theCHSH game, we prove an alternative Hidden XOR lemma forn pairs of bits and a parallel
repetition result for secure oblivious transfer (Lemma 1 and Corollary 3).
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[DFSS08] I. Damgård, S. Fehr, L. Salvail, and C. Schaffner.Cryptography in the bounded
quantum-storage model.SIAM J. Comput., 37(6):1865–1890, 2008.

[EGL82] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
In CRYPTO 1982, pages 205–210, 1982.

[GKK+08] D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz, and R. de Wolf. Exponential separa-
tion for one-way quantum communication complexity, with applications to cryptog-
raphy.SIAM J. Comput., 38(5):1695–1708, 2008.

[Hol73] A. Holevo. Some estimates of the information transmitted by quantum communica-
tion channels.Problemy Peredachi Informatsii, 9:3–11, 1973.

[JRS02] R. Jain, J. Radhakrishnan, and P. Sen. A theorem about relative entropy of quantum
states with an application to privacy in quantum communication. In Proceedings of
43rd IEEE Symposium on Foundations of Computer Science, 2002.

[Kil88] J. Kilian. Founding crytpography on oblivious transfer. InSTOC ’88: Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages 20–31, New
York, NY, USA, 1988. ACM Press.

19



[Kit03] A. Kitaev. Quantum coin-flipping. Presentation at the 6th workshop on quantum
information processing (QIP 2003), 2003.

[KRT10] J. Kempe, O. Regev, and B. Toner. Unique games with entangled provers are easy.
SIAM Journal on Computing, 39(7):3207–3229, 2010.

[Lo97] H.-K. Lo. Insecurity of quantum secure computations. Phys. Rev. A, 56(2):1154–
1162, 1997.

[Nay99] A. Nayak. Optimal lower bounds for quantum automataand random access codes.
Proceedings of 40th IEEE Symposium on Foundations of Computer Science, 0:369–
376, 1999.

[NC00] M. Nielsen and I. Chuang.Quantum computation and quantum information. Cam-
bridge University Press, New York, NY, USA, 2000.

[OW10] J. Oppenheim and S. Wehner. The uncertainty principle determines the non-locality
of quantum mechanics.Science, 330:6007:1072–1074, 2010.

[Rab81] M. Rabin. How to exchange secrets by oblivious transfer. In Technical Report
TR-81, Aiken Computation Laboratory, Harvard University, 1981.

[RK11] O. Regev and B. Klartag. Quantum one-way communication can be exponentially
stronger than classical communication. InSTOC, pages 31–40, 2011.

[Sch10] C. Schaffner. Simple protocols for oblivious transfer and secure identification in the
noisy-quantum-storage model.Phys. Rev. A, 82:032308, 2010.

[Sik12] J. Sikora. On the existence of loss-tolerant quantum oblivious transfer protocols.
Quantum Information and Computation, 12(7&8):609–619, 2012.

[SSS09] L. Salvail, C. Schaffner, and M. Sotakova. On the power of two-party quantum
cryptography. InASIACRYPT 2009, 2009.

[Wie83] S. Wiesner. Conjugate coding.SIGACT News, 15(1):78–88, 1983.

[WST08] S. Wehner, C. Schaffner, and B. Terhal. Cryptography from noisy storage.Phys.
Rev. Lett., 100(22):220502, 2008.

[WW05] S. Wolf and J. Wullschleger. Oblivious transfer and quantum non-locality. InPro-
ceedings of International Symposium on Information Theory, pages 1745 –1748,
2005.

[Yao95] A. Yao. Security of quantum protocols against coherent measurements. InProceed-
ings of 26th Annual ACM Symposium on the Theory of Computing, pages 67–75.
ACM, 1995.

20



A Bounds on the complementarity of measurements

Let us assume for a quantum state|ψ〉 and two measurements{C, I−C} and{D, I−D}, that mea-
suring the state|ψ〉 with the measurement{C, I −C} yields the “correct” outcomeC with proba-
bility cos2(α) and the “wrong” outcomeI − C with probability sin2(α); and similarly, measuring
the state|ψ〉 with the measurement{D, I − D} yields the “correct” outcomeD with probability
cos2(β) and the “wrong” outcomeI −D with probability sin2(β).

We would like to study how the effect of performing the first measurement changes the infor-
mation we can extract through the second measurement. Two measurements are perfectly comple-
mentary, if after having performed the first measurement, nomore information can be extracted
by performing the second measurement on the measured state.On the other hand, they are non
complementary if after measuring with one, the probabilities of the outcomes of the second are
unaffected (which is the case for classical measurements).

We provide a quantitative analysis for the case where the information is correctly decoded when
both measurements output the correct outcome or both outputthe wrong outcome (as for example,
in the case of trying to learn the XOR of two bits by decoding one after the other). Let us defineΓ
as the following measure

Γ = ‖CD|ψ〉‖22+‖(I − C)(I −D)|ψ〉‖22−‖C|ψ〉‖22 ‖D|ψ〉‖22−‖(I −C)|ψ〉‖22 ‖(I −D)|ψ〉‖22 .

In the case of non complementary measurements,Γ = 0. By Claim 1, we have

|Γ| ≤ 1

2
sin(2β) sin(2α). (5)

Note thatΓ can take both positive and negative values, since the act of performing the second mea-
surement on the post-measured state can increase or decrease the probability of correctly decoding.
The inequality (5) can be tight, since whenC = D, we haveΓ = 1

2 sin(2β) sin(2α) and when
C = I −D, we haveΓ = −1

2 sin(2β) sin(2α).

B Lower bounds on the security of perfect oblivious transfers

We now define a bit commitment protocol where the commit phaseis a perfect oblivious transfer
protocol and the reveal phase is classical.

