
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

The Views application environment

S. Pemberton

Computer Science
�

/Department of Algorithmics and Architecture

CS-R9257 1992
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301648371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Views
Application Environment

Steven Pemberton

CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Email: Steven.Pemberton@cwi.nl

Abstract

There are a number of problems associated with current windowing
environments, such as the lack of consistency both within and between
applications, the poor integration between applications, little or no interoperability,
‘hard-wired’ and inflexible interfaces, and the enormous cost of producing
applications. These problems are examined, and a unified approach that
addresses them is presented.

1991 Mathematics Subject Classification: 68U99, 68N99.

1991 CR Categories: H.1.2, H.5.2, D39, H.5.0, I.7.2.

Keywords and Phrases: application environments, user interfaces, information interfaces
and presentation, document preparation, ergonomics of computer software.

V I E W S
The

System

2 The Views Appl icat ion Environment

1 Introduction
As computers have become more powerful, and the emphasis has moved from
mainframes to personal computers, so the emphasis in software has moved from batch to
interactive programs. Accompanying this change of emphasis, attention has focussed on
the user-interface of programs: the manner in which one works with a program, and what
it is possible to do with it.

And as the number of interactive programs has increased, the users have been faced
with an ever increasing number of different user-interfaces, so that to accomplish some
tasks you may have to change user-interface several times, leading to confusion, errors,
and inefficiency. For instance, from the shell you start up a news reader program, from the
news reader you reply to a news article, which starts up a mail program, from which you
start an editor: four different user interfaces in quick succession; or to produce a report
can involve rapid swapping between text-processor, drawing program, spread-sheet, and
file finder.

In order to address some of these problems, various approaches have been tried, with
the most prevalent being the ‘toolkit plus guidelines’ approach: the system supplies a
‘toolkit’ of routines that a programmer can call from a program, and a set of guidelines
recommending how and where they should be used.

An exemplary instance of this is the Apple Macintosh computer, one of the better
examples of a unified approach to user-interfaces. But even with this system, two of the
very first applications available – MacWrite and MacPaint – had divergent user-interfaces
(for instance different ways to scroll a window), and in general each individual program,
while adhering largely to the interface guidelines, has its own peculiarities.

Furthermore, even within the standards of the Macintosh user-interface, the user is
confronted with different ways of doing essentially the same thing. For instance, the file-
browser as presented by the finder looks to the user very different to the file-browser
presented in dialogues (see Figure 1) yet in both cases the task at hand is to select a file
to use.

Figure 1. Within a short time, the new Macintosh user can be confronted with two different styles of browser,
both with essentially the same task, but not recognisable as similar in appearance, and with different
ways of navigating in the file-store

Introduct ion 3

The underlying problem is that while toolkits bring the user-interfaces of programs
closer to each-other, they can’t guarantee that they will be applied in the same way, since
each program must be separately written, interface and all.A better approach is a user-
interface layer above the whole system (see Figure 2) so that the individual applications
are unaware of user-interface issues [1]. This ‘interface independence’ (or ‘Dialogue
Independence’ [2]) can be likened to the ‘I/O independence’ of the 1960’s, where the
responsibility of device-dependent input-output was taken out of the hands of individual
programs, and placed in a central kernel of the system that all programs had access to.

Another good example of the idea is file-name expansion. This is where you can give a
program a template pattern of the file names you want, and the system expands this
pattern into the true list of file names. For example, the print command ‘print *.doc ’
asks for all files ending in ‘.doc’ to be printed. On systems where this facility is supplied
as a central service (such as the Unix shell), all programs have the advantage of the
facility without having to know anything about it. On the other hand, on systems where the
facility is only part of the ‘toolkit’ (such as MS-DOS), the only programs that have the
facility are those where the individual programmer has taken the trouble to supply it, which
leads to confusion and errors for the user, who must try and remember which commands
allow it, and which not (see Figure 3). However, even Unix is not immune to this sort of
confusion, as can be seen from the extreme example given (see Figure 4) where the user
has to change context mid-line.

