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Sequences without minimal subbase=x

by

*)
Balthasar E. Lub

ABSTRACT

A sequence of cardinality z is an infinite topological space consisting
of an open discrete subset of z points and a single adhereﬁce point of this
subset., A subbase of a topological space is called minimal provided each
proper subcollection generates a weaker topology. It is shown that for each
infinite cardinal number z a sequence of cardinality z exists which allows
no minimal subbase for its topology, thus answering a question posed by

P. van Emde Boas.

* . . .
) Theol. Sem. Univ. of Umbar (Harad). This report was written during
a visit of the author at the Mathematical Centre in June 1974,



NOTATIONS 1. Let X be some set, and let S be a subcollection of the powerset
P(X). By SA(SV) we denote the collection of all finite intersections
(arbitrary unions) of members of S. The collection (SA)v is denoted T'(S).
By convention 3 = @ and a = X. The collection I'(S) is nothing but the topo-
logy on X which is generated by S and S is called a subbase for TI'(S).

DEFINITION 2. Let (X,0) be a topological space. The collection S is called
a minimal subbase for (X,0) provided I'(S) = 0 and one has T'(S"') S 0 for

each proper subcollection S' S S. A space (X,0) which allows a minimal

subbase for its topology is called a subminispace.

" The concept of a minimal subbase was introduced by P. van Emde Boas
[1]. We mention the following results.
(i) Every finite space is a subminispace.
(ii) The topological product of subminispaces is a subminispace.
(iii) Each metrizable space is a subminispace.
(iv) Each ordinal number (with the order topology) is a subminispace
(hence the ordinary sequence itself is a subminispace).

(v) There exist normal spaces which are not subminispaces.

The spaces constructed in order to prove (v) are examples of (generalized)
sequences (cf. def.3 below). In thebproof in [1] the cardinality condition
cf(z) > a has been used (see the definitions below), leaving as an unsolved
problem what happens if this condition is not fulfilled. In this report we
describe some constructions which yield a sequence which is not a sub-
minispace for each infinite cardinal number." R

We write a,(b,c) for the cardinal numbers 80,(31,2 0).

DEFINITION 3. A sequence of cardinality z is a topological space (X,0) with

|X] = z 2 @, which consists of an open discrete set U = X\{xo} and a single

adherence point'{xo} of U,

Clearly the topology for a sequence is fully described by presenting

a neighborhood base for its unique non-isolated point Xy

DEFINITION 4. Let x be a point in the topological space (X,0). A neighbor-

hood subbase at x is a collection U such that U" is a neighborhood base



for x. The local wetght at x is the minimal cardinality of a neighborhood

subbase at x. Notation lw(x).

Note that lw(x) equals the minimal cardinality of a neighborhood base

at x.

DEFINITION 5. Let Zz be a cardinal number. The cofinality of z, notation

cf(z), is the least cardinal number y such that z is the sum of y cardinal

numbers less than 2.

Clearly for infinite Zz one has g < cf(z) < z. Moreover, cf(b) # a

The technique used in order to construct sequences which allow no

minimal subbase for their topology is described in the lemma below.

LEMMA 6. Let (X,0) be a sequence of cardinality z, with non-isolated

point x.. Assume, moreover, that

0

(1) (xy) > z. _

(ii) Each collection U of lg(xo) neighborhoods of X,
subcollection V such that NV Ze a neighborhood of Xy

Then (X,0) Zs not a subminispace.

contains an infinite

PROOF. The proof strictly follows [1].

Let S be a subbase for (X,0) and assume by hypothesis to be shown
contradictory that S is minimal. For each singleton {x} with x = X, there
exists a finite collection of elements in S such that their intersection
equals {x}. Clearly the union S' of all these collections has cardinality
< z and since S also contains a neighborhood subbase for X, of cardinality
> lg(xo) > z we know that |S\S'| > z.

