
1

A simple fixed parameter tractable algorithm for
computing the hybridization number of two (not

necessarily binary) trees
Teresa Piovesan, Steven Kelk

F

Abstract—Here we present a new fixed parameter tractable algorithm
to compute the hybridization number r of two rooted, not necessarily
binary phylogenetic trees on taxon set X in time (6rr!) · poly(n), where
n = |X |. The novelty of this approach is its use of terminals, which are
maximal elements of a natural partial order on X , and several insights
from the softwired clusters literature. This yields a surprisingly simple
and practical bounded-search algorithm and offers an alternative per-
spective on the underlying combinatorial structure of the hybridization
number problem.

Index Terms—phylogenetic network, fixed parameter tractability, nonbi-
nary.

1 INTRODUCTION

The rooted phylogenetic tree (henceforth, tree) is the
traditional model for modelling the evolution of a set of
species (or, more generally, taxa) X (see e.g. [9], [10], [24]).
A rooted phylogenetic network (henceforth, network) is
a generalisation from trees to directed acyclic graphs
which allows reticulate evolutionary phenomena such
as hybridization, recombination and horizontal gene
transfer to be incorporated (see Figure 1). For detailed
background information on networks we refer the reader
to [12], [13], [14], [26], [22], [23].

One use of networks, motivated in particular by the
need to merge a set of discordant gene trees into a
species network [22], is the following. Given a set of
trees T , where each tree T ∈ T has the same set
of taxa X , construct a “most parsimonious” network
which displays all the trees in T . If we define “most
parsimonious” to mean: has as few reticulation nodes
(i.e. nodes with indegree two or higher) as possible, we
obtain the hybridization number problem [2], [3]. There
has been extensive research into perhaps the simplest
possible variant of this problem; this is when T contains
two binary (i.e. fully resolved) trees. Unfortunately, even
this stylized version of the problem is computationally

• T. Piovesan and S. Kelk are with the Deparment of Knowledge En-
gineering (DKE), Maastricht University, P.O. Box 616, 6200 MD
Maastricht, The Netherlands. S. Kelk is corresponding author, e-mail:
steven.kelk@maastrichtuniversity.nl

a b c d e f g h i j k l

Fig. 1. An example of a (binary) rooted phylogenetic net-
work on X = {a, . . . , l}. This network has five reticulation
nodes, shown here unfilled.

difficult; it is NP-hard and in a theoretical sense diffi-
cult to approximate well [5], [19]. On the other hand,
there has been considerable progress in developing fixed
parameter tractable (FPT) algorithms for the problem.
Essentially, these are algorithms which can determine
whether the hybridization number of two trees is at
most r in time f(r) · poly(n), where n = |X | and
f(r) is a function that does not depend on n (see [8]
for an introduction to fixed parameter tractability). The
idea of such algorithms is that, by decoupling n and r,
the running time of the algorithm tends to grow more
slowly than algorithms with a running time of the form
O(nf(r)). The first such algorithms were described in
[4], [7] and the current theoretical state-of-the art is an
algorithm with running time (3.18r) · poly(n) [29]. There
are also a number of very fast software packages in
existence that are wholly or partially based on insights
from fixed parameter tractability [1], [6].

However, what if T contains more than two trees
and/or contains trees that are not fully resolved? Al-
gorithms to compute the hybridization number of such
T are necessary, because this more accurately reflects
the type of trees that emerge in applied phylogenetics
[21]. In this article we are interested in the situation
when T contains two not necessarily fully resolved trees

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301648320?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

on X . (We henceforth refer to such trees as nonbinary,
noting that this classification includes binary trees as a
special case). Given that this problem is a generalisation
of the binary case, it inherits all the negative results
from that case, but not necessarily the positive results.
Indeed, there are far fewer positive results for nonbinary.
A number of non-trivial technicalities arise because in
the nonbinary case we only require that the network
displays some refinement of each tree i.e. the image of
the tree contained in the network can be more resolved
than the original tree [20]. This is a natural and desirable
definition given that biologists often use nodes with
outdegree 3 or higher in trees to denote uncertainty,
rather than a hard topological constraint.

Recently there have been two non-FPT algorithms
implemented (both of which are available in the package
DENDROSCOPE [15]) to solve the nonbinary problem
in polynomial time when the hybridization number is
bounded [11], [27]. The nonbinary problem is, further-
more, FPT. This was established in [20] using kerneliza-
tion. Unfortunately, mainly due to the very idiosyncratic
behaviour of common chains in the nonbinary case, the
analysis given in [20] is rather long and complex, and
the (weighted) kernel they describe is also rather large,
containing at most (89r) taxa; the size of the unweighted
kernel is quadratic in r. As far as we are aware the
algorithm in [20] has not been implemented.

In this article we present an alternative FPT algorithm
for nonbinary trees that is based on bounded-search
rather than kernelization, with running time (6rr!) ·
poly(n). The resulting algorithm is extremely simple and
amenable to implementation (it manages to completely
avoid the concept of chains) and the analysis of cor-
rectness is comparatively straightforward. The algorithm
builds heavily on a number of basic results from the
softwired cluster literature [12], [13], in particular [18].
This literature concerns a slightly different methodology
for constructing phylogenetic networks, but as observed
in [26], [18] the optima of the models synchronise in the
case of two input trees, allowing results and concepts
from one methodology to be used in the other.

