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ABSTRACT. We study Seidenfeld, Schervish, and Kadane’s notion of choice functions,
and want to make them accessible to people who are familiar with sets of desirable
gambles. We relate both theories explicitly using their derived strict partial orderings. We
give an expression for the most conservative extension of a set of desirable gambles to a
choice function. Because it is important for inference purposes, we also make a link with
belief structures.

1. INTRODUCTION

Our aim is to consider Seidenfeld et al.’s [2010] notion of a choice function, and to
make it accessible to people who are familiar with sets of desirable gambles, or other
concepts derived from them. The first step in doing so, is to connect both theories
explicitly. Because choice functions are defined on sets of horse lotteries, while sets of
desirable gambles rely on the notion of gambles—which do not translate naturally to
horse lotteries—we search for a language to connect them. One thing both theories have
in common, is that they use specific partial orders. Therefore, in Sections 2 and 4, we
focus on these partial orders, which will enable us to relate both theories in a way that
also allows ideas in the theory of sets of desirable gambles to be embedded into choice
function theory. In particular, we give an expression for the most conservative extension
of a set of desirable gambles to a choice function.

We also make a link with belief structures. In Section 3, we introduce an ‘is not more
informative than’ relation on choice functions, under which these models form a belief
structure. This is important, as it allows us to introduce notions of conservative inference
(natural extension) into choice function theory.

2. CHOICE FUNCTIONS DEFINED ON SETS OF HORSE LOTTERIES

As a basic tool to model an agent’s uncertainty about some variable X that takes
values in a possibility spaceX , we use choice functions defined on sets of horse lotteries.
They are—in contradistinction with sets of desirable gambles [cf., e.g., De Cooman and
Quaeghebeur, 2012, Quaeghebeur, 2014, Couso and Moral, 2011, Walley, 2000]—capable
of modelling beliefs corresponding to a non-convex set of probability measures.

2.1. Horse lotteries. Consider a countable setK of rewards. A simple horse lottery onK
is a probability mass function p onK, i.e., a map p ∶K→R such that p(r) ≥ 0 for all r in
K and∑r∈K p(r) = 1. A horse lottery is a map H ∶X ×K→R such that for each x inX , the
partial map H(x, ⋅) is simple horse lottery onK, the agent’s ‘random’ reward. The set of
all horse lotteries onX with reward setK is denoted byHK.

Let {⊺,�} ⊆K. For two horse lotteries H1 and H2 inHK such that H1(⋅,r) = H2(⋅,r) = 0
when r ∉ {⊺,�}, we say that H1 weakly dominates H2—and we write H1 ⊵ H2—whenever
H1(x,⊺) ≥ H2(x,⊺) for all x inX . So ⊺ is the reward that consist in winning a prize that
you value, and � consist in not winning that prize.
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In Section 4, we will consider the particular caseK = {⊺,�}, and we then denote the
corresponding set of horse lotteries byH.

2.2. Choice functions and relations on sets of horse lotteries. We define a choice func-
tion as a map

C ∶Q(HK)→Q(HK)∪{∅} ∶O↦C(O) such that C(O) ⊆O.

This is the same definition as in Sen [1977], Aizerman [1984] and Seidenfeld et al. [2010,
Section 1], except that we restrict attention to finite option sets of horse lotteries. So
Q(HK) denotes the collection of all non-empty finite subsets ofHK. The idea is that an
agent’s choice function selects a preferred subset of horse lotteries from an option set O,
according to the agent’s beliefs.

As an alternative to a choice function C , we can also consider the binary relation—
called a choice relation—<C onQ(HK) as in Kadane et al. [2004, Section 2], defined for
all O1 and O2 inQ(HK) by

O1 <C O2 if and only if C(O1∪O2) ⊆O2∖O1.

The set of all choice relations is denoted by C. We interpret O1 <C O2 as the agent choosing
option set O2 over option set O1: when presented with O1∪O2, she will accept a subset
O2 outside of O1. The following technical result can be obtained:

Proposition 1. Given a choice function C , the associated choice relation <C satisfies

(i) if O2∖O1 ⊆O ⊆O1∪O2, then O1 <C O2⇔O1 <C O,
(ii) if O1∪O2 ⊆O, then (O1 <C O and O2 <C O)⇔O1∪O2 <C O,

for all O, O1, and O2 inQ(HK).

