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Abstract

We develop a framework for modelling and reasoning with uncertainty based on accept and reject statements about
gambles. It generalises the frameworks found in the literature based on statements of acceptability, desirability, or
favourability and clarifies their relative position. Next to the statement-based formulation, we also provide a translation
in terms of preference relations, discuss—as a bridge to existing frameworks—a number of simplified variants, and
show the relationship with prevision-based uncertainty models. We furthermore provide an application to modelling
symmetry judgements.
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1. Introduction

1.1. What & why

Probability theory and the statistical tools built on it help us deal with uncertainty, be it caused by the lack of
information about or by the variability of some phenomenon. Probability theory provides a mathematical framework for
modelling uncertainty that is centred around the quantification of the uncertainty. It also provides rules for reasoning
under uncertainty, i.e., deductive inference: how to go from an assessment, such as probability values for some events,
to conclusions and decisions, e.g., the expected value of some quantity or the selection of an optimal action.

In this paper, we present a mathematical framework for modelling uncertainty that generalises probability theory
and that is centred around the categorisation of gambles—i.e., quantities about whose value we are uncertain—into
acceptable and rejected ones. Crudely speaking, gambles whose expectation is assessed to be non-negative are acceptable
and those whose expectation is assessed to be negative are rejected. Our mathematical framework includes rules for
reasoning under uncertainty, but now the assessments we start from consist of sets of acceptable and rejected gambles.
We do not discuss how the assessments are obtained from domain experts or experimental data and restrict ourselves to
the unconditional case.

Why did we develop this theory? The main goal is to unify many of the existing generalisations of probability
theory that are explicitly or implicitly based on the assumption that gamble values can be expressed in a linear precise
utility. Of these generalisations, some essentially express uncertainty using a strict (partial) order of a set of gambles of
interest, which is useful for decision making applications, and some use a non-strict (partial) order, which is practical
when expressing indifference judgements such as those arising when modelling symmetry assumptions. Because of
the unifying character of our theory, we can combine the strengths of each type of theory and also express the relative
position of the models representable within each of the theories. A consequence is of course that our theory is more
expressive than the theories we unify.
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We have already mentioned that the representation in our theory consists of a pair of gamble sets. This type of
representation differs markedly and is far less common than the typical, functional one, in which one works with
functions that map events and gambles to probability and expectation values. It is closely related to, but less popular than
the preference order one, where, roughly speaking, events are ranked according to likelihood and gambles according to
expectation. Our experience with working with representations using sets of gambles has convinced us that it deserves
more attention: the formulation of theory and derivation of results is mostly simplified to intuitive applications of
basic set theory, linear algebra, and convex analysis. A side goal of this paper is therefore to bring attention to this
representation by putting it centre stage.

Although it is not the focus of this paper, it is useful to point out another advantage of the theory we develop:
Because it generalises theories using different representations of uncertainty, the elicitation statements that go along
with these representations—probabilities for events, preferences between gambles, etc.—can all be incorporated.

1.2. Literature context

We have drawn much inspiration from the foundational works of the theories of imprecise probability [1–9], which
all generalise probability theory in a similar way. In these theories, one can specify lower and upper probabilities and
expectations instead of just unique, precise probability and expectation values. The introduction of these new concepts
is justified by giving them a clear interpretation and by the fact that often not enough information is available to fix
unique, precise values. Our theory possesses the expressiveness to deal with imprecision, as these theories of imprecise
probability do.

Probability measures, the models of classical probability theory, correspond to complete preference orders. This
means that all events or gambles can be compared by their unique probability or expectation value. This is no longer
the case in theories of imprecise probabilities, where events and gambles may be uncomparable and whose models may
correspond to partial preference orders. Sometimes strict preference is taken as basic [see, e.g., 9–11] and sometimes
non-strict preference is [see, e.g., 9, 12]; the other relation may then be derived from it [see, e.g., 13]. We can associate
both a strict and a non-strict preference order to each of the models in our theory. But now neither is basic and each
can essentially be specified separately, but both are related to each other in a natural way. This is not the only way to
generalise things; Seidenfeld et al. [14, 15] use strict preference, choose their axioms in view of characterising the
preference order in terms of sets of functionals and move to preference between sets of gambles in their coherent choice
function approach.

In this paper, we represent uncertainty using sets of gambles. Although this is as of yet uncommon in the literature,
we are not the first. Smith [4, §14] uses them as a useful intermediate representation in the course of a proof in the
exposition of his theory of imprecise probabilities. In the work of Williams [12, 16], they become more prominent—he
talks about sets of acceptable bets—, but he still keeps a focus on (non-linear) expectation-type models. Seidenfeld
et al. [10, §IV] talk about ‘favorable’ gambles while presenting results about the relationship between convex sets of
probability measures and strict preference orders. It is Walley [9, 11]—talking about sets of desirable gambles—who
seems to have been the first to discuss them in their own right. Compared to these authors, our contribution lies in
considering a pair of sets instead of just one set, proposing an intuitive axiom of how both sets interact, and developing
the resulting theory. Adding an extra set is what allows us to simultaneously represent strict and non-strict preferences.

In our framework, our first main axiom defines which assessments are irrational and which are not. The two other
main axioms are generative in the sense that we can associate an extension operator with each of them that modifies
assessments in such a way that the result satisfies the axiom. In spirit, this is completely analogous to the approach
taken by de Finetti [17, 18] in his development of probability theory and Walley [9] in his development of imprecise
probability theory: they call their irrationality axiom ‘avoiding sure loss’, their (single) generative principle ‘coherence’,
and the associated extension operator ‘the fundamental theorem of probability’ and ‘natural extension’, respectively.

The basic setup and the terminology we use in our paper shows the influence of the subjectivist school of de Finetti.
We do not want this to be construed as a constraint. The results of this paper—its mathematical models and techniques—
are applicable under different interpretations, analogously to the role measure theory takes in probability theory. In
this context, the ‘agent’ that provides us with an assessment can, e.g., be seen as a person giving a ‘subjective’ opinion
or an algorithm that transforms observations such as sample sequences into ‘objective’ opinions. We do not discuss
how these opinions are elicited or constructed.
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1.3. Overview

As stated, the prime goal of this paper is to present a mathematical framework for modelling uncertainty. The basic
conceptual set-up and mathematical notation is given in Section 1.4. Our presentation starts from the basics and there is
no prerequisite knowledge of (imprecise) probability theory, although of course this does not hurt. However, throughout,
a basic familiarity with set theory, linear algebra, and convex analysis is assumed. Once the framework is established in
Section 2, we do make the connection with preference relations in Section 3 and (imprecise) probability frameworks in
Sections 4 and 5. Also here specific prerequisite knowledge is useful but not necessary. Before concluding with some
final remarks, musings and topics for further investigation in Section 7, we present a small theoretical application of
our framework in Section 6, i.e., we show how it can be effectively used to model symmetry judgements. To improve
the readability of the paper, we have gathered the proofs in an appendix.

How do we build up our framework? We start by giving a detailed description of the nature of the assessments we
consider, the pairs of sets of accepted and rejected gambles (Section 2.1). In three subsequent sections, we introduce
the main rationality criteria of our framework: No Confusion, which determines the assessments that are irrational
(Section 2.2); Deductive Closure, which makes explicit the consequences of assuming values are expressed in a linear
precise utility scale (Section 2.4); No Limbo, which states that gambles whose acceptance would lead to an irrational
model must be rejected. The latter two axioms are accompanied by operators that extend an assessment to a full
fledged model that incorporates both the assessments and the requirements of these axioms. At this point the conceptual
groundwork is complete.

The central question then becomes: given an assessment, what are the properties of the model obtained by extending
it, i.e., by performing deductive inference? In particular: which assessments give rise to rational models? To be able to
provide general answers to these questions, we first perform an order-theoretic analysis of the sets of all assessments
and models (Section 2.6), where assessments are ordered according to the resolve they encode, i.e., the amount of
accepted and rejected gambles they contain. Both general answers are given (in Section 2.7) and answers for the
important specific case in which a background model—e.g., expressing that uniformly negative gambles should be
rejected and uniformly positive ones should be accepted—is assumed (in Section 2.8). This analysis of the framework
ends with a characterisation of the important specific case with Indifference to Status Quo, i.e., in which the zero
gamble is assumed to be accepted.

From this point onward the focus shifts away from our framework itself to its relationships with other frameworks.
This is worked out in most detail for its relationship to de Finetti’s [18] theory of (coherent linear) previsions (in
Section 5.1) and Walley’s [9] theory of coherent lower previsions (in Section 5.2). This shows how—the in practice
important—(imprecise) probabilistic models are specific instances of the models of our framework. For readers
interested in preference order frameworks, we give a translation of the concepts of our framework and the main
characterisation result in terms of gamble relations in Section 3. For particular applications, it may well be that a
framework more general than (imprecise) probability theory is appropriate, but for which the full generality of our
framework is nevertheless overkill. Therefore, we present a number of simplified variants: The first two of these still
preserve the ability to express two separate preference relations (Sections 4.1 and 4.2). The last two lose this ability and
have been included to make correspondences with the frameworks based on sets of gambles that we have encountered
in the literature (Section 4.3 and 4.4).

1.4. Basic set-up and notation

We consider an agent faced with uncertainty, e.g., about the outcome of some experiment. We assume it is possible
to construct a possibility space Ω of mutually exclusive elementary events, e.g., a set of different experimental outcomes,
one of which is guaranteed to occur. The possibility space Ω can be infinite, but—apart from the Axiom of Choice—we
do not consider anything specific for infinite-dimensional spaces such as their topology or the conglomerability of
uncertainty models [see, e.g., 9, §6.8]. The paper is best read using intuition about finite-dimensional spaces.

Formally, a gamble is a real-valued function on the possibility space; as suggested by its name, it represents
a—positive or negative—pay-off that is uncertain in the sense that it depends on the unknown outcome. These pay-offs
are assumed to be expressed in units of a linear precise utility. The set of all gambles 𝒢(Ω), combined with point-wise
addition of gambles and point-wise multiplication with real numbers constitutes a real vector space. We give the name
status quo to the origin of this space, the zero gamble 0. We assume the agent is interested in a linear subspace of
gambles ℒ ⊆ 𝒢(Ω).
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f (ω)

f (ϖ)

We illustrate these concepts for a possibility space Ω ∶= {ω,ϖ}, and take the linear space
of gambles to be ℒ ∶= 𝒢(Ω), the two-dimensional plane. A gamble f is a vector with two
components, f (ω) and f (ϖ). This example format will be used throughout the paper. The
examples should not give the impression that particular basis we choose for the gamble space
is fundamentally relevant; however, our choice to have the positive orthant upper-right and the
negative orthant lower-left connects with existing experience and intuition.

The following concepts and notation prove convenient. First, those concerning operations on (sets of) gambles:
let f be a gamble in ℒ and let 𝒦 and 𝒦′ be subsets of ℒ, then

(a) the complement of 𝒦 relative to ℒ is 𝒦c ∶=ℒ∖𝒦,
(b) the negation of 𝒦 is −𝒦 ∶= {−g ∶ g ∈𝒦},
(c) the ray through f is f̄ ∶= {λ ⋅ f ∶ λ ∈R>0},
(d) the positive scalar hull of 𝒦 is 𝒦 ∶=⋃ f ∈𝒦 f̄ ,
(e) the Minkowski sum of𝒦 and𝒦′ is𝒦+𝒦′ ∶= {g+h ∶ g ∈𝒦∧h ∈𝒦′}, so in particular𝒦+∅ =∅ and, using negation,
𝒦−𝒦′ =𝒦+(−𝒦′),

(f) the positive linear hull of 𝒦 is posi𝒦 ∶=⋃{∑g∈𝒦′′ ḡ ∶𝒦′′ ⊆𝒦∧ ⋃︀𝒦′′⋃︀ ∈N}, where ∑g∈𝒦′′ ḡ is a Minkowski sum
of rays, and so the set of all convex cones in ℒ is C ∶= {𝒦 ⊆ℒ ∶ posi𝒦 =𝒦},

(g) the linear span of 𝒦 is span𝒦 ∶= posi(𝒦∪−𝒦∪{0}), the smallest linear space including 𝒦, and so the set of all
linear subspaces of ℒ is L ∶= {𝒦 ⊆ℒ ∶ span𝒦 =𝒦}.

Secondly, concepts and notation for the comparison of gambles, i.e., vector inequalities: let Q be a real-valued operator
on ℒ and let f and g be gambles in ℒ, then

(i) f ≥Q g if and only if Q( f −g) ≥ 0,
(ii) f >Q g if and only if Q( f −g) > 0,

(iii) f =Q g if and only if f ≥Q g and g ≥Q f ,
(iv) f ≥ g if and only if f ≥inf g,
(v) f > g if and only if f ≥ g and f ≠ g,

(vi) f ⋗ g if and only if f >inf g.
With each of these gamble relations—let us denote them generically by ◻—we can associate a specific subset of ℒ,
ℒ◻ ∶= { f ∈ℒ ∶ f ◻ 0}.

2. Accept & Reject Statement-Based Uncertainty Models

In this section, we introduce the objects used to represent assessments and models for uncertainty, and the basic
axioms that order them. This gives rise to a number of important characterisations and provides us with a simple but
powerful framework that leaves room for problem-specific a priori assumptions.

2.1. Accepting & Rejecting Gambles, and the Resulting Assessments

We envisage an elicitation procedure where the agent is asked to state whether he accepts or rejects different
gambles, or remains unresolved. The acceptability of a gamble f on Ω implies a commitment to engage in the
following transaction:

(i) the experiment’s outcome ω ∈Ω is determined,
(ii) the agent gets the—possibly negative—pay-off f (ω).

By rejecting a gamble, the agent expresses that he considers accepting that gamble unreasonable, or, in other words,
deems the gamble unacceptable. Such statements are, for example, relevant when combining his statements with those
of another agent: when a gamble is accepted by one, but rejected by the other, there is a clear conflict. The agent is not
forced to state either acceptance or rejection for a given gamble, but may choose to remain unresolved, e.g., because of
a lack of information about the experiment. Note the difference in nature of these two statement types: Acceptability is
operationally linked to gamble pay-offs. For rejection this link is only indirect, namely by referral to acceptability.

The set of gambles the agent finds acceptable is denoted by 𝒜⪰ ⊆ ℒ; the set of gambles he rejects is similarly
denoted by 𝒜≺ ⊆ℒ. Combined, they form his assessment 𝒜 ∶= ∐︀𝒜⪰;𝒜≺̃︀; the set of all assessments is A ∶= 2ℒ×2ℒ.

4



⊕

⊕

⊖

⊖
⊕

⊖

⊖
⊕

⊕
⊖

⊖

We represent finite assessments graphic-
ally in our two-dimensional example format
using ⊕ for accepted gambles and ⊖ for re-
jected ones. On the right, we give three ex-
amples, which will be extended further on.
Each of these examples has been chosen to
exhibit interesting behaviour at some later
point in this discussion, so the accepted and rejected gambles have not been chosen arbitrarily. One thing we can
already indicate here is that the choice of rejected gambles in the leftmost example will effectively mean that relative
losses above a certain threshold are deemed unacceptable.

2.2. Unresolved Gambles, Confusing Gambles, and No Confusion
Based on the statements that have been made about a gamble f , it can fall into one of four categories. It can be only

accepted, only rejected, neither accepted nor rejected, or both accepted and rejected.
When the gamble is neither accepted nor rejected, it is called unresolved; the set of unresolved gambles is

𝒜⌣ ∶= (𝒜⪰∪𝒜≺)
c. When the gamble is both accepted and rejected, it is said to be confusing; the set of confusing

gambles is 𝒜⪰,≺ ∶=𝒜⪰∩𝒜≺. Similarly, we denote the set of non-confusing acceptable gambles by 𝒟⪰,⊀ ∶=𝒟⪰∖𝒟≺ and
the set of non-confusing rejected gambles by 𝒟≺,ã ∶=𝒟≺∖𝒟⪰.

To formalise the meaning attached to rejection—that acceptance is unreasonable—, we must judge confusion to be
a situation that has to be avoided. This corresponds to the following rationality axiom:

Axiom NC (No Confusion). 𝒜⪰,≺ =𝒜⪰∩𝒜≺ =∅.

The set of assessments without confusion is A ∶= {𝒜 ∈A ∶𝒜⪰,≺ =∅}. Assessments 𝒜 in A partition the space ℒ of all
gambles of interest into {𝒜⪰,𝒜≺,𝒜⌣}. (We allow partition elements to be empty.)

Although sources of confusion should ideally be investigated, it is possible to automatically remove confusion from
assessments in a number of ways, of which we mention only a few here:

Proposition 2.1. Confusion can be removed from an assessment 𝒜 in A by removing the confusing gambles from the
accepted gambles, from the rejected gambles, or from both. Formally: {∐︀𝒜⪰,⊀;𝒜≺̃︀,∐︀𝒜⪰;𝒜≺,ã̃︀,∐︀𝒜⪰,⊀;𝒜≺,ã̃︀} ⊆A.

In our graphical examples, given that only a small finite number of statements have been made, all gambles are
unresolved apart from the ones involved in these statements. The resolved ones belong to either 𝒟⪰,⊀ or 𝒟≺,ã, i.e., are
either accepted or rejected.

2.3. Indifference, Favourability, and Uncomparability
Given an assessment 𝒜 in A, we can introduce three other types of statements an agent can make about gambles by

considering both a gamble and its (point-wise) negation. Making a statement about one gamble in such a pair does
not restrict the statements that can be made about the other. However, useful interpretations can be given to certain
combinations of statements.

We say that the agent is indifferent about a gamble f if he finds both it and its negation − f acceptable. The set of
indifferent gambles is 𝒜≃ ∶=𝒜⪰∩−𝒜⪰.

We say that the agent finds a gamble f favourable if he finds it acceptable, but rejects its negation − f . The reason
for this terminology is that in such a configuration the agent accepts the gamble f and moreover effectively states non-
indifference about it—unless he is in a state of confusion, of course. The set of favourable gambles is 𝒜» ∶=𝒜⪰∩−𝒜≺.
The zero gamble cannot be favourable without being confusing because −0 = 0.

We say that a gamble f is indeterminate if neither it nor its negation − f are acceptable, so that no predetermined
operational procedure is associated to it. The set of indeterminate gambles is 𝒜∥ ∶= (𝒜⪰∪−𝒜⪰)

c.
In our graphical examples, no indifferent or favourable gambles appear; these categories will be illustrated later.

Of course, again given that only a small finite number of statements has been made, most pairs of gambles related by
negation consist of unresolved gambles and these gambles are therefore indeterminate. In the middle example, there is
however one pair of rejected gambles related by negation; the gambles involved, even though resolved, are also called
indeterminate because no accept statement is involved, so no commitments are determined.
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2.4. Deductive Extension and Deductive Closure
Based on the assumption that the gamble pay-offs are expressed in a linear precise utility scale, statements of

acceptance imply other statements, generated by positive scaling and combination: if f is judged acceptable, then
λ ⋅ f should be as well for all real λ > 0; if f and g are judged acceptable, then f +g should be as well. This is called
deductive extension. Deductive extension can be succinctly expressed using the positive linear hull operator posi,
which generates convex cones and was introduced in Section 1.4. The assumptions about the utility scale have no direct
consequences for reject statements; their indirect impact will be derived in Section 2.5.

