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SIMILARITY-FIRST SEARCH: A NEW ALGORITHM WITH
APPLICATION TO ROBINSONIAN MATRIX RECOGNITION∗

MONIQUE LAURENT† AND MATTEO SEMINAROTI‡

Abstract. We present a new efficient combinatorial algorithm for recognizing if a given sym-
metric matrix is Robinsonian, i.e., if its rows and columns can be simultaneously reordered so that
entries are monotone nondecreasing in rows and columns when moving toward the diagonal. As the
main ingredient we introduce a new algorithm, named Similarity-First Search (SFS), which extends
lexicographic breadth-first search (Lex-BFS) to weighted graphs and which we use in a multisweep
algorithm to recognize Robinsonian matrices. Since Robinsonian binary matrices correspond to unit
interval graphs, our algorithm can be seen as a generalization to weighted graphs of the 3-sweep
Lex-BFS algorithm of Corneil for recognizing unit interval graphs. This new recognition algorithm is
extremely simple and it exploits new insight on the combinatorial structure of Robinsonian matrices.
For an n × n nonnegative matrix with m nonzero entries, it terminates in n − 1 SFS sweeps, with
overall running time O(n2 + nm log n).
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1. Introduction. The seriation problem, introduced by Robinson [28] for chrono-
logical dating, is a classic and well-known sequencing problem, where the goal is to
order a given set of objects in such a way that similar objects are ordered close to each
other (see, e.g., [22] and references therein for details). This problem arises in many
applications where objects are given through some information about their pairwise
similarities (or dissimilarities) (like in data about user ratings, images, sounds, etc.).

The seriation problem can be formalized using a special class of matrices, namely
Robinson matrices. A symmetric matrix A = (Axy)nx,y=1 is a Robinson similarity
matrix if its entries are monotone nondecreasing in the rows and columns when moving
toward the main diagonal, i.e., if Axz ≤ min{Axy, Ayz} for all 1 ≤ x < y < z ≤ n.
Given a set of n objects to order and a symmetric matrix A = (Axy) whose entries
represent their pairwise similarities, the seriation problem asks to find a permutation π
of [n] so that the matrix Aπ = (Aπ(x)π(y)), obtained by permuting both the rows and
columns of A simultaneously according to π, is a Robinson matrix. The matrix A is
said to be a Robinsonian similarity matrix if such a permutation exists.

The Robinsonian structure is a strong property and, even though it might be
desired in some problems, the data could be affected by noise, leading to the need to
solve seriation in the presence of error. Finding a Robinsonian matrix which is closest
in the `∞-norm to a given similarity matrix is an NP-hard problem [6]. We refer
to [7] for an approximation algorithm and to [18, 20] for approaches to this problem.
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Nevertheless, Robinsonian matrices also play an important role when data is affected
by noise, as Robinsonian recognition algorithms can be used as core subroutines to
design efficient heuristics or approximation algorithms for solving seriation in the pres-
ence of errors (see, e.g., [7, 17]). In this paper we consider the problem of recognizing
whether a given n× n matrix is Robinsonian.

In the past years, different recognition algorithms for Robinsonian matrices have
been studied. The first polynomial algorithm to recognize Robinsonian matrices was
introduced by Mirkin and Rodin [24]. It is based on the characterization of Robin-
sonian matrices in terms of interval hypergraphs, and it uses the PQ-tree algorithm
of Booth and Leuker [3] as a core subroutine, with an overall running time of O(n4).
Chepoi and Fichet [5] later introduced a simpler algorithm using a divide-and-conquer
strategy applied to preprocessed data obtained by sorting the entries of A, lowering
the running time to O(n3). Using the same sorting preprocessing, Seston [30] im-
proved the complexity of the recognition algorithm to O(n2 log n). Recently, Préa
and Fortin [26] presented an optimal O(n2) algorithm, using the algorithm from [3]
to compute a first PQ-tree which they update throughout the algorithm. While all
these algorithms use the connection to interval graphs or hypergraphs, in our previ-
ous work [21] we presented a recursive recognition algorithm exploiting a connection
to unit interval graphs and with core subroutine lexicographic breadth-first search
(Lex-BFS or LBFS), a special version of breadth-first search (BFS) introduced by
Rose and Tarjan [29]. The algorithm of [21] is suitable for sparse matrices and it runs
in O(d(m + n)) time, where m is the number of nonzero entries of A and d is the
depth of the recursion tree computed by the algorithm, which is upper bounded by
the number of distinct nonzero entries of A.

