
RealKrimp — Finding Hyperintervals

that Compress with MDL for Real-Valued Data

Jouke Witteveen1, Wouter Duivesteijn2, Arno Knobbe3, and Peter Grünwald4

1 ILLC, University of Amsterdam, The Netherlands
2 Fakultät für Informatik, LS VIII, TU Dortmund, Germany

3 LIACS, Leiden University, The Netherlands
4 CWI and Leiden University, The Netherlands

Abstract. The MDL Principle (induction by compression) is applied
with meticulous effort in the Krimp algorithm for the problem of item-
set mining, where one seeks exceptionally frequent patterns in a binary
dataset. As is the case with many algorithms in data mining, Krimp is
not designed to cope with real-valued data, and it is not able to han-
dle such data natively. Inspired by Krimp’s success at using the MDL
Principle in itemset mining, we develop RealKrimp: an MDL-based
Krimp-inspired mining scheme that seeks exceptionally high-density pat-
terns in a real-valued dataset. We review how to extend the underlying
Kraft inequality, which relates probabilities to codelengths, to real-valued
data. Based on this extension we introduce the RealKrimp algorithm:
an efficient method to find hyperintervals that compress the real-valued
dataset, without the need for pre-algorithm data discretization.

Keywords: Minimum Description Length, Information Theory, Real-
Valued Data, RealKrimp.

1 Introduction

When data result from measurements made in the real world, they quite of-
ten are taken from a continuous, real-valued domain. This holds, for example,
for meteorological measurements like temperature, precipitation, atmospheric
pressure, etcetera. Similarly, the sensors in a smartphone (GPS, accelerome-
ter, barometer, magnetometer, gyroscope, light sensor, etcetera) monitor data
streams from a domain that is, for all practical purposes, real-valued. Most data
mining algorithms, however, specialize in data from a discrete domain (binary,
nominal), and can only handle real-valued data by discretization. Native support
for real-valued data would be an asset to such algorithms.

An example of a popular discrete algorithm is Krimp [1], an algorithm that
finds local patterns in the data. Specifically, Krimp seeks frequent itemsets :
attributes that co-occur unusually often in the dataset. Krimp employs a mining
scheme to heuristically find itemsets that compress the data well, gauged by a
decoding function based on the Minimum Description Length Principle [2,3].

In an effort to extend the applicability of Krimp to continuous data, we intro-
duce RealKrimp: a Krimp-inspired mining scheme with a strong foundation in

H. Blockeel et al. (Eds.): IDA 2014, LNCS 8819, pp. 368–379, 2014.
© Springer International Publishing Switzerland 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301648766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RealKrimp 369

information theory, that finds interesting hyperintervals in real-valued datasets.
This interestingness is expressed by an MDL-based model for compression in
real-valued data. The resulting RealKrimp algorithm can be seen as a Krimp-
inspired model for frequent patterns in continuous data, where the role of the
frequent itemsets is played by hyperintervals in the continuous domains, that
show an exceptionally high density.

2 Related Work

The Minimum Description Length (MDL) principle [2,3] can be seen as the more
practical cousin of Kolmogorov complexity [4]. The main insight is that patterns
in a dataset can be used to compress that dataset, and that this idea can be used
to infer which patterns are particularly relevant in a dataset by gauging how well
they compress: the authors of [1] summarize it by the slogan Induction by Com-
pression. Many data mining problems can be practically solved by compression.
Examples of this principle have been given for classification, clustering, distance
function design (all in [5]), feature selection [6], finding temporally surprising
itemsets [7], and defining a parameter-free distance measure on time series [8].
Clearly, the versatility of compression as a data mining tool has been recognized
by the community. All the work done so far within the data mining community,
however, has in common that the structure being compressed stems from a do-
main that is either finite [5,6,7] or at most countably infinite [5,8]. This is in
sharp contrast with the use of MDL in statistics and machine learning, which
has included continuous applications such as density estimation and regression
from the very beginning [2]. The present paper provides a continuous-data MDL
application in data mining.