So, starting from an assessment𝒜 in A, its deductive extension extD𝒜 ∶= ∐︀posi𝒜⪰;𝒜≺̃︀, which we call a deductively
closed assessment, can be derived. Deductively closed assessments 𝒟 satisfy the following rationality axiom:

Axiom DC (Deductive Closure). extD𝒟 =𝒟 or, equivalently, 𝒟⪰ ∈C,

which can also be expressed as the combination of

Axiom PS (Positive Scaling). λ > 0∧ f ∈𝒟⪰⇒ λ ⋅ f ∈𝒟⪰ or, equivalently, R> ⋅𝒟⪰ ⊆𝒟⪰

and

Axiom C (Combination). f ,g ∈𝒟⪰⇒ f +g ∈𝒟⪰ or, equivalently, 𝒟⪰+𝒟⪰ ⊆𝒟⪰.

The subset of A consisting of all deductively closed assessments is—not surprisingly—denoted by D and those without
confusion by D ∶=D∩A. Not all assessments without confusion remain so after deductive extension; those that do are
called deductively closable and form the set A+ ∶= {𝒜 ∈A ∶ extD𝒜 ∈D}, where we have made use of the fact that extD
never removes statements and therefore cannot remove confusion.

It is useful to have an explicit criterion on hand to test whether an assessment is deductively closable or not:

Theorem 2.2. An assessment 𝒜 in A is deductively closable—i.e., 𝒜 ∈A+—if and only if 0 ∉𝒜≺−posi𝒜⪰.

This criterion is a feasibility problem. When the assessment consists of only a finite number of statements, the feasible
space 𝒜≺−posi𝒜⪰ is a union of convex cones ⋃ f ∈𝒜≺({ f}−posi𝒜⪰) and the problem becomes a disjunctive linear
program. It reduces to a plain linear program when, for example, 𝒜≺ is also convex.

Again, it is possible to automatically remove confusion from deductively closed assessments, but there is less
flexibility than for assessments because not all modified assessments suggested in Proposition 2.1 are deductively
closable:

Proposition 2.3. While ensuring the resulting assessment is still deductively closed, confusion can be removed from a
deductively closed assessment 𝒟 in D, by removing the confusing gambles from the rejected gambles or by removing
them from both the accepted and rejected gambles and then taking the deductive extension. So formally we have:
{∐︀𝒟⪰;𝒟≺,ã̃︀,extD∐︀𝒟⪰,⊀;𝒟≺,ã̃︀} ⊆D.

The set of indifferent gambles 𝒟≃ =𝒟⪰∩−𝒟⪰ of a deductively closed assessment 𝒟 in D is the negation invariant
part of the convex cone 𝒟⪰, so it is either empty or a linear space, the cone’s so-called lineality space. The lineality
space can be used in a couple of useful results:

Proposition 2.4. Given a deductively closed assessment 𝒟 in D with a non-empty set of indifferent gambles 𝒟≃, denote
the set of non-indifferent acceptable gambles by 𝒟⪰,≄ ∶=𝒟⪰∖𝒟≃, then

(i) there is indifference to status quo: 0 ∈𝒟≃,
(ii) the set 𝒟⪰,≄ is invariant under Minkowski addition with the indifferent gambles: 𝒟⪰,≄+𝒟≃ =𝒟⪰,≄, and

(iii) the set 𝒟⪰,≄ is a cone: 𝒟⪰,≄ ∈C.

Results such as Claim (iii) in which some set is found to be a cone are useful, because they alert us to the fact that,
in principle, working with these sets should often amount to solving convex optimisation problems. Decomposition
results such as Claim (ii), where some set is the Minkowski sum of a linear space and another set, may allow for a
lower-dimensional representation of that set, much like a cylinder can be characterised by its axis and some cylindrical
section. The idea is to use a complement of the lineality space in ℒ: For example, if 𝒦 ⊆ ℒ is a linear space such
that ℒ =𝒟≃⊕𝒦, where ⊕ denotes the direct sum of linear spaces, then we can use 𝒟⪰,≄∩𝒦 as a lower-dimensional
representation of 𝒟⪰,≄.
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Applying deductive extension extD to
the three example assessments given in Sec-
tion 2.1 results in the deductively closed
assessments pictured on the right. The
area filled light grey is the set of accepted
gambles generated by deductive extension,
black lines indicate included border rays.
The conical nature of these sets is immediately apparent, as well as the fact that working with accepted gambles, or
with the rays they generate, amounts to the same thing. Because these deductively closed sets result from direct, finite
assessments, the cones are all closed; this is not necessarily so in general, e.g., in Section 5 we will see how even
finitary prevision assessments generate infinite acceptability assessments that lead to non-closed cones. Also visible is
the fact that the set of rejected gambles is not affected by deductive closure.

We see that the assessment in the third example is not deductively closable, because after deductive extension
one rejected gamble becomes confusing. Both procedures for removing confusion in Proposition 2.3 lead to the same
deductively closed assessment: the one resulting from removing the rejection statement for the single confusing gamble.

2.5. Limbo, Reckoning Extension, No Limbo, and Models
Deductive Closure does have more of an impact than is apparent at first sight. Consider a deductively closed

assessment 𝒟 in D that is the deductive extension of the agent’s assessment. Furthermore consider an unresolved
gamble f , i.e., f ∈𝒟⌣. What happens if the agent makes a statement about this gamble to augment his assessment?

Were f to be rejected, then we would be interested in extD∐︀𝒟⪰;𝒟≺ ∪{ f}̃︀, which is just ∐︀𝒟⪰;𝒟≺ ∪{ f}̃︀. Con-
sequently, there is no increase in confusion. On the other hand, were f to be accepted, then we would have to focus on
extD∐︀𝒟⪰∪{ f};𝒟≺̃︀, which is equal to ∐︀𝒟⪰∪( f̄ +𝒟⪰)∪ f̄ ;𝒟≺̃︀. This new deductively closed assessment may exhibit
an increase in confusion:

Proposition 2.5. Given a deductively closed assessment 𝒟 in D and an unresolved gamble f in 𝒟⌣, then
(i) there is no increase in confusion, i.e., (extD∐︀𝒟⪰∪{ f};𝒟≺̃︀)⪰,≺ ⊆𝒟⪰,≺, if and only if f ∉𝒟≺,ã∪(𝒟≺,ã−𝒟⪰),

(ii) the set 𝒟⪰ is disjoint with both 𝒟≺,ã and 𝒟≺,ã−𝒟⪰.

We say that the gambles in (𝒟≺,ã∪(𝒟≺,ã−𝒟⪰))∖𝒟≺ are in limbo and we call this set the limbo of 𝒟. We use this
imagery because there is no real choice for the gambles in this set: although they are not rejected yet, the only thing to
do is to reject them, if an increase in confusion is to be avoided. Proposition 2.5 tells us that under Deductive Closure
gambles in limbo have exactly the same effect as gambles in 𝒟≺: considering them as acceptable increases confusion.
So—echoing the meaning attached to reject statements—, accepting them would be unreasonable.

When the deductively closed assessment we start from satisfies No Confusion, it holds that 𝒟≺,ã =𝒟≺ and the
expression for limbo simplifies:

Corollary 2.6. Given a deductively closed assessment without confusion 𝒟 in D and an unresolved gamble f in 𝒟⌣,
then

(i) no confusion is created, i.e., (extD∐︀𝒟⪰∪{ f};𝒟≺̃︀)⪰,≺ =∅, if and only if f ∉𝒟≺∪(𝒟≺−𝒟⪰),
(ii) the set 𝒟⪰ is disjoint with both 𝒟≺ and 𝒟≺−𝒟⪰, and

(iii) the limbo of 𝒟 is (𝒟≺∪(𝒟≺−𝒟⪰))∖𝒟≺.

Starting from a deductively closed assessment 𝒟 in D, additionally rejecting the gambles that are in its limbo—
i.e., those that would lead to an increase in confusion if added instead to 𝒟⪰—results in its reckoning extension
extM𝒟 ∶= ∐︁𝒟⪰;𝒟≺∪𝒟≺,ã∪(𝒟≺,ã−𝒟⪰)̃︁, which we call a model. Modelsℳ are deductively closed assessments that
satisfy the following rationality axiom:

Axiom NL (No Limbo). extMℳ =ℳ or, equivalently, ℳ≺,ã∪(ℳ≺,ã−ℳ⪰) ⊆ℳ≺.

The subset of A consisting of all models is denoted by M and those without confusion by M ∶=M∩A. By definition,
reckoning extension cannot increase or create confusion for deductively closed assessments. This means that for an
assessment 𝒟 that is deductively closed and avoids confusion, its reckoning extension extM𝒟 is a model without
confusion:
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Proposition 2.7. Given a deductively closed assessment without confusion 𝒟 in D, then its reckoning extension is a
model without confusion: extM𝒟 = ∐︀𝒟⪰;𝒟≺∪(𝒟≺−𝒟⪰)̃︀ ∈M.

We can take this result one step further, starting again from an assessment that does not need to be deductively
closed:

Corollary 2.8. Any deductively closable assessment 𝒜 can be extended to a model without confusion. Formally: if
𝒜 ∈A+, then extM(extD𝒜) ∈M.

When one wants to automatically remove confusion from models, they may be treated as deductively closed
assessments, meaning that Proposition 2.3 provides the appropriate answers. In any case, however they are constructed,
models without confusion have some useful additional properties:

Proposition 2.9. Given a model without confusionℳ in M, then
(i) the structure of the set of rejected gambles is described byℳ≺ =ℳ≺ =ℳ≺∪(ℳ≺−ℳ⪰),

(ii) the set of favourable gambles isℳ» = (ℳ⪰−ℳ≺)∩ℳ⪰, and
(iii) the set of favourable gambles is a cone:ℳ» ∈C.

Adding anything favourable to something acceptable sweetens the deal to something favourable:

Corollary 2.10 (Sweetened Deals). Given a model without confusionℳ in M, thenℳ⪰+ℳ» =ℳ».

⊕

⊕

⊖

⊖
⊕

⊖

⊖
⊕

⊕
⊖

⊖

Applying reckoning extension extM to
the three deductively closed example as-
sessments given in Section 2.4 results in the
models depicted on the right. The area filled
dark grey is the set of rejected gambles im-
plied by No Limbo, dashed black lines em-
phasise excluded rays.

The first two examples illustrate that a model’s set of rejected gambles need not be convex. In the first case, we
can interpret this as follows: the agent effectively finds accepting gambles with a gain to loss ratio below a certain
threshold—here smaller than one—unreasonable. In the second example this set is even disconnected—arguably due to
a degenerate setup.

The last example illustrates that reckoning extension only acts on the unconfused parts of a model’s set of rejected
gambles. Making abstraction of such confusing gambles, it is visible that reckoning extension transfers the practical
equivalence of working with gambles or rays from the set of accepted gambles to the set of rejected gambles.

In the first example, all acceptable rays turn out to be favourable as well; for the border rays, this is indicated by
dotting them. In the second example, there are no favourable gambles. In the third example, all acceptable rays are
favourable except for one—undotted—border ray; note how the opposing ray—a border ray of the set of rejected
gambles—is not included in the set of rejected gambles.

2.6. Order-Theoretic Considerations: Resolve, Intersection Structures, and Closure Operators
(Davey and Priestley [19] provide a good supporting reference for the material in this section.)
The typical set-theoretic operations—e.g., union ⋃, intersection ⋂, and set difference ∖—are extended to assess-

ments by component-wise application. Pairs of assessments can be compared component-wise using their set-theoretic
inclusion relationship. We say that an assessment 𝒜 is at most as resolved as an assessment ℬ if the former’s compon-
ents are included in those of the latter: 𝒜 ⊆ ℬ if and only if 𝒜⪰ ⊆ ℬ⪰ and 𝒜≺ ⊆ ℬ≺. The resolve terminology is based on
the fact that more resolved assessments contain less unresolved gambles. We work with component-wise inclusion
of assessments and not with inclusion of sets of resolved gambles because we will gratefully exploit the additional
mathematical structure it provides.

We also introduce terminology for the comparison of assessments based on one component only: We say that an
assessment 𝒜 is at most as committal as an assessment ℬ if the former’s set of acceptable gambles is included in the
latter’s: 𝒜⪰ ⊆ ℬ⪰. Effectively, more committal assessments contain more commitments to engage in transactions of the
type described in Section 2.1. We furthermore say that an assessment 𝒜 is at most as restrictive as an assessment ℬ
if the former’s set of rejected gambles is included in the latter’s: 𝒜≺ ⊆ ℬ≺. More restrictive assessments restrict the
potential commitments to a smaller set.
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On the right, the resolvedness relation is illus-
trated using the example models we encountered at
the end of Section 2.5: The middle model is more
resolved than the left one, but neither more nor less
resolved than the right one. This is a consequence of
the fact that the models increase qua commitments
from left to right, but that the middle model is more
restrictive than the outer ones.

Under the ‘at most as resolved as’-relation ⊆, the set of assessments constitutes a complete lattice (A,⊆), where the
union operator ⋃ plays the role of supremum and the intersection operator ⋂ that of infimum. Its bottom is � ∶= ∐︀∅;∅̃︀
and its top is ⊺ ∶= ∐︀ℒ;ℒ̃︀.

The derived posets (A,⊆), (A+,⊆), (D,⊆), (D,⊆), and (M,⊆) all have an interesting order-theoretic nature, as they
are intersection structures:

Proposition 2.11. The sets A, A+, D, D, and M are closed under arbitrary non-empty intersections: let B denote any
one of these sets and let C ⊆B, then ⋂C ∈B.

All posets (A,⊆), (A+,⊆), (D,⊆), (D,⊆), and (M,⊆) are therefore complete infimum-semi-lattices where ⋂ plays the
role of infimum. They have a common bottom �, but only (D,⊆) has a top, ⊺. The others have multiple maximal
elements, respectively forming the sets Â, Â+, D̂, and M̂. Given B ⊆ A, then the set of maximal elements of (B,⊆) is
B̂ ∶= {𝒜 ∈B ∶ (∀ℬ ∈B)𝒜 ⊄ℬ}, with𝒜 ⊂ℬ if and only if𝒜 ⊆ℬ and𝒜 ≠ℬ. The explicit form of these maximal elements
can be found:

Proposition 2.12. The set of maximal assessments without confusion is Â = {∐︀𝒦;ℒ∖𝒦̃︀ ∶𝒦 ⊆ℒ}. So an assessment
without confusion 𝒜 in A is maximal if and only if it has no unresolved gambles: 𝒜⌣ =∅.

Proposition 2.13. The set of all maximal models without confusion is M̂ = Â∩D = {∐︀𝒦;ℒ∖𝒦̃︀ ∶𝒦 ∈C}. It moreover
coincides with the sets of all maximal deductively closed or closable assessments without confusion: M̂ = D̂ = Â+.

⊕

⊕
⊖

⊖

∩ ⊕

⊕

⊖

⊖

= ⊕

⊕

⊖

⊖

The poset (M,⊆) is not an intersection structure.
This can be shown using the graphical counterexample
on the right. The resulting intersection is a deductively
closed assessment, but not a model; the corresponding
model here—which can be obtained by applying reckon-
ing extension—is actually the second intersection factor.
Nevertheless, the poset’s bottom is � and its top is ⊺, the
same as for (A,⊆) and (D,⊆).

M̂
Â

{⊺} M

M
D

D
A+

A
A

extD

extD

extM

extM

To summarise the relationships between the sets of assessments we have encountered, we
give the Hasse diagram of their inclusion-based partial ordering on the left: Full lines link sets
related by inclusion; sets become smaller as we go towards the top of the page in the diagram.
We have also indicated which sets are direct images of a superset under deductive closure extD
or reckoning extension extM. Dashed lines lead to sets of maximal elements.

Moving to the right in the diagram corresponds to verifying that an assessment is without
confusion or, one step further, is deductively closable. Moving straight up corresponds to
verifying that an assessment is deductively closed or a model, respectively, or, from an inference
viewpoint, to applying deductive closure extD and reckoning extension extM, respectively. What
we will typically wish to do is move from the bottom left—some assessment in A—to the top
right—some model without confusion in M—; many of the results below characterise when this
is possible and how it can done.

Below, we will most often not be working in the Hasse diagram pictured here, but in
daughter diagrams where A is replaced by a subset of interest. In Section 4, these subsets will

be characterised by one or more interesting simplifying conditions. In the remainder of this section, these subsets are
defined by replacing the bottom � with some other, non-trivial assessment.
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Let B𝒜 ∶= {ℬ ∈ B ∶𝒜 ⊆ ℬ} be the subset of assessments in B ⊆ A dominating the assessment 𝒜 in A. With every
intersection structure (B,⊆) there can be associated an operator clB from A to B∪{⊺}, defined for any assessment 𝒜
in A by clB𝒜 ∶=⋂B𝒜. For a correct understanding of this definition, recall that ⋂∅ = ⊺. An operator cl∗ on A is a
closure operator if for all 𝒜 and ℬ in A it is

• extensive: 𝒜 ⊆ cl∗𝒜,
• idempotent: cl∗(cl∗𝒜) = cl∗𝒜, and
• increasing: 𝒜 ⊆ ℬ⇒ cl∗𝒜 ⊆ cl∗ℬ.

The operators we have defined satisfy these criteria:

Proposition 2.14. Given an intersection structure (B,⊆), with B ⊆A, then
(i) clB is a closure operator, and

(ii) clB𝒜 =𝒜 if and only if 𝒜 ∈B∪{⊺}.

A closure operator relative to an intersection structure (B,⊆) effects the most conservative inference relative to B
in the sense that it generates the least resolved dominating assessment in B or—if there is no such dominating
assessment—returns ⊺.

With the intersection structures encountered above, there correspond the closure operators clA, clA, clA+ , clD, clD,
and clM. For each of these, we can give a constructive formulation for practical calculations:

Proposition 2.15. Next to the general result of Proposition 2.14, we have that
(i) clA returns ⊺ outside of A,

(ii) clA+ , clD, and clM return ⊺ outside of A+,
(iii) clD = extD,
(iv) clD = extD on A+, and
(v) clM = extM ○extD on A+ and, specifically, clM = extM on D.

Concatenating the closure operators so defined with the supremum operator ⋃ of (A,⊆), which can be applied
to arbitrary—i.e., also infinite—families of assessments, gives us the supremum operators of the complete lattices
(A∪{⊺},⊆), (A+∪{⊺},⊆), (D,⊆), (D∪{⊺},⊆), and (M∪{⊺},⊆) so formed. Supremum operators of special interest
are the deductive union ⊎ ∶= clD ○⋃ and the reckoning union 2 ∶= clM ○⋃.