While all the above-mentioned recognition algorithms are combinatorial, [1] pre-
sented earlier a numerical spectral algorithm, based on reordering the entries of the
second smallest eigenvector of the Laplacian matrix associated to A (aka the Fiedler
vector). Given its simplicity, this algorithm is used in some classification applica-
tions (see, e.g., [16]) as well as in spectral clustering (see, e.g., [2]), and it runs in
O(n(T (n)+n log n)) time, where T (n) is the complexity of computing (approximately)
the eigenvalues of an n× n symmetric matrix.

Note that the algorithms in [1, 26, 21] also return all the possible Robinson or-
derings of a given Robinsonian matrix A, which can be useful in some practical ap-
plications.

In this paper we introduce a new combinatorial recognition algorithm for Robin-
sonian matrices. As a main ingredient, we define a new exploration algorithm for
weighted graphs, named similarity-first search (SFS), which is a generalization of
the classical Lex-BFS algorithm to weighted graphs. Intuitively, the SFS algorithm
explores vertices of a weighted graph in such a way that most similar vertices (i.e.,
corresponding to largest edge weights) are visited first, while still respecting the pri-
orities imposed by previously visited vertices. When applied to an unweighted graph
(or equivalently to a binary matrix), the SFS algorithm reduces to Lex-BFS. As for
Lex-BFS, the SFS algorithm is entirely based on a unique simple task, namely par-
tition refinement, a basic operation about sets which can be implemented efficiently
(see [19] for details).

We will use the SFS algorithm to define our new Robinsonian recognition algo-
rithm. Specifically, we introduce a multisweep algorithm, where each sweep uses the
order returned by the previous sweep to break ties in the (weighted) graph search.
Our main result in this paper is that our multisweep algorithm can recognize after at
most n− 1 sweeps whether a given n× n matrix A is Robinsonian. Namely, we will
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show that the last sweep is a Robinson ordering of A if and only if the matrix A is
Robinsonian. Assuming that the matrix A is nonnegative and given as an adjacency
list of an undirected weighted graph with m nonzero entries, our algorithm runs in
O(n2 +mn log n) time.

Multisweep algorithms are well-studied approaches to recognize classes of (un-
weighted) graphs (see, e.g., [10]). In the literature there exist many results on mul-
tisweep algorithms based on Lex-BFS and its variants. For example, cographs can
be recognized in 2 sweeps [4], unit interval graphs can be recognized in 3 sweeps [8],
and interval graphs can be recognized in at most 5 sweeps [13]. Very recently, Dusart
and Habib [15] introduced a multisweep algorithm to recognize in at most n sweeps
cocomparability graphs. For a more exhaustive list of multisweep algorithms please
refer to [9, 13].

As a graph is a unit interval graph if and only if its adjacency matrix is Robin-
sonian [27], the 3-sweep recognition algorithm for unit interval graphs of Corneil [8]
is in fact our main inspiration and motivation to develop a generalization of Lex-BFS
for weighted graphs.

To the best of our knowledge, the present paper is the first work introducing
and studying explicitly the properties of a multisweep search algorithm for weighted
graphs. The only related idea that we could find is about replacing BFS with Dijkstra’s
algorithm, which is only briefly mentioned in [14].

The relevance of this work is twofold. First, we reduce the Robinsonian recogni-
tion problem to an extremely simple and basic operation, namely to partition refine-
ment. Hence, even though from a theoretical point of view the algorithm is computa-
tionally slower than the optimal one presented in [26], its simplicity makes it easy to
implement and thus hopefully will encourage the use and the study of Robinsonian
matrices in more practical problems. Second, we introduce a new (weighted) graph
search, which we believe is of independent interest and could potentially be used for
the recognition of other structured matrices or just as a basic operation in the broad
field of similarity search. In addition, we introduce some new concepts extending
analogous notions in graphs, like the notions of path avoiding a vertex and anchors of
Robinson orderings, which capture well the combinatorial structure of Robinsonian
matrices. As an example, we give combinatorial characterizations for the end points
(aka anchors) of Robinson orderings.

