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Abstract. Discrete tomography is concerned with the reconstruction of images that are defined
on a discrete set of lattice points from their projections in several directions. The range of values
that can be assigned to each lattice point is typically a small discrete set. In this paper we present
a framework for studying these problems from an algebraic perspective, based on ring theory and
commutative algebra. A principal advantage of this abstract setting is that a vast body of existing
theory becomes accessible for solving discrete tomography problems. We provide proofs of several
new results on the structure of dependencies between projections, including a discrete analogon of
the well-known Helgason–Ludwig consistency conditions from continuous tomography.
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1. Introduction. Discrete tomography (DT) is concerned with the reconstruc-
tion of discrete images from their projections. According to [16, 17], the field of DT
deals with the reconstruction of images from a small number of projections, where
the set of pixel values is known to have only a few discrete values. On the other
hand, when the field of DT was founded by Shepp in 1994, the main focus was on
the reconstruction of (usually binary) images for which the domain is a discrete set,
which seems to be more natural as a characteristic property of DT. The number of
pixel values may be as small as two, but reconstruction problems for more values are
also considered. In this paper, we follow the latter definition of DT.

Most of the literature on DT focuses on the reconstruction of lattice images that
are defined on a discrete set of points, typically a subset of Z2. An image is formed by
assigning a value to each lattice point. The range of these values is usually restricted
to a small, discrete set. Projections of an image are obtained by summation of the
point values along sets of parallel discrete lines. For an individual line, such a sum is
often referred to as the line sum.

DT problems have been studied in various fields of mathematics, including com-
binatorics, discrete mathematics, and combinatorial optimization. An overview of
known results is given at the end of section 2 of [10]. Already in the 1950s, both
Ryser [24] and Gale [9] considered the combinatorial problem of reconstructing a bi-
nary matrix from its row and column sums. They provided existence and uniqueness
conditions, as well as concrete reconstruction algorithms. DT emerged as a field of
research in the 1990s, motivated by applications in atomic resolution electron mi-
croscopy [25, 19, 18]. Since that time, many fundamental results on the existence,
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uniqueness, and stability of solutions have been obtained, as well as a variety of pro-
posed reconstruction algorithms.

Besides purely combinatorial properties, integer numbers play an important role
throughout DT, due to their close connection with the concepts of lattice lines and
line sums. A link with the field of algebraic number theory was established in [11],
where Gardner and Gritzmann used Galois theory and p-adic valuations to prove that
convex lattice sets are uniquely determined by their projections in certain finite sets
of directions. Hajdu and Tijdeman described in [14] how a powerful extension of the
binary tomography problem is obtained by considering images for which each point
is assigned a value in Z. The fact that both the image values and the line sums are in
Z allows for the application of ring theory, and in particular the Chinese remainder
theorem, for characterizing the set of switching components: images for which the
projections in all given lattice directions are 0. Their theory for the extended problem
leads to new insights in the binary reconstruction problem as well, as any binary
solution must also be a solution of the extended problem, and the binary solutions
can be characterized as the solutions of the extended problem that have minimal
Euclidean norm.

More recently, techniques from algebra and algebraic number theory were used to
obtain DT results on stability [1], a link between DT and the Prouhet–Tarry–Escott
problem from number theory [2], and the reconstruction of quasi crystals [4, 13].

In this paper we present a comprehensive framework for the treatment of DT prob-
lems from an algebraic perspective, based on general ring theory and commutative
algebra. Modern algebra is a mature mathematical field that provides a framework
in which a wide range of problems can be described, analyzed, and solved. An impor-
tant advantage of this abstract setting is that a vast body of existing theory becomes
accessible for solving DT problems. Based on our algebraic framework, we provide
proofs of several new results on the structure of dependencies between the projec-
tions, including a discrete analogon of the well-known Helgason–Ludwig consistency
conditions from continuous tomography.

A principal aim of this paper is to give additional connections between the study
of DT in the fields of combinatorics and classical number theory on one side and the
proposed abstract algebraic model on the other side. To this end, the definitions and
results we describe within our algebraic model will be followed by concrete examples,
illustrating their correspondences with existing results and concepts.

This paper is organized as follows. In section 2 the basic DT problems are in-
troduced in a combinatorial setting. In section 2.2 we recall an example from the
literature. Section 3 introduces the same concepts, but this time in our proposed
algebraic framework. We also derive some basic properties linking combinatorial no-
tions to notions within the framework. Sections 4 and 5 set up the algebraic theory
for images defined on Z2 (the global case). In section 6 we revisit the example from
section 2.2 from an algebraic perspective.

In the next sections, the attention is shifted toward images that are defined on
a subset of Z2. Section 7 introduces a relative setup, where a DT problem on a
particular domain is related to a problem on a subset of that domain. In sections
8 and 9, we apply this relation to completely describe the structure of line sums for
finite convex sets. The appendix collects some algebraic results used in this paper.

2. Classical definitions and problems. In this section we provide an overview
of several important problems in DT, within their original combinatorial context. For
the most part, we follow the basic terminology from [16].
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Let K ⊂ Z. We will call the elements of K colors. In DT, we often have K =
{0, 1}. Note that K does not have to be finite. A nonzero vector v = (a, b) ∈ Z2 such
that a ≥ 0 is called a lattice direction. If a and b are coprime, we call v a primitive
lattice direction. The set of all lattice directions is denoted by V . For any t ∈ Z2, the
set �v,t = {λv + t |λ ∈ Z} is called a lattice line parallel to v. The set of all lattice
lines parallel to v is denoted by Lv. A function f : Z2 → K with finite support is
called a table. The set of all tables is denoted by F . We prefer using the word table
over the more common image, as the latter is also used to denote the image of a
map.

Definition 2.1. Let f ∈ F and v ∈ V. The function Pv(f) : Lv → Z defined by

Pv(f)(�) =
∑
x∈�

f(x)

is called the projection of f in the direction v.

The values Pv(f)(�) are usually called line sums. For v ∈ V , we denote the set of
all functions Lv → Z by Lv (the potential line sums for direction v).

For a finite ordered set D = {v1, . . . , vk} ⊂ V of distinct primitive lattice direc-
tions, we define the projection of f along D by

PD(f) = Pv1(f)⊕ · · · ⊕ Pvk(f),

where ⊕ denotes the direct sum. The map PD is called the projection map. Put
LD = Lv1 ⊕ · · · ⊕ Lvk , the set of potential line sums for directions D.

Most problems in DT deal with the reconstruction of a table f from its projections
in a given set of lattice directions. It is common that a set A ⊂ Z2 is given, such that
the support of f must be contained in A. We call the set A the reconstruction grid.
Put A = {f ∈ F : x /∈ A =⇒ f(x) = 0}.

As in Chapter 1 of [16], we introduce three basic problems of DT: consistency,
reconstruction, and uniqueness.

Problem 1 (consistency). Let K and A be given. Let D = {v1, . . . , vk} ⊂ V be
a finite set of distinct primitive lattice directions and let p ∈ LD be a given map of
potential line sums. Does there exist a table f ∈ A such that PD(f) = p?

Problem 2 (reconstruction). Let K and A be given. Let D = {v1, . . . , vk} ⊂ V
be a finite set of distinct primitive lattice directions and let p ∈ LD be a given map of
potential line sums. Construct a table f ∈ A such that PD(f) = p, or decide that no
such table exists.

Problem 3 (uniqueness). Let K and A be given. Let D = {v1, . . . , vk} ⊂ V be
a finite set of distinct primitive lattice directions and let p ∈ LD be a given map of
potential line sums. Let f ∈ A such that PD(f) = p. Is there another solution g �= f
with PD(g) = p?