2.7. Models Dominating Assessments

We want to represent the agent’s uncertainty using models in M. (From now on in this section, unless indicated
otherwise, when we talk about models, we mean unconfused ones.) The agent provides an assessment. Unless it is
deductively closable, i.e., an element of A+, it is impossible to derive a most conservative model from it using the closure
operator clM—or the operators extD and extM—or confusion would ensue (cf. Proposition 2.15). We are therefore
interested in characterisations of A+, the set of assessments that can be turned into models.

We consider the sets of models M𝒜 and maximal models M̂𝒜 ∶= M̂∩M𝒜 dominating the assessment 𝒜. Both sets
are empty if the assessment is not in A+; but if it is, their elements all dominate clM𝒜 = extM(extD𝒜), which is the
bottom of (M𝒜,⊆). These observations can be strengthened into the following characterisation of A+:

Theorem 2.16. An assessment 𝒜 in A is deductively closable if and only if its set of maximal dominating models is
non-empty. Formally: 𝒜 ∈A+ if and only if M̂𝒜 ≠∅.

This is our counterpart to the lower envelope theorem in the theory of coherent lower previsions [see, e.g., 9, §3.3.3(a)].
It leads to a first result about the combination of assessments:

Corollary 2.17. If all assessments in some family B ⊆A are dominated by a common model in M, then their reckoning
union 2B is a model in M.

The maximal models dominating an assessment can also be used for inference purposes [cfr. 9, §3.3.3(b)]:

Proposition 2.18. Given an assessment 𝒜 in A, then its closure in the set of models is clM𝒜 =⋂M̂𝒜.
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This result is practically applicable whenever M̂𝒜 has some special structure we can exploit. For example, when it has
a finite set of ‘extreme’ elements M̂∗

𝒜 such that ⋂M̂∗
𝒜 =⋂M̂𝒜. The analogon in the theory of imprecise probabilities

is the set of extreme points of a credal set [cf., e.g., 8].
The results in this section guarantee that unconfused models constitute an instance of what are called strong belief

structures by De Cooman [20]. This implies in particular that the whole apparatus developed there for dealing with
AGM-style belief change and belief revision [21], is also available for the unconfused models we are dealing with here.

2.8. Background Models, Respect, Natural Extension, Coherence, and Indifference to Status Quo
So far, we have not dealt with any structural a priori assumptions about the gambles in ℒ or the experiment. Many of

these can be captured by positing a so-called background model 𝒮 in M to replace the trivial smallest model �. In such
a context, attention is evidently restricted to models in M𝒮 , and when doing so, all the results of the preceding sections
remain valid, mutatis mutandis. An intuitively appealing background model is ∐︀ℒ≥;ℒ<̃︀. Using this background model
amounts to taking for granted that all non-negative gambles should be accepted, and all negative gambles rejected.2 For
other examples, we refer to Sections 4.3, 4.4, and 5.

We say that an assessment 𝒜 ∈A respects the background model 𝒮 if they share a common maximal model; i.e., if
M̂𝒜∩M̂𝒮 = M̂𝒜∪𝒮 ≠∅, or, by Theorem 2.16, that 𝒜∪𝒮 ∈A+. The natural extension of an assessment 𝒜 in A is its
reckoning union with the background model, 𝒜F𝒮. Corollary 2.17 then leads to:

Corollary 2.19. The natural extension of an assessment 𝒜 in A is a model if and only if the assessment respects the
background model 𝒮 in M. Formally: 𝒜F𝒮 ∈M if and only if M̂𝒜∪𝒮 ≠∅ or 𝒜∪𝒮 ∈A+.

So, more colloquially, the assessment 𝒜 respects the background model 𝒮 if their combination leads to a model
without confusion. We furthermore say that an assessment 𝒜 in A+ is coherent if it coincides with its natural extension:
𝒜 =𝒜F𝒮, or equivalently 𝒮 ⊆ clM𝒜 =𝒜. To make explicit what the linear space ℒ of gambles of interest is or what
the background model 𝒮 is, these can be used as a prefix: (ℒ,𝒮)-coherent, ℒ-coherent, 𝒮-coherent.

Given the interpretation attached to accept statements, we judge it reasonable to always let the zero gamble 0—also
called status quo—be acceptable, and therefore indifferent. This corresponds to the following rationality axiom:

Axiom ISQ (Indifference to Status Quo). 𝒪 ⊆ 𝒮 , with 𝒪 ∶= ∐︀{0};∅̃︀.

The set of assessments that express Indifference to Status Quo is A𝒪, i.e., all assessments dominating 𝒪. Under
Indifference to Status Quo, the limbo expression simplifies yet further (cf. Corollary 2.6):

Corollary 2.20. Given a deductively closed assessment 𝒟 in D𝒪, so without confusion and with indifference to status
quo, and an unresolved gamble f in 𝒟⌣, then

(i) no confusion is created, i.e., extD∐︀𝒟⪰∪{ f};𝒟≺̃︀⪰,≺ =∅, if and only if f ∉𝒟≺−𝒟⪰,
(iii) the limbo of 𝒟 is (𝒟≺−𝒟⪰)∖𝒟≺.

It is possible to give a compact characterisation of models coherent with a background model that is indifferent to
status quo:

Theorem 2.21. An assessmentℳ in A is a model that respects a background model with indifference to status quo 𝒮
in M𝒪, i.e.,ℳ ∈M𝒮 , if and only if

(AR1) it includes the background model: 𝒮 ⊆ℳ,
(AR2) it does not reject status quo: 0 ∉ℳ≺,
(AR3) its acceptable gambles form a cone:ℳ⪰ ∈C, and
(AR4) it has no limbo:ℳ≺−ℳ⪰ ⊆ℳ≺.

We will give similar characterisation results when formulating our theory in terms of gamble relations in Section 3 and
when looking at simplified versions of our theory in Section 4. These results allow for easy high-level comparison of
the different representations and theory variants.

2 One reason for not generally including ∐︀ℒ≥;ℒ<̃︀ or ∐︀ℒ⋗;ℒ⋖̃︀ in the background model, would be that conditioning on an event with probability
one—modelled using de Finetti’s interpretation (cf. Section 5.1)—then results in a conditional model with confusion. (As the conditioning rule, we
here take the standard one from the theory of sets of desirable gambles, namely restriction to the linear subspace corresponding to the conditioning
event [cf., e.g., 34, §1.3.3].) We do not discuss this issue further, as we do not treat conditional models in this paper.
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2.9. Gamble Space Partitions Induced by Assessments with No Confusion

𝒜≃ 𝒜»

−𝒜»

𝒜⪰

−𝒜⪰

𝒜≺

−𝒜≺
In our accept-reject framework, an assessment 𝒜 in A—so with no confusion—

partitions the linear space of gambles of interest ℒ into nine classes, each of which is
defined by whether its constituent gambles and their negations are acceptable, rejected,
or unresolved. Some of these classes may be empty. This partitioning is illustrated
on the left. We have explicitly labelled the partition elements corresponding to the
sets of indifferent and favourable gambles. To make the partition’s gamble negation-
based cross-diagonal symmetry visible, we have also labelled the partition element
corresponding to the negation of the set of favourable gambles. The set of indifferent
gambles is invariant under this symmetry, i.e., gamble negation.

From Proposition 2.13, we know that for maximal assessments all gambles in ℒ
are either accepted or rejected. Because of this, for maximal models, some partition

classes are empty for sure; these

𝒜⪰

−𝒜⪰

𝒜≺

−𝒜≺

𝒜∥

𝒜⪰

−𝒜⪰

𝒜≺

−𝒜≺

𝒜⌣

have been hatched instead of filled. Whenever a back-
ground model 𝒮 has been posited, the picture stays the
same, but the background model 𝒮 constrains some
of the partition classes to be non-empty.

It is useful to see where the other assessment cat-
egories we have encountered lie as contextualised by
the above partition. We have done this on the right:
In the first figure, we show the set of indeterminate
gambles, which is invariant under the cross-diagonal
symmetry mentioned. In the second figure, we show
the set of unresolved gambles—hatched, because it is
empty for maximal assessments.

2.10. Summary of Concepts & Notation

This is a good point to provide a summary of the most important concepts and notation introduced up until now, so
as to have a convenient reference for quick reminders when reading the remainder of the paper:

1. We consider assessments𝒜, which are pairs of sets ∐︀𝒜⪰;𝒜≺̃︀ of gambles, where𝒜⪰ contains acceptable gambles
and 𝒜≺ rejected gambles. The set of all assessments is A.

2. When a gamble is both accepted and rejected, we call it confusing. Our first axiom is No Confusion (NC):
𝒜⪰,≺ ∶=𝒜⪰∩𝒜≺ =∅. The set of all assessments without confusion is A. (We consistently use blackboard bold
instead of plain bold to denote a set of assessments without confusion.)

3. The most important derived statement types are indifference (𝒜≃ ∶=𝒜⪰∩−𝒜⪰), accepting both a gamble and its
negation, and favourability (𝒜» ∶=𝒜⪰∩−𝒜≺), accepting a gamble and rejecting its negation.

4. Our second axiom is Deductive Closure (DC): all positive linear combinations of acceptable gambles must
be (made) acceptable. From an assessment 𝒜 we can obtain a deductively closed assessment 𝒟 ∶= extD𝒜 ∶=

∐︀posi𝒜⪰;𝒜≺̃︀. The set of all deductively closed assessments is D and of those without confusion D. The set of
all assessments that are deductively closable without generating confusion is A+.

5. Our third axiom is No Limbo (NL): all gambles that would cause confusion if made acceptable must be
rejected. From a deductively closed assessment without confusion 𝒟 we can obtain a modelℳ ∶= extM𝒟 ∶=

∐︁𝒟⪰;𝒟≺∪(𝒟≺−𝒟⪰)̃︁. The set of all models without confusion is M.
6. Consider a set of assessments B. The subset of elements that are maximal under the ‘at most as resolved as’

relation ⊆ is B̂. The subset of elements that ⊆-dominate 𝒜 is B𝒜.
7. Typically, a background model 𝒮 in M is given, which provides a default set of accepted and rejected gambles and

which should be combined with a specific assessment 𝒜 in A+. If 𝒜∪𝒮 ∈A+, then 𝒜 respects 𝒮 and its natural
extension is 𝒜F𝒮 ∶= clM(𝒜∪𝒮) ∶=⋂M̂𝒜∪𝒮 = extM(extD(𝒜∪𝒮)). An assessment is coherent if it coincides
with its natural extension.

8. Our fourth and last axiom is Indifference to Status Quo (ISQ): 0 ∈ 𝒮⪰, the zero gamble is acceptable. This
assumption simplifies many expressions in the accept-reject framework.

12



3. Gamble Relations

We associate a number of gamble relations on ℒwith each model with Indifference to Status Quo in our accept-reject
framework. So, fix a modelℳ in M𝒪 and consider the following defining equivalences:

f ⪰ g⇔ f −g ∈ℳ⪰ and f ≺ g⇔ f −g ∈ℳ≺. (3.1)

The former can be read as ‘ f is accepted in exchange for g’, the latter as ‘ f is unpreferred to g’. Please not that, despite
what may be suggested by the notation, f ≺ g on its own does not imply g ⪰ f .

The nature of these gamble relations follows from the axioms of the accept-reject framework: No Confusion (NC),
Deductive Closure (DC), No Limbo (NL), and Indifference to Status Quo (ISQ). We give a translation of these axioms
for gamble relations under the form of a characterisation in the vein of Theorem 2.21:

Theorem 3.1. Gamble relations ⪰ and ≺ on ℒ are equivalent under Definition (3.1) to a modelℳ in M𝒪, so without
confusion and with indifference to status quo, if and only if for all gambles f , g, and h in ℒ and all mixture coefficients
0 < µ ≤ 1 it holds that

(AD1) Accept Reflexivity: f ⪰ f ,
(AD2) Reject Irreflexivity: f ⊀ f ,
(AD3) Accept Transitivity: f ⪰ g∧g ⪰ h⇒ f ⪰ h,
(AD4) Mixed Transitivity: f ≺ g∧h ⪰ g⇒ f ≺ h, and
(AD5) Accept Mixture Independence: f ⪰ g⇔ µ ⋅ f +(1−µ) ⋅h ⪰ µ ⋅g+(1−µ) ⋅h.
(AD6) Reject Mixture Independence: f ≺ g⇔ µ ⋅ f +(1−µ) ⋅h ≺ µ ⋅g+(1−µ) ⋅h.

So acceptability is reflexive and transitive, which makes it a non-strict pre-order, also a vector ordering. Unpreference
is irreflexive. Both gamble relations are linked together by Mixed Transitivity.

The two definitions of Equation (3.1) engender three other useful gamble relations: We say that the agent is
indifferent between two gambles f and g if he accepts f in exchange for g and vice versa:

f ≃ g⇔ f ⪰ g∧g ⪰ f ⇔ f −g ∈ℳ≃. (3.2)

Because it is the symmetrisation of the reflexive and transitive acceptability ⪰, indifference is reflexive, transitive, and
symmetric, which makes it an equivalence relation.

We say that the agent prefers a gamble f over a gamble g if he both accepts f in exchange for g and unprefers g
to f :

f » g⇔ f ⪰ g∧g ≺ f ⇔ f −g ∈ℳ». (3.3)

Because of how it is derived from unpreference ≺ and acceptability ⪰, and because of Proposition 2.9 and Corollary 2.10,
preference satisfies the following properties for all f , g, and h in ℒ and 0 < µ ≤ 1:

Weakening: f » g⇒ f ⪰ g, (3.4)
Favour Irreflexivity: f ⇑» f , (3.5)
Favour Transitivity: f » g∧g » h⇒ f » h, (3.6)
Mixed Transitivity: f » g∧g ⪰ h⇒ f » h, (3.7)

Mixture Independence: f » g⇔µ ⋅ f +(1−µ) ⋅h » µ ⋅g+(1−µ) ⋅h. (3.8)

So preference is irreflexive and transitive (and therefore also antisymmetric), which makes it a strict partial ordering.
This, together with the interpretation attached to the accept and reject type statements from which it derives, makes it
ideally suited for decision making.

We say that two gambles f and g are uncomparable when neither is accepted in exchange for the other:

f ∥ g⇔ f −g ∈ℳ∥. (3.9)

Uncomparability is by definition symmetric, but is irreflexive because of Accept Reflexivity. Moreover, in general it will
not be transitive. We wish to stress that uncomparability of two gambles corresponds to the absence of an acceptability
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relation between them. So, for example, two gambles that are mutually unpreferred are uncomparable, but arguably in a
different way than two gambles between which there is no relationship whatsoever, as in this latter case uncomparability
is caused by a lack of statements instead of by the nature of the applicable statements.

For all the gamble relations introduced above, denote them generically by ◻, the following property follows from
Mixture Independence with h = −g and µ = 1

2 :

Cancellation: f ◻ g⇔ f −g ◻ 0. (3.10)

This property can be considered as a conceptual intermediate step when moving between gamble relations and models,
using Equations (3.1), (3.2), (3.3), and (3.9).

f −2 ⋅g

2 ⋅g− f

f

− f

f −g

g− f

g−g

f −3 ⋅g

3 ⋅g− f

f −4 ⋅g

4 ⋅g− f

f ′

g′

f ′−g′

g′− f ′

The connection between models and the gamble
relations of this section is illustrated on the right. In the
top figure, we have that
f » g: f is preferred to g, because f −g is acceptable

and g− f is rejected;
f ⪰ 2 ⋅g: f is accepted in exchange for 2 ⋅g, because

f −2 ⋅g is acceptable and 2 ⋅g− f is unresolved;
f ∥ 3 ⋅g: f and 3 ⋅ g are uncomparable, because both

f −3 ⋅g and 3 ⋅g− f are unresolved;
f ≺ 4 ⋅g: f is unpreferred to 4 ⋅ g, because f − 4 ⋅ g is

rejected and 4 ⋅g− f is unresolved;
f ≺ 0, g ≺ 0: both f and g are rejected.
In the bottom figure we have that
f ′ ≃ g′: indifference between f ′ and g′, because both

f ′−g′ and g′− f ′ are acceptable;
f ′ ⪰ 0, g′ ⪰ 0: both f ′ and g′ are acceptable.

Let us denote the gamble relations corresponding
to a background model 𝒮 in M𝒪 by ⊵ for acceptability
and ⊲ for unpreference. This provides a baseline assess-
ment that the agent can augment, resulting—if all goes
well—in a modelℳ in M𝒮 with which, as above, we associate the gamble relations ⪰ and ≺. How should such a
background gamble relation pair (⊵,⊲) impact the agent’s gamble relation pair (⪰,≺)?

Proposition 3.2. Given pairs of gamble relations (⊵,⊲) and (⪰,≺) on ℒ equivalent under Definition (3.1) respectively
to models with indifference to status quo 𝒮 andℳ in M𝒪, thenℳ is 𝒮-coherent if and only if for all gambles f and g
in ℒ it holds that

(AD7) Monotonicity: f ⊵ g⇒ f ⪰ g and f ⊲ g⇒ f ≺ g.

For example, when using 𝒮 ∶= ∐︀ℒ≥;ℒ<̃︀, we have ⊵ = ≥ and ⊲ = <, which supports the name ‘Monotonicity’ even more
than the suggestive notation used.

4. Simplified Frameworks

The accept-reject framework of Section 2 may in many situations be more general than needed. Therefore, it is
interesting to have a look at simplified versions of this framework. By ‘simplified’, we mean that we add additional
restrictions on the statements the agent is allowed to make, so that the models that result become easier to work with or
characterise.

The most simplified frameworks we consider here essentially restrict assessments in terms of either favourability or
acceptability statements. They allow us to make the connection with other frameworks in the literature for modelling
uncertainty that are also based on statements about gambles.
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4.1. The Accept-Favour Framework

𝒜≃ 𝒜»

𝒜∥

−𝒜»

𝒜⪰

−𝒜⪰

𝒜≺

−𝒜≺
On the left we give the illustration of the six-element partition that results if we

simplify our framework by restricting reject statements to negated acceptable gambles
by imposing

Condition AF. −𝒜≺ ⊆𝒜⪰.

In such a context, the rejection of a gamble f inℒ can be viewed as an explicit statement
of favourability about the gamble’s negation − f , because then 𝒜» =𝒜⪰∩−𝒜≺ = −𝒜≺.
It is therefore immaterial whether we specify an assessment by providing the sets
𝒜⪰ and 𝒜≺, or by the sets 𝒜⪰ and 𝒜»; in this situation we say we are using the
accept-favour framework.

We should not impose Condition (AF) as a universal rationality requirement. For
example, it would preclude one from rejecting all gambles with maximum winnings that are not at least twice the
maximum losses without creating confusion; e.g., in a two-dimensional context {(−1,1),(1,−1)} ⊂𝒜⪰,≺.