Let V = S\S'., Clearly each member Vel is a neighborhood of X since
otherwise V would be contained in T'(S') and might be omitted from the
subbase S. Moreover, no member V of V contains a neighborhood of X, which
is a finite intersection U] N eos N Uk of members Ui of S different from V,
since in this case V also could be deleted from the subbase S. Hence we
conclude that whenever x, € U c V and U € S the element V occurs essentially

0
among the elements whose intersection yields U; i.e. removal of V from



these elements yields an intersection which is not contained within V.
However, by assumption (ii) V contains an infinite subcollection W

such that N0 is a neighborhood of x.. Writing x, € U n...nUk c N we arrive

0 0 1
at the contradiction that the infinitely many elements in W all are

contained in the finite set'{Ul,...,Uk}. O

By the above lemma the problem of constructing sequences which are no
subminispaces is reduced to finding neighborhood systems of x. satisfying
(i) and (ii).

In the sequel Dz denotes a discrete space of cardinality z and SZ

0

Hd
denotes the sequence which results by adjoining a single adherence point X,

to Dz’ whose neighborhoods are all subsets of Sz y having a complement of

cardinality < y. The space S is denoted by Sz‘ It is easy to prove that

z,2
the space SZ is a subminispace.
First we describe the construction given by P. van Emde Boas in [1].
Let Wz be the product space Sz x Dz and let XZ be the quotient space

constructed from Wé by identifying'{xo} X Dz to a single point Yo

PROPOSITION 7. Let cf(z) > a or let z = a. Then_Xz satisfies (i) and (ii).

PROOF. By the usual diagonalization argument one proves that lg(yo) >z, In
the case that cf(z) > @ condition (ii) is trivial since the intersection of
each countable sequence of neighborhoods of Yo is again a neighborhood of
%, (this is in fact the proof which is given in [11]).

To prove the proposition it is sufficient to prove (ii) for the case
z = a. The space Xa is in fact the well-known example of the quotient of a
countable union of ordinary sequences under the identification of the limit
points.

We write X, = NxNu {yo}. For each neighborhood V of ¥, there exists
a function fV: IN +IN such that V contains all pairs <j,i> for j 2= fv(i),

but not the pair <fv(i)—1,i>. These conditions define f_, uniquely in

A
terms of V, but it may happen that different neighborhoods V yield the same
function.

Now let VO be an uncountable collection of neighborhoods of Yo There

exists an uncountable subcollection V]5;V0 such that fv(l) = fv,(l) for



V,V' € V]. Let U1

By induction we find for k>1 an uncountable subcollection nggv -1

be an arbitrary member of V].

such that for each pair V,V' € Vk the values fv(j) = fv,(j) for j < k. Again
we take for U, an arbitrary member of Vk'

It is easy to verifymthat for the sequence (Uk):=l constructed in this
manner the intersection kQIUk againis a neighborhood of Yo This proves

assertion (ii) for Xa' O

For z # @ and cf(z) = a proposition 7 does not work. In these circum-
stances we use the following alternative construction: Let YZ be the
quotient space which results from the product space Sb x D} by identifying

the set {x0}><DZ to a single point y,.

PROPOSITION 8. For z 2= b the space Yz satisfies (i) and (ii).

PROOF. (i) is shown by the usual diagonalization argument, whereas (ii)

again is trivial. [

Our next proposition shows that examples of non-subminispaces may be

found among the sequences Sz y themselves.
®

PROPOSITION 9. Let cf(z) = y and assume z > 2Y. Let y+ be the successor

eardinal of y. Then the space s, gt satisfies (i) and (ii).
H

PROOF. Again condition (ii) is trivial. To prove (i) we first note that
cf(z) = y implies 2>z by Konig's theorem [2]. Furthermore, each

neighborhood of x, is contained in at most 2Y larger neighborhoods. Hence

0
from the assumption z > 2Y we derive that lg(xo) equals the total number of

neighborhoods of x, and the latter equals 2. 0

0

Note that for the case y = @ the assumption 29 = €<z is fulfilled for

z>a and cf(z) = a if CH (b=c) is assumed.

THEOREM 10. For each infinite cardinal number z there exists a sequence of
eardinality z which is not a subminispace.

PROOF. Direct from propositions 7 and 8. [
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