Contents of the paper. The paper is organized as follows. Section 2 contains
some preliminaries. In subsection 2.1 we give basic facts about Robinsonian matrices
and Robinson orderings and we introduce several concepts (path avoiding a vertex,
valid vertex, anchor) playing a crucial role in the paper. Subsection 2.2 contains
combinatorial characterizations for (opposite) anchors of Robinsonian matrices.

Section 3 is devoted to the SFS algorithm. First, we describe the algorithm
in subsection 3.1 and we characterize SFS orderings in subsection 3.2. Then, in
subsection 3.3 we introduce a fundamental lemma which we will use throughout the
paper, named the path avoiding lemma. Finally, in subsection 3.4 we introduce the
notion of good SFS ordering and we show properties of end-vertices of (good) SFS
orderings, namely that they are (opposite) anchors of Robinsonian matrices.

In section 4 we discuss the variant SFS+ of the SFS algorithm, an extension of
Lex-BFS+ to weighted graphs, which differs from SFS in the way ties are broken
The SFS+ algorithm takes a given ordering as input which it uses to break ties.
In subsection 4.1 we show a basic property of the SFS+ algorithm, namely that it
“flips” the end points of the input ordering. Then in subsection 4.2 we introduce
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the similarity layers of a matrix, a strengthened version of BFS layers for unweighted
graphs, which are useful for the correctness proof of the multisweep algorithm. We
show in particular that the similarity layers enjoy some compatibility with Robinson
and SFS+ orderings.

In section 5 we present the multisweep algorithm to recognize Robinsonian ma-
trices and we prove its correctness. In subsection 5.1 we describe the multisweep
algorithm and show that it terminates in 3 sweeps when applied to a binary matrix,
thus giving a new proof of the result of Corneil [8] for unit interval graphs. In subsec-
tion 5.2 we study properties of 3-good SFS orderings, which are orderings obtained
after three SFS+ sweeps. In particular we show that they contain classes of Robinson
triples and that, after deleting their end points, they induce good SFS orderings,
which will enable us to apply induction in the correctness proof. After that we have
all the ingredients needed to conclude the correctness proof for the multisweep algo-
rithm; we show in subsection 5.3 that it can recognize in at most n−1 sweeps whether
an n × n matrix is Robinsonian. Furthermore, we present in subsection 5.4 a family
of n × n Robinsonian matrices (communicated to us by S. Tanigawa) for which the
SFS multisweep algorithm requires exactly n− 1 sweeps.

Finally, in section 6 we discuss the complexity of the SFS algorithm, and we
conclude with remarks and open questions in section 7.

2. Preliminaries. In this section we introduce some notation and recall some
basic properties and definitions for unit interval graphs and Robinsonian matrices. In
particular, we introduce the concepts of path avoiding a vertex and valid vertex, and
we give combinatorial characterizations for end points of Robinson orderings (also
named anchors) and for opposite anchors, which will play an important role in the
rest of the paper.

2.1. Basic facts. Let π be a linear order of V = [n]. For two distinct elements
x, y ∈ [n], the notation x <π y means that x appears before y in π and, for disjoint
subsets U,W ⊆ V , U <π W means that x <π y for all x ∈ U, y ∈ W . The linear
order π is a permutation of [n], which can be represented as a sequence (x1, . . . , xn)
with x1 <π · · · <π xn, and π−1 is the reverse linear order (xn, xn−1, . . . , x1). An
ordered partition φ = (B1, . . . , Br) of a ground set V is an ordered collection of
disjoint subsets of V whose union is V .

Throughout, Sn denotes the set of symmetric n× n matrices. Given A ∈ Sn and
a subset S ⊆ [n], A[S] = (Axy)x,y∈S is the principal submatrix of A indexed by S.
A symmetric matrix A ∈ Sn is called a Robinson similarity matrix if its entries are
monotone nondecreasing in the rows and columns when moving towards the main
diagonal, i.e., if

(2.1) Axz ≤ min{Axy, Ayz} for all 1 ≤ x < y < z ≤ n.