Given a set of assessments B ⊆A, we define its subset of assessments satisfying Condition (AF) by B ∶= {𝒜 ∈B ∶

−𝒜≺ ⊆𝒜⪰}. The basic results of Sections 2.2 to 2.5 about assessments, deductively closed assessments, and models of
course also remain valid when restricting attention to the accept-favour assessments in A. It is useful to state a more
specific version of our criterion for deductive closability:

Theorem 4.1 (cf. Theorem 2.2). An accept-favour assessment 𝒜 in A is deductively closable—i.e., 𝒜 ∈A+—if and
only if 0 ∉𝒜»+posi𝒜⪰.

We furthermore wish the results of Sections 2.6 to 2.8 about intersection structures, maximal elements, and closure
operators to have counterparts in the accept-favour framework. The following four results take care of the basics:

Proposition 4.2 (cf. Proposition 2.11). Condition (AF) is preserved under arbitrary non-empty intersections: If (B,⊆),
with B ⊆A, is an intersection structure, then so is (B,⊆).

Proposition 4.3 (cf. Proposition 2.12). The set of maximal accept-favour assessments is

Â =A∩ Â = {∐︀𝒦;ℒ∖𝒦̃︀ ∶𝒦 ⊆ℒ∧−(ℒ∖𝒦) ⊆𝒦},

and every such assessment 𝒜 in Â satisfies indifference to status quo: 𝒪 ⊆𝒜.

Proposition 4.4 (cf. Proposition 2.13). The set of all maximal accept-favour models is3

M̂ = Â∩D = {∐︀𝒦;ℒ∖𝒦̃︀ ∶𝒦 ∈C∧−(ℒ∖𝒦) ⊆𝒦}.

It moreover coincides with the sets of all maximal deductively closable or closed accept-favour assessments without
confusion: M̂ = D̂ = Â+.

Proposition 4.5 (cf. Propositions 2.14 and 2.15). Given an intersection structure (B,⊆) with B in {A,A,A+,D,D,M},
then the closure operator on the intersection structure (B,⊆) coincides with the one on (B,⊆): clB = clB on A.

We also consider the set of maximal models M̂𝒜 ∶= M̂∩M𝒜 that dominate the assessment 𝒜 in A and satisfy
Condition (AF). This leads to a variant of our alternative characterisation of deductive closability:

Theorem 4.6 (cf. Theorem 2.16). An accept-favour assessment 𝒜 in A is deductively closable if and only if its set of
maximal dominating accept-favour models is non-empty. Formally: 𝒜 ∈A+ if and only if M̂𝒜 ≠∅.

We would also like to prove that here too, the maximal models dominating an assessment can be used for inference
purposes, in a result similar to Proposition 2.18. But since in the accept-favour framework every maximal model
satisfies Indifference to Status Quo by Proposition 4.3, no model without Indifference to Status Quo can ever be the
intersection of the maximal models in M̂ that dominate it. Therefore our variant restricts attention to assessments with
indifference to status quo:

3 The Axiom of Choice is assumed for infinite-dimensional ℒ to prove the existence of the cones 𝒦 (cf. Lemma 9 in the Proofs Appendix).
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Proposition 4.7 (cf. Proposition 2.18). Given an accept-favour assessment with indifference to status quo 𝒜 in A𝒪,
then its closure in the set of accept-favour models is clM𝒜 = clM𝒜 =⋂M̂𝒜.

Again we can give a compact characterisation of models coherent with a background model that is indifferent to
status quo. But now, in the accept-favour framework, we can refocus attention from rejected to favoured gambles.

Theorem 4.8 (cf. Theorem 2.21). An accept-favour assessmentℳ in A is a model that respects an accept-favour
background model with indifference to status quo 𝒮 in M𝒪, i.e.,ℳ ∈M𝒮 , if and only if

(AF1) it includes the background model: 𝒮 ⊆ℳ,
(AF2) it does not favour status quo: 0 ∉ℳ»,
(AF3) both its acceptable and favourable gambles form a cone:ℳ⪰,ℳ» ∈C, and
(AF4) it favours sweetened deals:ℳ⪰+ℳ» ⊆ℳ».

It is possible to consider the ‘dual’ of Condition (AF), −𝒜⪰ ⊆𝒜≺, i.e., restrict accept statements to negated rejected
gambles. Then any acceptable gamble is also favourable: 𝒜» =𝒜⪰; we end up with a reject-favour framework. This
framework is incompatible with Indifference to Status Quo in the sense that their combination would lead to confusion.
So status quo would effectively be in limbo, leading us to reject it by default within this framework. We see no
compelling reason to exclude the reject-favour framework from consideration, but we do not investigate it here further,
focussing rather on models compatible with Indifference to Status Quo.

4.2. The Favour-Indifference Framework

𝒜≃ 𝒜»

𝒜∥

−𝒜»

𝒜⪰

−𝒜⪰

𝒜≺

−𝒜≺
On the left we give the illustration of the four-element partition that results if

we further simplify the accept-favour framework by restricting accept statements to
either favourability statements or indifference statements by imposing, in addition to
Condition (AF) that:

Condition FI. 𝒜⪰ =𝒜»∪𝒜≃.

In such a context, all unresolved gambles have an unresolved negation, because in-
difference and favourability statements both say something about a gamble f and its
negation − f concurrently. It is therefore immaterial whether we specify an assessment
by providing the sets 𝒜⪰ and 𝒜≺, or by the sets 𝒜» and 𝒜≃; in this situation we say
we are using the favour-indifference framework.

Given B ⊆ A, then define B
̃
∶= {𝒜 ∈ B ∶ −𝒜≺ ⊆𝒜⪰ ∧𝒜⪰ =𝒜» ∪𝒜≃} ⊆ B as its subset of assessments satisfying

Conditions (AF) and (FI). Again, the results of Sections 2.2 to 2.5 about assessments, deductively closed assessments,
and models also remain valid when restricting attention to A

̃
. It is useful to state a more specific version of our criterion

for deductive closability:

Theorem 4.9 (cf. Theorem 4.1). A favour-indifference assessment 𝒜 in A
̃

is deductively closable—i.e., 𝒜 ∈A
̃

+—if and
only if 0 ∉ posi𝒜»+ span𝒜≃.

∩ =

The poset (A
̃
,⊆) is not an intersection structure. This

can be shown using the graphical counterexample on
the right. The resulting intersection—of two elements
of M

̃
⊆ A
̃

with topologically closed sets of acceptable
gambles—does not satisfy Condition (FI) any more: it
has (border) gambles that are acceptable without being
either favourable or indifferent. However, by investigat-
ing the effect of clM, some interesting conclusions can still be drawn:

Theorem 4.10. Given a favour-indifference assessment 𝒜 in A
̃

+𝒪, so without confusion and with indifference to status
quo, then the corresponding modelℳ ∶= clM𝒜 is the element of M

̃
𝒪 with defining componentsℳ≃ = span𝒜≃ and

ℳ» = posi𝒜»+ span𝒜≃.
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As we did in the accept-favour framework, it is possible to give a compact characterisation of models coherent with
a background model that is indifferent to status quo. But now, in the favour-indifference framework, we can refocus
attention from accepted to indifferent gambles.

Theorem 4.11 (cf. Theorem 4.8). A favour-indifference assessment ℳ in A
̃

is a model that respects a favour-
indifference background model with indifference to status quo 𝒮 in M

̃
𝒪, i.e.,ℳ ∈M

̃
𝒮 , if and only if

(FI1) it includes the background model: 𝒮 ⊆ℳ,
(FI2) it does not favour status quo: 0 ∉ℳ»,
(FI3) its favourable gambles form a cone and its indifferent gambles form a linear space:ℳ» ∈C andℳ≃ ∈ L, and
(FI4) it favours sweetened deals:ℳ»+ℳ≃ ⊆ℳ».

4.3. The Favourability Framework & its Appearance in the Literature

To work towards types of models encountered in the literature, we look at the special case where the agent only
makes favourability statements forming a set 𝒜» ⊂ℒ, but where there is a favour-indifference background model 𝒮
in M

̃
𝒪, so one that satisfies (FI1)–(FI4). The resulting favourability framework is a restriction of the favour-indifference

framework. To know what the models in this framework look like, we specialise Theorems 4.9 and 4.10 to obtain a
specialised criterion for deductive closability and an explicit expression for natural extension:

Theorem 4.12 (cf. Theorems 4.9 and 4.10). Given a set of favourable gambles 𝒜» ⊆ ℒ and a favour-indifference
background model with indifference to status quo 𝒮 in M

̃
𝒪, then the favourability assessment 𝒜 ∶= ∐︀𝒜»;−𝒜»̃︀ respects

the background model 𝒮 if and only if 0 ∉ 𝒮≃+posi(𝒮»∪𝒜»). In that case, the natural extensionℳ ∶=𝒜F𝒮 ∈M
̃
𝒪 has

defining componentsℳ≃ ∶= 𝒮≃ andℳ» ∶= 𝒮≃+posi(𝒮»∪𝒜»), so the resulting model isℳ = ∐︀𝒮≃∪ℳ»;−ℳ»̃︀.

𝒮≃ ℳ»

ℳ∥

−ℳ»

ℳ⪰

−ℳ⪰

ℳ≺

−ℳ≺
The illustration of the four-element partition of gamble space corresponding to a

modelℳ in the favourability framework with background model 𝒮 is given on the
left. The reason for working with a model here when describing the partition instead
of with a general assessment, as in the previous section, is that it highlights the specific
difference with favour-indifference models—namely thatℳ≃ = 𝒮≃.

The focus in this framework’s characterisation result lies on the set of favourable
gambles:

Theorem 4.13 (cf. Theorem 4.11). Given a set of favourable gamblesℳ» ⊆ℒ and a
favour-indifference background model with indifference to status quo 𝒮 in M

̃
𝒪, then

the assessmentℳ ∶= ∐︀𝒮≃∪ℳ»;−ℳ»̃︀ is a model, i.e.,ℳ ∈M
̃
𝒮 , if and only if

(F1) it favours background-favourable gambles: 𝒮» ⊆ℳ»,
(F2) it does not favour status quo: 0 ∉ℳ»,
(F3) its favourable gambles form a cone:ℳ» ∈C, and
(F4) it favours sweetened deals:ℳ»+𝒮≃ ⊆ℳ».

The simplest case occurs when we take 0 to be the single background indifferent gamble: 𝒮≃ = {0}; the background
favourable gambles 𝒮» should then by (FI1)–(FI4) be a convex cone that does not contain the zero gamble. This case
results in (F4) being trivially satisfied; (F1)–(F3) then reduce to the conditions for what De Cooman and Quaeghebeur
[22] have called coherence relative to the convex cone 𝒮». The notion of Bernstein coherence of a set of polynomials
that they discuss there, is an interesting and useful special case. Elsewhere in the literature, only the case 𝒮» =ℒ> is
considered. We give a brief chronological overview, but do give an axiom-for-axiom correspondence with the most
general of these frameworks:

• Smith [4, §14] talks about an open cone of ‘exchange vectors’ (he works with a finite possibility space Ω and the
linear space of all gambles ℒ = 𝒢(Ω)); his notion of preference fits in the favourability framework. Furthermore,
he imposes thatℳ» should be an open set.

• Seidenfeld et al. [10, §IV] talk about ‘favorable’ gambles (again on a finite possibility space Ω and with the
linear space of all gambles ℒ = 𝒢(Ω)); their work fits right in the favourability framework.

• Walley [9, §3.7.8] discusses ‘strictly desirable’ gambles (with ℒ any linear space containing constant gambles).
An openness axiom is added for prevision-equivalence (cf. Section 5):ℳ»∖𝒮» ⊆ℳ»+R>0.
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• Walley [11, §6] advocates a desirability framework that is more elaborately discussed, but essentially equivalent to
Seidenfeld et al.’s [10] ‘favorable’ gambles, but without the focus on finite possibility spaces Ω . This framework
also corresponds to his ‘strictly desirable’ gambles without the extra openness axiom.

Let us take take a slightly more detailed look at this framework by exhibiting the correspondence between
Walley’s axioms and ours, as formulated in Theorem 4.13: He calls a set of desirable gamblesℳ» ⊆ℒ coherent
if and only if for all gambles f and g in ℒ it satisfies

(D1) 0 ∉ℳ»,
(D2) if f > 0, then f ∈ℳ»,
(D3) if f ∈ℳ», then λ ⋅ f ∈ℳ» for all positive scaling factors λ ∈R>,
(D4) if f ,g ∈ℳ», then f +g ∈ℳ».

Recall that we consider (F4) trivially satisfied because our notion of acceptability and thus indifference does
not exist in Walley’s framework. We furthermore see that (D1) and (F2) are identical, as are (D2) and (F1) with
𝒮» =ℒ>. Finally, (D3) corresponds to Positive Scaling (PS) and (D4) to Combination (C), and therefore together
to Deductive Closure (DC), i.e., (F3).

De Cooman and Quaeghebeur [22] use and extend the framework of Walley [11, §6] to study exchangeability.
Actually, we feel the accept-reject framework is a more natural setting for such a study. Therefore we repeat it in
Section 6 for the restricted finite exchangeability case [cf. 23] as an illustrative application, where both 𝒮» and 𝒮≃ are
non-trivial.

The unconfused models of a favourability framework with a fixed background model actually form an intersection
structure, in contrast to the situation for the general favour-indifference framework of the previous section. Order-
theoretic results and results about maximal elements can be found in the work of De Cooman and Quaeghebeur [22]
and Couso and Moral [24].

4.4. The Acceptability Framework & its Appearance in the Literature
Again to work towards types of models encountered in the literature, we look at the special case where the agent

only makes acceptability statements forming a set 𝒜⪰ ⊂ℒ, but where there is an accept-reject background model 𝒮
in M𝒪, so one that satisfies (AR1)–(AR4). The resulting acceptability framework is a restriction of the accept-reject
framework. To know what the models in this framework look like, we derive a result similar to Theorem 4.12, with a
specialised criterion for deductive closability and an explicit expression for natural extension:

Theorem 4.14. Given a set of acceptable gambles 𝒜⪰ ⊆ ℒ and a background model with indifference to status quo
𝒮 in M𝒪, then the acceptability assessment 𝒜 ∶= ∐︀𝒜⪰;∅̃︀ respects the background model 𝒮 if and only if 0 ∉ 𝒮≺ −
posi(𝒮⪰∪𝒜⪰). In that case, the natural extension isℳ ∶=𝒜F𝒮 = ∐︀ℳ⪰;𝒮≺−ℳ⪰̃︀, whereℳ⪰ = posi(𝒮⪰∪𝒜⪰) is the
resulting set of acceptable gambles.

ℳ≃
ℳ⪰

−ℳ⪰

ℳ≺

−ℳ≺

𝒮≺

The illustration of the nine-element partition of gamble space corresponding to a
modelℳ in the acceptability framework with background model 𝒮 is given on the left.
The reason for working with a model here when describing the partition instead of with
a general assessment, is to draw attention to the specific difference with accept-reject
models (cf. Section 2.9)—namely that the set of rejected gamblesℳ≺ is completely
determined by 𝒮≺ andℳ⪰.

The focus in this framework’s characterisation result lies on the set of acceptable
gambles:

Theorem 4.15 (cf. Theorem 2.21). Given a set of acceptable gamblesℳ⪰ ⊆ ℒ and
a background model with indifference to status quo 𝒮 in M𝒪, then the assessment

ℳ ∶= ∐︀ℳ⪰;𝒮≺−ℳ⪰̃︀ is a model, i.e.,ℳ ∈M𝒮 , if and only if
(A1) it accepts background-acceptable gambles: 𝒮⪰ ⊆ℳ⪰,
(A2) it does not reject status quo: 0 ∉ 𝒮≺−ℳ⪰, and
(A3) its acceptable gambles form a cone:ℳ⪰ ∈C.

When 𝒮≺ ⊆ −𝒮⪰, the resulting models will also belong to the accept-favour framework (cf. Section 4.1). This
is actually the case for all acceptability-type frameworks we are aware of in the literature. Again, we give a brief
chronological overview, but do give an axiom-for-axiom correspondence with the most general of these frameworks:
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• Williams [12, §IV] talks about ‘acceptable bets’ (with as a linear space ℒ the set of simple functions with as a
basis the indicator functions of the elements of a set ℰ of subsets of Ω , including Ω ). The background model 𝒮
he uses is ∐︀ℒ⋗;ℒ⋖̃︀. He does not require Indifference to Status Quo.

• Williams [16] extends the previous work to include conditional models. (He now lets ℒ be any linear space includ-
ing constant gambles.) To deal with conditional models nicely, he uses a larger background model ⋃∅⊂E⊆Ω 𝒮E ,
where each 𝒮E is defined by (𝒮E)⪰ ∶= { f ∈ ℒ ∶ inf f (E) > 0∧ f (Ω ∖E) = {0}} and 𝒮≺ = −𝒮⪰. This union of
models is still a model because (𝒮E)⪰+(𝒮F)⪰ ⊂ (𝒮E∪F)⪰ for all non-empty events E and F .

• Walley [9, §3.7.3] discusses ‘almost desirable’ gambles (with ℒ any linear space containing constant gambles).
The background model here is ∐︀ℒ≥;ℒ⋖̃︀. A closure axiom is added for prevision-equivalence (cf. Section 5):
f +R>0 ⊆ℳ⪰⇒ f ∈ℳ⪰.

• Walley [9, App. F] talks about ‘really desirable’ gambles (with ℒ any linear space containing constant gambles).
The background model here is ∐︀ℒ≥;ℒ<̃︀. Normally, given a not necessarily finite partition ℰ of Ω and some f
in ℒ such that f IE ∈ℳ⪰ for all E in ℰ , then Deductive Closure implies f I⋃ℱ ∈ℳ⪰ for all finite subsets ℱ
of ℰ . (Here IE is the indicator of the event E, i.e., the gamble that is 1 on E and 0 elsewhere.) He imposes a
conglomerability axiom that says that under those conditions f ∈ℳ⪰ should hold.

Let us take take a slightly more detailed look at this framework by explicitly showing the correspondence
between Walley’s axioms—ignoring conglomerability—and ours, as formulated in Theorem 4.15: He calls a set
of desirable gamblesℳ⪰ ⊆ℒ coherent if and only if for all gambles f and g in ℒ it satisfies

(D2) if f ∈ℳ⪰, then λ ⋅ f ∈ℳ⪰ for all positive scaling factors λ ∈R> (positive homogeneity),
(D3) if f ,g ∈ℳ⪰, then f +g ∈ℳ⪰ (addition),

(D10) if f < 0, then f ∉ℳ⪰ (avoiding partial loss),
(D11) if f ≥ 0, then f ∈ℳ⪰ (accepting sure gains).

We see that (D2) corresponds to Positive Scaling (PS) and (D3) to Combination (C), and therefore together to
Deductive Closure (DC), i.e., (A3). Furthermore, (D10) is equivalent toℳ⪰∩ℒ< =∅, which is in turn equivalent
to (A2) with 𝒮≺ =ℒ<. Finally, (D11) is identical to (A1) with 𝒮⪰ =ℒ≥.