The simplicity of our new algorithm stems from a
careful examination of a natural partial order (and its
maximal elements, which we call terminals) on X , which
turns out to be closely linked to hybridization number.
This partial order appeared earlier in [16] and [18] but
was used in a slightly different way. Via the observations
in [18] the earlier (and more general) results in [16] also
imply an FPT algorithm via softwired clusters for the
nonbinary case, but with an astronomical running time.
The added value of the present article is that, by making
heavy use of the fact that there are only two trees in the
input, we are able to obtain a significantly simplified
and optimized algorithm that can actually be used in
practice.

For completeness we have implemented a prototype
version of the algorithm, available upon request. How-
ever, perhaps the best use of the algorithm is to integrate

it into existing, well-supported non-FPT algorithms for
the nonbinary problem (such as the 2012 release of
CASS [25], [27]) to bound their search space and to thus
upgrade their status to FPT.

2 PRELIMINARIES
2.1 Trees, networks and clusters
Consider a set X of taxa. A rooted phylogenetic network
(on X), henceforth network, is a directed acyclic graph
with a single node with indegree zero (the root), no
nodes with both indegree and outdegree equal to 1,
and leaves bijectively labeled by X . The indegree of a
node v is denoted δ−(v) and v is called a reticulation
if δ−(v) ≥ 2, otherwise it is called a tree node. An
edge (u, v) is called a reticulation edge if its target node v is
a reticulation. When counting reticulations in a network,
we count reticulations with more than two incoming
edges more than once because, biologically, these retic-
ulations represent several reticulate evolutionary events.
Therefore, we formally define the reticulation number of
a network N = (V,E) as

r(N) =
∑

v∈V :δ−(v)>0

(δ−(v)− 1) = |E| − |V |+ 1 .

A rooted phylogenetic tree on X , henceforth tree, is
simply a network that has reticulation number zero. We
say that a network N on X displays a tree T if T can
be obtained from N by performing a series of node
and edge deletions and eventually by suppressing nodes
with both indegree and outdegree equal to 1 (see Figure
2). We assume without loss of generality that each retic-
ulation has outdegree at least one. Consequently, each
leaf has indegree one. We say that a network is binary if
every reticulation node has indegree 2 and outdegree 1
and every tree node that is not a leaf has outdegree 2.

Proper subsets of X are called clusters, and a cluster C
is a singleton if |C| = 1. We say that an edge (u, v) of a tree
represents a cluster C ⊂ X if C is the set of taxa descen-
dants of v. A tree T represents a cluster C if it contains an
edge that represents C. For example, the tree in Figure
2(a) represents {c, d, e} but not {d, e, f}. We say that N
represents C “in the softwired sense” if N displays some
tree T on X such that T represents C. In this article we
only consider the softwired notion of cluster represen-
tation and henceforth assume this implicitly. A network
represents a set of clusters C if it represents every cluster
in C (and possibly more). For a set C of clusters on X
we define r(C) as min{r(N)|N represents C}, we refer
to this as the reticulation number of C. We say that two
clusters C1, C2 ⊂ X are compatible if either C1 ∩ C2 = ∅
or C1 ⊆ C2 or C2 ⊆ C1, and incompatible otherwise. A set
of clusters C is compatible if all clusters in C are mutually
compatible.

2.2 The equivalence of (maximal) common pendant
subtrees and (maximal) ST-sets
Let T be a tree on X . We write Cl(T) to denote the set
of clusters represented by edges of T , and for a set of

3

a

b
c

d

e

f

a
b c

d e

f

(a) (b)

a

b
c

d

e

f

(c)

a

b c
d

e

f

(d)

N

Fig. 2. In (b) we see that N displays the tree in (a), and in (c) we see that N displays a binary refinement of the tree
in (d). The dotted edges denote the reticulation edges that should be deleted to obtain the required tree.

trees T on X we write Cl(T) = ∪T∈T Cl(T). We say that
a (binary) tree T ′ on X is a (binary) refinement of T if
Cl(T) ⊆ Cl(T ′) (see Figure 2). We say two trees T1 and
T2 on X have a common refinement if there exists a tree T ′

on X such that Cl(T1) ∪Cl(T2) ⊆ Cl(T ′), where the last
condition is equivalent to saying that the set of clusters
Cl(T1) ∪ Cl(T2) is compatible. We say that a tree T ∗ on
X ∗ ⊆ X is a pendant subtree of T if there is a refinement T ′

of T such that X ∗ ∈ Cl(T ′). Note that this definition does
not depend on the topology of T ∗ so we can equivalently
say that X ∗ is a pendant subtree of T . A pendant subtree
X ∗ is non-trivial if |X ∗| > 1. Given two trees T1, T2 on X
we say that X ∗ ⊆ X is a common pendant subtree if X ∗
is a pendant subtree of both T1 and T2 and T1|X ∗ and
T2|X ∗ have a common refinement. (As usual T |X ′ for
X ′ ⊆ X refers to the tree obtained by suppressing nodes
with indegree and outdegree equal to 1 in the minimal
subtree of T that connects all elements of X ′). Note that
our definition of common pendant subtree is consistent
with [20], which we follow.

Given a set S ⊆ X of taxa, we use C \ S to denote the
result of removing all elements of S from each cluster
in C and we use C|S to denote C \ (X \ S) (the restriction
of C to S). Following [18], we say that a set S ⊆ X
is an ST-set with respect to C, if S is compatible with
all clusters in C and any two clusters C1, C2 ∈ C|S are
compatible. An ST-set S is maximal if there is no ST-set T
with S ⊂ T . The maximal ST-sets are unique, partition
X and can be computed in polynomial time [18].

