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Sequences without minimal subbase~ 

by 

Balthasar E. Lub *) 

ABSTRACT 

A sequence of cardinality z is an infinite topological space consisting 

of an open discrete subset of z points and a single adherence point of this 

subset. A subbase of a topological space is called minimal provided each 

proper subcollection generates a weaker topology. It is shown that for each 

infinite cardinal number z a sequence of cardinality z exists which allows 

no minimal subbase for its topology, thus answering a question posed by 

P. van Emde Boas. 

*) Theol. Sem. Univ. of Umbar (Harad). This report was written during 
a visit of the author at the Mathematical Centre in June 1974. 



NOTATIONS 1. Let X be some set, and let S be a subcollection of thepowerset 

P(X). By SA(Sv) we denote the collection of all finite intersections 

(arbitrary unions) of members of S. The collection (SA)V is denoted r(S). 

By convention W =,and~= X. The collection r(S) is nothing but the topo­

logy on X which is generated by Sand Sis called a subbase for r(S). 

DEFINITION 2. Let (X,O) be a topological space. The collection Sis called 

a minimal subbase for (X,O) provided r(S) • 0 and one has r(S') ~ 0 for 

each proper subcollection S' ~ S. A space {X,O) which allows a minimal 

subbase for its tppology is called a subminispaae. 

The concept of a minimal subbase was introduced by P. van Emde Boas 

[1]. We mention the following results. 

(i) Every finite space is a subminispace. 

(ii) The topological product of subminispaces is a subminispace. 

(iii) Each metrizable space is a subminispace. 

{iv) Each ordinal number {with the order topology) is a subminispace 

(hence the ordinary sequence'ltself is a subminispace). 

(v) There exist normal spaces which are not subminispaces. 

The spaces constructed in order to prove {v) are examples of (generalized) 

sequences (cf. def.3 below). In the proof in [1] the cardinality condition 

cf(z) >ahas been used (see the definitions below), leaving as an unsolved 

problem what happens if this condition is not fulfilled. In this report we 

describe some constructions which yield a sequence which is not a sub-

minispace for each infinite cardinal number.· 
MO 

We write a,(b,c) for the cardinal numbers M0 ,(N1,2 ). 

DEFINITION 3. A sequence of cardinality z is a topological space (X,O) with 

IXI = z ~ a, which consists of an open discrete set U = X\{x0} and a single 

adherence point. {x0} of U. 

Clearly the topology for a sequence is fully described by presenting 

a neighborhood base for its unique non-isolated point~• 

DEFINITION 4. Let x be a point in the topological space (X,O). A neighbor­

hood subbase at xis a collection U such that uA is a neighborhood base 



for x. The ZoaaZ weight at xis the minimal cardinality of a neighborhood 

subbase at :x:. Notation lw(x). 

Note that lw(x) equals the minimal cardinality of a neighborhood base 

at x. 

DEFINITION 5. Let z be a cardinal number. The aofinality of z, notation 

cf(z), is the least cardinal number y such that z is the sum of y cardinal 

numbers less than z. 

Clearly for infinite zone has a~ cf(z) ~ z. Moreover, cf(b) ;ea 

The technique used in order to construct sequences which allow no 

minimal subbase for their topology is described in the lemma below. 

LEMMA 6. Let (X,0) be a sequenae of aa:rdinality z, with non-isolated 

point x0 • As:sume, moreove:r>, that 

(i) lw(x0 ) > z. . 

(ii) Each collection U of lw(xO) neighborhoods of xO contains an infinite 

subcolleation V such that nv is a neighborhood of x0 • 

Then (X,0) 1.:s not a subminispace. 

PROOF. The proof strictly follows [ 1]. 

Let S be a subbase for (X,0) and assume by hypothesis to be shown 

contradictory that Sis minimal. For each singleton {x} with x ;e xO there 

exists a finite collection of elements in S such that their intersection 

equals {x}. Clearly the union S' of all these collections has cardinality 

~ z and since S also contains a neighborhood subbase for xO of cardinality 

<!'. lw(xO) > z we know that IS\S' I > z. 
Let V = S\S'. Clearly each member V E V is a neighborhood of xO, since 

otherwise V would be contained in r(S') and might be omitted from the 

subbase S. l1oreover 1 no member V of V contains a neighborhood of xO which 

2 

is a finite intersection u1 n •.• n Uk of members Ui of S different from V, 

since in this case V also could be deleted from the subbase S. Hence we 

conclude that whenever xO EU c V and U E SA the element V occurs essentially 

among the elements whose intersection yields U; i.e. removal of V from 



' ' 3 

these elements yields an intersection which is not contained within V. 