• Artzner et al. [25, §2] talk about sets of acceptable ‘future net worths’ (they work with a finite Ω and ℒ = 𝒢(Ω)).
The background models 𝒮 they use are ∐︀ℒ≥;ℒ⋖̃︀ and ∐︀ℒ≥;ℒ<̃︀. The context of their work is mathematical finance,
and more specifically risk measures, which can be seen as scaled negations of lower previsions (cf. Section 5.2).
Föllmer and Schied [26] generalise Artzner et al.’s work and introduce convex risk measures: They weaken
Deductive Closure (DC) to a convexity requirement, so their theory falls outside scope of our frameworks.

5. Linear & Lower Previsions

In this section, we discuss how our framework can be connected to that most popular framework for modelling
uncertainty: probability theory. Given the fact that we have been dealing with gambles, i.e., real-valued functions on
the possibility space Ω , and not with events, the most natural way to make this connection is via expectation operators
and not probability measures [cf. 27]. Because of our own background, we will call expectation operators previsions
[cf. 17, 18].

As has been argued by many, restricting attention to precise probabilities (and thus previsions) limits our expression
power in modelling uncertainty [e.g., 1–9, and references therein]. It turns out that our framework is sufficiently general
to connect it with the theories that have been proposed to provide added expressiveness; we focus on the so-called
imprecise-probabilistic theory of coherent lower previsions [for more information, see 9, 28].

Throughout this section it is convenient to assume that the linear space of gambles of interest ℒ contains the constant
gambles, which are identified by their constant value for notational convenience.

5.1. Linear Previsions

In de Finetti’s theory, the agent’s prevision P f for a gamble f is a real number seen as his fair price for it. This
can be interpreted in two ways: The first—which de Finetti [18, §3.1.4] seems to have had in mind—is that f ≃ P f ,
i.e., that the agent is indifferent between f and P f , which is seen as a constant gamble; this means that he is willing
to exchange either one for the other. The second—which Walley [9, §2.3.6, §2.3.1] seems to have kept in mind—is
that { f −P f}+R> and {P f − f}+R> are sets of acceptable gambles for the agent, which means that he is willing to
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buy f for any price strictly lower than P f and sell it for any price strictly higher. Walley’s ‘willingness’ translates to
‘commitment’ in our terminology (cf. Section 2.1).

De Finetti’s coherent previsions, when defined on the whole of ℒ, can be characterised as real linear functionals
that satisfy inf f ≤ P f ≤ sup f for any f in ℒ [18, §3.1.5]. This means any such prevision P partitions ℒ into

(i) ℒ>P ∶= {h ∈ℒ ∶ Ph > 0}, which always includes ℒ⋗ ∶= {h ∈ℒ ∶ infh > 0},
(ii) ℒ<P ∶= {h ∈ℒ ∶ Ph < 0}, which always includes ℒ⋖ ∶= {h ∈ℒ ∶ suph < 0}, and

(iii) ℒ=P ∶= {h ∈ℒ ∶ Ph = 0}, which always contains 0; its elements are called marginal gambles and f −P f and P f − f
are the marginal gambles corresponding to f .

Because of the linearity of P, ℒ>P and ℒ<P are convex cones related by negation—i.e., ℒ>P = −ℒ<P—and ℒ=P is a
linear space; the line segment joining any element of ℒ>P to any element of ℒ<P always intersects ℒ=P . The associated
mental image is that of a hyperplane ℒ=P separating the (open) positive orthant ℒ⋗ from the (open) negative one ℒ⋖.

ℒ=P
ℒ>P

ℒ<P

This partitioning is illustrated on the right for the
linear prevision P modelling a fair coin, so which
specifies probability 1⇑2 for both elementary events
and which has ( 1

2 ,−
1
2) and (− 1

2 ,
1
2) as the marginal

gambles corresponding to the indicator gambles
(1,0) and (0,1), respectively. We give the hyper-
plane of marginal gambles ℒ=P in the first figure,
the open half-space of gambles with positive previ-
sion ℒ>P including ℒ⋗ in the second, and the open half-space of gambles with negative prevision ℒ<P including ℒ⋖ in
the last figure.

Under the first interpretation—of indifference between f and P f —, the gambles in ⋃ f ∈ℒ{ f −P f ,P f − f} =ℒ=P

are assessed to be acceptable. So the assessment corresponding to P is ∐︀ℒ=P ;∅̃︀. Under the second interpretation, the
gambles in the set ⋃ f ∈ℒ{ f −P f ,P f − f}+R> =ℒ=P +R> are assessed to be acceptable; this set is equal to ℒ>P because
any gamble h in ℒ>P can be decomposed into h−Ph ∈ℒ=P and Ph ∈R>, and any gamble −h in ℒ>P can be decomposed
into Ph−h ∈ℒ=P and −Ph = P(−h) ∈R>. So the assessment corresponding to P is ∐︀ℒ>P ;∅̃︀.

From these assessments, we wish to derive models. For that, we need to choose a minimal background model. Our
choice will be based on what happens if the coherence constraint inf f ≤ P f ≤ sup f is violated but linearity is not. Then
either sup( f −P f ) < 0 or inf( f −P f ) > 0, i.e., this happens whenever f −P f is an element of ℒ⋖ or ℒ⋗. This implies
that ℒ=P must not intersect ℒ⋖ and ℒ⋗.

• Under the first interpretation this means that no element of either may be indifferent, which implies that ℒ⋖∪ℒ⋗ ⊆
𝒮≺∪−𝒮≺ must hold for the background model 𝒮. In the spirit of de Finetti’s focus on two-sided gambles, we
therefore choose all gambles in ℒ⋗ to be favourable; i.e., ∐︀ℒ⋗;ℒ⋖̃︀ ⊆ 𝒮 .

• For the second interpretation, the constraint may be reformulated as saying that ℒ>P must not intersect ℒ⋖, i.e.,
no element of ℒ⋖ may be acceptable. In this case ∐︀∅;ℒ⋖̃︀ must be part of the background model 𝒮 .

So, under the first interpretation, the model we associate with a coherent prevision P is

clM∐︀ℒ=P ∪ℒ⋗;ℒ⋖̃︀ = extM(extD∐︀ℒ=P ∪ℒ⋗;ℒ⋖̃︀) (def. clM)
= extM∐︀posi(ℒ=P ∪ℒ⋗);ℒ⋖̃︀ (def. extD)
= extM∐︀ℒ=P ∪ℒ⋗∪(ℒ=P +ℒ⋗);ℒ⋖̃︀ (def. posi)
= extM∐︀ℒ=P ∪(ℒ=P +ℒ⋗);ℒ⋖̃︀ (0 ∈ℒ=P )
= extM∐︀ℒ=P ∪ℒ>P ;ℒ⋖̃︀ (ℒ⋗ ⊂ℒ>P =ℒ=P +R> ⊆ℒ=P +ℒ⋗ ⊆ℒ=P +ℒ>P ⊆ℒ>P )
= ∐︀ℒ=P ∪ℒ>P ;ℒ⋖−(ℒ=P ∪ℒ>P)̃︀ (def. extM)
= ∐︀ℒ=P ∪ℒ>P ;(ℒ⋖−ℒ=P)∪(ℒ⋖−ℒ>P)̃︀

= ∐︀ℒ=P ∪ℒ>P ;ℒ<P̃︀. (ℒ⋖ ⊂ℒ<P = −ℒ>P )
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This is a maximal model (cf. Proposition 2.13). The model associated with P under the second interpretation is

𝒩P ∶= clM∐︀ℒ>P ;ℒ⋖̃︀ = extM(extD∐︀ℒ>P ;ℒ⋖̃︀) (def. clM)
= extM∐︀ℒ>P ;ℒ⋖̃︀ (def. extD, ℒ>P ∈C)
= ∐︀ℒ>P ;ℒ⋖∪(ℒ⋖−ℒ>P)̃︀ (def. extM)
= ∐︀ℒ>P ;ℒ<P̃︀. (ℒ⋖ ⊂ℒ<P = −ℒ>P )

The second interpretation leads to a model that is less committal than the one resulting from the first interpretation.4

(As ℒ⋗ ⊂ ℒ>P , we see that this does not depend on the difference in restrictions imposed on 𝒮.) To not record any
commitments the agent might not have wanted to make when specifying the prevision, we continue with the second
interpretation.

What is the background model associated with the set 𝒫 of all coherent previsions on ℒ? At face value, this question
asks what assessment is shared by every model associated with a coherent prevision; the next proposition answers this:

Proposition 5.1. The assessment implicit in all models associated with a coherent prevision is ⋂P∈𝒫𝒩P = ∐︀ℒ⋗;ℒ⋖̃︀.

Going beyond its literal meaning, the question leads us to consider which models 𝒮 are compatible as background
models with the set 𝒫 of all coherent previsions on ℒ. To wit, which 𝒮 are such that for any P in 𝒫 ,𝒩P2𝒮 can still be
put into a one-to-one correspondence with P? The remainder of this section is devoted to providing a cogent answer to
this question.

There is a one-to-one relation between P and 𝒩P because of the one-to-one relationship with its defining set of
favourable gambles (𝒩P)» =ℒ>P . However, from our discussion on the two interpretations and their impact we know
that there are other models—∐︀ℒ=P ∪ℒ>P ;ℒ<P̃︀ in particular—that can be associated with P. The model 𝒩P turns out to
be the least resolved such model:

Proposition 5.2. For any pair of coherent previsions P and Q in 𝒫 , we have that M𝒩P ∩M𝒩Q ≠∅ if and only if P =Q.
Or, in words: a model is uniquely associated to a coherent prevision P if and only if it dominates or is equal to M𝒩P .

Corollary 5.3. Given a coherent prevision P, all maximal models in M̂𝒩P are uniquely associated to P.

So any coherent prevision P can be uniquely identified with some element of M𝒩P . This means that any 𝒮 in M∐︀ℒ⋗;ℒ⋖̃︀
is a compatible background model if M𝒩P ∩M𝒮 is non-empty for all P in 𝒫 . We can make this more concrete:

Proposition 5.4. A background model 𝒮 in M∐︀ℒ⋗;ℒ⋖̃︀ is compatible with any coherent prevision P in 𝒫 , i.e., 𝒩P
respects 𝒮, if and only if 𝒮 ⊂ ∐︀ℒ≥;ℒ≤̃︀.

So we find that the background model 𝒮 must satisfy ∐︀ℒ⋗;ℒ⋖̃︀ ⊆ 𝒮 ⊂ ∐︀ℒ≥;ℒ≤̃︀ for us to consider it compatible with the
theory of coherent previsions.

Up until now, we have looked at previsions defined on the whole of ℒ. The procedure we used to generate an
assessment—calling gambles uniformly dominating marginal gambles acceptable—can be used equally well for
previsions defined on a subset 𝒦 of ℒ. The interesting issues that would arise when discussing such non-exhaustively
specified linear previsions arise as well when treating coherent lower previsions, which give their user even more
control over the commitments specified. Therefore we move on to that topic.

5.2. Lower Previsions
In Walley’s theory of coherent lower previsions, the agent’s lower prevision P f for a gamble f is a real number

seen as his supremum buying price for it [9, §2.3.1]. The interpretation is that { f −P f}+R> is a set of acceptable
gambles, which means that he is willing to buy f for any price strictly lower than P f [9, §2.3.4]. Again, f −P f is called
the marginal gamble associated with f . Upper previsions P f are seen as infimum acceptable buying prices and because
of this are conjugate to lower previsions, i.e., P f = −P(− f ) [9, §2.3.5]; therefore it is sufficient to develop the theory in

4 Wagner [29] argues for the second interpretation by pointing out that it avoids vulnerability to a weak Dutch book [cf. 30]. The commitments
implied by the different models associated with both interpretations—ℒ=P ∪ℒ>P versus ℒ>P —make the reason for this explicit.
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terms of lower previsions. Linear previsions are lower previsions that are self-conjugate, i.e., that coincide with their
conjugate upper prevision.

Walley’s coherent lower previsions, when defined on a subset 𝒦 of ℒ, can be characterised as follows: a lower
prevision P on 𝒦 is coherent if and only if infh∈𝒢P infg∈posi𝒢P sup(g− h) ≥ 0 [adapted from 9, §2.5.1], where we
conveniently used the set of marginal gambles 𝒢P ∶= { f −P f ∶ f ∈𝒦}. This is a weaker criterion than the one for linear
previsions; however, it implies, among other things, that inf f ≤ P f ≤ sup f for any f in 𝒦 and that P is point-wise
dominated by some linear prevision [9, §2.6.1 and §3.3.3]. So the results of the previous section concerning compatible
background models 𝒮 in M are carried over; they must satisfy ∐︀ℒ⋗;ℒ⋖̃︀ ⊆ 𝒮 ⊂ ∐︀ℒ≥;ℒ≤̃︀, which we assume to be the
case from here onward in this section.

So the assessment we associate with a lower prevision P is 𝒜P ∶= ∐︀𝒢P+R>;∅̃︀, resulting in a modelℳP ∶=𝒜PF𝒮

by natural extension. It is useful to have a criterion to determine when the assessment 𝒜P is deductively closable and, if
that is the case, an explicit expression for the natural extension:

Theorem 5.5. The modelℳP corresponding to a lower prevision P avoids confusion if and only if P avoids sure loss,
i.e., infg∈posi𝒢P supg ≥ 0. In that caseℳP = ∐︀posi𝒢P+ℒ⋗;ℒ⋖−posi𝒢P̃︀∪𝒮.

As an aside, notice that 𝒜P is an assessment consisting purely of acceptability statements; so by taking 𝒮 in M𝒪,
we see that modelling uncertainty using previsions can be seen as working in the acceptability framework of Section 4.4.
Moreover, notice—making abstraction of 𝒮—thatℳP consists purely of favourability statements and that we could
strengthen every acceptability statement in 𝒜P to a favourability statement with the resulting model still being equal
toℳP. So modelling uncertainty using previsions can also be seen as working in the favourability framework of
Section 4.3.

We now know how to associate a model with a lower prevision. It is also possible to move in the other direction:
given a modelℳ in M∐︀ℒ⋗;ℒ⋖̃︀, we can derive a coherent lower prevision Pℳ. The translation rule is based on the
interpretation of the lower prevision for a gamble f in ℒ as a supremum acceptable buying price:

Pℳ f ∶= sup{α ∈R ∶ f −α ∈ℳ⪰}. (5.1)

What kind of prevision does the background model translate to?

Proposition 5.6. Given a background model 𝒮 in M such that ∐︀ℒ⋗;ℒ⋖̃︀ ⊆ 𝒮 ⊂ ∐︀ℒ≥;ℒ≤̃︀, then the corresponding lower
prevision is vacuous: P𝒮 = inf.

The rules for moving between models and lower previsions preserve the most resolve possible without adding

ℳ⪰

ℳ≺

⊇

(ℳPℳ)⪰

(ℳPℳ)≺

any new statements; this is made explicit by the following result:

Proposition 5.7. Given a modelℳ in M𝒮 , then
(i) the corresponding lower prevision Pℳ is coherent, and

(ii) it never represents more, but may represent less resolve:
ℳPℳ ⊆ℳ.

This loss in resolve is illustrated above right for a model ℳ
in M∐︀ℒ≥;ℒ<̃︀: The transition to a coherent lower prevision has erased
the part of the set of rejected gambles that is not related to the accepted gambles by negation. Furthermore, all border
structure of both sets has also been erased; only open sets remain.

Now that we can move from lower previsions to models and back, we can derive some standard inference results
from the theory of coherent lower previsions using the tools developed in this paper:

Proposition 5.8. Given a non-empty set 𝒦 ⊆ℒ and a lower prevision P on 𝒦, then
(i) the natural extension PℳP

is defined by PℳP
f = supg∈posi𝒢P

inf( f −g) for all f in ℒ,
(ii) the lower prevision P is dominated by its natural extension: PℳP

≥ P on 𝒦, and
(iii) the lower prevision P coincides with its natural extension, i.e., PℳP

= P on 𝒦, if and only if P is coherent.

For incoherent lower previsions P on𝒦 that avoid sure loss, we see that there are some gambles f such that PℳP
f >P f .

This is a consequence of the fact that the commitments encoded in P have not been fully taken into account in the
specification of gambles such as f ; they are in PℳP

.
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6. An Application: Dealing with Symmetry

Consider a set 𝒯 of transformations of the possibility space Ω . With any gamble f and any transformation T in 𝒯 ,
there corresponds a transformed gamble T t f defined by T t f ∶= f ○T , so that (T t f )(ω) = f (T ω) for all ω in Ω . For it
to have the properties one would expect of a set of transformations, we assume 𝒯 with function composition ○ to be a
monoid, i.e.,

• it is closed: T ′ ○T ′′ ∈ 𝒯 ,
• it is associative: T ′ ○(T ○T ′′) = (T ′ ○T)○T ′′, and
• it has an identity element T∗ in 𝒯 : T∗ ○T = T ○T∗ = T ,

for all transformations T , T ′, and T ′′ in 𝒯 .
In the background, we assume all positive gambles (ℒ>) to be favourable. We also assume that there is some

symmetry, represented by the monoid 𝒯 , associated with the experiment, which leads the agent to be indifferent
between any gamble f and its transformation T t f . This gives rise to the background set of indifferent gambles
ℒ𝒯 ∶= span{ f −T t f ∶ f ∈ℒ∧T ∈ 𝒯 }. What is the background model corresponding to such a background assessment
and when does it avoid confusion?

Proposition 6.1. The model 𝒮𝒯 ∶= ∐︀ℒ𝒯 ;∅̃︀F ∐︀ℒ>;ℒ<̃︀ = ∐︀ℒ𝒯 ∪ (ℒ𝒯 +ℒ>);ℒ𝒯 +ℒ<̃︀ is a favour-indifference model
without confusion and with indifference to status quo, i.e., 𝒮𝒯 ∈M

̃
𝒪, if and only if f < 0 for no background indifferent

gamble f in ℒ𝒯 .5

When working in a favourability framework using 𝒮𝒯 as the background model, the extension of assessments is
governed by the following result:

Corollary 6.2 (cf. Theorem 4.12). Given a set of favourable gambles 𝒜» ⊆ ℒ, then the favourability assessment
𝒜 ∶= ∐︀𝒜»;−𝒜»̃︀ respects the background model 𝒮𝒯 if and only if 0 ∉ ℒ𝒯 +posi(ℒ> ∪𝒜»). In that case, the natural
extensionℳ ∶=𝒜F𝒮𝒯 ∈M

̃
𝒪 has defining componentsℳ≃ = ℒ𝒯 andℳ» = ℒ𝒯 +posi(ℒ> ∪𝒜»), so the resulting

model isℳ = ∐︀ℒ𝒯 ∪ℳ»;−ℳ»̃︀.