In the most common reconstruction problem in the DT literature, A is a finite
rectangular set of points and K = {0, 1}. In this case, a table f is usually considered
as a rectangular binary matrix. For the case D = {(1, 0), (0, 1)}, the three basic prob-
lems were solved by Ryser in the 1950s. It was proved by Gardner, Gritzmann, and
Prangenberg that the reconstruction problem for more than two lattice directions is
NP-hard [12]. Several variants of the reconstruction problem that make additional as-
sumptions about the table f , such as convexity or periodicity, can be solved effectively
if more projections are given [5, 8].
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Hajdu and Tijdeman considered the case that A is a rectangular set and K = Z.
They showed that the resulting problems are strongly connected to the binary case: if
the reconstruction problem forK = Z has a binary solution, the set of binary solutions
is exactly the set of tables over Z for which the Euclidean norm is minimal. In [14],
they characterized the set of switching components, tables for which the projection is
0 in all given lattice directions. In particular, this provides a (partial) solution for the
uniqueness problem, which also has consequences for the case K = {0, 1}.

2.1. Dependencies. The theory of Hajdu and Tijdeman also provides insight
into the dependencies between the projections of a table; see Definition 2.2.

If the reconstruction grid A is finite, the set of lines along directions in D inter-
secting with A is also finite. Denote the number of such lines by n(A,D). A map
p ∈ LD of potential line sums can now be represented by an n(A,D)-dimensional
vector over Z, where we consider only the line sums for lines that intersect with A.
In the remainder of this section, we use this representation for the projection of a
table.

Definition 2.2 (dependency). Let A ⊂ Z2 be a finite reconstruction grid. Let
D ⊂ V be a finite set of distinct primitive lattice directions. A dependency is a vector
c ∈ Zn(A,D) such that for all f ∈ F : PD(f) · c = 0, where · denotes the vector inner
product.

The vector c is called the coefficient vector of the dependency. Intuitively, de-
pendencies are relations that must always hold between the set of projections of an
object. The simplest such relation corresponds to the fact that for all lattice directions
v1, v2 ∈ V ,

∑
�∈Lv1

Pv1(f)(�) =
∑

�∈Lv2

Pv2(f)(�) =
∑
x∈A

f(x).

More complex dependencies can be formed between sets of three or more pro-
jections. We call a set of dependencies independent if the corresponding coefficient
vectors are linearly independent. Note that the dependencies form a linear subspace
of Zn(A,D).

2.2. Example. In [14], the dependencies were systematically investigated for the
case K = Q, A = {(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤ j < n}, and D = {(1, 0), (0, 1), (1, 1),
(1,−1)}. Put

rj =

m−1∑
i=0

f(i, j), 0 ≤ j ≤ n− 1, the row sums,

ci =

n−1∑
j=0

f(i, j), 0 ≤ i ≤ m− 1, the column sums,

th =
∑

j=i+h

(i,j)∈A

f(i, j), −m+ 1 ≤ h < n, the diagonal sums,

uh =
∑

j=−i+h

(i,j)∈A

f(i, j), 0 ≤ h < m+ n− 1, the antidiagonal sums.
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Then the following seven dependencies hold for the line sums:

n−1∑
j=0

rj =

m−1∑
i=0

ci =

n−1∑
h=−m+1

th =

m+n−2∑
h=0

uh,

n−1∑
h=−m+1
h is odd

th =

m+n−2∑
h=0

h is odd

uh,

−
n−1∑
j=0

jrj +

m−1∑
i=0

ici =

n−1∑
h=−m+1

hth,

n−1∑
j=0

jrj +

m−1∑
i=0

ici =

m+n−2∑
h=0

huh,

2

n−1∑
j=0

j2rj + 2

m−1∑
i=0

i2ci =

n−1∑
h=−m+1

h2th +

m+n−2∑
h=0

h2uh.

If A is sufficiently large, these dependencies form an independent set. It was
shown in [14] that these relations form a basis of the space of all dependencies over
Q. Although Hajdu and Tijdeman described the complete set of dependencies for this
particular set of directions, they did not provide a characterization of dependencies
for general sets of directions. They derived a formula for the dimension of the space
of dependencies for any rectangular set A and any set of directions.

Several properties of the given example deserve further attention. The coefficients
of the vectors describing the dependencies have the structure of polynomials in i, j,
and h. The degree of these polynomials is at most two (for the last dependency), and
this degree appears to increase along with the number of directions. In particular, the
maximum degree of the polynomials describing the coefficients in this example is two
for the dependency involving all four directions, whereas the maximum degree for a
dependency involving any subset of three directions is one, and the maximum degree
for the pairwise dependencies is zero.

For this set D, all of the seven independent dependencies can be defined for
the case A = Z2, such that for smaller reconstruction grids the same relations hold,
restricted to the lines intersecting A. In this paper, we will denote such dependencies
by the term global dependencies.

For other sets of directions, such as D = {(1, 1), (1, 2)}, there can also be depen-
dencies such as the one shown in Figure 2.1. Two corner points of the reconstruction
grid belong to a line in both directions, leading to trivial dependencies between the
corresponding line sums. Such dependencies depend on the shape of the reconstruc-
tion grid and cannot be extended to dependencies on A = Z2. We refer to such
dependencies as local dependencies. An analysis of the dependencies for the case of a
rectangular reconstruction grid A is given in [27].

There is a strong analogy between the concept of dependencies between line sums
in DT, and so-called consistency conditions in continuous tomography. Ludwig [21]
and Helgason [15] described a set of relations between the projections of a continuous
function f defined on R2. Moreover, if a set of one-dimensional functions satisfies
these relations, this is also a sufficient condition for correspondence to a projected
function. The first such relation represents the fact that the total mass of the scanned
object (expressed as an area integral of f) should equal the total mass in each of the
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(0,0)

Fig. 2.1. At corners of the reconstruction grid, there can be local dependencies between line
sums in two or more directions.

projections (expressed as an integral of each projection function). The second relation
represents the fact that the center of mass of the object corresponds to the center of
mass of the projections. Ludwig and Helgason describe an infinite set of such relations,
of increasing order.

In the remainder of this paper, we provide a characterization of the dependen-
cies between projections in DT, based on our algebraic framework. As dependencies
indicate relations that must hold for any set of projections, they provide a necessary
condition for the consistency problem. We prove that for a particular class of DT
problems, a set of projections satisfies the dependency relations if and only if it cor-
responds to a table. This leads to a discrete analogon of the consistency conditions
from continuous tomography.

3. Algebraic framework. In this section we introduce the basic concepts and
definitions used in our algebraic formulation of DT. For a thorough introduction to
terminology and concepts of algebra, we refer the reader to [20]. The appendix of this
paper covers some of the properties used in detail.

First, the line sum map, which maps a table to its corresponding line sums, is
defined in algebraic terms. We will prove (Lemma 3.4) that if the cokernel of the line
sum map has a simple structure, the space of dependencies also has this structure.
The section concludes with an example demonstrating that if the cokernel does not
have this structure, the result does not apply.

Let A ⊂ Z2 be nonempty and let k be a commutative ring that is not the zero
ring. We let

T (A, k) = k(A) = {f : A → k | f(x) = 0 for all but finitely many x ∈ A}

be the space of k-valued tables on A. It is a free k-module with a basis indexed by
the elements of A. We will identify the elements of A with the elements of this basis.

Let d ∈ Z2 \ {0} be a direction and p ∈ Z2 be a point. Recall that the (lattice)
line through p in the direction d is the set {p+ λd | λ ∈ Z}. Two points p and q are
on the same line in direction d precisely if they differ by an integer multiple of d.
The quotient group Z2/ 〈d〉 therefore parametrizes all the lines in the direction d. For
A ⊂ Z2 write Ld(A) for the image of A in Z2/ 〈d〉, i.e., the set of lines in the direction
d that intersect A.