Another problem with current systems is a lack of integration between applications.
Again drawing on the Apple Macintosh as a well-known example, it pioneered multi-media
applications, where for instance you can include text and pictures in a single document.
But you must use different programs for producing pictures and producing text, so firstly
you have to decide whether you want a text with drawings in it, or a drawing with text in.
They are both possible, and can produce identical results (Figure 5). Then you have to
change context and run a different program to produce your drawing that you want to
include in your text (or vice versa). Finally, once you have included the drawing, it is
‘frozen’: there is no chance to make further changes to it, except to delete it and replace it
with a new version.

This last point is an example of the lack of interoperability between applications in
windowing environments. In Unix-like environments, for example, many applications can
be plugged together to produce new applications and tools. Even though the data-model
used (single lines of text) is rather impoverished, a large range of applications can be used
in this way. For instance, if you have a large, compressed, file of data, and you want to

Figure 2. In current systems, each application has to implement its own user interface. Even on systems where
a toolbox of user interface tools is supplied, user interfaces of different applications are often different,
interfering with a user’s optimal use of the computer. In Views, the user interface is a separate layer
supplied by the system, offering consistency across applications.

User interface

True functionality Application
1

Application Application
2 3

Application
1

Application
2

Application

3

User interface layer

TRADITIONAL SYSTEMS VIEWS

4 The Views Appl icat ion Environment

Figure 3. Even in text-based applications, the toolbox problem rears its head. Here is an extract from an
interactive MS-DOS session. The user wants to read a file, but can’t remember what it is called. This
involves a sub-task of trying to find the name of the file. In the process, inconsistencies between each
command cause confusion and errors.

Figure 4. Sometimes even performing a single task can involve context switching. In this Unix example all files
whose names are 4 characters long and begin with a b and end with .c are searched for lines
containing the same names. The patterns have to be specified in two different ways, because one of
the patterns is addressed to the shell, and the other to grep , the program being run. (Actually, the
situation is even worse, because the number of backslashes '\ ' often has to be found by trial and error,
since it is unclear for the user which program they are addressed to — context confusion at its worst)

Figure 5. Two similar documents, produced with two different applications. If an application allows you to import
documents from other applications at all, once you have done so, the structure of the original is usually
lost.

Now what was that file called? I know: I’ll get a directory listing:
C> DIR
(Hundreds of f ilenames f lash past too fast to read)

Oh. Well, I think it ended with .TXT, so I’ll try that:
C> DIR *.TXT
Volume in drive C is DOCUMENTS
Directory of C:
TDXF34J1 TXT 3612303 20-08-90 11:50a
1 File(s) 4571680 bytes free

Aha! Only one file ends with .TXT, that’s lucky. Now to read it:
C> TYPE *.TXT
Invalid f ilename or f ile not found

What? Not found? Lets just check that:
C> DIR *.TXT
Volume in drive C is DOCUMENTS
Directory of C:
TDXF34J1 TXT 3612303 20-08-90 11:50a
1 File(s) 4571680 bytes free

Well, it’s definitely still there. Perhaps I can’t use a * here. Now, what was it called
again?

C> TYPE TDXF34J1.TXT
(Output f lashes past too fast too read)

Oh dear. Well, let’s see, MORE lets you read something a page at a time. I’d better
use the full name again:

C> MORE TDXF34J1.TXT
(Nothing happens)

What? What’s happened? Has it crashed? Perhaps the file was too big for MORE. I’d
better reboot I suppose.

grep b.\\.c b?.c

Views 5

select the second field of each line that starts with the word ‘Total’, and total them up. It
does not take much work to be able to write something like:

zcat data.Z | grep ^Total | f ield 2 | total

which would uncompress the file on the fly, select the lines, select the field, and cause
them to be totalled. In windowing environments, something like this would be impossible;
the best you can do is start each separate application up separately, and store
intermediate results: it is generally not possible to link applications together to
interoperate. This has caused a number of many-headed monolithic applications to
emerge, allowing you to at least pass data between a small (fixed) number of applications,
such as database, spread-sheet, and text-processor.