Furthermore, in this context, models can be characterised as follows:

Corollary 6.3 (cf. Theorem 4.13). Given a set of favourable gamblesℳ» ⊆ℒ, thenℳ ∶= ∐︀ℒ𝒯 ∪ℳ»;−ℳ»̃︀ is a model,
i.e.,ℳ ∈M

̃
𝒮𝒯 , if and only if

(F𝒯 1) it favours background-favourable gambles: ℒ𝒯 +ℒ> ⊆ℳ»,
(F𝒯 2) it does not favour status quo: 0 ∉ℳ»,
(F𝒯 3) its favourable gambles form a cone:ℳ» ∈C, and
(F𝒯 4) it favours sweetened deals:ℳ»+ℒ𝒯 ⊆ℳ».

An interesting special case obtains when the set of transformations is in particular a finite group Π of permutations
of Ω , in which case the condition of Proposition 6.1 always holds. We give an overview of the important ideas and
the conclusions that can be drawn; for details, see our earlier papers on exchangeability [22, 23]. The set ΩΠ ∶=

{{πω ∶ π ∈ Π} ∶ω ∈ Ω} of Π -invariant atoms is a partition of Ω ; these atoms are the smallest subsets of Ω that are
invariant under all permutations π in Π . Consequently, a gamble f on Ω is invariant under all permutations in Π—or
simply, Π -invariant—if and only if it is constant on this partition. The linear subspace of all Π -invariant gambles is
ℐΠ ∶= { f ∈ℒ ∶ (∀A ∈ΩΠ ∶ ⋃︀ f (A)⋃︀ = 1)}.

Consider the linear gamble transformation avgΠ defined for all f in ℒ by avgΠ f ∶=∑π∈Π π
t f ⇑⋃︀Π ⋃︀, then avgΠ is a

projection operator—meaning that avgΠ ○avgΠ = avgΠ —satisfying avgΠ ○π
t = π

t ○avgΠ = avgΠ for all π in Π . This
in turn (non-trivially) implies that its range is the set ℐΠ of all Π -invariant gambles, and its kernel is the set ℒΠ . The
projection operator avgΠ allows for a simple representation result: ifℳ» satisfies (F𝒯 1)–(F𝒯 4), then f ∈ℳ» if and
only if avgΠ f ∈ℳ». So the setℳ» is completely characterised by its projection avgΠℳ» on the lower-dimensional
linear space ℐΠ . (Cfr. our discussion of Proposition 2.4(ii): 𝒟≃ here corresponds to ℒΠ and 𝒦 here corresponds to ℐΠ .)

5 The condition of this proposition is closely related to the necessary and sufficient condition for the so-called left-amenability of the monoid
𝒯—i.e., the existence of a 𝒯 -invariant linear prevision on ℒ—that sup f ≥ 0 for all f in ℒ𝒯 [cf. 9, 31]. The fact that our condition is slightly stronger
should come as no surprise, as we have seen in Section 5.1 that previsions cannot express the distinction between inf f ≥ 0 and f > 0.
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De Cooman and Quaeghebeur [22, 23] discuss the special case where Ω ∶=𝒳 n is the set of length-n sequences of
samples in a finite set 𝒳 , and Π is the group of all permutations of such sequences obtained by permuting their indices.
Stating indifference between a gamble on sequences and all those gambles related by sequence-index permutations
corresponds to an exchangeability assumption, and the above-mentioned representation result is then a significant
generalisation of de Finetti’s [17] representation theorem for finite exchangeable sequences in terms of hypergeometric
distributions—sampling from an urn without replacement: indeed, for any gamble f the constant value of avgΠ f on
an invariant atom turns out to be the hypergeometric expectation of f associated with that atom. This result can be
extended to infinite exchangeable sequences as well [22, 32]. The more general discussion above also includes the case
of partial exchangeability.

7. Conclusions

We started out this paper by claiming that our framework allows us to be more expressive and that it has a unifying
character. This is already apparent in the elicitation step; we can directly incorporate assessments of various natures: of
course accept and reject statements, but also statements of indifference and favourability, and the preference relation
counterparts of all these statements; even (imprecise) probabilistic statements pose no problem. Naturally, all these
types of statements can also be used on the output side. Between input and output, we know how to transform mere
assessments into models that satisfy a number of—according to our judgement, in many contexts reasonable—rationality
requirements, or detect whether the assessments contain inconsistencies that make this impossible.

We hope that the basic theory of this paper will be a starting point for further research and numerous applications,
both theoretical and practical. For practical applications, we of course need computational tools that, given an assessment,
produce inferences of the various types described above. An algorithm that does the core computations needed (on finite
possibility spaces) has recently been devised [33], so that hurdle has in large part been taken. Furthermore, conditional
and marginal models must be defined, and rules for deriving and combining them must be formulated. Again, we can
expect that quite a bit of work for this has essentially been done already: much can be carried over from the literature
on coherent sets of desirable gambles [see, e.g., 34, 35], which itself builds on the much larger corpus on coherent
lower previsions.

As regards comparisons with other frameworks in the literature: the approach using credal sets (sets of linear
previsions) deserves attention. We know that closed convex credal sets are equivalent to coherent lower previsions, but
once closure is not required, we can deduce from polytope-theoretic duality properties that only a subclass of such
models can be described within our framework [cf. 34]. It would, however, be useful to know exactly what subclass of
credal sets can be equivalently described using our models, so that we may also know what type of information they
cannot represent.

On the technical side, investigating topological properties of the objects in our framework would be useful to able to
deal with questions prompted by our simple illustrative examples, such as, e.g., ‘Is the interior of the set of acceptable
gambles always favourable whenever the set of rejected gambles is not empty?’ Also, we have not put any restrictions
on the possibility space in our exposition, but for finite possibility spaces it should be possible to formulate constructive
counterparts for some proofs; e.g., so that we may construct maximal models dominating an assessment, instead of
essentially just positing their existence.

To finish, a pair of generalisations of our framework present themselves:
• The work of Artzner et al. [25] on coherent risk measures was generalised by Föllmer and Schied [26] by

weakening Combination (C) plus Positive Scaling (PS) to taking convex combinations—and put into an imprecise
probability theory context by Pelessoni and Vicig [36]. This can also be done with our framework; it would
correspond to relaxing the linear utility assumption.

• Similarly, in some sense and aspects the work of Seidenfeld et al. [15] can be seen as generalising probability
theory by working with disjunctions of probability measures. This can again also be done with our framework; it
would correspond to considering sets of accept-reject models.
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Proofs

Section 2.2 (Unresolved Gambles, Confusing Gambles, and No Confusion)

Proof of Proposition 2.1. The three modified assessments avoid confusion by construction:

∐︀𝒜⪰,⊀;𝒜≺̃︀⪰,≺ =𝒜⪰,⊀∩𝒜≺ =∅, ∐︀𝒜⪰;𝒜≺,ã̃︀⪰,≺ =𝒜⪰∩𝒜≺,ã =∅, ∐︀𝒜⪰,⊀;𝒜≺,ã̃︀⪰,≺ =𝒜⪰,⊀∩𝒜≺,ã =∅.

Section 2.4 (Deductive Extension and Deductive Closure)

Proof of Theorem 2.2. By definition𝒜 ∈A+ if and only if posi𝒜⪰∩𝒜≺ =∅, and this expression is equivalent to the one
we need to prove by Lemma 1.

Lemma 1. Given 𝒦,𝒦′ ⊆ℒ, then 0 ∉𝒦+𝒦′ is equivalent to 𝒦′∩−𝒦 =∅.

Proof. We consider the negations:
⇐ Assume 0 ∈𝒦+𝒦′, then there are g in 𝒦 and f in 𝒦′ such that f +g = 0; so f = −g ∈𝒦′∩−𝒦.
⇒ Assume 𝒦′∩−𝒦 ≠∅, then there is an f in 𝒦′ such that f ∈ −𝒦 or, equivalently, − f ∈𝒦; so 0 = f − f ∈𝒦+𝒦′.

Proof of Proposition 2.3. The two modified assessments avoid confusion by construction:

∐︀𝒟⪰;𝒟≺,ã̃︀⪰,≺ =𝒟⪰∩𝒟≺,ã =∅,

(extD∐︀𝒟⪰,⊀;𝒟≺,ã̃︀)⪰,≺ = ∐︀posi𝒟⪰,⊀;𝒟≺,ã̃︀⪰,≺ (def. extD)

= posi𝒟⪰,⊀∩𝒟≺,ã ⊆𝒟⪰∩𝒟≺,ã =∅. (posi𝒟⪰ =𝒟⪰)

The former is deductively closed because only the set of rejected gambles has been changed and the latter is deductively
closed by application of extD.

Proof of Proposition 2.4. We prove the claims one by one:
(i) Because by definition 𝒟≃ ∈ L, i.e., is a linear space, it immediately follows that 0 ∈𝒟≃.

Because𝒟⪰ ∈C, i.e., is a cone,𝒟⪰,≄ ∶=𝒟⪰∖𝒟≃ ⊆𝒟⪰, and𝒟≃ ⊆𝒟⪰, we know that𝒟⪰,≄+𝒟≃ ⊆𝒟⪰ and𝒟⪰,≄+𝒟⪰,≄ ⊆𝒟⪰.
(ii) Because 0 ∈𝒟≃ and 𝒟≃ ⊆𝒟⪰, we know that 𝒟⪰,≄ ⊆𝒟⪰,≄+𝒟≃ ⊆𝒟⪰ =𝒟⪰,≄∪𝒟≃. Now assume ex absurdo that
𝒟⪰,≄+𝒟≃ ⊈𝒟⪰,≄, then (𝒟⪰,≄+𝒟≃)∩𝒟≃ ≠∅, from which 𝒟⪰,≄∩(𝒟≃−𝒟≃) ≠∅ follows by Lemma 2. Because
𝒟≃ ∈ L, we have that 𝒟≃−𝒟≃ =𝒟≃ and obtain the contradiction 𝒟⪰,≄∩𝒟≃ ≠∅.

(iii) The set 𝒟⪰,≄ is a cone if it satisfies Positive Scaling (PS) and Combination (C).
(PS) Positive scaling is preserved when taking the set difference of the positively scaled sets 𝒟⪰ and 𝒟≃.
(C) We know that𝒟⪰,≄ ⊆𝒟⪰,≄+𝒟⪰,≄ ⊆𝒟⪰ =𝒟⪰,≄∪𝒟≃. Assume ex absurdo that combination does not hold, then
𝒟⪰,≄+𝒟⪰,≄ ⊈𝒟⪰,≄ or, equivalently, (𝒟⪰,≄+𝒟⪰,≄)∩𝒟≃ ≠∅, from which 𝒟⪰,≄∩(𝒟≃−𝒟⪰,≄) ≠∅ follows
by Lemma 2. Because of Claim (ii) and because 𝒟≃ ∈ L, we have that 𝒟≃−𝒟⪰,≄ = −𝒟≃−𝒟⪰,≄ = −𝒟⪰,≄ and
so obtain the contradiction 𝒟⪰,≄∩−𝒟⪰,≄ ≠∅.

Lemma 2. Given 𝒦,𝒦′,𝒦′′ ⊆ℒ, then (𝒦′′+𝒦′)∩𝒦 =∅ is equivalent to 𝒦′∩(𝒦−𝒦′′) =∅.

Proof of Lemma 2. We apply Lemma 1 twice: (𝒦′′+𝒦′)∩𝒦 =∅⇔ 0 ∉𝒦′′+𝒦′−𝒦⇔𝒦′∩(𝒦−𝒦′′) =∅.

25



Section 2.5 (Limbo, Reckoning Extension, No Limbo, and Models)

Proof of Proposition 2.5. We prove the claims one by one:
(i) First, posi(𝒟⪰∪{ f}) =𝒟⪰∪ f̄ ∪(𝒟⪰+ f̄ ) because 𝒟⪰ ∈C. So

(extD∐︀𝒟⪰∪{ f};𝒟≺̃︀)⪰,≺ = (𝒟⪰∪ f̄ ∪(𝒟⪰+ f̄ ))∩𝒟≺ =𝒟⪰,≺∪( f̄ ∩𝒟≺)∪((𝒟⪰+ f̄ )∩𝒟≺)

and we have to find the conditions on f under which f̄ ∩𝒟≺ ⊆𝒟⪰,≺ and (𝒟⪰+ f̄ )∩𝒟≺ ⊆𝒟⪰,≺ or, equivalently, under
which ( f̄ ∩𝒟≺)∖𝒟⪰,≺ =∅ and ((𝒟⪰+ f̄ )∩𝒟≺)∖𝒟⪰,≺ =∅. Using Lemma 3 these conditions become f̄ ∩𝒟≺,ã =∅
and (𝒟⪰+ f̄ )∩𝒟≺,ã =∅, as 𝒟≺∖𝒟⪰,≺ =𝒟≺∖𝒟⪰ =𝒟≺,ã. By Lemma 2, the latter becomes f̄ ∩(𝒟≺,ã−𝒟⪰) =∅.
So both conditions can be combined into f̄ ∩(𝒟≺,ã ∪ (𝒟≺,ã −𝒟⪰)) = ∅ or, equivalently, f ∉𝒟≺,ã ∪𝒟≺,ã−𝒟⪰
using the definition of rays and scalar hulls. Applying Lemma 4 to the second scalar hull in the union finishes the
proof: 𝒟≺,ã−𝒟⪰ =𝒟≺,ã−𝒟⪰.

(ii) It is claimed that 𝒟≺,ã ∩𝒟⪰ = ∅ and (𝒟≺,ã −𝒟⪰)∩𝒟⪰ = ∅. By Lemma 2 the latter expression is equivalent
to 𝒟≺,ã∩(𝒟⪰+𝒟⪰) =∅, which effectively coincides with the former because 𝒟⪰+𝒟⪰ =𝒟⪰ ∈ C. This former
expression is proven using Lemma 5: 𝒟≺,ã∩𝒟⪰ =𝒟≺∖𝒟⪰∩𝒟⪰ = (𝒟≺∖𝒟⪰)∩𝒟⪰ =∅.

Lemma 3. Given 𝒦,𝒦′,𝒦′′ ⊆ℒ, then (𝒦′∩𝒦′′)∖𝒦 =𝒦′∩(𝒦′′∖𝒦).

Proof of Lemma 3. The identity’s left-hand side is equal to (𝒦′ ∩𝒦′′)∩𝒦c =𝒦′ ∩ (𝒦′′ ∩𝒦c), which is equal to its
right-hand side.

Lemma 4. Given 𝒦,𝒦′ ⊆ℒ such that 𝒦 =𝒦, then 𝒦+𝒦′ =𝒦+𝒦′.

Proof of Lemma 4. Any left-hand side element can be written as λ ⋅( f +g), with f ∈𝒦, g ∈𝒦′, and λ > 0. This can be
rewritten as λ ⋅ f +λ ⋅g. So because λ ⋅ f ∈𝒦, this implies 𝒦+𝒦′ ⊆𝒦+𝒦′. Inclusion in the other direction follows from
f +λ ⋅g = λ ⋅(λ−1 ⋅ f +g) and the fact that λ

−1 ⋅ f ∈𝒦.

Lemma 5. Given 𝒦,𝒦′ ⊆ℒ such that 𝒦 =𝒦, then 𝒦′∖𝒦 =𝒦′∖𝒦.

Proof of Lemma 5. Any left-hand side element can be written as λ ⋅ f , with f ∈𝒦′, f ∉𝒦, and λ > 0. But then also
λ ⋅ f ∉𝒦, for otherwise f ∈𝒦 by 𝒦 =𝒦. So λ ⋅ f is also a right-hand side element. Conversely, for any right-hand side
element f , so with f ∈𝒦′ and f ∉𝒦, it holds for any λ > 0 that λ ⋅ f ∈𝒦′ and λ ⋅ f ∉𝒦 by 𝒦 =𝒦. So then f = λ

−1 ⋅(λ ⋅ f )
is also a left-hand side element.

Proof of Proposition 2.7. The expression for the reckoning extension follows from the fact that 𝒟≺,ã =𝒟≺ for 𝒟 that
avoid confusion and the fact that 𝒟≺ ⊆𝒟≺. No Confusion of extM𝒟 follows from Corollary 2.6(ii).

Proof of Proposition 2.9. We prove the claims one by one:
(i) Becauseℳ avoids confusion, we infer from Proposition 2.7 thatℳ≺∪(ℳ≺−ℳ⪰) =ℳ≺, whenceℳ≺ =ℳ≺

andℳ≺−ℳ⪰ ⊆ℳ≺.
(ii) Claim (i) tells usℳ» =ℳ⪰ ∩−ℳ≺ ⊇ (ℳ⪰ −ℳ≺)∩ℳ⪰. The converse inequality and thus equality follows

from the fact that f ∈ℳ» implies that f ∈ℳ⪰ and − f ∈ℳ≺, and therefore by positive scaling that f ⇑2 ∈ℳ⪰
and − f ⇑2 ∈ℳ≺, so that f ∈ℳ⪰−ℳ≺.

(iii) The setℳ» = (ℳ⪰−ℳ≺)∩ℳ⪰ is a cone if it satisfies Positive Scaling (PS) and Combination (C).
(PS) (ℳ⪰ −ℳ≺)∩ℳ⪰ = (ℳ⪰−ℳ≺)∩ℳ⪰ because all sets involved are positively scaled and because

Minkowski addition and taking intersections preserves positive scaling.
(C) Let f1 and f2 inℳ⪰ and g1 and g2 inℳ≺ be such that { f1−g1, f2−g2} ⊆ℳ⪰, then ( f1−g1)+( f2−g2) =

( f1+( f2−g2))−g1 ∈ℳ⪰−ℳ≺ because g1 ∈ℳ≺ and f1+( f2−g2) ∈ℳ⪰, which follows fromℳ⪰ being
a convex cone.
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Proof of Corollary 2.10. We proveℳ» ⊆ℳ»+ℳ⪰ ⊆ℳ», i.e., use sandwiching:

ℳ» =ℳ»+ℳ» (Proposition 2.9(iii):ℳ» ∈C)
⊆ℳ»+ℳ⪰ (ℳ» ⊆ℳ⪰)

= ((ℳ⪰−ℳ≺)∩ℳ⪰)+ℳ⪰ (Proposition 2.9(ii))

⊆ (ℳ⪰−ℳ≺+ℳ⪰)∩(ℳ⪰+ℳ⪰)
= (ℳ⪰−ℳ≺)∩ℳ⪰ (ℳ⪰ ∈C soℳ⪰+ℳ⪰ =ℳ⪰)
=ℳ». (Proposition 2.9(ii))

Section 2.6 (Order-Theoretic Considerations: Resolve, Intersection Structures, and Closure Operators)

Proof of Proposition 2.11. The claim requires us to show that No Confusion (NC), Deductive Closure (DC), and No
Limbo (NL) are preserved under non-empty intersections.
(NC) Consider any non-empty family B ⊆A; given 𝒜⪰,≺ =∅ for all 𝒜 ∈B, then

(⋂B)⪰,≺ = (⋂B)⪰∩(⋂B)≺ = (⋂𝒜∈B𝒜⪰)∩(⋂𝒜∈B𝒜≺) =⋂𝒜∈B(𝒜⪰∩𝒜≺) =⋂𝒜∈B𝒜⪰,≺ =∅.