In the data mining subtask of finding a small subset of dataset-describing
patterns, arguably the most famous contribution is Krimp [1], as described in
the introduction of this paper. An alternative and closely related approach to
data summarizing is tiling [9]. Tiling seeks a group of, potentially overlapping,
itemsets that together cover all the ones in a binary dataset. Similar as it may be
to Krimp, tiling does not concern itself with model complexity or MDL. While
Krimp approaches the binary dataset in an asymmetric fashion, only regarding
the items that are present (the ones), two methods inspired byKrimp fill the void
by approaching the dataset in a symmetric fashion. Pack [10] combines decision
trees with a refined version of MDL, and typically selects more itemsets than
Krimp. Conversely, LESS [11] sacrifices performance in terms of the involved
compression ratio, in order to end up with a set of low-entropy patterns that is
typically an order of magnitude smaller than the set found with Krimp.

3 Relating Codes and Probabilities

An important piece of mathematical background for the application of MDL in
data mining, which is relevant for both Krimp and RealKrimp, is the Kraft
Inequality, relating code lengths and probabilities (cf. [12]). In the following

370 J. Witteveen et al.

sections, we inspect the inequality in its familiar form, where it is only applicable
to at most countable spaces, and then show the derivation of a suitable code
length function for Euclidean (hence uncountable) spaces.

Consider a sample space, i.e., a set of possible outcomesΩ. Let E be a partition
of Ω that is finite or countably infinite. We think of E as the level of granularity
at which data are observed. If Ω is countable, then in most MDL applications,
E = Ω; but if Ω = R

d, then we will always receive data only up to a given
precision determined by the data generating and processing system at hand;
then E is some coarsening of Rd; in practice, the modeler or miner may not
know the details (such as the precision) of this coarsening but as we will see,
the MDL principle can still be applied without such knowledge. A probability
mass function p on a countable set E is simply a function p : E → [0, 1] so that∑

y∈E p(y) = 1. We call p defective if, instead,
∑

y∈E p(y) < 1.
Let A denote a finite alphabet, and let C denote a finite or countably infinite

prefix-free subset of
⋃

i≥0 Ai, i.e., a subset of the strings over A such that there
exist no two elements z, z′ of C such that z is a strict prefix of z′. A description
method [3] for E with code word set C is defined implicitly by its decoding func-
tion, a surjection D : C � E . While we allow that some y ∈ E can be encoded
in more than one way, we do require unique decodability, so that the inverse
function D from C to E does exist. Note that these requirements are standard
in all applications of MDL [3]. We call a description method a (prefix) code if
D is 1-to-1; a natural way to turn a given description method D into a code
is to encode each y ∈ E by the shortest z with D(z) = y. The length function
corresponding to code C, �C : E → Z≥0, assigns to an outcome in E the length
of its encoding under C.

Theorem 1 (Kraft). For every code C over an alphabet A, a (possibly defec-
tive) probability mass function p on E exists that makes short encoded lengths
and high probabilities of outcomes correspond as follows:

for all y ∈ E: − log|A| p(y) = �C(y). (1)

Proofs of this result exist [12] for the case when C is finite or countably infinite.
One can also prove the converse of Theorem 1: for every probability mass func-
tion p on E , there is a code C such that (1) holds. This allows a bi-directional
identification of code length functions and probability mass functions [3]. Thus,
as in most papers on MDL and Shannon information theory, we simply define
codelength functions in terms of probability mass functions: every probability
mass function p on E defines a code with for all s ∈ C, lengths given by

�(s) = − log p(s), (2)

This is also the manner in which the relation between code lengths and proba-
bilities is introduced in the Krimp paper [1, Theorem 1].

What if outcomes are continuous? We start with the basic case with a sample
space equal to R. No code allows encoding data points x ∈ R with infinite pre-
cision, so one proceeds by encoding a discretization of x. We define the uniform

RealKrimp 371

discretization Ek of R at level k as the partition { [n/2k, (n+1)/2k) | n ∈ Z} of
R. Every possible outcome x is a member of exactly one element of Ek, denoted
[x]k.

Given an arbitrary distribution P on (a connected subset of) R, identified by
its density p, and a data point x0 ∈ R, the probability of [x0]k is given by

P ([x0]k) =

∫

x∈[x0]k

p(x)dx ≈ p(x0)2
−k (3)

As follows directly from the definition of (Riemann) integration, provided p is
continuous, the approximation (3) gets better as k → ∞. This makes it mean-
ingful to define a length-like function, the lengthiness, on R by:

�k(x) := − log p(x) + k. (4)

As k gets larger, (4) becomes a better approximation to the actual codelength
− logP ([x]k) achieved at precision k. The lengthiness �k would only become
a proper length function, i.e., one that satisfies Theorem 1, in the limit as k
approaches infinity, where it would assign infinite length to all elements of X .
However, crucially, the lengthiness does not alter its behavior with varying k,
other than that it is shifted upwards or downwards. Hence, to compare elements
of X , non-limit values for the lengthiness can be used as a length proxy.