We call (a, b) ∈ Z2 \{0} with gcd (a, b) = 1 a primitive direction. Whenever d is a
primitive direction, the quotient Z2/ 〈d〉 is isomorphic to Z. This means we can label
the lines in direction d with integers, starting with 0 for the line through the origin.
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We fix once and for all pairwise independent directions d1, . . . , dt ∈ Z2 \ {0} and
write Li(A) = Ldi(A) for the lines in direction di that meet A. Let

Li(A, k) = k(Li(A))

be the space of potential line sums in direction di and let

L(A, k) =

t⊕
i=1

Li(A, k)

be the full space of potential line sums. These are all free k-modules. A basis for
Li(A, k) is given by Li(A), and so a basis for L(A, k) is given by L(A) :=

∐t
i=1 Li(A).

Definition 3.1. The line sum map

σA,k : T (A, k)−→L(A, k)

is defined as the k-linear map that sends x ∈ A to the vector (�i)
t
i=1, where �i ∈ Li(A)

is the line in direction di through x.
The line sum map is the direct sum of the component maps σi,A,k : T (A, k) →

Li(A, k).
The kernel of the line sum map,

ker (σA,k) = {t ∈ T (A, k) | σA,k(t) = 0} ,

identifies the space of switching components of the DT problem: two tables have the
same vector of line sums if and only if they differ by an element of ker (σA,k). We will
use the cokernel

cok (σA,k) = L(A, k)
/
im (σA,k)

to gain insight into the structure of the set of possible line sums of tables within
the full space of potential line sums. In particular, the cardinality of the cokernel
“measures” the difference between these sets.

Definition 3.2. A k-linear dependency between line sums is a k-linear map

r : L(A, k)−→ k

such that r ◦ σA,k is the zero map.
Note that such a map gives rise to a map r̄ : cok (σA,k) → k and that, conversely,

any k-linear map cok (σA,k) → k gives rise to a dependency. In other words, there is
an inclusion

Homk (cok (σA,k) , k) ⊂ Homk (L(A, k), k)

whose image is precisely the set of dependencies. We will write Dep (A, k) for this
subspace.

Remark 3.3. The natural map

W : Homk (L(A, k), k) −→ {c : L(A) → k}
φ −→ [� → φ(�)]

is a bijection.
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−1 1

1 −1 1 −1

1 1

−1 1 −1 1

1 −1

Fig. 3.1. Left: 5 × 5 grid where the center point has been removed. Right: example of a table
on this grid where the dependencies do not provide sufficient conditions for consistency.

For a φ ∈ Homk (L(A, k), k) we can think of W (φ) as the weight that φ assigns
to each line in L(A). For dependencies this corresponds to the concept of a coeffi-
cient vector introduced in section 2.1. If r ∈ Dep (A, k) is a dependency, then W (r)
corresponds to the vector c from Definition 2.2.

The next lemma gives an example of the link between algebraic properties of the
cokernel and questions concerning the DT problem.

Lemma 3.4. Let A ⊂ Z2 and let k be a commutative ring that is not the zero
ring. Suppose that cok (σA,k) is a free k-module of finite rank n. Then Dep (A, k) is
also a free k-module of rank n, and for any l ∈ L(A, k) we have l ∈ im (σA,k) if and
only if d(l) = 0 for all d ∈ Dep (A, k).

Proof. Let c1, . . . , cn be a basis for cok (σA,k). We can write any x ∈ cok (σA,k)
uniquely as x1c1 + · · · + xncn. The maps ei : x → xi are elements of Dep (A, k) =
Homk (cok (σA,k) , k). We claim that the ei are a basis for Dep (A, k). Let r be in
Dep (A, k). For any x =

∑
xici in cok (σA,k) we have

r(x) = d
(∑

xici

)
=

∑
xir(ci).

Put ri = r(ci). Then we have r =
∑

riei. So the ei generate Dep (A, k). Note that
the ri are uniquely determined by r. We conclude that the ei are a basis of Dep (A, k).

Note that for all x ∈ cok (σA,k), we have x =
∑

ei(x)ci, so if d(x) = 0 for all
d ∈ Dep (A, k), then x = 0. When we apply this to x = l̄ for some l ∈ L(A, k), we see
that r(l) = 0 for all r ∈ Dep (A, k) if and only if l̄ = 0, i.e., l ∈ im (σA,k).

The lemma that we have just proved can be interpreted as follows. Whenever
we find for some A that cok (σA,k) is a free k-module of finite rank, we have the
following: a vector of potential line sums comes from a table precisely if it satisfies all
dependencies. As the space of dependencies is also free and of finite rank, it in fact
suffices to check finitely many dependencies.

To further motivate the interest of such freeness results, we conclude this section
with an example where it fails. In this example, the cokernel is not free, and, as a
consequence, the dependencies do not give sufficient conditions for consistency.

Let A be the grid as shown in Figure 3.1 (left), a 5 × 5 square with the center
point removed. We take projections in the directions (0, 1), (1, 0), (1, 2), and (2, 1).
For the ring k we take Z, the integers.

Something interesting happens when we consider the table shown on the right of
Figure 3.1. Its line sums in the given directions are all 0, with the exception of the
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ones going through the missing center point, which are all 2. Write v for this vector
in L(A, k).

Now consider 1
2v: four 1’s for the lines through the center, and 0’s everywhere

else. One checks easily by hand that this vector is not in the image of the projection
map. No table with coefficients in Z gives rise to these line sums.

Any dependency for this configuration will send v to 0 as it is in the image of
the projection map. But then 1

2v also goes to 0, by linearity. However, 1
2v is not in

the image of the projection map. So here we have an example where satisfying all
dependencies is not sufficient to ensure a vector is in the image of the projection map.

To understand this example and how it was constructed, the reader may want to
see how the proof of Theorem 8.3 fails for this particular A.

4. The global case. In this section we consider the case A = Z2. We will show
that in this case, the objects defined in the previous section have the structure of
rings and modules and their homomorphisms. This allows us to completely describe
the kernel and cokernel of the line sum map.

According to Lemma 3.4, the space Dep (A, k) can be characterized if cok (σA,k) is
a free k-module of finite rank. We will demonstrate (Theorem 4.2) that this property is
satisfied for the case A = Z2 and, in addition, give a characterization of the switching
components for this case, similar to the work of Hajdu and Tijdeman in [14]. This
results in a strong statement concerning the consistency problem for the case A = Z2:
a set of line sums corresponds to a table if and only if it satisfies a certain number of
independent dependencies (Corollary 4.3).

The following three k-modules are isomorphic in a natural way:

T (Z2, k) ∼= k[Z2] ∼= k[u, u−1, v, v−1].

For some basic properties of group rings such as k[Z2], see the appendix. The isomor-
phisms are

T (Z2, k) −→ k[Z2],

[c : Z2 → k] −→
∑
x∈Z2

c(x)x

and

k[Z2] −→ k[u, u−1, v, v−1],∑
x∈Z2

λxx −→
∑

(a,b)∈Z2

λ(a,b)u
avb.

Note that k[Z2] and k[u, u−1, v, v−1] are both k-algebras and that the second isomor-
phism is an isomorphism of k-algebras. We also view T (Z2, k) as a k-algebra via these
isomorphisms.