And all these problems come with another enormous difficulty: the cost of producing
the user-interface. It is said that 90% of the code of an application can be taken up with
pure user-interface matters. As an extreme example, the standard C “Hello World”
program, 3 or 4 lines long, can expand to 250 lines or more, if you produce a basic version
for a windowing environment.

2 Views
Views is an experimental application environment that addresses these problems by
supplying a framework that new applications can be added to, offering a consistent and
integrated user-interface across applications.

The project has developed from an earlier project at the CWI, the ABC Programming
Language [3]. The purpose of ABC is to offer a powerful programming language and
environment that is extremely easy to learn and use. As part of this aim, it was wanted to
reduce the number of different ‘faces’ that the user would see from the system:
traditionally when programming, you must learn the command language of the computing
system you are using, the command set of an editor, the programming language itself,
how to use the compiler, and so on. With ABC, this set was reduced to two elements: the
language and the editor. ABC is not only the programming language, but also the
command language, and for tasks that are not carried out with the ABC language, you use
the editor: this includes actions like renaming and deleting objects, which is done by ‘direct
manipulation’ of the objects involved [4].

It was quickly obvious that this method of working could be generalised to more tasks
than programming alone, and thus was born the Views project. Views, then, provides the
user with a computing environment that is characterised by:

♦ What-you-see-is-what-you-get (WYSIWYG)

♦ Direct-manipulation

♦ An open-architecture

♦ A consistent interface across applications.

WYSIWYG refers to systems that try to keep the screen up-to-date with the true state of
things. In fact Views is slightly stronger, leading us to coin a new term: TAXATA – things
are exactly as they appear. While usually in WYSIWYG systems you are working with a
copy of the object in some buffer (in other words, what you see is what you will get), in
Views you are always working with the object itself.

Open architecture means that it is easy to add new applications to the system, and that
the user has much control and choice over individual aspects of the system and its
interface.

6 The Views Appl icat ion Environment

3 The user’s conceptual model
By ‘the user’s conceptual model’ is meant the model or set of rules that the user forms
when working with the system. For instance, if you work on a file, do you work on the file
itself, or a copy? Since all applications under Views have the same user-interface, the
model has to be one that is suitable for all applications.

The basic model in Views is this: every object in the system is editable, every action is
carried out by editing; when you edit, you edit the object directly.

An object can be for example a text document, the clock, a diagram, or a menu.
Traditionally, editing a file is performed on a copy, which then has to be explicitly written
back to the disk. The Views model is closer to what one does in everyday life when
changing a document. The one major advantage of editing a copy of a document – that
you can retrieve the original version after a disastrous mistake – is offset by an unlimited
undo mechanism in Views.

As an example of the basic mechanism, consider document management. Instead of
individual commands to list the documents that you have in a directory or folder, to rename
them, to delete them, copy them, and so on, you just ‘visit’ the folder – which is a
document in itself in Views – which causes its contents to be displayed on the screen. To
rename a document in the folder you just edit its name; to delete it, you just delete its
entry; to copy a document, you just use the normal copy and paste facility of the editor.

Similarly, to read electronic mail you just ‘visit’ your mail box. This causes its contents
to be displayed as a list of message headers. Again, you can visit these individual
messages (themselves documents), rename them, delete them, copy them, all in exactly
the same way.

To print documents, you just copy them to the document representing the printer
queue; to cancel printing, you just delete its entry; if you keep the printer queue document
open on your screen, you can watch the progress of your printing jobs.

And so on for other tasks: reading news, listing and deleting running processes, editing
textual documents, or amending a spread-sheet. Surprising applications, considered from
a traditional point of view, include setting the time of day by editing the clock, and
rearranging and renaming the menus, and redefining the shortcuts for menu entries, by
editing a document describing the menus.

A major advantage that should be emphasised, is that once the user has learnt the
basic actions of working with the editor, it should then always be obvious how to deal with
a new application that the user hasn’t seen before.

4 Data model
Views supplies a data-layer to applications (Figure 6). Views objects are structured, thus
containing other objects, and consist only of ‘content-full’ parts: they contain no details of
formatting or other display information, which is added by a separate process when
objects are displayed.