Protocol 2 (Bit commitment from oblivious string transfer [ CKS13])

1. Commit phase: Alice and Bob perform theOTn
1 protocol such that Alice gets the output

(z0, z1) ∈ {0, 1}n × {0, 1}n and Bob gets the output(b, w) ∈ {0, 1} × {0, 1}n. Here,b is
the committed bit.

2. Reveal phase: If no one aborted, then Bob sends(b, w) to Alice.
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3. If (b, w) from Bob is inconsistent with(z0, z1) then Alice aborts. Otherwise, she acceptsb as
the committed bit.

We haveAOTn = ABC since both are equal to the amount Alice can learnb from theOTn
1 pro-

tocol without Bob aborting. It is clear that Bob must send(c, zc) if he wants to revealc. Therefore,
by lettingq be the probability theOTn

1 is not aborted by Alice using Bob’s optimal bit commitment
strategy, we haveBBC = qc, where

c =
1

2

∑

b∈{0,1}
Pr[Bob can learnzb|Alice did not abort theOTn

1 protocol].

From Theorem 1, we know that Bob has a strategy to learn(z0, z1) with probability

BOTn ≥ qc(2c − 1)2

noting thatBBC ≥ 1/2 =⇒ c ≥ 1/2.

Fact 1 (Lower bound for bit commitment [CK11]) For any bit commitment protocol, there is a
parametert ∈ [0, 1] such that

BBC ≥
(

1−
(

1− 1√
2

)

t

)2

and ABC ≥ 1

2
+
t

2
.

Using Fact 1, this yields the lower boundmax{AOTn , BOTn} ≥ 0.5852, which is independent of
n. If n = 1, we can use the stronger bound in Theorem 1 to get

BOT ≥ q(2c − 1)2

improving the lower bound tomax{AOT, BOT} ≥ 0.599.

C Technical Claims

Claim 2 Supposeθ, τ ∈ [0, π/2] satisfyθ + τ ≤ π/2. Thencos(θ + τ) ≥ cos2(θ) + cos2(τ)− 1.

Proof Without loss of generality, suppose thatθ ≥ τ . Consider the function

f(θ) = cos(θ + τ)− cos2(θ)− cos2(τ) + 1

for fixedτ . Taking its derivative, we getf ′(θ) = − sin(θ+ τ) + sin(2θ), which is nonnegative for
θ ∈ [τ, π/3 − τ/3] and nonpositive forθ ∈ [π/3 − τ/3, π/2 − τ ]. Note thatτ ≤ π/3 − τ/3 ≤
π/2 − τ sinceτ ≤ π/4. So we conclude thatf is increasing on[τ, π/3 − τ/3] and decreasing
on [π/3 − τ/3, π/2 − τ ]. Sincef(τ) = 0 and f(π/2 − τ) = 0, we have thatf is positive
for θ ∈ [τ, π/2 − τ ]. If θ, τ ∈ [0, π/2] with θ + τ ≤ π/2 and θ ≥ τ , we have exactly that
θ ∈ [τ, π/2 − τ ]. We conclude from the positivity off thatcos(θ + τ) ≥ cos2(θ) + cos2(τ) − 1,
as desired. �

22



Claim 3 Letθ, τ ∈ [0, π2 ] satisfycos2(θ)+cos2(τ) ≥ 1. Thencos(θ+τ) ≥ cos2(θ)+cos2(τ)−1.

Proof Sinceθ, τ ∈ [0, π/2] satisfycos2(θ) + cos2(τ) ≥ 1, we have

cos2(θ) + sin2(θ) = 1 ≤ cos2(θ) + cos2(τ) = cos2(θ) + sin2(π/2− τ)

which gives directlyθ ≤ π/2− τ , or equivalently,θ+ τ ≤ π/2. Claim 2 concludes the proof. �

D Bounding the value of CHSHn using semidefinite programming

We discuss the tightness of our bound onCHSHn, i.e., that

ω∗(CHSHn) ≤
1

2
+

1√
2n+1

.

This was proven using an equivalence to a Hidden XOR condition and subsequently by our Hidden
XOR lemma. However, this is not the only way to bound the valueof quantum games. For in-
stance, one can upper bound the value of two-player, one-round games using semidefinite program-
ming [KRT10]. We now compare our bound to the one given by semidefinite programs (SDPs).

We solved a relaxation3 of this SDP to get numerical upper bounds on the value ofCHSHn for
n ∈ {1, 2, 3, 4, 5}. These values can be found in Table 1 along with the values from our proven
upper bound and the classical value lower bound.

Table 1: Bounds on theCHSHn game forn ∈ {1, 2, 3, 4, 5}.

Value n = 1 n = 2 n = 3 n = 4 n = 5

Classical Value 0.7500 0.6250 0.5625 0.5312 0.5156

Conjectured Value 0.8535 0.7500 0.6767 0.6250 0.5883

SDP Relaxation 0.8535 0.7803 0.7437 0.7254 0.7163

Our Proven Bound 1 0.8535 0.7500 0.6767 0.6250

We can see that the SDP relaxation gives a tighter upper boundthan ours forn ≤ 3, but the
numerical results suggest that our bound outperforms the SDP bound for larger values ofn. This
implies that neither our bound nor the SDP one can be optimal for all n. In fact, we have the
following conjecture for the optimal value.

Conjecture 1 For everyn ∈ N, the value ofCHSHn is ω∗(CHSHn) =
1
2 +

1
2

√

1
2n .

This provides the correct value forn = 1 and is a stronger bound for alln. It remains open to
show whether our conjectured value is a lower and/or an upperbound on the value ofCHSHn.

3This relaxation is faster to solve and gives the same numerical values as solving the semidefinite program for small
values ofn.
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