In the same way there is a natural isomorphism of k-modules,

Li(Z
2, k) ∼= k

[
Z2

/
〈di〉

]
,

which puts a ring structure on the spaces of potential line sums. By Lemma A.2 we
have an isomorphism k[Z2/ 〈di〉] ∼= k[Z2]/(di − 1). Viewed in this way, the line sum
map σi,Z2,k : T (Z2, k) → Li(Z

2, k) is the quotient map

k[Z2] → k[Z2]
/
(di − 1).
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Taking sums, we find a k-algebra structure on L(Z2, k) such that the line sum map
σZ2,k : T (Z2, k) → L(Z2, k) is a k-algebra map which is the direct sum of quotient
maps. We will now study the structure of these quotient maps from an algebraic
perspective using the ideas outlined in the last part of the appendix.

Lemma 4.1. Let d, e ∈ Z2 be independent directions. Then d−1 is weakly coprime
(see Definition A.6 in the appendix) to e− 1 in k[Z2].

Proof. By Lemma A.2 we can see k[Z2]/(d − 1) as the group ring k[Z2/ 〈d〉].
Suppose we have

f =
∑

x∈Z2/〈d〉
fxx ∈ k

[
Z2

/
〈d〉

]

such that (e − 1)f = 0. When we expand

0 = (e− 1)f =
∑

x∈Z2/〈d〉
(fx−e − fx)x,

we see that fx+ke = fx for all x ∈ Z2/ 〈d〉 and k ∈ Z. As d and e are independent,
all x + ke are different in Z2/ 〈d〉. We conclude that we must have fx = 0 for all
x ∈ Z2/ 〈d〉, as only finitely many coefficients of f are nonzero.

Theorem 4.2. The kernel of σZ2,k is given by

ker
(
σZ2,k

)
= (d1 − 1) · · · (dt − 1)k[Z2].

The cokernel cok
(
σZ2,k

)
is a free k-module of rank

∑
1≤i<j≤t

|det(di, dj)|.

Proof. By Lemma 4.1, di− 1 is weakly coprime to dj − 1 in k[Z2] whenever i �= j.
So we can apply Theorem A.9 to the map

σZ2,k : k[Z2]−→
t⊕

i=0

Z2
/
di − 1.

This immediately gives us the formula for the kernel given in the theorem. For the
cokernel, we note that by Lemma A.2 we have

k[Z2]
/
(di − 1, dj − 1) = k

[
Z2

/
〈di, dj〉

]
,

which is a free k-module of rank | det(di, dj)|. In particular, all the successive quotients
of the filtration on the cokernel are free k-modules. Therefore all the quotients are
split (see, e.g., [20, Chap. III.3, Prop. 3.2]), and we conclude that

cok
(
σZ2,k

) ∼= ⊕
1≤i<j≤t

k
[
Z2

/
〈di, dj〉

]
.

This result leads to a partial discrete analogon of the Helgason–Ludwig consis-
tency conditions from continuous tomography, which involves a finite set of directions
and provides a necessary and sufficient condition for consistency of a vector of poten-
tial line sums.
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Corollary 4.3. A vector of potential line sums in L(Z2, k) comes from a table
in T (Z2, k) if and only if it satisfies all dependencies. Moreover, we only have to check
this for a set of

∑
1≤i<j≤t |det(di, dj)| independent dependencies.

Proof. This is an easy consequence of two earlier results: Theorem 4.2 shows that
we can apply Lemma 3.4 to the global cokernel.

Note that the Helgason–Ludwig conditions from continuous tomography concern
the consistency of an infinite set of projections.

Looking at the example in section 2.2, we compute
∑

1≤i<j≤4 |det(di, dj)| = 7.

This tells us that the list of seven independent dependencies we had is complete, in
the sense that at least when k is a field, they will form a basis of Dep

(
Z2, k

)
.

For a full discrete analogon of the continuous consistency conditions, one should
also provide a characterization of the structure of the individual dependencies. The
next section provides additional insight into the coefficient structure of the dependen-
cies.

5. The global line sum map as an extension of rings. We now focus our
attention more on the ring theoretic aspect of the line sum map for the case A = Z2.
The main result of this section is a full characterization of the actual coefficients
of the dependencies (Theorem 5.2), which is necessary to make practical use of the
developed theory, for example, when checking a set of line sums for errors.

We can view L(Z2, k) as an extension of its subring im
(
σZ2,k

)
. Both of these

rings have relative dimension 1 over k. This is a situation that has been extensively
studied because of its relation to algebraic number theory (see, e.g., [3]) and singu-
lar curves in algebraic geometry (see, e.g., [26]). An interesting attribute of such
an extension is its conductor : the largest ideal of L(Z2, k) that is also an ideal of
im

(
σZ2,k

)
.

Lemma 5.1. Put Di =
∏

j �=i(dj − 1). The conductor of L(Z2, k) over im
(
σZ2,k

)
is given by

fk = D1k[Z
2]
/
d1 − 1⊕ · · · ⊕Dtk[Z

2]
/
dt − 1.

Proof. Note that Di reduces to 0 in k[Z2]/(dj − 1) for all j �= i. We conclude that
the ideal (D1, . . . , Dt) of k[Z

2] is mapped by σZ2,k onto fk. In particular, this implies
that fk is indeed an im

(
σZ2,k

)
ideal.

Conversely, suppose I ⊂ im
(
σZ2,k

)
is an ideal that is also closed under multipli-

cation by L(Z2, k). We want to show that I ⊂ fk. Let x = (x1, . . . , xt) ∈ I. As I is an
L(Z2, k) ideal, we must also have (0, . . . , xi, . . . , 0) ∈ I. As I ⊂ im

(
σZ2,k

)
, there is an

x̃i ∈ k[Z2] such that σZ2,k(x̃i) = (0, . . . , xi, . . . , 0). We have x = σZ2,k(x̃1 + · · ·+ x̃t),
so we are done if we can show that x̃i is a multiple of Di for all i.

To show this, we apply Theorem 4.2 to the directions dj with j �= i. Note that x̃i

maps to 0 under the line sum map in this case. The theorem tells us that the kernel
of this map is generated by Di, so that x̃i is indeed a multiple of Di for all i.

Note that the quotient module L(Z2, k)/fk is a free k-module that has dimension∑
i�=j | det(di, dj)|. This is twice the dimension of cok

(
σZ2,k

)
= L(Z2, k)/im

(
σZ2,k

)
.

We see that im
(
σZ2,k

)
sits precisely in the middle between L(Z2, k) and fk. This is

not a surprise; it happens in this situation whenever the rings are “sufficiently nice,”
e.g., when they are Gorenstein rings (see [6] for more information about these rings).

We have not yet fully explored the implications of this ring theoretic view for the
structure of cok

(
σZ2,k

)
, but we believe it warrants further investigation. To illustrate
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its use, we will derive the following result on the coefficient functions of dependencies
in Dep

(
Z2, k

)
.

For the remainder of this section, we assume that all the di are primitive direc-
tions. This means that Z2/ 〈di〉 is isomorphic to Z. For the rest of this section we also
fix isomorphisms Z2/ 〈di〉 ∼= Z. What this means is that the lines in each direction
di can be numbered in sequence. The choice of isomorphisms comes down to picking
whether we number from left to right or the other way around.

Recall from Remark 3.3 that a dependency r ∈ Dep
(
Z2, k

)
can be represented

by a function W (r) from L(Z2) to k. From the choices we have just made, L(Z2) is
identified with t copies of Z. This means that we can represent a dependency by a
set of t two-sided infinite sequences,

Wi(r) : Z−→ k.

Theorem 5.2. There are positive integers s1, . . . , st and ci,j ∈ Z for i = 1, . . . , t
and j = 1, . . . si, with ci,1 = ±1 and ci,si = ±1 for i = 1, . . . , t such that the following
holds. For every commutative ring k that is not the zero ring, for every dependency
r ∈ Dep

(
Z2, k

)
, and for i = 1, . . . , t, the two-sided infinite sequence Wi(r) defined

above satisfies the linear recurrence relation

∀n ∈ Z :

si∑
j=1

ci,j [Wi(r)](n + j) = 0.