Any relation satisfying properties (i) and (ii) will from here on be called a choice relation.
Conversely, given a choice relation <, we can define the associated choice function C<
for all O inQ(HK) by

C<(O) ∶=⋂{O′ ⊆O∶O′ /<O} .

Given these definitions, we can move between both representations:

Proposition 2. Given a choice function C , we have C<C =C ; and given a choice relation <,
we have <C<=<.

Because it will turn out useful for the connection with sets of desirable gambles, we
choose to develop everything in terms of choice relations.

2.3. Coherence. Seidenfeld et al. [2010, Section 3] call a choice function C coherent
if there is a non-empty set of probability-utility pairs S such that C(O) is the set of
options in O that maximise expected utility for some probability-utility pair in S . They
also provide an axiomatisation for this type of coherence, based on the one for binary
preferences in Anscombe and Aumann [1963]. One of their axioms is an ‘Archimedean’
continuity condition.

We prefer to define coherence in terms of axioms directly, without reference to
probabilities and utilities. In such a context, we see no compelling reason to adopt
an Archimedean axiom. Therefore, we use Seidenfeld et al.’s [2010] axioms, omitting their
Archimedean one.

Axioms (coherent choice relations). We call a choice relation < onQ(HK) coherent if

<1. O /<O, so < is irreflexive;
<2. {H�} < {H⊺}, where Hr with r inK is a horse lottery such that Hr (⋅,r) = 1;
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<3. (a) if O1 <O2 and O1 ⊆O2 ⊆O, then O1 <O;
(b) if O1 <O2 and O ⊆O1 ⊆O2, then O1∖O <O2∖O;

<4. (a) O1 <O2 if and only if for all α in (0,1]

{αG +(1−α)H ∶G ∈O1} < {αG +(1−α)H ∶G ∈O2} ;

(b) if H ∈O, O ⊆O1 ⊆ co(O)—the convex hull of O—and {H} <O1, then {H} <O;
<5. if H2 weakly dominates H1 (H2 ⊵ H1) and for all G in O∖{H1, H2}, we have:

(a) if H2 ∈O and {G} <O∪{H1}, then {G} <O;
(b) if H1 ∈O and {G} <O, then {G} < {H2}∪O∖{H1};

for all O, O1 and O2 inQ(HK), and H , H1 and H2 inHK.

The coherent choice relations are collected in Ccoh.

Proposition 3 (Cf. Kadane et al., 2004, Lemma 1). A coherent choice relation < is a strict
partial order: it is transitive, so (O1 <O2 and O2 <O3) implies O1 <O3 for all O1, O2, O3

inQ(HK), as well as irreflexive.

3. ORDERING OF CHOICE RELATIONS

Given two choice relations <1 and <2, we call <1 not more informative than <2 if <1 ⊆ <2.
The set (C,⊆) of choice relations is partially ordered by the set inclusion of their graphs.
Following De Cooman [2005], we introduce infimum and supremum operators—or meets
and joins—for collections of choice relations <<< ⊆ C as follows:

inf<<< = ⋂
<∈<<<

<, sup<<< = ⋃
<∈<<<

<.

For inference purposes, an important subclass of general belief models are those that
form a belief structure [cf. De Cooman, 2005].

Proposition 4. The structure (C,Ccoh,⊆) is a belief structure:

(i) The partially ordered set (C,⊆) is a complete lattice: for any subset <<< of C, its supre-
mum sup<<< and its infimum inf<<< with respect to the order ⊆ exists.

(ii) The partially ordered set (Ccoh,⊆) is an intersection structure, meaning that Ccoh

is closed under arbitrary non-empty infima: for any non-empty subset <<< of Ccoh,
inf<<< ∈ Ccoh.

(iii) (Ccoh,⊆) does not have a top.

This is interesting because it guarantees that we can use a closure operator to check
consistency and coherence [De Cooman, 2005, Propositions 1 and 2].