However, by assumption (ii) V contains an infinite subcollection W 

such that nw is a neighborhood of xO• Writing xO E u1n ... nuk s nW we arrive 

at the contradiction that the infinitely many elements in Wall are 

contained in the finite set {u1, ••• ,uk}. D 

By the above lennna the problem of constructing sequences which are no 

subminispaces: is reduced to finding neighborhood systems of xO satisfying 

(i) and (ii). 

In the sequet D denotes a discrete space of cardinality z and S z z ,Y 
denotes the sequence which results by adjoining a single adherence point xO 
to Dz' whose neighborhoods are all subsets of S having a complement of z,y 
cardinality< y. The space S is denoted by S2 • It is easy to prove that z,z 
the space S2 is a subminispace. 

First we describe the construction given by P. van Emde Boas in [1]. 

Let W2 be the product space S2 x Dz and let Xz be the quotient space 

constructed from W2 by identifying_~xO} x Dz to a single point yO• 

PROPOSITION 7. Let .£!.(z) > a or let z =a.Then X2 satisfies (i) and (ii). 

PROOF. By thi! usual diagonalization argument one proves that lw(y 0) > z. In 

the case that cf(z) > a condition (ii) is trivial since the intersection of 

each countable sequence of neighborhoods of yO is again a neighborhood of 

xO (this is in fact the proof which is given in [t]). 

To prove the proposition it is sufficient to prove (ii) for the case 

z =a.The space X is in fact the well-known example of the quotient of a 
a 

countable union of ordinary sequences under the identification of the limit 

points. 

We writ,e x0 = 1N x Eu {yO}. For each neighborhood V of y O there exists 

a function fv: 1N + 1N such that V contains all p.airs <j ,f> for j ~ fv(i), 

but not the pair <fV(i)-1,i>. These conditions define fV uniquely in 

terms of V, but it may happen that different neighborhoods V yield the same 

function. 

Now let V0 be an uncountable collection of neighborhoods of y0• There 

exists an uncountable subcollection V1 s VO such that fv( 1) = fv, (1) for 
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V, V' E V 1• Let U 1 be an arbitrary member of V 1• 

By induction we find for k > 1 an uncountable subcollection Vk ~ Vk-l 

such that for each pair V,V' E Vk the values fV(j) = fv 1 (j) for j ~ k. Again 

we take for Uk an arbitrary member of Vk. 
00 

It is easy to verify
00
that for the sequence (Uk)k=l constructed in this 

manner the intersection kgl Uk again is a neighborhood of y0 • This proves 

assertion (ii) for X. D a 

For z ~ a and cf(z) = a proposition 7 does not work. In these circum­

stances we use the following alternative construction: Let Y be the 
z 

quotient space which results from the product space s6 x D2 by identifying 

the set {x0} x D2 to a single point y0 • 

PROPOSITION 8. For z ~ b the space Y2 satisfies (i) and (ii). 

PROOF, (i) is shown by the usual diagonalization argument, whereas (ii) 

again is trivial. D 

Our next proposition shows that examples of non-subminispaces may be 

found among the sequences S themselves. z,y 

PROPOSITION 9. Let cf(z) = y and assume z > 2Y. Let y+ be the successor 

cardinal of' y. Then the space S + satisfies (i) and (ii). z,y 

PROOF. Again condition (ii) is trivial. To prove (i) we first note that 

cf(z) = y implies zY > z by Konig's theorem [2]. Furthermore, each 

neighborhood of x0 is contained in at most zY larger neighborhoods. Hence 

from the assumption z > 2Y we derive that ~(xO) equals the total number of 

neighborhoods of x0 and the latter equals zY. • 

Note that for the case y = a the assumption 2° = c < z is fulfilled for 

z > a and cf'.(z) = a if CH (b == c.) is assumed. 

THEOREM 10. For each infinite cardinal number z there exists a sequence of 

cardinality z which is not a subminispaae. 

PROOF. Direct from propositions 7 and 8. 0 
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