Proof. The isomorphism Z2/ 〈di〉 ∼= Z gives rise to an isomorphism

k[Z2]
/
di − 1 ∼= k

[
Z2

/
〈di〉

]
∼= k[x, x−1]

of Li(Z
2, k) with the Laurent polynomial ring k[x, x−1]. Write Di =

∑
j ajx

j in

k[x, x−1].
Let r ∈ Dep

(
Z2, k

)
be a dependency. We consider the map ri : Li(Z

2, k) → k

induced by r. As im
(
σZ2,k

)
is in the kernel of r, we have fk ⊂ ker (r). As x ∈ k[x, x−1]

is a unit, we see that xnDi must be in ker (ri) for all integers n.
From the definition of Wi(r), we know that ri(x

n) = [Wi(r)](n). Using this we
see that for all n ∈ Z

0 = ri(x
nDi) = ri

(∑
j

ajx
n+j

)
=

∑
j

aj [Wi(r)](n + j).

What remains to be shown is that the coefficients aj of Di are integers that do
not depend on k and that the leading and trailing coefficients are ±1. Note that these
properties hold for a product if they hold for the factors. Moreover, we have

Di =
∏
j �=i

(xdet(di,dj) − 1),

and the properties clearly hold for the polynomials x∗ − 1 in k[x, x−1].
The upshot of the outer coefficients being ±1 is that the recurrence relations can

always be used to uniquely determine the sequences from any sufficiently large set of
consecutive coefficients.
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6. An example. We revisit the example from [14] that was discussed in section
2.2. It concerns the directions d1 = (1, 0), d2 = (0, 1), d3 = (1, 1), and d4 = (1,−1).
For simplicity, we take k = Q, but we will make some comments on how to deal with
the case k = Z.

We identify T (Z2, k) with k[x, x−1, y, v−1]. Note that for each i, we have Z2/ 〈d〉 ∼=
Z. We pick isomorphisms Li(Z

2, k) = k[z, z−1] in such a way that the components of
the line sum map are the maps k[x, x−1, y, y−1] → k[z, z−1] given by

i map x → y →
1 r 1 z
2 c z 1
3 t z z−1

4 u z z

The line sum map is given by

σ = (r, c, t, u) : k[x, x−1, y, y−1]−→
(
k[z, z−1]

)4
.

The maps r, c, t, and u are related to the line sums described in section 2.2 in a
straightforward manner. Let f and the ri, ci, ti, and ui be as in that section. Put
F =

∑
i,j f(i, j)x

iyj . Then we have r(F ) =
∑

i riz
i and likewise for the other maps.

We compute

D1 = (y − 1)(xy − 1)(xy−1 − 1), r(D1) = −z−1(z − 1)3,
D2 = (x− 1)(xy − 1)(xy−1 − 1), c(D2) = (z − 1)3,
D3 = (x− 1)(y − 1)(xy−1 − 1), t(D3) = (z − 1)3(z + 1),
D4 = (x− 1)(y − 1)(xy − 1), u(D4) = (z − 1)3(z + 1).

Let M = M1 ⊕ · · · ⊕M4 be the quotient vector space

M =
k[z, z−1]

r(D1)
⊕ k[z, z−1]

c(D2)
⊕ k[z, z−1]

t(D3)
⊕ k[z, z−1]

u(D4)
,

and let π = (π1, . . . , π4) be the quotient map (k[z, z−1])4 → M . As discussed in the
previous section, there is a surjective map M → cok (σ). This means we can realize
Dep

(
Z2, k

)
as a subspace of Hom (M,k).

A basis for Hom
(
k[z, z−1]/(z − 1)3, k

)
is given by the maps

v1 : zi → 1, v2 : zi → i, v3 : zi → i2.

Let e : Z → Z be the map that sends n to 0 if n is odd, and to 1 if n is even. A basis
for Hom

(
k[z, z−1]/(z − 1)3(z + 1), k

)
is given by

w1 : zi → e(i), w2 : zi → 1− e(i), w3 : zi → i, w4 : zi → i2.

These maps together give a basis for Hom (M,k) consisting of 14 elements:

• v1,1, v1,2, and v1,3 acting on the first coordinate;
• v2,1, v2,2, and v2,3 acting on the second coordinate;
• w1,1, . . . , w1,4 acting on the third coordinate; and
• w2,1, . . . , w2,4 acting on the fourth coordinate.
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These maps correspond to the sums of line sums that also come up in section 2.2. For
example, v1,1 sends F to

∑
i ri, and w2,3 sends F to

∑
i i

2ui.
The dependencies form a subvector space of Hom (M,k) of dimension 7. What we

still have to do is to determine which linear combinations of vi,j ’s and wi,j ’s correspond
to dependencies. One way to do this is to write down the restrictions coming from
the fact that tables of the form xiyj must be sent to 0 by a dependency. We will see
in section 8 that we have only to check finitely many such tables before we have a
complete set of restrictions.

Another way to find these restrictions is to consider the compositions of the v’s
and w’s with π ◦ σ, i.e., the maps they induce in Hom

(
k[x, x−1, y, y−1], k

)
. The

dependencies are precisely those relations that go to 0 under this composition. The
maps we obtain in this way are

map xiyj → map xiyj →
v1,1 1 v2,1 1
v1,2 i v2,1 j
v1,3 i2 v2,1 j2

w1,1 e(i− j) w2,1 e(i+ j)
w1,2 1− e(i− j) w2,2 1− e(i+ j)
w1,3 i− j w2,3 i + j
w1,3 (i − j)2 w2,3 (i+ j)2

From this table, one easily reads off a basis for the dependencies. For example,
we can take

v1,1 = v2,1 = w1,1 + w1,2 = w2,1 + w2,2,

w1,1 = w2,1,

v1,2 − v2,2 = w1,3,

v1,2 + v2,2 = w2,3,

2v1,3 + 2v2,3 = w1,4 + w2,4.

These correspond to the dependencies described in section 2.2.
If we want to write down a basis for the dependencies not over Q but over Z or

some other ring, we have to be a little more careful. The maps v1, . . . , v3 do not form
a basis of Hom

(
k[z, z−1]/(z − 1)3, k

)
if k = Z. The map sending zi to 1

2 i(i− 1) is in
this module, but it is equal to 1

2 (v3 − v2), which is not a Z-linear combination of the
v’s.

A basis that works regardless of the ring k is found as follows. Note that

k[z, z−1]
/
(z − 1)3 = k · 1⊕ k · z ⊕ k · z2.

This choice of a basis also gives a basis for the k-dual. This basis works independently
of k. The price we pay for this more general approach is that the formulas that come
out are not as nice, making it harder to find the dependencies by hand. The linear
algebra involved does not become more difficult.

7. The comparison sequence. We now turn our attention to cases where A
is a true subset of Z2. Let A ⊂ B ⊂ Z2. Our aim in this section is to compare
the kernels and cokernels of σA,k and σB,k. The key result, Lemma 7.1, reflects the
approach that will be followed in the next sections to carry the results for A = Z2

over to finite convex subsets of Z2.
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Put T (B/A, k) = k(B\A) and L(B/A, k) =
⊕t

i=1 k
(Li(B)\Li(A)). Looking at the

bases for the spaces involved, it is clear that there are direct sum decompositions
T (B, k) = T (A, k)⊕ T (B/A, k) and L(B, k) = L(A, k)⊕ L(B/A, k).