In [18, Lemma 6] it is proven that, if C = Cl(T1) ∪
Cl(T2), and X ∗ is an ST-set of C, then for each i ∈ {1, 2},
there exists a node vi of Ti such that X ∗ is exactly equal
to the union of the clusters represented by some (not
necessarily strict) subset of the edges outgoing from
vi. From this it follows that X ∗ is a (maximal) ST-set
of Cl(T1) ∪ Cl(T2) if and only if X ∗ is a (maximal)
common pendant subtree of T1 and T2. We will make
heavy use of this equivalence and use the concepts
interchangeably. In particular, all the maximal ST-sets
of C = Cl(T1) ∪ Cl(T2) are singletons (in which case
we say C is ST-collapsed [18]) if and only if T1 and T2
have no non-trivial common pendant subtrees. A related
operation is to create an ST-collapsed set of clusters by

collapsing all maximal ST-sets into single taxa as shown
in Figure 3. Collapsing maximal ST-sets does not change
the reticulation number of the set of clusters (because
there always exists an optimal network in which the
maximal ST-sets are “pendant” [18, Corollary 11]).

2.3 The special case of (clusters obtained from) two
trees
Given two trees T = {T1, T2} on X , we (again following
[20]) define h(T) (the hybridization number of T) as the
smallest value of r(N) ranging over all networks N
on X such that N displays a binary refinement of T1
and a binary refinement of T2. In [18, Observation 9]
we note that the emphasis on binary refinements does
not sacrifice generality. Furthermore, from [26, Lemma
2] we may assume without loss of generality that in
the definition of h(T), N can be restricted to being
binary. Observe that, if T is an arbitrary set of trees on
X , r(Cl(T)) ≤ h(T). This holds because if a network
displays a (refinement of a) tree T then it certainly also
represents all the clusters in Cl(T). For |T | > 2 this
inequality can be strict [26]. However, in [18, Lemma
12] it is proven that if T = {T1, T2} are two trees on X ,
and C = Cl(T), then r(C) = h(T). Unfortunately, even
in this special case, if N represents all clusters in C it
does not necessarily display (binary refinements of) T1
and T2 [26]. Fortunately a polynomial-time, reticulation-
number preserving transformation is possible, which we
describe later in Section 3.

3 THE STRUCTURE OF OPTIMAL SOLUTIONS
We begin with some simple results which formalize the
idea that, when T contains exactly two trees, the problem
has “optimal substructure” i.e. optimal solutions can be
constructed from arbitrary optimal solutions for well-
chosen subproblems. We begin with a focus on clusters,
but then explicitly link this to trees in Lemma 2 and
Corollary 1.

Observation 1. Let C = Cl(T) be a set of clusters on X ,
where T = {T1, T2} is a set of two trees on X with no non-
trivial common pendant subtrees, and r(C) ≥ 1. Then there
exists x ∈ X such that r(C \ {x}) < r(C).

4

a
b c

d e

f

(a)

g a

b c

d

e

f

g

(b)

a
bc

def

(c)

g a

def

g bc

(d)

Fig. 3. The two trees shown in (a) and (b) have maximal ST-sets (i.e. maximal common pendant subtrees)
{a}, {b, c}, {d, e, f}, {g}, shown in greyscale. In (c) and (d) we show the result of collapsing the maximal ST-sets in
(a) and (b) (respectively) into single taxa.

Proof: Consider without loss of generality a binary
network N which represents C, where r(N) = r(C). By
acyclicity N contains at least one Subtree Below a Retic-
ulation (SBR) [18], i.e. a node u with indegree 1 whose
parent is a reticulation, and such that no reticulation can
be reached by a directed path from u. Let X ′ be the set
of taxa reachable from u by directed paths. X ′ is an ST-
set, so |X ′| = 1 (because C is ST-collapsed). Let x be the
single taxon in X ′. Deleting x and its reticulation parent
from N (and tidying up the resulting network in the
usual fashion1) creates a network N ′ on X \ {x} with
r(N ′) < r(N) that represents C \ {x}.

Lemma 1. Let C = Cl(T) be a set of clusters on X , where
T = {T1, T2} is a set of two trees on X with no non-trivial
common pendant subtrees, and r(C) ≥ 1. Then for each x ∈ X
it holds that r(C)− 1 ≤ r(C \ {x}) ≤ r(C).

Proof: The second ≤ is immediate because removing
a taxon from a cluster set cannot raise the reticulation
number of the cluster set. The first ≤ holds because in
[18, Lemma 10] it is shown how, given any network N ′

on X \ {x} that represents C \ {x}, we can extend N ′

to obtain a network N on X that represents C such that
r(N) ≤ r(N ′) + 1.
We recall the following definition from [18]. For a set
of clusters C on X , we call (S1, S2, ..., Sp) (p ≥ 0) an
ST-set tree sequence of length p if S1 is a ST-set of C, S2

is a ST-set of C \ S1, S3 is a ST-set of C \ S1 \ S2 (and
so on) and if all the clusters in C \ S1 \ . . . \ Sp are
mutually compatible i.e. can be represented by a tree.
If C = Cl(T) where T = {T1, T2} are two trees on X ,
then r(C) is exactly equal to the minimum length of an
ST-set tree sequence for C [18, Corollary 9]. Essentially,
the ST-set tree sequence describes an order in which
common pendant subtrees can be iteratively pruned
from T1 and T2 to obtain a common tree T . As an
example, the two trees in Figure 3(a) and (b) have a

1. Specifically, for as long as necessary applying the following
tidying-up operations until they are no longer needed: deleting any
node with outdegree zero that is not labelled by an element of X ;
suppressing all nodes with indegree and outdegree both equal to 1;
replacing multi-edges with single edges; deleting nodes with indegree
0 and outdegree 1 [18].

minimum-length ST-set tree sequence ({b, c}, {d, e, f}),
and the hybridization number of these two trees is
indeed 2.