To extend the idea above to encode data vectors x = (a1, . . . , an) in R
n for

some n > 1, we define E as a set of hyperrectangles of side width 2−k and
define [x]k to be the single hyperrectangle in E containing x. Approximating the
integral over [x]k as in (3), we then get a lengthiness of

�k(x) := − log p(x) + n · k. (5)

We should note that one can formalize this discretization process in detail for
general noncountable (rather than just Euclidean) measurable spaces and general
types of discretization. (rather than just uniform; in practice our data may be
discretizable in a different manner). This requires substantially more work but
leads to exactly the same conclusions as to how to apply MDL to continuous-
valued data; for details see [13].

4 Two-Part MDL Code for Hyperintervals

Given a set of candidate hypotheses H and data ω, the MDL Principle for
hypothesis selection tells us to select, as best explanation for the data, the H ∈ H
minimizing the two-stage description length

�1(H) + �2(ω | H). (6)

The first term, �1, is the codelength function corresponding to some code C1

for encoding hypothesis H . For each H ∈ H, the second term, �2(· | H), is the

372 J. Witteveen et al.

length function for a code C2,H for encoding the data ‘with the help of H ’, i.e.,
a code such that, the better H fits ω, the smaller the codelength �2(ω | H).

To find interesting patterns in an uncountable dataset ω, consisting of N
records of the form x = (a1, . . . , an), where each attribute ai is taken from a
real-valued domain, the data can be discretized at level k, turning (6) into

�1(H)− log p(ω | H) +N · n · k, (7)

where we approximate the actual codelength function by the ‘lengthiness’ (5)
and the factor N appears because we discretize N data points.

In the original Krimp paper, the resulting patterns are itemsets in finite-
dimensional binary-valued space. In RealKrimp, the patterns are bounded
hyperrectangles, with edges parallel to coordinate axes. Unlike Krimp, Real-
Krimp does not demand any point to be covered by the hyperrectangle. Effec-
tively we strive to find relevant endpoints of intervals of attributes. Hence, we
refer to such hyperrectangles as hyperintervals :

Definition 1 (Hyperinterval). Let R̄ = [−∞,+∞] represent the extended real
numbers. Given a set of 2n extended reals hL

1 , h
U
1 , h

L
2 , h

U
2 , . . . , h

L
n , h

U
n in R̄, the

hyperinterval H ⊆ R
n encoded by the 2n-tuple (hL

1 , h
U
1 , h

L
2 , h

U
2 . . . , hL

n , h
U
n) is the

subset H = [hL
1 , h

U
1]× . . .× [hL

n , h
U
n] of R

n in which the ith dimension is restricted
to [hL

i , h
U
i].

Just asKrimp strives to find itemsets that have a relatively high support, Real-
Krimp should strive to find hyperintervals with a relatively high record density.
We want to attain better compression, for increasing difference between density
within a hyperinterval and density outside of the hyperinterval (signposted by
the records in ω).

Description Length �(ω) of Data without Hypothesis Let M denote the volume of
the smallest hyperinterval covering the entire dataset. Without prior information
on the dataset, we do not want to discriminate between records a priori, so we
assign the same length of − log 1/M to each record, using the code corresponding
to a uniform distribution. That makes the complexity of the dataset equal to

N · − log 1/M = N logM (8)

where we can ignore the discretization constant N · n · k since it needs to be
added to both (8) and to (7), which are to be compared.

Description Length �(ω | H) of Data given Hypothesis Suppose that we are
given a hyperinterval H lying within the interval of volume M ; we denote the
number of records it covers by Nin and its volume by Min. Additionally, we
write Nout = N −Nin and Mout = M −Min. Since Nin, Nout,Min, and Mout are
determined by H and here we assume H as given, we can base our code on these
quantities. Each record x is now naturally equipped with the following length:

�(x) :=

{− log 1/Min = logMin for x ∈ H
− log 1/Mout = logMout for x �∈ H.