This means we can represent σB,k as a two-by-two matrix of k-linear maps,

σB,k =

(
p q
r s

)
,

where p : T (A, k) → L(A, k), q : T (B/A, k) → L(A, k), r : T (A) → L(B/A, k),
and s : T (B/A, k) → L(B/A, k) are the restrictions and projections of σB,k to the
appropriate subspaces. The usual matrix multiplication rule

(
p q
r s

)(
x
y

)
=

(
u
v

)

holds when we have x ∈ T (A, k), y ∈ T (B/A, k), u ∈ L(A, k), and v ∈ L(B/A, k)
such that σB,k(x⊕ y) = u⊕ v.

As L(B/A, k) consists precisely of those lines through B that do not intersect A,
we have r = 0. Similarly, p is just the map sending tables on A to their line sums,
so p = σA,k. The other two maps, q and s, encode interesting information about the
relative situation, so we will give them more descriptive names:

σB/A,k : T (B/A, k)−→L(B/A, k) (the relative line sum map)

and

δB/A,k : T (B/A, k)−→L(A, k) (the interference map).

Lemma 7.1 (the comparison sequence). There is a long exact sequence

0 → ker (σA,k) → ker (σB,k) → ker
(
σB/A,k

)
→ cok (σA,k) → cok (σB,k) → cok

(
σB/A,k

)
→ 0.

The map δB/A,k : ker
(
σB/A,k

)
→ cok (σA,k) comes from the interference map δB/A,k

defined above.
Proof. This is an application of the snake lemma (see, e.g., [20, Chap. III.9,

Lemma 9.1.]).
The extension B/A is called noninterfering if it satisfies the following (equivalent)

conditions:
1. The map δB/A,k is the zero map.

2. The map ker (σB,k) → ker
(
σB/A,k

)
is surjective.

3. The map cok (σA,k) → cok (σB,k) is injective.

8. Finite, convex A. Recall that according to Lemma 3.4, the space Dep (A, k)
can be characterized if cok (σA,k) is a free k-module of finite rank. We have already
seen that this property holds for the case A = Z2. In this section, we will demonstrate
that this property also holds if A is a finite, convex subset of Z2 (Theorem 8.3).

We briefly recall some basic notions about convex sets and explain how we want to
use them. Convex sets have been extensively studied in relation to linear programming
and optimization; see, for example, [23, Chap. 2] and [7, Chap. 2].

A subset C ⊂ R2 is called convex if for any x, y ∈ C the line segment between
x and y is completely contained in C. The convex hull of a subset S ⊂ R2 is the
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smallest convex subset C of R2 containing S. We write H(S) for the convex hull of
S. We call A ⊂ Z2 convex if A = H(A) ∩ Z2.

We call C ⊂ R2 a convex polygon if C = H(S) for some finite S ⊂ R2. The set of
corners of a convex polygon C is the smallest set S such that H(S) = C.

Let C1, C2 ⊂ R2 be convex polygons. Then

C1 + C2 = {c1 + c2 | c1 ∈ C1, c2 ∈ C2}

is also a convex polygon. Let s be a corner of C1 + C2. Then s can be written in a
unique way as s1 + s2 with s1 ∈ C1 and s2 ∈ C2. Moreover, s1 and s2 are corners of
C1 and C2, respectively.

Let f ∈ k[Z2] and write f =
∑

x∈Z2
fxx. Then the support of f is the set

supp f =
{
x ∈ Z2 | fx �= 0

}
.

Note that supp f is always a finite set. The polygon of f is

P (f) = H(supp f).

It is a convex polygon. Let s be a corner of P (f); then we say that s is a strong corner
of P (f) if fs is not a zero divisor. We say that f has strong corners if all corners of
P (f) are strong.

Lemma 8.1. Let f, g ∈ k[Z2] and suppose that f has strong corners. Then

P (fg) = P (f) + P (g).

If g also has strong corners, then fg has strong corners.
Proof. The inclusion P (fg) ⊂ P (f) + P (g) is obvious. For the other inclusion,

suppose that s is a corner of P (f) + P (g). Then the coefficient of fg at s is

∑
a+b=s

fagb = fsf gsg ,

where sf and sg are the unique corners of P (f) and P (g), respectively, such that
s = sf + sg. We see that this coefficient is nonzero as fsf is not a zero divisor, so
s ∈ P (fg). This shows that P (f) + P (g) ⊂ P (fg). Moreover, if g also has strong
corners, gsg is also not a zero divisor and so fsf gsg is not a zero divisor.

Lemma 8.2. The generator of ker
(
σZ2,k

)
,

D = (d1 − 1) · · · (dt − 1),

has strong corners. Moreover, Δ = P (D) does not depend on k.
Proof. The polygon of di − 1 is a 2-gon with coefficients ±1 at the corners, so

di−1 has strong corners. The previous lemma then implies that D has strong corners.
Let DZ = (d1−1) · · · (dt−1) ∈ Z[Z2]; then D is the image of DZ under the natural

map Z[Z2] → k[Z2]. Note that the corners of DZ will have coefficients ±1, as this is
true for all the factors d1 − 1. This means that P (D) = P (DZ) does not depend on
k, as ±1 never maps to 0 in k.

Theorem 8.3. Let A ⊂ Z2 be finite and convex. Then ker (σA,k) and cok (σA,k)
are free k-modules of finite rank. The ranks of these modules do not depend on k.

Proof. Note that σA,k is the restriction of σZ2,k to A, and so we have

ker (σA,k) = ker
(
σZ2,k

)
∩ T (A, k).
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Using this, we compute

ker (σA,k) = ker
(
σZ2,k

)
∩ T (A, k)

= Dk[Z2] ∩ T (A, k)

=
{
f ∈ Dk[Z2] | supp f ⊂ A

}
=

{
f ∈ Dk[Z2] | P (f) ⊂ H(A)

}
=

{
fD | f ∈ k[Z2], P (fD) ⊂ H(A)

}
=

{
fD | f ∈ k[Z2], P (f) + Δ ⊂ H(A)

}
.

The latter is clearly a free k-module of finite rank with a basis indexed by the x ∈ Z2

such that x + Δ ⊂ H(A). By Lemma 8.2, this basis is independent of k. Therefore
the rank of ker (σA,k) does not depend on k.

This proves the result for the kernel. The result for the cokernel now follows
from algebraic generalities. It suffices to show that cok (σA,Z) is a free Z-module of
finite rank, as taking cokernels commutes with taking tensor products (see, e.g., [20,
Chap. XVI.2, Prop. 2.6]). Since it is clearly finitely generated, we must show that it
is torsion-free [20, Chap. I.8, Thm. 8.4]. We do this by comparing the ranks over Fp

for p prime to the rank over Z.

From the sequence

0 → ker (σA,Z) → T (A,Z) → L(A,Z) → cok (σA,Z) → 0,

we see that

rkZ (cok (σA,Z)) = rkZ (ker (σA,Z))−#A+
t∑

i=1

#Li(A).

In the same way, we have for any prime p

dimFp

(
cok

(
σA,Fp

))
= dimFp

(
ker

(
σA,Fp

))
−#A+

t∑
i=1

#Li(A).

By the result about the kernel, we know that rkZ (ker (σA,Z)) = dimFp

(
ker

(
σA,Fp

))
.

Using the formulas above, this implies

rkZ (cok (σA,Z)) = dimFp

(
cok

(
σA,Fp

))
.

But if cok (σA,Z) has any p-torsion, the Fp-dimension would be strictly bigger. We
conclude that cok (σA,Z) is torsion-free.

Similar to the global case (A = Z2), this result allows us to state a necessary and
sufficient condition for consistency of a vector of potential line sums in the case of
finite convex A.