4. CONNECTING CHOICE FUNCTIONS AND SETS OF DESIRABLE GAMBLES

In this section, we are looking for a connection between coherent choice functions
with reward setK = {⊺,�} and coherent sets of desirable gambles. Coherent sets of desir-
able gambles correspond to a strict partial order of elements (namely, gambles), rather
than a strict partial order of sets (of horse lotteries) as is the case for choice functions.
Therefore, the language of choice functions has a greater flexibility in expressing beliefs,
so we expect a many to one-relation with sets of desirable gambles: with a choice function
there will correspond a unique set of desirable gambles; but conversely, given a set of
desirable gambles, there may be multiple compatible choice functions.
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4.1. Gambles. A gamble f is a bounded real-valued function on the possibility spaceX .
It is interpreted as an uncertain reward f (X ). If the value of X turns out to be x in X ,
then f results in a payoff f (x). The set of all gambles onX will be denoted by G(X ). As
an example, for any horse lottery H inH, H(⋅,⊺) is a gamble.

4.2. Sets of desirable gambles and partial order on gambles. Some gambles can be
preferred to others by the agent, depending on her beliefs about X . We call all gambles
that the agent prefers to 0 desirable, and we collect them in her set of desirable gamblesD.

Based on an agent’s statement of D, we can define a strict partial order—called a
(strict partial) preference relation—≺D on G(X ) as in Quaeghebeur et al. [2014, Section 3]
and Quaeghebeur [2014], defined for all f and g in G(X ) by

f ≺D g if and only if g − f ∈D.

Conversely, given a preference relation ≺ on gambles, we can define the corresponding
set of desirable gamblesD≺ as

D≺ ∶= { f ∈G(X )∶0 ≺ f } .

As is the case for choice functions and choice relations, we have a one-to-one correspon-
dence between sets of desirable gambles and preference relations.

4.3. Coherence. As is the case for choice functions, in order for a set of desirable gambles
to be coherent, it needs to satisfy some rationality criteria. Again we state these using the
corresponding partial orders, i.e., in terms of preference relations.

Axioms (coherent preference relations). We call a preference relation ≺ coherent if

≺1. f /≺ f ;
≺2. if inf f > 0, then 0 ≺ f ;*

≺3. f ≺ g ⇔µ f +(1−µ)h ≺µg +(1−µ)h;
≺4. if f ≺ g and g ≺ h, then f ≺ h;

for all f , g and h in G(X ) and 0 <µ ≤ 1.

4.4. Connection between choice functions and sets of desirable gambles. With a co-
herent choice relation < onQ(H), we associate a preference relation ≺ on G(X ):

f ≺ g if and only if

(∃H1, H2 ∈H)({H1} < {H2} and (∃α ∈R>0)α( f − g) = H1(⋅,⊺)−H2(⋅,⊺)) (⋆)

for all f and g in G(X ).

Proposition 5. The preference relation as defined in Eq. (⋆) is coherent.

Conversely, a coherent preference relation ≺ can be coherently ‘lifted’ to multiple
choice relations < that satisfy Eq. (⋆), but we are looking for the single one that is most
conservative—such that O1 <O2 is satisfied for the least number of option sets O1 and O2.

Proposition 6. Given a coherent preference relation ≺, the most conservative coherent
choice relation < onQ(H) that satisfies Eq. (⋆) is given by

O1 <O2⇔ (∀H1 ∈O1)(∃H2 ∈O2)H1(⋅,⊺) ≺ H2(⋅,⊺)
for all O1 and O2 inQ(H).

* Often ‘if f > 0, then f ∈D’ is used. The weaker form we use allows for a more direct correspondence with
choice relations.



CONNECTING CHOICE FUNCTIONS AND SETS OF DESIRABLE GAMBLES 5

5. CONCLUSIONS

We have bridged choice function theory and the theory of sets of desirable gambles.
We were motivated by the fact that the latter language is incapable of representing beliefs
corresponding to non-convex sets of probabilities, while choice functions are. Hence,
given a set of desirable gambles, there may be multiple corresponding choice functions,
and we found an expression for the most conservative amongst them.

We are interested in extending this work to the case of non-finite option sets.
We furthermore plan to extend our investigation of the structural properties of the

belief structure (C,Ccoh,⊆), initiated in Section 3. For example, the question whether this
is a strong belief structure—meaning that every coherent choice function is the infimum
of its dominating maximal coherent choice functions—deserves more attention, as does
the notion of natural extension for choice functions.

Also, it might be interesting to find a bridge between choice functions and the accept
and reject statement-based models, introduced in Quaeghebeur et al. [2014], which are
more expressive than sets of desirable gambles.
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