(9)

RealKrimp 373

Note that we can code records x with these lengths only once we know, for each
record x, whether x ∈ H or not. Hence, to describe ω given H , we need to
describe a binary vector (b1, . . . , bN) of length N where bi = 1 if the ith record
is in H . The standard way of doing this is first to describe Nin using a uniform
code on {0, 1, . . . , N}, which takes log(N+1) bits irrespective of the value of Nin,
adding another constant (independent of H) to the codelength that is irrelevant
for comparisons and hence may be dropped; we then code (b1, . . . , bN) by giving
its index in lexicographical order in the set of allN -length bit vectors withNin 1s,
which takes log

(
N
Nin

)
bits, which is itself equal, up to yet another constant term,

to N · Entropy(Nin/N) = N logN − Nin logNin − Nout logNout [3]. Combining
with Equation (9), the complexity of the dataset is equal to:

Nin logMin/Nin +Nout logMout/Nout +N logN (10)

Description Length of Hypotheses I We gauge the complexity of specifying the
model itself through specifying its boundaries. Consider an attribute ai with min-
imal value L and maximal value U in ω. We may define a probability density
function p̄ on the maximal value of ai within H as x−L

1/2(U−L)2 , a choice justified

below. Given this maximal value u, we take a uniform probability density func-
tion on the minimal value of ai within H , which has constant probability density

1
u−L . Any combination of boundary values for ai within H now has probability

x−L
1/2(U−L)2 · 1

x−L = 2
(U−L)2 , which is independent of the values themselves, thus

justifying our choice for p̄. Following this procedure for all attributes, the like-
lihood of every hyperinterval becomes 2n/M2, which corresponds to the ‘length’:

− log p̄(H) = − log 2n/M2 = 2 logM − n log 2 (11)

While we could safely ignore the discretization constant when deriving the raw
complexity of the dataset (8) and the complexity of the dataset given a model
(10), we cannot do so for the codelength of the hyperinterval. This is because
shortly, we will also look at hyperintervals that are defined only on a dimension
n′ < n. Hence we add a discretization constant twice (for the points describ-
ing the minimal and maximal values) to (11) to make it a proper ‘lengthiness’
function. To determine k, note that we should be more demanding towards the
detail in the model as the number of records increases, so ideally (11) should
increase with N when the discretization constant is taken into account. We take
− logM/Nn for the discretization constant n · k, turning (11) into:

2 logM − n log 2− 2 log
M

Nn
= 2n logN − n log 2 (12)

This choice is quite natural, since it has an additional interpretation as the code-
length arising from a rather different way of encoding H , namely by specifying,
for each dimension 1 ≤ i ≤ n, two records: one giving the lower boundary for
attribute ai in interval H , and one given the upper boundary.

374 J. Witteveen et al.

Description Length of Hypotheses II: Unbounding Irrelevant Dimensions. When
determining whether something exceptional is going on in a particular subset
of the dataset, typically, only a sharply reduced subset of n′ 	 n attributes is
relevant. We proceed to generalize the derived complexities and lengths, allowing
RealKrimp to assess whether a dimension should be bounded or unbounded.

To gauge the informativeness of bounding a dimension, we turn to Equation
(12). With our choice of discretization constant, the length for the model spec-
ification was derived as 2n logN − n log 2. This was based on n dimensions, so
the length per dimension, which we denote as Δ, is given by

Δ = (2n logN − n log 2)/n = logN2/2

The quantity Δ represents the information contained in the specification of a
single dimension of the hyperinterval. For a specification of n′ ≤ n dimensions,
the complexity of the model, as originally given in (12), becomes:

n′Δ = n′ log
N2

2
. (13)

When encoding data based on such an n′-dimensional hyperinterval H with n′ <
n, the form of (10) remains intact, but we need to specify whatNin andMin mean
when some of the dimensions remain unbounded. We consider any hyperinterval
to span the full range of any unbounded dimension. Hence, Nin is the number of
records that are covered on the specified dimensions; coverage on the unbounded
dimensions is implied. Also, Min is calculated from a hyperinterval that, in the
unbounded dimensions, spans the full range available in the dataset.

When encoding a hyperinterval H , we must encode which dimensions will be
specified/unbounded. We do that by taking a uniform prior over the 2n available
models in the class. Hence, we obtain a constant complexity for each choice of
specified/unbounded dimensions, making model comparison solely dependent on
the lengths defined in those models. Therefore, a dimension is considered rele-
vant, when specification of hyperinterval boundaries in that dimension delivers
a reduction in description length bigger than Δ.