(DC) Deductive Closure is preserved because arbitrary intersections of convex cones are still convex cones and a
deductively closed assessment is just required to have a convex cone as a set of acceptable gambles.

(NL) Consider any non-empty family K ⊆M, so withℳ≺∪(ℳ≺−ℳ⪰) ⊆ℳ≺ for allℳ in K; then we have

(⋂K)≺∪((⋂K)≺−(⋂K)⪰) =⋂ℳ∈Kℳ≺∪(⋂ℳ∈Kℳ≺−⋂ℳ∈Kℳ⪰)

⊆ (⋂ℳ∈Kℳ≺)∪((⋂ℳ∈Kℳ≺)−(⋂ℳ∈Kℳ⪰))

⊆⋂ℳ∈K(ℳ≺∪(ℳ≺−ℳ⪰)) ⊆⋂ℳ∈Kℳ≺ = (⋂K)≺.

Proof of Proposition 2.12. Apply Lemma 6 with C ∶= A, B ∶= {∐︀𝒦;ℒ∖𝒦̃︀ ∶ 𝒦 ⊆ ℒ} ⊆ A—for which B̂ = B holds by
construction—, and ℬ ∶= 𝒞 ∪ ∐︀𝒞⌣;∅̃︀. This gives Â = Ĉ =C∩ B̂ =A∩{∐︀𝒦;ℒ∖𝒦̃︀ ∶𝒦 ⊆ℒ} = {∐︀𝒦;ℒ∖𝒦̃︀ ∶𝒦 ⊆ℒ}.

Lemma 6. If for all assessments 𝒞 in some class C ⊆A there is another assessment ℬ in C that dominates it (𝒞 ⊆ℬ) and
is maximal in some fixed second class B ⊆A—i.e., ℬ ∈ B̂—, then Ĉ =C∩ B̂: the maximal elements of C are maximal
elements of B.

Proof of Lemma 6. We prove Ĉ ⊆C∩ B̂ ⊆ Ĉ, i.e., use sandwiching:
Ĉ ⊆C∩ B̂: Consider 𝒞 in Ĉ, then there is a ℬ in C∩ B̂ such that 𝒞 ⊆ ℬ and therefore 𝒞 = ℬ ∈C∩ B̂.
C∩ B̂ ⊆ Ĉ: Consider 𝒜 in C∩ B̂ and 𝒞 in Ĉ such that 𝒜 ⊆ 𝒞. Then there is a ℬ in C∩ B̂ such that 𝒞 ⊆ ℬ and hence

𝒜 ⊆ ℬ. Since 𝒜,ℬ ∈ B̂ we find 𝒜 = 𝒞 = ℬ and therefore 𝒜 ∈ Ĉ.

Proof of Proposition 2.13. First note that M ⊆D ⊆A+. Now, because 𝒜 ⊆ extD𝒜 ∈D for all 𝒜 in Â+, 𝒟 ⊆ extM𝒟 ∈M
for all 𝒟 in D̂, we have that Â+ ⊆ D̂ ⊆ M̂. So we find that M̂ = D̂ = Â+. Next, apply Lemma 6 with B ∶=A, C ∶=D, and
ℬ ∶= 𝒞∪ ∐︀∅;𝒞⌣̃︀. This gives D̂ = Ĉ =C∩ B̂ =D∩ Â. The form of the maximal models follows from Proposition 2.12 and
Deductive Closure (DC).

Proof of Proposition 2.14. We prove the claims about clB, defined for any assessment 𝒜 in A by clB𝒜 = ⋂B𝒜, in
reverse order:

(ii) If 𝒜 ∈ B, then B𝒜 only includes 𝒜 and assessments in B dominating it, so clB𝒜 =⋂B𝒜 =𝒜. Also, clB⊺ = ⊺.
Furthermore, by the definition of an intersection structure, clB𝒜 ∈ B if B𝒜 ≠ ∅, which means clB𝒜 ≠ 𝒜 if
𝒜 ∉B∪{⊺}.

(i) We need to show that clB satisfies the three closure operator properties:
– The extensive nature follows from the fact that B𝒜 only contains assessments dominating 𝒜.
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– Idempotency is implied by Claim (ii).
– Consider an assessment ℬ in A such that 𝒜 ⊆ ℬ, then the increasing nature follows from the fact that any

assessment that dominates ℬ also dominates 𝒜, so that Bℬ ⊆B𝒜.

Proof of Proposition 2.15. First of all, M ⊆D ⊆A+ ⊆A implies that, point-wise, clA ⊆ clA+ ⊆ clD ⊆ clM.
(i) An assessment 𝒜 in A∖A has no dominating assessments without confusion, so A𝒜 =∅ and therefore clA𝒜 = ⊺.

(ii) Given an assessment 𝒜 in A∖A+, then for all assessments ℬ ⊃𝒜 in A we have extDℬ ⊇ extD𝒜, whereby there
is also confusion in extDℬ and hence ℬ ∉A+. So A+𝒜 =∅ and therefore clA+𝒜 = ⊺. This carries over to D and M
because, as seen, point-wise clA+ ⊆ clD ⊆ clM.

(iii) By construction extD maps onto D, so point-wise clD ⊆ extD. We actually have clD = extD because the positive
linear hull operator posi used by extD generates the smallest convex cone encompassing its argument.

(iv) By definition extD maps A+ onto D; so we have clD ⊆ extD. Then clD = extD follows by the same argument as
above.

(v) Because clD ⊆ clM, we have clM ○clD = clM by idempotency. So clM = clM ○extD on A+ and we need to show that
clM = extM on D. By Proposition 2.7 we have that clM ⊆ extM. We actually have clM = extM because extM only
rejects the gambles in limbo, and by definition of a model all these have to be rejected.

Section 2.7 (Models Dominating Assessments)
Proof of Theorem 2.16. We have already observed that M̂𝒜 =∅ if𝒜 ∉A+. We furthermore know from Proposition 2.13
that D̂𝒜 = M̂𝒜. Assume that 𝒜 ∈A+, then 𝒟 ∶= extD𝒜 is a deductively closed assessment and therefore D𝒟 =D𝒜 ≠∅.
So we need to prove that the poset (D𝒟,⊆) has maximal elements; 𝒟∪ ∐︀∅;𝒟⌣̃︀ is one (cf. Proposition 2.13).

Proof of Proposition 2.18. Letℳ ∶= clM𝒜; we then know that M̂ℳ = M̂𝒜. So it is sufficient to prove for allℳ ∈M
thatℳ =⋂M̂ℳ. We prove both directions of the equality separately:

⊆ The definition of M̂ℳ tells us thatℳ ⊆⋂M̂ℳ.
⊇ Assume ex absurdo thatℳ ⊉⋂M̂ℳ, soℳ⪰ ⊉ (⋂M̂ℳ)⪰ orℳ≺ ⊉ (⋂M̂ℳ)≺; then there is some f inℳ⌣

such that f ∈ (⋂Mℳ)⪰ or f ∈ (⋂Mℳ)≺. In the former case, let 𝒩 ∶=ℳF ∐︀∅;{ f}̃︀, in the latter case, let
𝒩 ∶=ℳF∐︀{ f};∅̃︀. Using Lemma 7, we know that𝒩 ∈M. Thenℳ ⊆𝒩 , but𝒩 is not dominated by any element
of M̂ℳ, a contradiction.

Lemma 7. Givenℳ in M and a gamble f inℳ⌣, then {ℳF ∐︀∅;{ f}̃︀,ℳF ∐︀{ f};∅̃︀} ⊆M.

Proof of Lemma 7. We just need to show that {ℳ⊎ ∐︀∅;{ f}̃︀,ℳ⊎ ∐︀{ f};∅̃︀} ⊆D thanks to Proposition 2.15(v), i.e.,
because unconfused deductively closed assessments can always be extended to unconfused models. Now,ℳ∪∐︀∅;{ f}̃︀
already belongs to D because deductive closure only acts on the acceptable gambles of an assessment; it avoids
confusion by choice of f . Forℳ⊎ ∐︀{ f};∅̃︀ we can apply Corollary 2.6(i), for which the condition is trivially satisfied
becauseℳ, being a model, has no limbo.

Section 2.8 (Background Models, Respect, Natural Extension, Coherence, and Indifference to Status Quo)
Proof of Theorem 2.21. (AR1) is equivalent to ℳ ∈ A𝒮 . (AR3) is equivalent to ℳ ∈ D. At this point we know
ℳ ∈ D𝒮 and therefore 0 ∈ 𝒟⪰ ∈ C, whereby using Theorem 2.2 the condition for No Confusion (NC) becomes
0 ∉ℳ≺ −ℳ⪰ ⊆ℳ≺ −ℳ⪰. (AR4) makes this condition implied by 0 ∉ℳ≺, i.e., (AR2), soℳ ∈A. Now we know
ℳ ∈D𝒮 ⊆D𝒪, whereby using Corollary 2.20 the condition for No Confusion (NC) becomesℳ≺−ℳ⪰ ⊆ℳ≺, i.e.,
(AR4), completing the proof, as thenℳ ∈D𝒮 ∩M =M𝒮 .

Section 3 (Gamble Relations)
Proof of Theorem 3.1. We have to show equivalence under Definition (3.1) of (AD1)–(AD6) and (AR1)–(AR4) of
Theorem 2.21 with 𝒮 ∶=𝒪.

(AD1) is (3.1)-equivalent to 0 ∈ℳ⪰, which in turn is equivalent to 𝒪 ⊆ℳ⪰, i.e., (AR1).
(AD2) is (3.1)-equivalent to 0 ∉ℳ≺, i.e., (AR2).
(AD3) is (3.1)-equivalent to f −g ∈ℳ⪰ ∧g−h ∈ℳ⪰⇒ f −h ∈ℳ⪰, or, using gambles f ′ ∶= f −g and h′ ∶= g−h, to

f ′ ∈ℳ⪰∧h′ ∈ℳ⪰⇒ f ′+h′ ∈ℳ⪰; because this must effectively hold for all f ′ and g′ in ℒ, we can rewrite it as
ℳ⪰+ℳ⪰ ⊆ℳ⪰, Combination (C).
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(AD5) is (3.1)-equivalent to Positive Scaling (PS):
⇒ (AD5) (3.1)-implies f − g ∈ℳ⪰⇔ µ ⋅ ( f − g) ∈ℳ⪰, or, using gambles f ′ ∶= f − g and f ′ ∶= ( f − g)⇑µ ,

f ′ ∈ℳ⪰⇔ λ ⋅ f ′ ∈ℳ⪰ for λ ∈ {µ,1⇑µ}, and therefore (PS);
⇐ (PS) (3.1)-implies (AD5) because µ ⋅( f −g) = (µ ⋅ f +(1−µ) ⋅h)−(µ ⋅g+(1−µ) ⋅h).

Together, Combination (C) and Positive Scaling (PS) are equivalent to (AR3), and therefore so are (AD3) and (AD5).
(AD6) is (3.1)-equivalent toℳ≺ ⊆ℳ≺ by the same reasoning used to show equivalence of (AD5) and Scaling (PS).
(AD4) is (3.1)-equivalent to f −g ∈ℳ≺ ∧h−g ∈ℳ⪰⇒ f −h ∈ℳ≺, or, using gambles f ′ ∶= f −g and h′ ∶= h−g, to

f ′ ∈ℳ≺∧h′ ∈ℳ⪰⇒ f ′−h′ ∈ℳ≺; because this must effectively hold for all f ′ and g′ in ℒ, we can rewrite it as
ℳ≺−ℳ⪰ ⊆ℳ≺.

Together,ℳ≺ ⊆ℳ≺ andℳ≺−ℳ⪰ ⊆ℳ≺ are equivalent toℳ≺−ℳ⪰ ⊆ℳ≺, i.e., (AR4).

Proof of Proposition 3.2. By definitionℳ is 𝒮-coherent if it coincides with its natural extension. Becauseℳ ∈M𝒪,
this means we should have 𝒮 ⊆ℳ, i.e., (AR1). So for all f and g in ℒ we have f ⊵ g⇔ f −g ∈ 𝒮⊵ ⊆ℳ⪰ and thus f ⪰ g.
Similarly, for all f and g in ℒ we have f ⊲ g⇔ f −g ∈ 𝒮⊲ ⊆ℳ≺ and thus f ≺ g.

Section 4.1 (The Accept-Favour Framework)

Proof of Theorem 4.1. The result follows from Theorem 2.2 because Condition (AF) implies −𝒜≺ =𝒜».

Proof of Proposition 4.2. We need to show that Condition (AF) is preserved under arbitrary non-empty intersections:
For any non-empty family C ⊆B, we have that

−(⋂C)≺ =⋂𝒜∈C−𝒜≺ ⊆⋂𝒜∈C𝒜⪰ = (⋂C)⪰,

so ⋂C satisfies Condition (AF).

Proof of Proposition 4.3. For the first claim, apply Lemma 6 with B ∶= A, C ∶= A, and ℬ ∶= 𝒞 ∪ ∐︀𝒞⌣;∅̃︀ to prove the
first equality. The second equality follows from Proposition 2.12 and Condition (AF). For the second claim, by
Proposition 2.12 either 0 ∈𝒜⪰ or 0 ∈𝒜≺. To preserve No Confusion under Condition (AF) the latter is disallowed.

Proof of Proposition 4.4. First note that M ⊆D ⊆A+. Now, because 𝒜 ⊆ extD𝒜 ∈D for all 𝒜 in Â+ and 𝒟 ⊆ extM𝒟 ∈M
for all 𝒟 in D̂ by Lemma 8, we have that M̂ ⊆ D̂ ⊆ Â+. So we find that M̂ = D̂ = Â+.

For the expression of M̂, the equality Â∩D = D̂ follows from Lemma 6 with B ∶=A, C ∶=D, and ℬ ∶= ∐︀𝒦;ℒ∖𝒦̃︀ ⊇
∐︀𝒞⪰;posi𝒞≺̃︀, with𝒦 in C such that ℬ ∈ Â∩D indeed and whose existence is guaranteed by Lemma 9, taking ∐︀𝒦′;𝒦′′̃︀ ∶=
∐︀𝒞⪰;posi𝒞≺̃︀. (The Axiom of Choice is assumed for infinite-dimensional ℒ.) The necessity of the given form of the
maximal elements follows from Propositions 2.13 and 4.3; its sufficiency follows from the existence of appropriate
cones 𝒦 guaranteed by Lemma 9.

Lemma 8. extD and extM preserve Condition (AF).

Proof of Lemma 8. We give a proof for each extension operator separately:
extD: Given 𝒜 in A, so with −𝒜≺ ⊆𝒜⪰, then −(extD𝒜)≺ = −𝒜≺ ⊆𝒜⪰ ⊆ posi𝒜⪰ = (extD𝒜)⪰.
extM: Given 𝒟 in D, so with −𝒟≺,ã ⊆ −𝒟≺ ⊆𝒟⪰ ⊆𝒟⪰, then

−(extM𝒟)≺ = −(𝒟≺,ã∪(𝒟≺,ã−𝒟⪰)) ⊆𝒟⪰∪(𝒟⪰+𝒟⪰) ⊆𝒟⪰ = (extM𝒟)⪰,

where we also used 𝒟⪰ ∈C, i.e., that 𝒟⪰ ⊆𝒟⪰∧𝒟⪰+𝒟⪰ ⊆𝒟⪰.

Lemma 9. For all cones 𝒦′ and 𝒦′′ in C such that 𝒦′∩𝒦′′ =∅ and 0 ∉𝒦′′ there is a cone 𝒦 in C such that 𝒦′ ⊆𝒦 and
𝒦′′ ⊆ℒ∖𝒦 ⊆ −𝒦. (The Axiom of Choice is assumed for infinite-dimensional ℒ.)

Proof of Lemma 9. This directly follows from the Kakutani separation property as proven by Hammer [37, Corollary 2],
whereℒ∖𝒦⊆−𝒦 is a consequence ofℒ∖𝒦 being an intersection of semi-spaces—i.e., maximal blunt convex cones.

Proof of Proposition 4.5. Propositions 4.2 and 2.14 imply clB is a closure operator. Now consider Proposition 2.15:
counterparts for (i) and (ii) follow because ⊺ satisfies Condition (AF); counterparts for (iii)–(v) follow by Lemma 8.
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Proof of Theorem 4.6. We prove both sides of the equivalence separately:
⇐ If 𝒜 ∉A+, then 𝒜 ∉A+ and therefore M̂𝒜 =∅ by Theorem 2.16. Because M̂ ⊆ M̂, this implies that M̂𝒜 =∅.
⇒ First, we infer from Proposition 4.4 that D̂𝒜 = M̂𝒜. Now, assume that 𝒜 ∈A+, then we infer from Proposition 4.5

that 𝒟 ∶= clD𝒜 = clD𝒜 ∈D, and therefore D𝒟 =D𝒜 ≠∅. So we need to show that the poset (D𝒟,⊆) has maximal
elements: Proposition 4.4 gives their form and applying Lemma 9 with ∐︀𝒦′;𝒦′′̃︀ ∶= ∐︀𝒟⪰;posi𝒟≺̃︀ proves their
existence.

Proof of Proposition 4.7. The first equality follows from Proposition 4.5. Letℳ ∶= clM𝒜; we then know thatℳ ∈M𝒪
and M̂ℳ = M̂𝒜. So it is sufficient to prove for allℳ ∈M𝒪 thatℳ =⋂M̂ℳ. We prove both directions of this equality
separately:

⊆ The definition of M̂ℳ tells us thatℳ ⊆⋂M̂ℳ.
⊇ Assume ex absurdo thatℳ ⊉⋂M̂ℳ, soℳ⪰ ⊉ (⋂M̂ℳ)⪰ orℳ» ⊉ (⋂M̂ℳ)»; then there is some f inℳ⌣

such that either f ∈ (⋂Mℳ)⪰ or − f ∈ (⋂Mℳ)». In the former case, let 𝒩 ∶=ℳF ∐︀{− f};{ f}̃︀, in the latter
case, let𝒩 ∶=ℳF∐︀{ f};∅̃︀. Using Lemma 10, we know that𝒩 ∈M𝒪. Thenℳ ⊆𝒩 , but𝒩 is not dominated by
any element of M̂ℳ, a contradiction.

Lemma 10. Givenℳ in M𝒪 and f inℳ⌣, then {ℳF ∐︀{ f};∅̃︀,ℳF ∐︀{− f};{ f}̃︀} ⊆M𝒪.