Corollary 8.4. Let A ⊂ Z2 be finite and convex. A vector of potential line sums
in L(A, k) comes from a table in T (A, k) if and only if it satisfies all dependencies.

Proof. Theorem 8.3 shows that we can apply Lemma 3.4 to the cokernel of the
line sum map.
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9. Local and global dependencies. This section deals with a subdivision of
the dependencies for finite convex A into global dependencies that can be extended to
dependencies on Z2, and local dependencies that are inherent to the finite extent of
A. We first show that if A satisfies an additional shape property, called roundedness,
all dependencies are global (Theorem 9.2). The next result, Theorem 9.3, states that
for finite convex A, Dep (A, k) can be composed as a direct sum of global and local
dependencies in a natural way.

Let A ⊂ Z2. From the comparison sequence (Lemma 7.1) we have a map
cok (σA,k) → cok

(
σZ2,k

)
. This map induces a map on the k-duals

Dep
(
Z2, k

)
−→Dep (A, k) .

We call the image of this map the global dependencies on A. When this map is
injective, the dependencies on Z2 all restrict to different dependencies on A. Our
intuition is that this should happen whenever A is “sufficiently large.”

Lemma 9.1. Suppose there is an x ∈ Z2 such that x + Δ ⊂ H(A). Then
cok (σA,k) → cok

(
σZ2,k

)
is surjective, and so

Dep
(
Z2, k

)
−→Dep (A, k)

is injective.
The geometric line through p ∈ R2 in the direction d ∈ R2 \ {0} is the set

{p+ λd | λ ∈ R} ∩ Z2,

provided that this set contains at least two points.
Let d = (a, b) ∈ Z2 \ {0} and put g = gcd (a, b). Then any geometric line in

direction d is the union of g lines. If l is a geometric line in direction d and p, q ∈ H(l)
are at least |d| apart, then the line segment from p to q contains at least one point of
every line through l.

Proof of Lemma 9.1. Without loss of generality we restrict ourselves to A = Δ∩Z2.
We want to show that for any l ∈ L(Z2, k), there is an l′ ∈ L(A, k) that maps to the
same element in cok

(
σZ2,k

)
. That is, we must show

L(Z2, k) = im
(
σZ2,k

)
+ L(A, k).

Recall that the conductor

fk = D1k[Z
2]
/
d1 − 1⊕ · · · ⊕Dtk[Z

2]
/
dt − 1

is the largest L(Z2, k) ideal that is contained in im
(
σZ2,k

)
. It is therefore sufficient

to show that L(Z2, k) = fk + L(A, k) or, equivalently, that

k(Li(A)) −→ k[Z2]
/
(di − 1, Di)

is surjective for all i.
Let l be a geometric line in direction di such that H(l) intersects Δ. As we have

Δ = P (Di) + P (di − 1), the intersection is a segment of width at least |di|, so every
line in the direction di that lies in l is in Li(A). Let S ⊂ Z2 be the union of all the
lines in Li(A).

Note that P (Di) does not have a side parallel to di, as all the directions are
pairwise independent. It follows that P (Di) has maximal points in the directions
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orthogonal to di. These points are necessarily corners. The coefficients on these
corners are ±1. It follows that for any f ∈ k[Z2], there is a g ∈ k[Z2] such that
supp g ⊂ S and f − g ∈ Dik[Z

2].
By the above, this implies that

k(Li(A)) +Dik[Z
2]
/
di − 1 = k[Z2]

/
di − 1,

and so

k(Li(A)) −→ k[Z2]
/
(di − 1, Di)

is surjective.
Let A be finite and convex. We define the rounded part of A to be the subset

A′ =
(⋃

(x +Δ)
)
∩ Z2,

where the union runs over all x ∈ Z2 such that x+Δ ⊂ H(A). We call A rounded if
it is nonempty and A′ = A.

Theorem 9.2. Let A be finite, convex, and rounded. Then cok (σA,k) is equal to
cok

(
σZ2,k

)
, and so we have

Dep (A, k) = Dep
(
Z2, k

)
.

Proof. Note that by Lemma 9.1 the map

cok (σA,k)−→ cok
(
σZ2,k

)
is surjective, so we just have to show it is injective. The strategy for this is to construct

A = A0 ⊂ A1 ⊂ A2 ⊂ · · ·

such that Ai+1/Ai is noninterfering for all i ≥ 0 and
⋃

i≥0 Ai is all of Z2. Suppose

that l ∈ L(A, k) such that l = σZ2,k(t) for some t ∈ T (Z2, k). Then t ∈ T (Ai, k)
for some i, so l maps to 0 in cok (σAi,k). By the noninterference, cok (σA,k) maps
injectively to cok (σAi,k), so it follows that l maps to 0 in cok (σA,k), as required.

Pick a point p in the interior of H(A) in a sufficiently general position (we will
make this more precise later). For λ ∈ R≥1, let H(λ) be the point multiplication of
the set H(A) with factor λ and center p. Let A(λ) = H(λ)∩Z2. Note that the union
of all H(λ) is the entire plane, so we have

⋃
λ≥1

A(λ) = Z2.

As Z2 ⊂ R2 is countable and discrete, the set of λ’s such that

A(λ) �=
⋃

1≤μ<λ

A(μ)

is a countable and discrete subset of R≥1. Let (λi)
∞
i=0 be the sequence of these λ’s in

increasing order. Put Ai = A(λi).
For all λ ∈ R≥1 one sees that

⋃
1≤μ<λ

H(μ)
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is the boundary of H(λ). Therefore, any point in Ai+1 \ Ai is on the boundary of
H(λi). This means that these points lie on finitely many line segments: the edges of
the polygon H(λi+1).

In fact, by choosing the point p outside a countable union of lines, one can ensure
that for every i there is a single edge li of the polygon H(λi+1) such that all the points
in Ai+1 \Ai lie on that edge.

Suppose that li does not lie in one of the directions d1, . . . , dt. Then Δ has
a maximal point m in the direction orthogonal to li, which is a corner, and so the
corresponding coefficient of D is ±1. Let p ∈ Ai+1\Ai. As A is rounded, the translate
of Δ such that m coincides with p is contained entirely in Ai+1. It follows that the
map

ker
(
σAi+1,k

)
−→ k(Ai+1\Ai)

is surjective, so Ai+1/Ai is noninterfering.
Suppose that li lies in the direction dj . The edge of H(A) in direction dj is at

least |dj | long, as A is rounded. So the edge li of H(λi+1) has length λi+1|dj | > |dj |.
Therefore, every line in the direction dj that lies inside the geometric line containing
li meets Ai+1. Note that Δ has an edge in direction dj and that the intersection of
suppD with the geometric line through that edge consists precisely of the two corner
points, both of which have coefficient ±1. These two points are adjacent points within
the same line on that geometric line. As A is rounded, every translate of Δ, such that
the edge in direction dj lies between on li, lies completely within H(A). From these
observations we can conclude that

σAi+1/Ai,k : T (Ai+1/Ai, k)−→L(Ai+1/Ai, k)

is onto and that its kernel is generated by the intersections of the correct translates
of D with T (Ai+1/Ai, k). Therefore the map

ker
(
σAi+1,k

)
−→ ker

(
σAi+1/Ai,k

)

is onto; that is, Ai+1/Ai is noninterfering.
Theorem 9.3. Let A be finite and convex and suppose that A′ is nonempty.

Then Dep (A, k) decomposes in a natural way as a direct sum

Dep (A, k) = Dep
(
Z2, k

)
⊕Homk

(
cok

(
σA/A′,k

)
, k
)
.