Note that the diagonal entries of A do not play a role in the above definition. If
there exists a permutation π of [n] such that the matrix Aπ := (Aπ(x)π(y))nx,y=1,
obtained by permuting both the rows and columns of A simultaneously according
to π, is a Robinson matrix then A is said to be a Robinsonian similarity and π is
called a Robinson ordering of A. In the literature, a distinction is made between
Robinson(ian) similarities and Robinson(ian) dissimilarities. A symmetric matrix A
is called a Robinson dissimilarity matrix if its entries are monotone nondecreasing in
the rows and columns when moving away from the main diagonal. Hence A ∈ Sn is a
Robinson(ian) similarity precisely when −A is a Robinson(ian) dissimilarity and thus
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the properties extend directly from one class to the other one. For this reason, in this
paper we will deal exclusively with Robinson(ian) similarities. Hence, when speaking
of a Robinson(ian) matrix, we mean a Robinson(ian) similarity matrix. Furthermore,
with J ∈ Sn denoting the all-ones matrix, it is clear that if A is a Robinson(ian)
matrix then A+ λJ is also a Robinson(ian) matrix for any scalar λ. Hence, we may
consider, without loss of generality, nonnegative similarities A (whose smallest entry
is equal to 0).

In order to fully understand Robinsonian matrices and the motivation for our
work, it is useful to briefly discuss the special class of binary Robinsonian matrices.
Any symmetric matrix A ∈ {0, 1}n×n corresponds to a graph G = (V = [n], E) whose
edges are the positions of the nonzero entries of A. Then it is well known that A
is a Robinsonian similarity if and only if G is a unit interval graph [27]. A graph
G = (V = [n], E) is called a unit interval graph if its vertices can be mapped to unit
intervals I1, . . . , In of the real line such that two distinct vertices x, y ∈ V are adjacent
in G if and only if Ix ∩ Iy 6= ∅. There exist several equivalent characterizations for
unit interval graphs. The following one highlights the analogy between unit interval
graphs and Robinson orderings.

Theorem 2.1 (3-vertex condition). [23] A graph G = (V,E) is a unit interval
graph if and only if there exists a linear ordering π of V such that, for all x, y, z ∈ V ,

(2.2) x <π y <π z, {x, z} ∈ E =⇒ {x, y}, {y, z} ∈ E.

It is clear that for a binary matrix A ∈ Sn, condition (2.1) is equivalent to (2.2).
This equivalence and the fact that unit interval graphs can be recognized with a
Lex-BFS multisweep algorithm [8] motivated us to find an extension of Lex-BFS to
weighted graphs and to use it to obtain a (simple) multisweep recognition algorithm
for Robinsonian matrices.

Given the analogy with unit interval graphs, it will be convenient to view symmet-
ric matrices as weighted graphs. Namely, any nonnegative symmetric matrix A ∈ Sn
corresponds to the weighted graph G = (V = [n], E) whose edges are the pairs {x, y}
with Axy > 0, with edge weights Axy. Again, the assumption of nonnegativity can
be made without loss of generality and is for convenience only. Accordingly we will
often refer to the elements of V = [n] indexing A as vertices (or nodes). For x ∈ V ,
N(x) = {y ∈ V \ {x} : Axy > 0} denotes the neighborhood of x in G.

In what follows we will extend some graph concepts to the general setting of
weighted graphs (Robinsonian matrices). Throughout the paper, we will point out
links between our results and some corresponding known results for Lex-BFS applied
to graphs and we will mostly refer to [13], where more complete references about
Lex-BFS can be found.

We now introduce some notions and simple facts about Robinsonian matrices
and orderings. Consider a matrix A ∈ Sn. Given distinct elements x, y, z ∈ V , the
triple (x, y, z) is said to be Robinson if it satisfies (2.1), i.e., if Axz ≤ min{Axy, Ayz}.
Given a set S ⊆ V and x ∈ V \ S, we say that x is homogeneous with respect to S
if Axy = Axz for all y, z ∈ S (extending the corresponding notion for graphs, see,
e.g., [13]). The following is an easy necessary condition for the Robinson property.