Observation 1 and Lemma 1 show that, in an ST-
collapsed cluster set, there always exists at least one
taxon x such that r(C \ {x}) = r(C) − 1, and that this
is the best possible decrease in reticulation number.
If we somehow locate such an x (it does not matter
which one), construct C \ {x}, compute its maximal
ST-sets, collapse them, and then repeat this until we
obtain a compatible set of clusters, we are actually
constructing a minimum-length ST-set tree sequence
(S1, . . . , Sr(C)) of C. (Note that the actual Si can easily be
obtained by reversing any collapsing operations). Such
a sequence not only tells us r(C), it also instructs us how
to construct in polynomial time a network N which
represents all the clusters in C such that r(C) = r(N)
[18, Theorem 3]. Less obviously, it also tells us how to
construct a network N with r(N) = r(C) = h(T) which
displays the two trees that C came from:

Lemma 2. Let C = Cl(T) be a set of clusters on X , where
T = {T1, T2} is a set of two trees on X . Let (S1, . . . , Sp) be
an ST-set tree sequence of C. Then in polynomial time we can
construct a network N that displays binary refinements of T1
and T2 such that r(N) = p.

Proof: (Figure 4 shows a slightly stylized example of
the following). Let X0 = X and let Xi = Xi−1 \ Si, for
1 ≤ i ≤ p. Define Ci = C|Xi, for 0 ≤ i ≤ p. By assumption,
the clusters in Cp can be represented by a tree. This
is equivalent to saying that T1|Xp and T2|Xp have a
common refinement. We construct in polynomial time an
arbitrary binary tree T on Xp that displays these clusters;
T will also be a common binary refinement of T1|Xp and
T2|Xp. Let T = Np. We now show how to construct a net-
work Ni−1 that displays binary refinements of T1|Xi−1
and T2|Xi−1, given an arbitrary network Ni that displays
binary refinements of T1|Xi and T2|Xi, for 1 ≤ i ≤ p. By
definition, Si is an ST-set of Ci−1. Si thus corresponds to
a common pendant subtree of T1|Xi−1 and T2|Xi−1, and
indeed T1|Xi and T2|Xi are exactly the trees obtained by

5

pruning Si from T1|Xi−1 and T2|Xi−1. So, reversing this
pruning means that T1|Xi−1 and T2|Xi−1 can be obtained
from T1|Xi and T2|Xi (respectively) by re-grafting Si at
a particular vertex or edge. Specifically, let T ∗ be an
arbitrary binary tree that represents Ci−1|Si, this will
also be a common binary refinement of the common
pendant subtree Si. Now, Ni−1 can be obtained from
Ni by extending the images of T1|Xi and T2|Xi inside
Ni as follows: we introduce T ∗ below a new reticulation
and attach this reticulation at (or, if necessary, slightly
above) the two aforementioned re-grafting points. There
are some small technicalities (such as the need for a
“dummy root” [18]) but we omit these details.

ag

ag

d e

f

a
g

d e

f

b c

(a)

(b) (c)

Fig. 4. A demonstration of the construction described
in Lemma 2. The trees in Figure 3(a) and (b) have a
minimum-length ST-set tree sequence ({b, c}, {d, e, f})
and here we show how to construct a network N with
r(N) = 2 that displays binary refinements of both these
trees, by re-introducing the elements of the ST-set tree
sequence in reverse order.

Corollary 1. Let C = Cl(T) be a set of clusters on X ,
where T = {T1, T2} is a set of two trees on X . Let N be
a network on X that represents all the clusters in C. Then in
polynomial time we can construct a network N ′ that displays
binary refinements of T1 and T2 such that r(N ′) ≤ r(N).

Proof: If N is a tree we can simply take a binary
refinement of N and we are done. Otherwise, N contains
at least one SBR. The taxa in an SBR form an ST-set. So
if we identify an SBR of N (which can easily be done
in polynomial time), remove it (and tidy up in the usual
fashion), and repeat this until we obtain a tree, we obtain
an ST-set tree sequence of length at most r(N). (It will be
less than r(N) if removing some SBR causes more than
one reticulation to disappear from the network when
tidying up). This dismantling of N is described in more
detail in [18, Lemma 7]. We can then apply Lemma 2 to
construct the network.

Lemma 2 and Corollary 1 allow us for the remainder
of the article to focus only on clusters.

4 TERMINALS

As we have seen, computing r(C) (and an accompanying
optimal network) essentially boils down to repeatedly

identifying some taxon x such that r(C \ {x}) = r(C)− 1.
The key to attaining fixed parameter tractability is to
construct a “small” X ′ ⊆ X which is guaranteed to
contain at least one such taxon x. This brings us to the
following concept.

Given a cluster set C and x, y ∈ X , we write x →C y if
and only if every non-singleton cluster in C containing
x, also contains y2. We say that a taxon x ∈ X is a
terminal if there does not exist x′ ∈ X such that x 6= x′

and x→C x′.

Observation 2. Let C be an ST-collapsed set of clusters on
X such that r(C) ≥ 1. Then the relation→C is a partial order
on X , the terminals are the maximal elements of the partial
order and each non-singleton cluster of C contains at least one
terminal.