The hyperintervals that compress the dataset are those for which (8), the com-
plexity of the database, is larger than the sum of (10), the complexity of the data
given the hyperinterval, and (13), the complexity of specifying the hyperinterval.
When this inequality holds, enough information is present in the hyperinterval
to justify the cost of its specification, and we have found an underlying concept
in the dataset. Subtracting N logN from both sides and rearranging terms, we
find that we are interested in hyperintervals for which

N log
M

N
− n′ log

N2

2
> Nin log

Min

Nin
+Nout log

Mout

Nout
(14)

Here, everything that does not depend on the choice of hyperinterval is gathered
on the left-hand side, leaving everything that does on the right-hand side.

RealKrimp 375

Algorithm 1. The RealKrimp Algorithm

Input: A real-valued dataset ω
Output: Hyperintervals that compress ω well
1: Sample the dataset.
2: Compute all (Euclidean) distances between records in the sample.
3: Pick two neighboring (in distance) rows in the sample.
4: Extend a hyperintervalH covering these rows based on other rows in the sample, in

a compression-increasing direction (measuring compression on the entire dataset).
5: Calculate the coverage of each dimension in H .
6: In order of decreasing coverage, determine if compression improves when letting a

dimension go unbounded.
7: Report the resulting hyperinterval if it is interesting according to Equation (14).
8: Until no more interesting hyperintervals can be found, restart from step 3 with two

rows not covered by any of the previously reported hyperintervals.

5 The RealKrimp Algorithm

One of the most prominent problems in theory mining in general, is the pattern
explosion problem: if we set the interestingness constraints tight, then we find
only a few well-known patterns, but if we set the constraints looser, we are
quickly overwhelmed with an amount of interesting patterns that is unsurveyable
for any data miner. With the real-valued MDL criterion, we can also find many
interesting hyperintervals very easily. When untreated, the pattern explosion
problem hinders a practical application of a pattern mining method. Naturally,
theKrimp paper [1] discusses the problem.Krimp strives to find a set of itemsets
compressing the dataset, and obviously the candidate space is enormous. The
chosen approach to the explosion, is to forego finding the best set of patterns —
heuristically finding a pattern set that compresses well is good enough.

RealKrimp aims for a similar goal in an uncountable space, which ampli-
fies the pattern explosion problem. For every hyperinterval that we could find,
every boundary can have infinitely many values leading to the hyperinterval
covering exactly the same records, with an arbitrarily small change in the vol-
ume of the hyperinterval. To deal with this serious problem in the applicability
of real-valued MDL, in this section we introduce the RealKrimp algorithm:
a mining scheme that confines its attention to those interesting hyperintervals
that locally maximize the inequality of (14); no better compression is obtained
by a hyperinterval that is either an extension or a restriction of the considered
hyperinterval. The RealKrimp algorithm is given in Algorithm 1. Our imple-
mentation of RealKrimp is written in Python 3, and available for the general
public at http://github.com/joukewitteveen/hint.

The first seven lines of the algorithm detail how a single hyperinterval can be
found. Since we are interested in finding a set of well-compressing hyperintervals,
the algorithm subsequently loops back to step 3 in an attempt to heuristically
find additional compressing hyperintervals. The endurance with which the algo-
rithm proceeds to attempt this is governed by a user-set parameter. Additionally,
to gloss over small complexity bumps in the hyperinterval space, a perseverance

http://github.com/joukewitteveen/hint

376 J. Witteveen et al.

(a) The whole dataset (blue), a hyperin-
terval (red), and a sub-hyperinterval (dark
red)

(b) Köppen classification of Europe [16]

Fig. 1. Spatial distribution over Europe of hyperintervals found by RealKrimp, jux-
taposed with the Köppen classification of Europe

parameter can be set that allows the algorithm to escape local optima in step 4.
Lastly, by varying the sample size employed in step 1, substantial influence can
be exercised over the total runtime of the algorithm. To discuss all these details
in full and properly incorporate them into the pseudocode would substantially
bloat the discussion in this section, at the expense of either the theory in pre-
vious sections or the experimental results in the next section. Instead, we refer
the reader who is interested in details on all individual steps to [13].