Proof of Lemma 10. Thanks to Propositions 2.15 and 4.5, it suffices to check thatℳF ∐︀{ f};∅̃︀ andℳF ∐︀{− f};{ f}̃︀
satisfy Condition (AF)—which follows from Lemma 8—and avoid confusion—which forℳF ∐︀{ f};∅̃︀ follows from
Lemma 7. So we are finished once we verify that ℳF ∐︀{− f};{ f}̃︀ avoids confusion. We just need to show that
ℳ⊎ ∐︀{− f};{ f}̃︀ avoids confusion thanks to Propositions 2.15(v) and 4.5, i.e., because unconfused deductively closed
accept-favour assessments can always be extended to unconfused accept-favour models. Its set of confusing gambles is
(ℳ≺∪{ f})∩posi(ℳ⪰∪{− f}), of which the second factor is equal toℳ⪰∪− f̄ ∪(ℳ⪰− f̄ ), so by distributivity, we
must check that six intersections are empty:

(i) ℳ≺∩ℳ⪰ =∅ becauseℳ avoids confusion,
(ii) ℳ≺∩− f̄ =∅ because f ∉ℳ⪰ ⊇ −ℳ≺,

(iii) ℳ≺ ∩ (ℳ⪰ − f̄ ) = ∅ is by Lemma 2 equivalent to (ℳ≺ −ℳ⪰)∩− f̄ = ∅, which reduces to (ii) by Proposi-
tion 2.9(i).

(iv) { f}∩ℳ⪰ =∅ because f ∉ℳ⪰,
(v) { f}∩− f̄ =∅ because f ≠ 0 for f inℳ⌣,

(vi) { f}∩(ℳ⪰− f̄ ) =∅ is by Lemma 2 equivalent to ({ f}+ f̄ )∩ℳ⪰ =∅, which reduces to (iv).

Proof of Theorem 4.8. Essentially, the conditions of Theorem 2.21 are repeated. But we know thatℳ» ∈C by Proposi-
tion 2.9(iii), so we can add that to (AR3) to form (AF3). Also, becauseℳ» = −ℳ≺ byℳ ∈A, we can modify (AR2) to
0 ∉ℳ», i.e., (AF2), and (AR4) toℳ⪰+ℳ» ⊆ℳ», which is equivalent to (AF4), asℳ» ∈C impliesℳ» =ℳ».

Section 4.2 (The Favour-Indifference Framework)
Proof of Theorem 4.9. Starting from Theorem 4.1, we can write the condition as 0 ∉𝒜»+posi𝒜⪰, using Condi-
tion (AF). We split the proof in two cases:
𝒜≃ =∅: The condition’s right-hand side is equal to 𝒜»+posi𝒜» = posi𝒜» = posi𝒜»+ span𝒜≃.
𝒜≃ ≠∅: We infer from Lemma 11 that the right-hand side is now equal to (𝒜»+span𝒜≃)∪(𝒜»+posi𝒜»+span𝒜≃),

and the condition is again equivalent to the one stated because 𝒜»+posi𝒜» = posi𝒜».

Lemma 11. Given 𝒜 in A
̃

with 𝒜≃ ≠∅, then posi𝒜⪰ = span𝒜≃∪(posi𝒜»+ span𝒜≃).

Proof of Lemma 11. We calculate posi𝒜⪰ explicitly:

posi𝒜⪰ = posi(𝒜»∪𝒜≃) (Condition (FI))
= posi𝒜»∪posi𝒜≃∪(posi𝒜»+posi𝒜≃)
= posi𝒜»∪ span𝒜≃∪(posi𝒜»+ span𝒜≃) (posi𝒜≃ = span𝒜≃)
= span𝒜≃∪(posi𝒜»+ span𝒜≃). (𝒜≃ ≠∅, so 0 ∈ span𝒜≃)
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Proof of Theorem 4.10. Note that 0 ∈ℳ≃ ≠∅. We are going to calculateℳ explicitly and obtain an expression that
functions as a proof for all claims:

ℳ = clM𝒜 = extM(extD∐︀𝒜⪰;−𝒜»̃︀) (Proposition 2.15)
= extM∐︀posi𝒜⪰;−𝒜»̃︀ (def. extD)

= ∐︁posi𝒜⪰;−(𝒜»∪(𝒜»+posi𝒜⪰))̃︁ (Proposition 2.7)

= ∐︁span𝒜≃∪(posi𝒜»+ span𝒜≃);−(posi𝒜»+ span𝒜≃)̃︁. (Lemma 11)

Proof of Theorem 4.11. To the conditions of Theorem 4.8, Condition (FI) must be added; this is done by applying
Theorem 4.10 with 𝒜 ∶=ℳ, which leads to the changes from (AF3) and (AF4) to (FI3) and (FI4).

Section 4.3 (The Favourability Framework & its Appearance in the Literature)

Proof of Theorem 4.12. Apply Theorems 4.9 and 4.10 to the assessment 𝒜∪𝒮 = ∐︁𝒜» ∪𝒮» ∪𝒮≃;−(𝒜» ∪𝒮»)̃︁. The
claims then follow by realising that span𝒮≃ = 𝒮≃ ≠∅ and, for the final equality, using the fact that Conditions (AF)
and (FI) hold, asℳ ∈M

̃
𝒪.

Proof of Theorem 4.13. We start from Theorem 4.11; (F2) and (F3) are identical to (FI2) and (FI3). Becauseℳ≃ = 𝒮≃
by construction, (F4) is equivalent to (FI4). Furthermore, if 𝒮» ⊆ℳ», then 𝒮 = ∐︀𝒮≃∪𝒮»;−𝒮»̃︀ ⊆ℳ and we can see
that the converse also holds, so (F1) is equivalent to (FI1).

Section 4.4 (The Acceptability Framework & its Appearance in the Literature)

Proof of Theorem 4.14. The first claim follows by applying Theorem 2.2 to the assessment 𝒜∪𝒮 = ∐︀𝒮⪰∪𝒜⪰;𝒮≺̃︀. For
the second claim, we are going to calculateℳ explicitly:

ℳ = extM(extD∐︀𝒮⪰∪𝒜⪰;𝒮≺̃︀) (def. clM)
= extM∐︀posi(𝒮⪰∪𝒜⪰);𝒮≺̃︀ (def. extD)

= ∐︁posi(𝒮⪰∪𝒜⪰);𝒮≺−posi(𝒮⪰∪𝒜⪰)̃︁. (def. extM, Corollary 2.20)

Proof of Theorem 4.15. The changes between Theorem 2.21 and this theorem are due to the fact thatℳ≺ = 𝒮≺−ℳ⪰:
(AR1) reduces to (A1) as 𝒮≺ ⊆ℳ≺ because 0 ∈ℳ⪰, (AR2) reduces to (A2) by simple substitution, and (AR4) can be
omitted becauseℳ≺−ℳ⪰ =𝒮≺−ℳ⪰−ℳ⪰ =𝒮≺−ℳ⪰ =ℳ≺, where we used the facts thatℳ⪰ ∈C and 𝒮≺ =𝒮≺.

Section 5.1 (Linear Previsions)

Proof of Proposition 5.1. We prove both sides of the equality ∐︀ℒ⋗;ℒ⋖̃︀ = 𝒮 ∶=⋂P∈𝒫𝒩P separately:
⊆ By definition of ℒ>P and ℒ<P , we know that ∐︀ℒ⋗;ℒ⋖̃︀ ⊆ ∐︀ℒ>P ;ℒ<P̃︀ =𝒩P for any linear prevision P in 𝒫 . So we

have that ∐︀ℒ⋗;ℒ⋖̃︀ ⊆ 𝒮.
⊇ Assume, ex absurdo, that equality does not hold and ∐︀ℒ⋗;ℒ⋖̃︀ ⊉ 𝒮. Then there is some gamble f in 𝒮⪰ ∖ℒ⋗

or 𝒮≺ ∖ℒ⋖. But for any such f ∉ ℒ⋗ ∪ℒ⋖ there also exists a linear prevision P in 𝒫 such that P f = 0—i.e.,
f ∈ℒ=P —[9, §3.4.2], whereby f ∉ℒ>P ∪ℒ<P , contradicting the assumption.

Proof of Proposition 5.2. We need to prove that M𝒩P ∩M𝒩Q =∅ if P ≠Q, or, equivalently, if ℒ=P ≠ℒ=Q . Assume, ex
absurdo, that there is some modelℳ in the intersection, which means that 𝒩P∪𝒩Q ⊆ℳ. Lemma 12 tells us we can
choose some f in ℒ=P ∩ℒ<Q and g in ℒ>P ∩ℒ=Q . Then

f +g ∈ (ℒ=P +ℒ>P)∩(ℒ=Q +ℒ<Q) =ℒ>P ∩ℒ<Q = (𝒩P)⪰∩(𝒩Q)≺ ⊆ℳ⪰,≺,

which means that there is confusion inℳ, a contradiction.
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Lemma 12. Given two non-identical coherent previsions P and Q in 𝒫 , i.e., such that P ≠Q, then the marginal gambles
corresponding to P intersect the non-marginal gambles of Q: ℒ=P ∩ℒ<Q = −(ℒ=P ∩ℒ>Q) ≠∅.

Proof of Lemma 12. The equality follows by linearity of P and Q, i.e., because ℒ=P = −ℒ=P and ℒ<Q = −ℒ>Q . For
the inequality, take some f in ℒ such that P f ≠ Q f . Then again by linearity of P and Q we have that P( f −P f ) =
−P(P f − f ) = 0, whence f −P f ∈ℒ=P , and Q( f −P f ) = −Q(P f − f ) ≠ 0, whence f −P f ∈ℒ<Q ∪ℒ>Q .

Proof of Proposition 5.4. We have to prove that 𝒩P∪𝒮 ∈A+⇔ 𝒮 ⊂ ∐︀ℒ≥;ℒ≤̃︀ for all P in 𝒫; we do this separately for
each direction:
⇐ There are two models in M∐︀ℒ⋗;ℒ⋖̃︀ beneath ∐︀ℒ≥;ℒ≤̃︀ that are maximal: ∐︀ℒ≥;ℒ<̃︀ = ∐︀ℒ≥;ℒ≤̃︀∖ ∐︀∅;{0}̃︀ and

∐︀ℒ>;ℒ≤̃︀ = ∐︀ℒ≥;ℒ≤̃︀∖ ∐︀{0};∅̃︀. So we provide a proof by showing that 𝒟 ∶=𝒩P∪ ∐︀ℒ≥;ℒ≤̃︀ ∈D with 𝒟⪰,≺ = {0},
i.e., 𝒩P∪𝒮 is included in a deductively closed assessment without confusion (a cone or positively scaled set
with the origin removed is still a cone or positively scaled set, respectively). The first statement follows from

posi𝒟⪰ = posi(ℒ>P ∪ℒ≥) =ℒ>P ∪ℒ≥∪(ℒ>P +ℒ≥) =ℒ>P ∪ℒ≥ =𝒟⪰,

where we used the fact that ℒ>P and ℒ≥ are cones. The second statement follows from

𝒟⪰,≺ = (ℒ>P ∪ℒ≥)∩(ℒ<P ∪ℒ≤)
= (ℒ>P ∩ℒ<P)∪(ℒ>P ∩ℒ≤)∪(ℒ≥∩ℒ<P)∪(ℒ≥∩ℒ≤) =∅∪∅∪∅∪{0} = {0},

because ℒ>P ∩ℒ≤ = −(ℒ≥∩ℒ<P) =∅, as Pg ≤ supg ≤ 0 for g in ℒ≤ and P f > 0 for f in ℒ>P .
⇒ Assume, ex absurdo, that 𝒮 ⊄ ∐︀ℒ≥;ℒ≤̃︀, then there is a gamble f in ℒ such that f ∉ ℒ≥ ∪ℒ≤, so such that

inf f < 0 < sup f . To create a contradiction, i.e., confusion, choose P such that P f < 0 in case f ∈ 𝒮⪰ and such that
P f > 0 in case f ∈ 𝒮≺. Such a choice is always possible [see, e.g., 9, §3.4.2].

Section 5.2 (Lower Previsions)
Proof of Theorem 5.5. ℳP avoids confusion if and only if 𝒜P respects 𝒮 , or, formally, if and only if ∈A+𝒜P∪𝒮 . For
this, it is sufficient that the extension 𝒟 ∶= extD(𝒜P∪𝒮) avoids confusion. Its components are:

𝒟⪰ = posi((𝒢P+R>)∪𝒮⪰)

= posi(𝒢P+R>)∪𝒮⪰∪(posi(𝒢P+R>)+𝒮⪰) (𝒮⪰ ∈C)

= 𝒮⪰∪(ℒ⋗+posi𝒢P), (ℒ⋗ =ℒ⋗+R> ⊆ 𝒮⪰∪{0}+R> ⊆ℒ≥+R> =ℒ⋗)
𝒟≺ = 𝒮≺.

Then 𝒟 avoids confusion if and only if

∅ =𝒟⪰,≺ = (𝒮⪰∪(ℒ⋗+posi𝒢P))∩𝒮≺ = (ℒ⋗+posi𝒢P)∩𝒮≺ (𝒮⪰∩𝒮≺ =∅)

= posi𝒢P∩(𝒮≺−ℒ⋗) (Lemma 2)
= posi𝒢P∩ℒ⋖, (ℒ⋖ =ℒ⋖−ℒ⋗ ⊆ 𝒮≺−ℒ⋗ ⊆ℒ≤−ℒ⋗ =ℒ⋖ )

which is equivalent to the condition of the proposition.
Now,ℳP ∶= extM𝒟 if 𝒟⪰,≺ =∅ and has components

(ℳP)⪰ = 𝒮⪰∪(ℒ⋗+posi𝒢P),

(ℳP)≺ =𝒟≺∪(𝒟≺−𝒟⪰) = 𝒮≺∪(𝒮≺−𝒟⪰) = 𝒮≺∪(𝒮≺−𝒮⪰)∪(𝒮≺−ℒ⋗−posi𝒢P) = 𝒮≺∪(ℒ⋖−posi𝒢P),

which proves the expression given.

Proof of Proposition 5.6. For any f in ℒ, we have that

P𝒮 f = sup{α ∈R ∶ f −α ∈ 𝒮⪰} = sup{α ∈R ∶ f −α ⋗ 0} = sup{α ∈R ∶ α ⋖ f} = inf f ,

where the second equality follows from the fact that sup makes the distinction between ≥ and ⋗ moot.
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Proof of Proposition 5.7. We prove both claims separately:
(i) As Pℳ is defined on the linear space ℒ, we can use the conditions detailed in Lemma 13 to prove coherence:

• Accepting sure gains:

Pℳ f = sup{α ∈R ∶ f −α ∈ℳ⪰} ≥ sup{α ∈R ∶ f −α ∈ 𝒮⪰} = inf f ,

by 𝒮 ⊆ℳ and Proposition 5.6.
• Positive homogeneity:

Pℳ(λ ⋅ f ) = sup{α ∈R ∶ λ ⋅ f −α ∈ℳ⪰}
= λ ⋅ sup{β ∈R ∶ λ ⋅( f −β) ∈ℳ⪰} = λ ⋅ sup{β ∈R ∶ f −β ∈ℳ⪰} = λ ⋅Pℳ f ,

by Positive Scaling (PS).
• Superadditivity:

Pℳ( f +g) = sup{α ∈R ∶ f +g−α ∈ℳ⪰}
= sup{β + γ ∶ f −β +g− γ ∈ℳ⪰∧β ,γ ∈R}
≥ sup{β ∈R ∶ f −β ∈ℳ⪰}+ sup{γ ∈R ∶ g− γ ∈ℳ⪰} = Pℳ f +Pℳg,

by Combination (C).
(ii) We prove the inclusion separately for the the accept and reject components:

⪰ Theorem 5.5 tells us that (ℳPℳ)⪰ = 𝒮⪰∪(posi𝒢Pℳ +ℒ⋗). So because 𝒮⪰ ⊆ℳ⪰ we need to prove that
posi𝒢Pℳ +ℒ⋗ ⊆ℳ⪰ or, as ℒ⋗ andℳ⪰ are cones, that 𝒢Pℳ +ℒ⋗ ⊆ℳ⪰. Any left-hand side element can
be written as f −Pℳ f +h = f − sup{α ∈R ∶ f −α ∈ℳ⪰}+h, with f ∈ℒ and h ∈ℒ⋗. Furthermore, we can
always write h = ε +h′, with ε ∈R> and h′ ∈ℒ⋗. Then the proof is complete because f −P f +ε ∈ℳ⪰ and
ℒ⋗ ⊆ℳ⪰ so thatℳ⪰+ℒ⋗ ⊆ℳ⪰.

≺ We give an explicit derivation:

(ℳPℳ)≺ = 𝒮≺∪(ℒ⋖−posi𝒢Pℳ) (Theorem 5.5)

= 𝒮≺∪(ℒ⋖−ℒ⋗−posi𝒢Pℳ) (ℒ⋖ ∈C, ℒ⋗ = −ℒ⋖)

⊆ 𝒮≺∪(𝒮≺−ℳ⪰) (ℒ⋖ ⊆ 𝒮≺, posi𝒢Pℳ +ℒ⋗ ⊆ (ℳPℳ)⪰ ⊆ℳ⪰ )

⊆ℳ≺. (No Limbo (NL))

Lemma 13 ([9, §2.3.3]). A lower prevision P defined on a linear space ℒ is coherent if and only if it satisfies
• Accepting sure gains: P f ≥ inf f ,
• Positive homogeneity: P(λ ⋅ f ) = λ ⋅P f , and
• Superadditivity: P( f +g) ≥ P f +Pg

for all scaling factors λ in R≥ and gambles f and g in ℒ.

Proof of Proposition 5.8. We prove the different claims sequentially:
(i) We give an explicit derivation:

PℳP
f = sup{α ∈R ∶ f −α ∈ (ℳP)⪰} (Equation (5.1))
= sup{α ∈R ∶ f −α ∈ (posi𝒢P+ℒ⋗)∪𝒮⪰} (Theorem 5.5)

=max{sup{α ∈R ∶ f −α ⋗ g∧g ∈ posi𝒢P},P𝒮 f} (def. sup, Equation (5.1))

=max{supg∈posi𝒢P
inf( f −g), inf f} (def. sup, Proposition 5.6)

= supg∈posi𝒢P
inf( f −g), (𝒢P ≠∅, so 0 ∈ cl(posi𝒢P), def. sup)

where ‘cl’ denotes closure in the supremum-norm topology.
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(ii) This claim follows from Claim (i) because g ∶= f −P f ∈ 𝒢P ⊆ posi𝒢P for f in 𝒦.
(iii) Because of Claim (ii), PℳP

= P on 𝒦 if and only if ∀ f ∈𝒦 ∶ PℳP
f ≤ P f , which, by Claim (i), is equivalent to

sup f ∈𝒦 supg∈posi𝒢P
inf(( f −P f )−g) ≤ 0, which in turn is equivalent to the coherence condition by definition

of 𝒢P.

Section 6 (An Application: Dealing with Symmetry)

Proof of Proposition 6.1. We first need to realise that ∐︀ℒ𝒯 ;∅̃︀∪ ∐︀ℒ>;ℒ<̃︀ ∈ A
̃

, ℒ> ∈ C, and ∅ ≠ ℒ𝒯 ∈ L. Then The-
orem 4.9 tells us its reckoning extension has No Confusion (NC) if and only if 0 ∉ℒ>+ℒ𝒯 , which is equivalent to the
given condition. The expression of this extension then follows from Theorem 4.10.
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