Proof: The relation →C is clearly reflexive and tran-
sitive. To see that it is anti-symmetric, suppose there
exist two elements x 6= y ∈ X such that x→Cy and
y→Cx. Then we have that, for every non-singleton clus-
ter C ∈ C, C ∩ {x, y} is either equal to ∅ or {x, y}
i.e. C is compatible with {x, y}. Furthermore, the only
clusters that can possibly be in C|{x, y} are {x}, {y}
and {x, y} and these are all mutually compatible. So
{x, y} is an ST-set, contradicting the fact that C is ST-
collapsed. Hence →C is a partial order. The fact that the
terminals are the maximal elements of the partial order
then follows immediately from their definition. Finally,
observe that a non-singleton cluster C must contain at
least one terminal, because if it does not then the relation
→C induces a cycle on some subset of C, contradicting
the aforementioned anti-symmetry property.

Let T be a phylogenetic tree on X . For a vertex u of
T we define X (u) ⊆ X to be the set of all taxa that
can be reached from u by directed paths. For a taxon
x ∈ X we define WT (x), the witness set for x in T , as
X (u)\{x}, where u is the parent of x. A critical property
of WT (x) is that, for any non-singleton cluster C ∈ Cl(T)
that contains x, WT (x) ⊆ C [18].

Observation 3. Let C = Cl(T) be a set of clusters on X ,
where T = {T1, T2} is a set of two trees on X with no non-
trivial common pendant subtrees, and r(C) ≥ 1. Then for
any x ∈ X the following statements are equivalent: (1) x is a
terminal of C; (2) there exist incompatible clusters C1, C2 ∈ C
such that C1 ∩ C2 = {x}; (3) WT1(x) ∩WT2(x) = ∅.

Proof: We first prove that (2) implies (1). For x′ 6∈ C1∪
C2 it holds that x 6→Cx′, because x ∈ C1 but x′ 6∈ C1. For
x′ ∈ C1 \ C2 it cannot hold that x→Cx′, because x ∈ C2

but x′ 6∈ C2, and this holds symmetrically for x′ ∈ C2\C1.
Hence x is a terminal. We now show that (1) implies (3).
Suppose (3) does not hold. Then there exists some taxon
x′ ∈WT1(x)∩WT2(x). So every non-singleton cluster in
C that contains x also contains x′, irrespective of whether

2. Note that, if a taxon x appears in only one cluster, {x}, then
(vacuously) x→Cy for all y 6= x.

6

the cluster came from T1 or T2. But then x→Cx′, so (1)
does not hold. Hence (1) implies (3). Finally, we show
that (3) implies (2). Note that (3) implies that in both T1
and T2 the parent of x is not the root. If this was not so,
then (wlog) WT1(x) = X \ {x}, and combining this with
the fact that WT1(x),WT2(x) 6= ∅ would contradict (3).
Hence WT1(x)∪{x} ∈ Cl(T1) and WT2(x)∪{x} ∈ Cl(T2),
from which (2) follows.

For two nodes u 6= v in a network we define a tree path
from u to v as a directed path that starts at u and ends at
v such that all interior nodes of the path are tree nodes.
This definition includes the possibility that u and/or v
are reticulation nodes, this will be clear from the specific
context. Observe that if x 6= y are taxa in a network N
that represents a set of clusters C and there is a tree path
from the parent of x to y, then x→Cy. The set of nodes
reachable by a tree path from u is the set of all v 6= u such
that there is a tree path from u to v.

Lemma 3. Let C be an ST-collapsed set of clusters on X such
that r(C) ≥ 1. Then C has at most 3 · r(C) terminals.

Proof: Let N be a network on X such that N rep-
resents C and r(N) = r(C). Without loss of generality
we can assume N is binary. For each x ∈ X , exactly
one of the following conditions holds: (1) the parent
of x in N is a reticulation; (2) the parent of x in N is
not a reticulation but there is a directed path from the
parent of x in N to a reticulation. To see this observe
that if neither condition holds then N contains an edge
(u, v) such that at least two taxa, but no reticulations, are
reachable by directed paths from v. But then C contains
a non-singleton ST-set, contradiction. Let R(N) be the
reticulation nodes in N . Let Ω(C) ⊆ X denote the set of
terminals of C. We describe a function F : Ω(C)→ R(N)
such that each reticulation is mapped to at most 3 times,
from which the result follows. For each terminal x for
which condition (1) holds, F (x) = p(x), where p(x) is
the parent of x. For each terminal x for which condition
(2) holds, choose a reticulation r such that there is a tree
path from p(x) to r, and set F (x) = r. Note that there
cannot ever be a tree path from p(x) to y if x 6= y are
both terminals, because this would mean x→Cy. Now, it
follows that a reticulation can be mapped to (in F) in at
most 3 ways: from a terminal immediately below it and
from one terminal per incoming edge.

Corollary 2. Let C be an ST-collapsed set of clusters on X
such that r(C) ≥ 1. Any subset of terminals with cardinality
2 · r(C) + 1 or higher, contains at least one taxon x such that
r(C \ {x}) < r(C).

Proof: From the proof of Lemma 3 we observe that
in any subset of 2 ·r(C)+1 terminals, there exists at least
one taxon x for which condition (1) holds. Hence x is an
SBR and (as argued in Observation 1) r(C \ {x}) < r(C).

5 MAIN RESULT

For a reticulation r in a network N , let X t(r) be the
set of all taxa that can be reached by tree paths from
r. For example, if we label the reticulations in the net-
work in Figure 2 r1, r2, r3, from left to right, X t(r1) =
{b},X t(r2) = {c} and X t(r3) = {e}. The following
lemma shows that an optimal network cannot contain
a reticulation r such that X t(r) = ∅.