We call the second summand the local dependencies on A.
Proof. From the comparison sequence (Lemma 7.1) for A/A′ we have

cok (σA′,k) −→
fA/A′

cok (σA,k)−→ cok
(
σA/A′,k

)
−→ 0.

Lemma 9.1 shows that fA : cok (σA,k) → cok
(
σZ2,k

)
is surjective and Theorem 9.2

shows that fA′ : cok (σA′,k) → cok
(
σZ2,k

)
is bijective. Note that fA′ = FA ◦ fA/A′ .

We conclude that fA/A′ is injective (so A/A′ is noninterfering) and that f−1
A′ ◦ fA is a

splitting map of fA/A′ . It follows that

cok (σA,k) = cok (σA′,k)⊕ cok
(
σA/A′,k

)
.

This implies the required result (recall that Dep (A′, k) = Dep(Z2, k)).
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10. Conclusions. To conclude this paper, we summarize the main results ob-
tained within our algebraic framework and their interpretation from the classical
combinatorial perspective.

Lemma 3.4 relates an algebraic property of the cokernel of the line sum map to
the consistency problem. Theorem 4.2 states that for the case A = Z2, the cokernel
actually satisfies this property. In addition, a characterization of the switching com-
ponents is provided for this case. This results in a strong statement concerning the
consistency problem for the case A = Z2: a set of line sums corresponds to a table
if and only if it satisfies a certain number of independent dependencies (Corollary
4.3). In section 5, properties are derived on the structure of the coefficients in the
separate dependencies, resulting in an explicit characterization of the coefficients for
the case A = Z2 (Theorem 5.2). Section 6 relates the material from sections 3–5 to
the example from the combinatorial DT literature given in section 2.2.

The next sections, starting with section 7, focus on cases where A is a true subset
of Z2. A relative setup is introduced in section 7, where a DT problem on a particular
domain is related to a problem on a subset of that domain. In sections 8 and 9,
this relation is applied to describe the structure of line sums for finite convex sets.
Corollary 4.3 provides a necessary and sufficient condition for consistency in the case
of a finite, convex reconstruction domain. Theorem 9.2 shows that if A is finite,
convex, and rounded, the dependencies are exactly those that also apply to the global
case A = Z2. Finally, Theorem 9.3 considers the decomposition of the dependencies
for the general finite convex case into global and local dependencies.

The results on the structure of dependencies between the line sums in DT prob-
lems can be viewed either as a collection of new research results or as an illustration
of the power of applying ring theory and commutative algebra to this combinatorial
problem. We expect that a range of additional results can be obtained within the
context of this algebraic framework.

Appendix. Tools from algebra.

A.1. Group rings. We begin by recalling some results on group rings. See, for
example, [20, Chap. II.3] for a short introduction or [22] for more results on these
rings.

Definition A.1. Let k be a commutative ring and let G be a group. The group
ring k[G] is the k-algebra which as a k-module is free with basis G,

k[G] =
⊕
g∈G

k[g],

and whose multiplication is given by

[g] · [h] = [gh] for all g, h ∈ G,
[g] · λ= λ[g] for all g ∈ G, λ ∈ k.

When there is no confusion possible we will drop the brackets around elements of
G, writing a typical element of k[G] simply as

∑
g∈G λgg with λg = 0 for almost all

g ∈ G.
A ring homomorphism k−→ k′ induces a unique ring homomorphism

k[G]−→ k′[G].

A group homomorphism G−→H induces a unique k-algebra homomorphism

k[G]−→ k[H ].
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Lemma A.2. Let G be a group and let N be a normal subgroup. Let IN be the
ideal of k[G] generated by all elements of the form n− 1 with n ∈ N . Then there is a
short exact sequence

0−→ IN −→ k[G]−→ k[G
/
N ]−→ 0.

A.2. Filtrations. We continue with some generalities on filtrations.
Definition A.3. Let R be a commutative ring and let M be an R-module. A

filtration of M is a collection of submodules

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mt = M.

The quotient modules Mi+1/Mi are called the successive quotients of the filtration.
Lemma A.4. Let R be a commutative ring and let M ′ and M ′′ be filtered R-

modules. Suppose we have a short exact sequence

0 → M ′ → M → M ′′ → 0.

Then M admits a filtration whose successive quotients are those of M ′ followed by
those of M ′′.

Lemma A.5. Let R be a commutative ring, let A,B, and C be R-modules, and
suppose that f : A → B and g : B → C are injective morphisms. Then there is a
short exact sequence

0 → cok (f) → cok (gf) → cok (g) → 0.

A.3. Weak coprimality. The rest of this appendix is devoted to a generaliza-
tion of the concept of coprimality and the Chinese remainder theorem.

Definition A.6. Let R be a commutative ring and let f, g ∈ R. We say that f
is weakly coprime to g if multiplication by f is an injective map on R

/
g.

The common notion of coprimality, namely, that the ideal (f, g) generated by f
and g be all of R, implies that multiplication by f is a bijective map on R

/
g.

Lemma A.7. Let R be a commutative ring and let f, g ∈ R such that f is weakly
coprime to g. Then there is a short exact sequence

0 → R
/
fg → R

/
f ⊕R

/
g → R

/
(f, g) → 0.

Proof. The proof follows by straightforward verification.
If two elements are coprime in the common (strong) sense, then in the sequence

above we have R/(f, g) = 0, so the first map is an isomorphism. This fact is commonly
referred to as the Chinese remainder theorem.

Lemma A.8. Let R be a commutative ring and let f1, f2, and g be in R. Suppose
that f1 and f2 are weakly coprime to g. Then there is a short exact sequence

0 → R
/
(f1, g) → R

/
(f1f2, g) → R

/
(f2, g) → 0.

Proof. Apply Lemma A.5 to the multiplication by f1 and f2 maps on R/g. This
completes the proof.

Theorem A.9 (weak Chinese remainder theorem). Let R be a commutative ring
and let x1, . . . , xt ∈ R have the property that xi is weakly coprime to xj whenever
i < j. Then the natural map

φ : R
/
x1 · · ·xt

−→ R
/
x1

⊕ · · · ⊕R
/
xt
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is injective. Its cokernel admits a filtration whose successive quotients are isomorphic
to R

/
(xi, xj) for 1 ≤ i < j ≤ t.

Proof. We proceed by induction on t. For t = 2 the result is that of Lemma A.7.
Let t ≥ 3 and assume that the theorem holds for any smaller number of xi’s.

We write φ as a composition of two maps. Let φ1 be the natural map

φ1 : R
/
x1 · · ·xt

−→R
/
x1 · · ·xt−1

⊕R
/
xt
,

and let φ2 be the natural map

φ2 : R
/
x1 · · ·xt−1

−→R
/
x1

⊕ · · · ⊕R
/
xt−1

.

Then we have φ = (φ2 ⊕ idR/xt
) ◦ φ1.

Note that x1 · · ·xt−1 is weakly coprime to xt as a composition of injective maps
is again injective. So Lemma A.7 applies to φ1. In particular, φ1 is injective. By the
induction hypothesis, φ2 is also injective. We conclude that φ is injective.

By Lemma A.7 the cokernel of φ1 is R/(x1 · · ·xt−1, xt). By repeatedly applying
Lemma A.8, this module admits a filtration whose successive quotients are R/(xi, xt)
for 1 ≤ i ≤ t− 1.

Furthermore, we have cok
(
φ2 ⊕ idR/xt

)
= cok (φ2), which by the induction hy-

pothesis has a filtration whose successive quotients are isomorphic to R/(xi, xj) with
1 ≤ i < j ≤ t− 1.

We apply Lemma A.5 to the maps φ1 and φ2 ⊕ idR/xt
and conclude that the

cokernel of φ has the required filtration.
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