6 Experiment

We experiment on the Mammals dataset [14], which combines information from
three domains: ① the location of grid cells covering Europe (latitude, longitude);
② the climate within these grid cells (monthly temperatures, precipitation, an-
nual trends as captured by the BIOCLIM scheme [15]); ③ the presence or absence
of species of mammals in the grid cells. The data from these three domains were
pre-processed into one coherent flat-table dataset by Heikinheimo et al. [14].
This version of the dataset is the one we also use in our experiments. We feed
the 19 BIOCLIM features from the second domain and all features from the
third domain to the RealKrimp algorithm, to see its performance on a mixture

RealKrimp 377

(a) Whole
dataset (N=2221)

(b) Hyperinterval
(N=916)

(c) Sub-hyperinter-
val (N=367)

Fig. 2. Climate data for the hyperintervals of Figure 1a. The solid lines represent
the mean monthly temperature quartiles; the dashed lines represent the precipitation
quartiles. Temperatures range from −5 to 20◦C; precipitation ranges from 0 to 175mm.

of numeric and binary features. We withhold the location information and the
other 48 climate features from the algorithm for evaluation purposes.

For the sake of the distance computation in line 2 of the RealKrimp algo-
rithm, we need to define a way to handle the binary features from the third
domain. Given two sets of present species, we assign a distance determined by
the species in the symmetric difference between those sets. For each species in
this symmetric difference, we add an amount to the distance equal to the binary
entropy of that species in the dataset; if a species in the symmetric difference
occurs k times in the dataset, it adds − k

N log k
N − N−k

N log N−k
N to the distance.

We consider this distance computation a parameter of the algorithm; treating
binary attributes by computing its entropy is a convenient domain-agnostic way,
but given particular domain information one might prefer other solutions.

A RealKrimp run resulted in many interesting hyperintervals, including the
one depicted by the red dots in Figure 1a. Inspecting the boundaries of all 120
features that define the hyperinterval is infeasible; instead we make some ob-
servations that stand out. One bioclimatic variable is left unbounded: the mean
diurnal range. The species that are necessarily present in the hyperinterval are
the Vulpes vulpes (Red Fox), the Capreolus capreolus (European roe deer), and
the Lepus europaeus (European hare). Applying the RealKrimp algorithm re-
cursively, we find the sub-hyperinterval depicted by the dark red dots in Figure
1a. We inspect the relation between the whole dataset, the hyperinterval, and
the sub-hyperinterval, by aggregating information from the 48 climate variables
withheld from RealKrimp to draw up the climographs of Figure 2. These climo-
graphs can be used to illustrate the differences between groups in the Köppen
climate classification [16].

378 J. Witteveen et al.

Comparing the hyperinterval with the whole dataset in Figure 1a and con-
sidering the corresponding areas on the Köppen classification chart of Figure
1b, we observe that the hyperinterval removes the subarctic (Dfc and Dfd, teal),
semi-arid (BSh, sand-colored), and Mediterranean (Csa, Csb, yellow) climate
types from the dataset. Comparing the hyperinterval climograph (Figure 2b)
with the one for the whole dataset (Figure 2a), we see that particularly the
mean temperature inter-quartile range in summer and autumn is reduced.

Reducing the hyperinterval to the sub-hyperinterval, Figures 1a and 1b show
that we remove the humid continental (Dfb, blue) climate type. Comparing the
sub-hyperinterval climograph (Figure 2c) with both others, we see an increase
in precipitation and temperature in the winter. This is consistent with the tem-
perate oceanic (Cfb, green) climate type dominant in the sub-hyperinterval.

Due to space constraints we decided to not present more experimental results
in this paper; doing so would be detrimental to either the development of the
theory or to the relatively extensive discussion of the experimental results we do
discuss in the paper, and we are willing to pay neither of these prices. However,
more experiments were performed, and can be accessed elsewhere. More exper-
imental results on artificial data can be found in the technical report [13]. Part
of these experiments were performed on benevolent artificial data, whose under-
lying structure comes in an ideal form to be represented by hyperintervals, and
part were performed on antagonistic artificial data, whose underlying structure is
particularly problematic for RealKrimp. These artificial experiments illustrate
what can be expected from RealKrimp when presented with a variety of pat-
terns to discover. More experimental results on the Mammals dataset can be in-
spected online, at http://www.math.leidenuniv.nl/~jwitteve/worldclim/.
The main page displays the map corresponding to found hyperintervals. Clicking
on such a hyperinterval will display the results of a RealKrimp run mining for
sub-hyperintervals.