Each object has a type, which describes the internal structure of the object, and its
external representation, be that as text, as some graphical representation, or even some
other medium, such as sound. In general, objects can be viewed in different ways, even
simultaneously, for instance as text in one view, but graphically in another (Figure 7).
When an object is displayed, the description of its external representation is accessed and
used to determine how the object should look.

There is a generic editor which knows about the structure of objects, and allows the
user to edit all objects in the same way, regardless of how they are displayed.

Data model 7

Since objects may contain other objects, the distinction between applications blurs. For
instance, if the user pastes a graphical object into a text document, the graphic is
displayed in the same way, and is editable in the same way, as before.

To the application, all objects are directly accessible: the existence of disks and main-
memory is transparent. The data-layer decides on the structure of objects on disk, and
takes care of transferring objects from disk to main-memory. This also means that all
objects are effectively ‘persistent’: objects only disappear when they are explicitly deleted.
Even if you stop running Views, and come back later and restart it, the objects are still
there.

Figure 6. Rather than requiring that each application define its own data-formats as is the case with traditional
applications, Views supplies a data-layer that takes care of external data-formats and where objects
are stored. This allows any application to import objects from other applications without losing
information about their structure and without having to know about files or even the existence of
external storage.

Figure 7. Four views of the time. On the left is the time as represented internally by the computer: the number of
seconds since the beginning of 1970. This value is then projected in three different ways: as an
analogue-style display of the time, as a digital-style display, and lastly showing the internal structure of
the digital-style display, without any added formatting. In this last display, the type of each (sub-) object
is given, followed by its value in brackets. Each display also shows its name, and has a ‘menu-bar’ for
editing the object and controlling the display.

User interface

Data access

True functionality Application
1

Application Application
2 3 Application

1
Application

2
Application

3

User interface layer

Persistent data layer

TRADITIONAL APPLICA TIONS VIEWS

8 The Views Appl icat ion Environment

5 Implementation model
The main implementation model is that in general there are ‘invariants’ between objects in
the system (Figure 8). These invariants state that there is a direct relationship between the
contents of an object and one or more other objects. For example, that the profit this year
is the difference between income and costs. If an object gets changed (usually by the user
editing it), the invariant goes ‘out-of-date’, and has to be re-instated, which is done by
calling a related function.

As another example, there is an invariant between the name of a file being displayed and
the file itself, so that if the name gets edited the file must be renamed.

In general, the invariants are two-way, so that it doesn’t matter which objects in an
invariant get changed. Higher-level invariants, defined in terms of user-defined functions,
get broken down into a network of low-level invariants by the system (see Figure 9).

In fact, the invariant mechanism used very generally throughout the system, so that for
instance, displaying objects on the screen is done by application of the invariant ‘the
representation on the screen must match the object’: if the object gets edited, then the
screen gets updated (see Figure 10.)

This means that the rest of the system can be completely oblivious of anything to do
with output to the screen, or even that it occurs at all. In fact, all that an individual
application sees is that its objects somehow change, and that it has to re-instate the
invariants.

As a side-note, it should be mentioned that Views is not a full constraint-satisfaction
system. As implemented, the invariants are equality constraints solved using local
propagation (see [5]).

Figure 8. Invariants, here represented as a circle, link objects together. If an object is changed, the invariant is
re-instated by changing linked objects. Here an object representing the temperature in degrees
Fahrenheit is linked by an invariant to an object representing degrees Celsius. Since the invariants are
two-way, if the user edits either one, the other gets updated automatically.

Figure 9. A high-level invariant, such as the one in Figure 8 is broken down by the system into a network of
lower-level invariants

F C= (F-32)*5/9 C

F

32

5

C

—

x

9

/

Open archi tecture 9

6 Open architecture
To add a new application to Views, the application designer has available a large
collection of built-in types and objects, and types and objects created for other
applications. If necessary, new objects can be defined: how they are structured internally,
how they are to be displayed, and the relationships between the different objects in terms
of invariants. The Views system takes care of the rest: input and changes to the objects,
displaying objects, and ensuring that the invariants are kept up-to-date.