Lemma 4. Let C = Cl(T) be a set of clusters on X , where
T = {T1, T2} is a set of two trees on X with no non-trivial
common pendant subtrees, and r(C) ≥ 1. Let N be a network
on X that represents C and let r be a reticulation of N such
that X t(r) = ∅. Then r(C) < r(N).

Proof: Let Rt(r) be the set of reticulations in N reach-
able by tree paths from r. Now, consider the technique
described in the proof of Corollary 1 for dismantling
N by removing one SBR at a time. All reticulations in
Rt(r) will be pruned away at an iteration that is earlier
than or equal to the iteration in which r is pruned away.
Moreover, due to the fact that Xt(r) = ∅ - that is, there
are no taxa “sandwiched” between r and Rt(r) - there
definitely exists r′ ∈ Rt(r) such that r′ and r both vanish
in the same iteration. But this means that the technique
produces an ST-set tree sequence of length strictly less
than r(N), which (by Lemma 2, or [18, Theorem 3])
implies the existence of a network N ′ that represents
C such that r(N ′) < r(N).

Corollary 3. Let C = Cl(T) be a set of clusters on X , where
T = {T1, T2} is a set of two trees on X with no non-trivial
common pendant subtrees, and r(C) ≥ 1. Let N be a network
on X that represents C such that r(N) = r(C) and let r be
a reticulation of N such that X t(r) = {x} for some x ∈ X .
Then r(C \ {x}) = r(C)− 1.

Proof: If x is an SBR the result is immediate. Oth-
erwise, if x is deleted from N , then a network N ′ is
obtained such that N ′ represents C \ {x} and, in N ′,
X t(r) = ∅. By Lemma 4, r(C \ {x}) < r(N ′). The result
follows because r(N ′) = r(N) = r(C).

For a network N , we say that a switching of N is
obtained by, for each reticulation node, deleting all but
one of its incoming edges. The grey subtrees in Figure
2 are switchings. A network N on X displays a tree
T on X if and only if there is a switching TN of N
such that T can be obtained from TN by suppressing
nodes with indegree and outdegree equal to one (and if
necessary deleting nodes with indegree 0 and outdegree
1). Hence, each switching is the “image” in N of some
tree displayed by N . Indeed, the following definitions
are entirely consistent with the definition of cluster
representation given in Section 2. Given a network N
and a switching TN of N , we say that an edge (u, v) of
N represents a cluster C w.r.t. TN if (u, v) is an edge of
TN and C is the set of taxa descendants of v in TN . It
is natural to define that an edge (u, v) of N represents
a cluster C if there exists some switching TN of N such

7

that (u, v) represents C w.r.t TN .
We say that a cluster C ∈ C is minimal if it is a

non-singleton cluster such that there does not exist a
non-singleton cluster C ′ ∈ C with C ′ ⊂ C.

Lemma 5. Let C = Cl(T) be a set of clusters on X , where
T = {T1, T2} is a set of two trees on X with no non-
trivial common pendant subtrees, and r(C) ≥ 1. There exists
a minimal cluster C ∈ C such that, for at least |C| − 1 of the
taxa x in C, r(C \ {x}) = r(C)− 1.

Proof: Let N be a binary network that represents C
such that r(C) = r(N). Let e = (u, v) be an edge of N
that represents some non-singleton cluster of C such that
there does not exist another edge e∗ = (u∗, v∗) reachable
from e with this property (where reachable here means:
there is a directed path from v to u∗). Hence e is a
“lowest” edge that represents a non-singleton cluster.
Let C ∈ C be a non-singleton cluster represented by e.
We will prove that at least |C| − 1 taxa x in C have the
property r(C\{x}) = r(C)−1. Observe that this property
will then automatically also hold for all non-singleton
clusters C ′ ⊂ C, in particular minimal C ′, from which
the claim will follow.

By definition e = (u, v) is an edge of some switch-
ing TN of N such that C is equal to the set of taxa
descendants of v in TN . Fix any such TN . Observe firstly
that if there is a directed path in TN from v to some
reticulation r, then X t(r) ⊆ C. The next statement is
critical. Suppose there is a tree node v′ which is reachable
in TN by a directed path from v. Suppose furthermore
that, in TN , the set of all taxa X ′ reachable from v′ by
tree paths (in TN) has cardinality exactly 2. We show
that this situation cannot actually happen. To see this,
let {y, z} be the taxa in X ′. By assumption {y, z} is not
an ST-set, because C is ST-collapsed. Hence there must
exist a non-singleton cluster C∗ ∈ C such that without
loss of generality C∗ ∩ {y, z} = {y}. Now, C∗ must be
represented by some edge e′′ = (u′′, v′′) of N . Moreover,
e′′ must lie somewhere on the tree path from v′ to y in
TN . However, u′′ is then reachable by a directed path
from v, contradicting our claim that e was “lowest”. So
such an X ′ does not exist. Now, suppose that r is a
reticulation in TN such that (1) r can be reached in TN
by a directed path from v, (2) two or more taxa can be
reached in TN from r by tree paths. Due to the fact that
N is binary, there must exist a tree node v′ reachable
in TN by a tree path from r, such that {x, y} are the
only two taxa reachable from v′ by tree paths in TN .
We have already concluded, however, that this is not
possible. Hence we can infer that, if r is a reticulation in
TN such that r can be reached by a directed path from v,
|X t(r)| = 1. This, in turn, means that with one possible
exception (because there can be at most one taxon in
C reachable in TN from v by a tree path) each taxon
x ∈ C is such that X t(r) = {x} for some r i.e. x is either
an SBR or is the unique taxon “sandwiched” between
several reticulations. By Corollary 3 we are done.