Lemma 2.2. Let A ∈ Sn be a Robinsonian similarity. Assume that there exists
a Robinson ordering π such that x <π z <π y. Then Auz ≥ min{Aux, Auy} for all
u 6= x, y, z ∈ [n].

Proof. Indeed, u <π z implies u <π z <π y and thus Auz ≥ Auy, and z <π u
implies x <π z <π u and thus Auz ≥ Aux.
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x v1 v2 vk−1 z

y
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Fig. 1. A path from x to z avoiding y: each continuous line indicates a value which is strictly
larger than the minimum of the two adjacent dotted lines.

We now make a simple observation on how three elements x, y, z ∈ V may appear
in a Robinson ordering π of A depending on their similarities. Namely, if we have
Axz > min{Axy, Ayz} then either y comes before both x and z in π or y comes after
both x and z in π. In other words, if x and z are more similar to each other than to y,
then y cannot be ordered between x and z in any Robinson ordering π. Moreover, if
Axz < min{Axy, Ayz} then either x <π y <π z or z <π y <π x. In other words, if x
and z are more similar to y than to each other, then y must be ordered between x
and z in any Robinson ordering π.

This observation motivates the following notion of path avoiding a vertex, which
will play a central role in our discussion. Note that this notion is closely related to
the notion of path missing a vertex for Lex-BFS [13], although it is not equivalent to
it when applied to a binary matrix. Note also that in our setting the notion of path
is defined for a matrix and a path is just a sequence of (possibly repeated) vertices.

Definition 2.3 (Path avoiding a vertex). Given distinct elements x, y, z ∈ V ,
a path from x to z avoiding y is a sequence P = (x = v0, v1, . . . , vk−1, vk = z) of (not
necessarily distinct) elements of V where each triple (vi, y, vi+1) is not Robinson, i.e.,

Avivi+1 > min{Ayvi , Ayvi+1}, ∀ i = 0, 1, . . . , k − 1.

We let |P | = k + 1 denote the length of the path P (i.e., its number of elements).

For a graphical illustration of Definition 2.3, see Figure 1. The following simple
but useful property holds.

Lemma 2.4. Let A ∈ Sn be a Robinsonian matrix. If there exists a path from x
to z avoiding y, then y cannot lie between x and z in any Robinson ordering π of A.

Proof. Let (x = v0, v1, . . . , vk−1, vk = z) be a path from x to z avoiding y. Then,
by definition, we have Avivi+1 > min{Ayvi

, Ayvi+1} for all i = 0, 1, . . . , k − 1, and
thus y cannot appear between vi and vi+1 in any Robinson ordering π. Hence y
cannot lie between x and z in any Robinson ordering π.

We now introduce the notion of valid vertex, which we will use throughout the
section to characterize end points of Robinson orderings.

Definition 2.5 (Valid vertex). Given a matrix A ∈ Sn, an element z ∈ V is
said to be valid if, for any distinct elements u, v ∈ V \ {z}, there do not exist both a
path from u to z avoiding v and a path from v to z avoiding u.

Observe that if z ∈ V is a valid vertex of a matrix A and S ⊆ V is a subset
containing z, then z is also a valid vertex of A[S]. It is easy to see that, for a 0/1
matrix, the above definition of valid vertex coincides with the notion of valid vertex
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Fig. 2. Element d is not valid.

for Lex-BFS [13].
Consider, for example, the following matrix (already ordered in a Robinson form):

A =



a b c d e f g
a ∗ 7 6 0 0 0 0
b ∗ 7 3 2 1 1
c ∗ 7 2 2 1
d ∗ 3 3 3
e ∗ 7 5
f ∗ 6
g ∗


.

Then the vertex d is not valid. Indeed, for the two vertices a and g, there exists a
path from a to d avoiding g and a path from g to d avoiding a; namely, the path
(d, b, a) avoids g and the path (d, b, g) avoids a (see Figure 2).