The fact that so little has to be done, means that producing a new application is very
easy. The “Hello World” application mentioned earlier takes a single line of Views code;
the graphical clock in Figure 7 takes a dozen or so lines (compared with several hundred
for a traditional windowing environment).

The fact that the whole system is defined in terms of objects that are accessible and
changeable means that many aspects of the system which are traditionally hardwired
(such as menus, shortcuts, even how information is displayed) are tailorable to the user in
Views, even on the fly.

As a small example, suppose that an application is required to display a list of numbers
as a histogram. Amongst the tools available to the application builder is the ‘map’ operator
* . This takes a function, and produces a new function that works on a list. For instance, if
list is a list of numbers, sqrt * list produces a list of numbers whose elements are
the square-roots of the corresponding elements in list .

This notation is particularly useful for Views, since if you specify that two objects are
related by an invariant that includes a map, for instance that list1 = sqrt * list , the
system splits the invariant into a number of smaller invariants involving each element of
the two lists; in this way, if one element of list changes, only one element of list1
need be updated.

For the histogram, we want to take a list of numbers and convert it into a graphical
object. Among the graphical primitives is a function box(h, w) , which creates a box of
height h and width w. What we want to do is create a number of boxes of constant width,
and height proportional to the values in the list of numbers, and then stick them together.
Creating the boxes is easy, we just use a map:

box(∇, w) * list

Figure 10. A simplified view of the internal connections of the objects displayed in Figure 7. The oblongs
represent objects, and the circles invariants connecting them. If an object changes, any connected
invariants are used to update connected objects. The system-time object gets changed automatically
by the system each second. The diagram has been simplified to show the main relationships, but the
display functions (marked with a D) for instance, are also connected to objects describing how the
objects are to be displayed, and giving the details (size, etc.) of the windows in which they are to be
displayed.

System
seconds

H/M/S
D

DView View

View

D View

D

10 The Views Appl icat ion Environment

(The symbol ∇ means that that parameter will be filled in later.) This creates a list of
boxes, which we must then stick together. The function row does this. So the complete
specification of a simple histogram is then:

hist = row(box(∇, w) * list)

which specifies an invariant between the objects hist and list . Displaying hist will
then show the boxes as a graphical picture. If the user edits the boxes (since graphical
objects are just as editable in Views as textual ones), list will get updated to match, and
vice versa.

7 Implementation
The basic Views kernel has been constructed. The idea is to build the system
incrementally, so that at all times we have a running system, and to add applications one
by one.

The window interface is built on the basis of an earlier product of the ABC project,
STDWIN, a window management package that allows programs that use windows to be
portable between different windowing systems [6]. For example, STDWIN, and thus
Views, already runs on top of X-windows on Unix, on the Apple Macintosh, and on the
Atari ST.

The basic display mechanism has been constructed, for graphical objects as well as
textual ones, and the fundamental data-types and some primitive editing actions have
been implemented.

The invariant mechanism, a central part of the system, has been built, and a start
made on some applications, such as basic text-editing, file browsing, and message
reading.

8 References
[1] Ernest Edmonds (ed.), The Separable User Interface, Academic Press, 1992, ISBN

0-12-232150-2.

[2] H. Rex Hartson and Deborah Hix, Human-Computer Interface Development:
Concepts and Systems for its Management, ACM Computing Surveys, Vol. 21, 1,
March 1989.

[3] L. Geurts, L. Meertens and S. Pemberton, The ABC Programmer’s Handbook.
Prentice-Hall, 1990, ISBN 0-13-000027-2.

[4] J. van de Graaf, Towards a Specification of the B Programming Environment, CWI
report CS-R8408

[5] Wm Leler, Constraint Programming Languages, Their Specification and Generation,
Addison-Wesley, 1988, ISBN 0-201-06243-7.

[6] G. van Rossum, STDWIN — A standard window system interface, CWI Report CS-
R8817