An immediate consequence of Lemma 5 is that if we
could identify minimal cluster C, it would be sufficient
to restrict our attention to an arbitrary size-2 subset of it:
we could still be sure that at least one of the the taxa x
is such that r(C \ {x}) = r(C)− 1. This is the motivation
behind the following theorem.

Theorem 1. Let C = Cl(T) be a set of clusters on X , where
T = {T1, T2} is a set of two trees on X with no non-trivial
common pendant subtrees, and r(C) ≥ 1. Let X ′ ⊆ X be the
set constructed as follows. If there are strictly more than 2·r(C)
terminals in C, let X ′ be an arbitrary subset of the terminals
of cardinality 2 ·r(C)+1. Otherwise, for each minimal cluster
C ∈ C, put two arbitrary taxa from C in X ′, of which at
least one is a terminal. Then |X ′| ≤ 6 · r(C) and there exists
x ∈ X ′ such that r(C \ {x}) = r(C)− 1.

Proof: The first way of constructing X ′ is correct
by Corollary 2. Let us then assume that there are at
most 2 ·r(C) terminals. Recall that each (minimal) cluster
contains at least one terminal, by Observation 2. A
terminal can appear in at most one minimal cluster
from T1, and at most one minimal cluster from T2.
Consider the following mapping from X ′ to itself. Map
each terminal to itself. For each non-terminal y ∈ X ′,
map y (arbitrarily) to a terminal x ∈ X ′ such that x
and y are both in some minimal cluster of C. In this
mapping, a terminal can be mapped onto at most 3 times
(i.e. from itself and at most two non-terminals). Hence
|X ′| ≤ 6 · r(C).

6 THE ALGORITHM

We have described the algorithm non-determinstically
(see Algorithm 1) to keep the exposition as clear as
possible. The correctness of the algorithm is primarily
a consequence of Lemma 5 and Corollary 2. If we let
r = r(C), the running time is at most (6rr!) · r · poly(n)
where n = |X |. The single r term comes from line 2. The
(6rr!) term is a consequence of Theorem 1; |X ′| never
rises above 6r, and each iteration of the main loop is
assumed to reduce the reticulation number by 1, giving a
running time of at most (6r)(6(r−1))(6(r−2)) . . . = 6rr!.
The poly(n) term includes operations such as comput-
ing terminals, locating minimal clusters and collapsing
maximal ST-sets; the first two operations are clearly
polynomial-time because C(T) ≤ 4(n−1) (which follows
from the fact that a tree on n taxa contains at most
2(n− 1) edges). In fact, the most time-consuming opera-
tion inside the poly(n) term is collapsing maximal ST-sets
(i.e. maximal common pendant subtrees). In [18, Lemma
5] a naive O(n4) algorithm is given for this although with
intelligent use of data structures and exploiting the fact
that C comes from two trees O(n2) is certainly possible
without too much effort. Finally, we note that the single r
term can be absorbed, if necessary, into the poly(n) term
to give (6rr!) · poly(n), because (trivially) r ≤ n.

8

Algorithm 1
1: Input: Two trees T = {T1, T2} on the same set of taxa
X .

2: Output: A network N that displays binary refine-
ments of T1 and T2 such that r(N) = h(T).

3: set C := Cl(T)
4: guess r = h(T) = r(C)
5: for i := r downto 1 do
6: collapse all maximal ST-sets (i.e. maximal common

pendant subtrees) in C to obtain a set of clusters
C′

7: if C′ contains more than 2i terminals then
8: set X ′ to be an arbitrary size 2i+ 1 subset of the

terminals
9: else

10: construct X ′ by taking two taxa from each min-
imal cluster of C′, such that at least one of each
pair is a terminal

11: end if
12: guess an element x ∈ X ′ such that r(C′ \ {x}) =

r(C′)− 1 and record that xr−i+1 := x
13: set C := C′ \ {x}
14: end for
15: convert the sequence (x1, . . . , xr) into the ST-set tree

sequence S = (S1, . . . , Sr) of C by decollapsing taxa
16: use S to construct a binary network N with r(N) =

h(T) that displays binary refinements of T1 and T2
(see Lemma 2).

7 FUTURE WORK

Computing the hybridization number of more than
two trees remains a challenging problem. In [28] a
kernelization-based FPT algorithm is given that works
for any number of binary trees, and [17] describes a
bounded-search FPT algorithm that works for “well-
bounded” sets of nonbinary trees. Both types of FPT
algorithm face the problem that for three or more trees
it no longer seems sufficient to guess any taxon whose
removal lowers the hybridization number; the topology
of the optimal network becomes far more important. This
remains the major obstacle to obtaining efficient algo-
rithms for three or more trees: the only explicit attempt
to address this so far is the brute-force enumeration of
network topologies described in [17].

8 ACKNOWLEDGEMENTS

We gratefully acknowledge Jean Derks and Nela Lekic
for their helpful comments concerning an earlier version
of this article. We also thank Simone Linz and Leo van
Iersel for useful discussions.

REFERENCES
[1] B. Albrecht, C. Scornavacca, A. Cenci, and D.H. Huson. Fast

computation of minimum hybridization networks. Bioinformatics,
28(2):191–197, 2012.

[2] M. Baroni, S. Grünewald, V. Moulton, and C. Semple. Bounding
the number of hybridisation events for a consistent evolutionary
history. Journal of Mathematical Biology, 51:171–182, 2005.