2.2. Characterization of anchors. In this subsection we introduce the notion
of (opposite) anchors of a Robinsonian matrix and then we give characterizations in
terms of valid vertices. The notion of anchor was used for unit interval graphs in [11]
(where it refers to an end point of a linear order satisfying the 3-vertex condition (2.2))
and it should not be confused with the notion of end-vertex used for interval graphs in
[13] (where it refers to an end point of a Lex-BFS ordering; see [12] for more details).

Definition 2.6 (Anchor). Given a Robinsonian similarity A ∈ Sn, a vertex
a ∈ [n] is called an anchor of A if there exists a Robinson ordering π of A whose last
vertex is a. Moreover, two distinct vertices a, b are called opposite anchors of A if
there exists a Robinson ordering π of A with a as first vertex and b as last vertex.

Hence, an anchor is an end point of a Robinson ordering. Clearly, every Robin-
sonian matrix has at least one pair of opposite anchors. It is not difficult to see that
every anchor must be valid. We now show that, conversely, every valid vertex is an
anchor. This is the analogue of [9, Lem. 2] for Lex-BFS over interval graphs.

Theorem 2.7. Let A ∈ Sn be a Robinsonian matrix. Then a vertex z ∈ V is an
anchor of A if and only if it is valid.

Proof. (⇒) Assume z is an anchor of A and let π be a Robinson ordering of A
with z as the last element. Suppose for contradiction that, for some elements u, v ∈ V ,
there exist both a path P from u to z avoiding v and a path Q from v to z avoiding u.
Using Lemma 2.4 and the path P , we obtain that v lies before u or after z in π, and
using the path Q we obtain that u lies before v or after z in π. As z is the last element
of π, we must have v <π u in the first case and u <π v in the second case, which is
impossible.
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(⇐) Conversely, assume that z is valid; we show that z is an anchor of A. The
proof is by induction on the size n of the matrix A. The result holds clearly when
n = 2. So we now assume n ≥ 3 and that the result holds for any Robinsonian matrix
of order at most n− 1. We need to construct a Robinson ordering π′ of A with z as
the last vertex. For this we consider a Robinson ordering π of A. We let x denote its
first element and y denote its last element. If z = x or z = y, then we would be done.
Hence we may assume x <π z <π y. For any v <π z, we denote by Pπ(v, z) the path
from v to z consisting of the sequence of vertices appearing consecutively between v
and z in π.

We now define the following two sets:

B = {v <π z : Pπ(v, z) avoids y}, C = {v <π z : v /∈ B}.(2.3)

Next we show their properties, which will be useful to conclude the proof.

Claim 2.8. The following holds:
(i) For any v ∈ B, Avy = Ayz.

(ii) If v ∈ B and v <π u <π z, then u ∈ B.
(iii) Any element v ∈ C is homogeneous with respect to V \ C, i.e., Avw = Avw′

for all w,w′ ∈ V \ C.
Proof.
(i) As v <π z <π y, then Avy ≤ Ayz. We show that equality holds. Suppose

not, i.e., Avy < Ayz. Then Q = (y, z) is a path from y to z avoiding v. Since
v ∈ B, P = Pπ(v, z) is a path from v to z avoiding y, and thus the existence
of the paths P,Q contradicts the assumption that z is valid. Hence we must
have Avy = Ayz.

(ii) If v ∈ B then Pπ(v, z) avoids y and thus the subpath Pπ(u, z) also avoids y,
which implies u ∈ B.

(iii) Let u ∈ B denote the element of B appearing first in the Robinson ordering π.
Then, by (ii), for any v ∈ C, v <π u <π y and thus Avy ≤ Avu by definition
of Robinson ordering. Hence, in order to show that v is homogeneous with
respect to V \ C, it suffices to show that Avu = Avy (as, using the Robinson
ordering property, this would in turn imply that Avw = Avw′ for all w,w′ ∈
V \C). Suppose for contradiction that there exists v ∈ C such that Avu 6= Avy,
and let v denote the element of C appearing last in π with Avu 6= Avy.