7 Conclusions

We introduce RealKrimp: an algorithm that finds well-compressing hyper-
intervals in a real-valued dataset, based on the Minimum Description Length
Principle. The hyperintervals are bounded hyperrectangles, with edges parallel
to coordinate axes, and the interesting ones are those with a relatively high
density of records in the dataset. In order to allow RealKrimp to search for
compressing hyperintervals, the formal relation between codes and probabilities
on Euclidean spaces is expressed by the lengthiness, a codelength-like function.
We then discuss the MDL Principle for hypothesis selection and its applica-
tion within RealKrimp, and describe a two-part MDL code for hyperintervals.
The RealKrimp algorithm employs this code to heuristically mine for well-
compressing hyperintervals. Hence, RealKrimp can be seen as a real-valued
cousin of the well-known Krimp algorithm.

On the Mammals data, RealKrimp finds hyperintervals defined on BIO-
CLIM and zoogeographical attributes. Evaluation of the hyperintervals on with-
held attributes shows that the found regions are spatially coherent, that they

http://www.math.leidenuniv.nl/~jwitteve/worldclim/

RealKrimp 379

correspond to climate types on the Köppen classification chart, and that they
display meteorological behavior that is to be expected with these climate types.
These observations provide evidence that RealKrimp finds hyperintervals rep-
resenting real-life phenomena on real-life data from a real-valued domain.

Acknowledgments. This research is supported in part by the Deutsche
Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB
876 “Providing Information by Resource-Constrained Analysis”, project C1.
Tony Mitchell-Jones and the Societas Europaea Mammalogica kindly provided
the European mammals data [17].

References

1. Vreeken, J., van Leeuwen, M., Siebes, A.: KRIMP: Mining Itemsets that Compress.
Data Mining and Knowledge Discovery 23, 169–214 (2011)

2. Rissanen, J.: Modeling by Shortest Data Descriptions. Automatica 14(1), 465–471
(1978)

3. Grünwald, P.D.: The Minimum Description Length Principle. MIT Press,
Cambridge (2007)

4. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applica-
tions. Springer, New York (1993)

5. Faloutsos, C., Megalooikonomou, V.: On Data Mining, Compression and Kol-
mogorov Complexity. Data Mining and Knowledge Discovery 15(1), 3–20 (2007)

6. Pfahringer, B.: Compression-Based Feature Subset Selection. In: Proc. IJCAI
Workshop on Data Engineering for Inductive Learning, pp. 109–119 (1995)

7. Chakrabarti, S., Sarawagi, S., Dom, B.: Mining Surprising Patterns Using Temporal
Description Length. In: Proc. VLDB, pp. 606–617 (1998)

8. Keogh, E., Lonardi, S., Ratanamahatana, C.A.: Towards Parameter-Free Data
Mining. In: Proc. KDD, pp. 206–215 (2004)

9. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling Databases. In: Proc. DS, pp.
278–289 (2004)

10. Tatti, N., Vreeken, J.: Finding Good Itemsets by Packing Data. In: Proc. ICDM,
pp. 588–597 (2008)

11. Heikinheimo, H., Vreeken, J., Siebes, A., Mannila, H.: Low-Entropy Set Selection.
In: Proc. SDM, pp. 569–579 (2009)

12. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley (2006)
13. Witteveen, J.: Mining Hyperintervals – Getting to Grips With Real-Valued Data,

Bachelor’s thesis, Leiden University (2012)
14. Heikinheimo, H., Fortelius, M., Eronen, J., Manilla, H.: Biogeography of Euro-

pean land mammals shows environmentally distinct and spatially coherent clusters.
Journal of Biogeography 34(6), 1053–1064 (2007)

15. Nix, H.A.: BIOCLIM — a Bioclimatic Analysis and Prediction System, research
report, CSIRO Division of Water and Land Resources, pp. 59–60 (1986)

16. Peel, M.C., Finlayson, B.L., McMahon, T.A.: Updated World Map of the Köppen-
Geiger Climate Classification. Hydrology and Earth System Sciences 11, 1633–1644
(2007)

17. Mitchell-Jones, T., et al.: The Atlas of European Mammals, Poyser natural history
(1999)

	RealKrimp — Finding Hyperintervalsthat Compress with MDL for Real-Valued Data
	1 Introduction
	2 Related Work
	3 Relating Codes and Probabilities
	4 Two-Part MDL Code for Hyperintervals
	5 The RealKrimp Algorithm
	6 Experiment
	7 Conclusions
	References