[3] M. Baroni, C. Semple, and M. Steel. A framework for representing
reticulate evolution. Annals of Combinatorics, 8:391–408, 2004.

[4] M. Bordewich, S. Linz, K. St. John, and C. Semple. A reduction
algorithm for computing the hybridization number of two trees.
Evolutionary Bioinformatics, 3:86–98, 2007.

[5] M. Bordewich and C. Semple. Computing the minimum number
of hybridization events for a consistent evolutionary history.
Discrete Applied Mathematics, 155(8):914–928, 2007.

[6] Z-Z. Chen and L. Wang. Hybridnet: a tool for constructing
hybridization networks. Bioinformatics, 26(22):2912–2913, 2010.

[7] J. Collins, S. Linz, and C. Semple. Quantifying hybridization in
realistic time. Journal of Computational Biology, 18:1305–1318, 2011.

[8] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer,
2006.

[9] O. Gascuel, editor. Mathematics of Evolution and Phylogeny. Oxford
University Press, Inc., 2005.

[10] O. Gascuel and M. Steel, editors. Reconstructing Evolution: New
Mathematical and Computational Advances. Oxford University Press,
USA, 2007.

[11] D. H. Huson and S. Linz. Computing minimum hybridization
networks from real phylogenetic trees. Submitted, 2012.

[12] D. H. Huson, R. Rupp, V. Berry, P. Gambette, and C. Paul. Com-
puting galled networks from real data. Bioinformatics, 25(12):i85–
i93, 2009.

[13] D. H. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks:
Concepts, Algorithms and Applications. Cambridge University Press,
2010.

[14] D. H. Huson and C Scornavacca. A survey of combinatorial
methods for phylogenetic networks. Genome Biology and Evolution,
3:23–35, 2011.

[15] D.H. Huson and C. Scornavacca. Dendroscope 3: An interactive
tool for rooted phylogenetic trees and networks. Systematic
Biology, 2012.

[16] S. M. Kelk and C. Scornavacca. Constructing minimal phy-
logenetic networks from softwired clusters is fixed parameter
tractable, 2011. Submitted, prelimary version available at http:
//arxiv.org/abs/1108.3653.

[17] S. M. Kelk and C. Scornavacca. Towards the fixed parameter
tractability of constructing minimal phylogenetic networks from
arbitrary sets of nonbinary trees, 2012. Submitted, preliminary
version http://arxiv.org/abs/1207.7034.

[18] S. M. Kelk, C. Scornavacca, and L. J. J. van Iersel. On the elu-
siveness of clusters. IEEE/ACM Trans. Comput. Biology Bioinform.,
9(2):517–534, 2012.

[19] S. M. Kelk, L. J. J. van Iersel, S. Linz, N. Lekic, C. Scornavacca,
and L. Stougie. Cycle killer... qu’est-ce que c’est? on the com-
parative approximability of hybridization number and directed
feedback vertex set, 2012. To appear in SIAM Journal on Discrete
Mathematics.

[20] S. Linz and C. Semple. Hybridization in non-binary trees.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
6(1):30–45, 2009.

[21] D. A. Morrison. An introduction to phylogenetic networks. RJR
Productions, 2011. Available from http://www.rjr-productions.
org/Networks/.

[22] L. Nakhleh. The Problem Solving Handbook for Computational Biology
and Bioinformatics, chapter Evolutionary phylogenetic networks:
models and issues. Springer, 2009.

[23] C. Semple. Reconstructing Evolution - New Mathematical and
Computational Advances, chapter Hybridization Networks. Oxford
University Press, 2007.

[24] C. Semple and M. Steel. Phylogenetics. Oxford University Press,
2003.

[25] L. J. J. van Iersel. New version of phylogenetic
network software, 2012. Webpage, accessed 25th
July 2012: http://phylonetworks.blogspot.nl/2012/06/
new-version-of-phylogenetic-networks.html.

[26] L. J. J. van Iersel and S. M. Kelk. When two trees go to war.
Journal of Theoretical Biology, 269(1):245–255, 2011.

[27] L. J. J. van Iersel, S. M. Kelk, R. Rupp, and D. H. Huson. Phylo-
genetic networks do not need to be complex: Using fewer retic-
ulations to represent conflicting clusters. Bioinformatics, 26:i124–
i131, 2010. Special issue: Proceedings of Intelligent Systems for

9

Molecular Biology 2010 (ISMB2010), 10th-13th September 2010,
Boston USA.

[28] L. J. J. van Iersel and S. Linz. A quadratic kernel for computing
the hybrization number of multiple trees, 2012. Submitted,
preliminary version http://arxiv.org/abs/1203.4067.

[29] C. Whidden, R. G. Beiko, and N. Zeh. Fixed-parameter and
approximation algorithms for maximum agreement forests. Sub-
mitted, preliminary version arXiv:1108.2664v1 [q-bio.PE].

Teresa Piovesan Teresa Piovesan received her master degree in 2012
from Maastricht University in The Netherlands. She is now working as
a PhD student at the Centrum voor Wiskunde en Informatica (CWI) in
Amsterdam, The Netherlands. Her research is focused on exploring the
links between quantum information theory and classical computation
using optimization tools.

Steven Kelk Steven M. Kelk is currently assis-
tant professor at the Department of Knowledge
Engineering (DKE) at Maastricht University in
The Netherlands, where he works on applica-
tions of combinatorial optimization and discrete
mathematics to computational biology. His main
research interests are approximation algorithms,
phylogenetic networks, graph theory and fixed
parameter tractability.