Then Avu > Avy and the path (v, u) avoids y. Since Pπ(u, z) is a path from u
to z avoiding y (because u ∈ B), then the path P = {v} ∪ Pπ(u, z) (obtained by
concatenating (v, u) and Pπ(u, z)) is a path from v to z avoiding y. This implies that v
and u cannot be consecutive in π, as otherwise we would have v ∈ B, contradicting
the fact that v ∈ C. Hence, there exists v′ ∈ C such that v <π v′ <π u. By the
maximality assumption on v, it follows that Av′u = Av′y.

As z is valid and P = {v} ∪ Pπ(u, z) is a path from v to z avoiding y, it follows
that no path from y to z can avoid v. In particular, the path (y, z) does not avoid v
and thus it must be Ayz ≤ min{Avy, Avz}. Recall that we assumed Avu > Avy. As
v <π v

′ <π u <π z <π y and combining the above inequalities with the inequalities
coming from the Robinson ordering π, we obtain Av′y ≤ Ayz ≤ Avy < Avu ≤ Av′u,
which contradicts the equality Av′u = Av′y.

We now turn to the set of vertices coming after z in π. Symmetrically with respect
to z, we can define the analogues of the sets C,B defined in (2.3), which we denote
by C′,B′. For this replace π by its reverse ordering π−1 and y by x (the first element
of π and thus the last element of π−1), i.e., set
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B′ = {v >π z : Pπ(z, v) avoids x}, C′ = {v >π z : v /∈ B′}.

To recap, we have that π = (C,B, z,B′, C′). Recall that x and y are, respectively,
the first and the last vertex in π. Note that it cannot be that C = C′ = ∅, as this
would imply that x ∈ B and y ∈ B′, and thus this would contradict the fact that z
is valid (using the definition of the two sets B and B′). Therefore, we may assume
(without loss of generality) that C 6= ∅. Let v be the vertex of C appearing last in the
Robinson ordering π. By Claim 2.8 (iii), v is homogeneous with respect to the set
S = V \ C, i.e., all entries Avw take the same value for any w ∈ S.

Consider the matrix A[S], the principal submatrix of A with rows and columns
in S. As |S| ≤ n− 1 and z is valid (also with respect to A[S]), we can conclude using
the induction assumption that z is an anchor of A[S]. Hence, there exists a Robinson
ordering σ of A[S] admitting z as last element.

Now, consider the linear order π′ = (π[C], σ) of V obtained by concatenating first
the order π restricted to C = V \S and second the linear order σ of S. Using the fact
that every vertex in C is homogeneous to all elements of S, we can conclude that the
new linear order π′ is a Robinson ordering of the matrix A. As z is the last element
of π′, this shows that z is an anchor of A and thus concludes the proof.

The above proof can be extended to characterize pairs of opposite anchors.

Theorem 2.9. Let A ∈ Sn be a Robinsonian matrix. Two distinct vertices
z1, z2 ∈ [n] are opposite anchors of A if and only if they are both valid and there
does not exist a path from z1 to z2 avoiding any other vertex.

Proof. (⇒) Assume that z1 and z2 are opposite anchors. Then they are both
anchors and thus, in view of Theorem 2.7, they are both valid. Let π be a Robinson
ordering starting with z1 and ending with z2. Suppose, for the sake of contradiction,
that there exists a vertex x and a path from z1 to z2 avoiding x. Then, by Lemma 2.4,
x cannot lie in π between z1 and z2, yielding a contradiction.

(⇐) Assume that z1 and z2 are valid and that there does not exist a path from z1
to z2 avoiding any other vertex. We show that they are opposite anchors. Consider
a Robinson ordering π of A whose first element is z1 and call y its last element. If
y = z2 then we are done. Hence, we may assume that z1 <π z2 <π y. As in the
proof of Theorem 2.7, for any v <π z2, we denote by Pπ(v, z2) the path from v to
z2 consisting of the sequence of vertices appearing consecutively between v and z2
in π. Then, we can define the sets as in (2.3) in the proof of Theorem 2.7, where z is
replaced by z2, i.e.,

B = {v <π z2 : Pπ(v, z2) avoids y}, C = {v <π z2 : v /∈ B}.

By assumption, z1 6∈ B, else Pπ(z1, z2) would avoid y, contradicting the nonexistence
of a path from z1 to z2 avoiding any other vertex. Therefore, z1 ∈ C and thus C 6= ∅.
Let S = V \ C. Using the same reasoning as in the proof of Theorem 2.7, we can now
conclude that one can find a Robinson ordering σ of A[S], where S contains all the
elements coming after the last element of C in π. The new linear order π′ = (π[C], σ)
of V obtained by concatenating first the order π restricted to C = V \ S and second
the linear order σ of S is then a Robinson ordering of A whose first element is z1 and
whose last element is z2, which concludes the proof.

3. The SFS algorithm. In this section we introduce our new similarity-first
search (SFS) algorithm. This algorithm will be applied to a (nonnegative) matrix
A ∈ Sn and return a linear order of V = [n], called a SFS ordering of A. As
mentioned above, one can associate to A a weighted graph G = (V = [n], E), with
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edges the pairs {x, y} such that Axy > 0 and edge weights Axy. The SFS algorithm
can be thus seen as a search algorithm for weighted graphs.

We first describe the algorithm in detail in subsection 3.1 and provide a 3-point
characterization of SFS orderings in subsection 3.2. Then in subsection 3.3 we discuss
some properties of SFS orderings of Robinsonian matrices. Specifically, we introduce
the fundamental path avoiding lemma (Lemma 3.6) which will be used repeatedly
throughout the paper. In particular we use it in subsection 3.4 to show a fundamental
property of SFS orderings, namely that the last element of the SFS ordering of a
Robinsonian matrix A is an anchor of A.

3.1. Description of the SFS algorithm. The SFS algorithm is a generaliza-
tion of Lex-BFS for weighted graphs. As we will remark later, when applied to a 0/1
matrix, the SFS algorithm coincides with Lex-BFS. Roughly speaking, the basic idea
is to explore a weighted graph by visiting first vertices which are similar to each other
(i.e., corresponding to an edge with largest weight) but respecting the priorities im-
posed by previously visited vertices. The algorithm is based on the implementation
of Lex-BFS as a sequence of partition refinement steps as in [19].

Partition refinement is a simple technique introduced in [25] to refine a given
ordered partition φ = (B1, . . . , Br) of the ground set V by a subset W ⊆ V . It
produces a new ordered partition of V obtained by splitting each class Bi of φ
in two sets, the intersection Bi ∩ W and the difference Bi \ W . If one visualizes
an ordered partition as a priority list, the idea behind partition refinement is to
modify the classes of the ordered partition while respecting the priorities among the
vertices.

In our new SFS algorithm, we basically operate a sequence of partition refine-
ments. But instead of splitting into two subsets we will split into several subsets.
Specifically, given two ordered partitions φ and ψ, the output will be a new ordered
partition which, roughly speaking, is obtained by splitting each class of φ into its
intersections with the classes of ψ. The formal definition is as follows.

Definition 3.1 (Refine). Let φ = (B1, . . . , Br) and ψ = (C1, . . . , Cs) be two
ordered partitions of a set V and a subset W ⊆ V , respectively. Refining φ by ψ creates
the new ordered partition of V , denoted by Refine(φ, ψ), obtained by replacing in φ each
class Bi by the ordered sequence of classes (Bi∩C1, . . . , Bi∩Cs, Bi \ (C1∪· · ·∪Cs) =
Bi \W ) and keeping only nonempty classes.

We will use this partition refinement operation in the case when the partition ψ is
obtained by partitioning for decreasing values the elements of the neighborhood N(p)
of a given element p, according to the following definition.

Definition 3.2 (Similarity partition). Consider a nonnegative matrix A ∈ Sn
and an element p ∈ [n]. Let a1 > · · · > as > 0 be the distinct values taken by
the entries Apx of A for x ∈ N(p) = {y ∈ [n] : Apy > 0} and, for i ∈ [s], set
Ci = {x ∈ N(p) : Apx = ai}. Then we define ψp = (C1, . . . , Cs), which we call the
similarity partition of N(p) with respect to p.

We can now describe the SFS algorithm. The input is a nonnegative matrix
A ∈ Sn and the output is an ordering σ of the set V = [n] that we call a SFS ordering
of A. As in any general graph search algorithm, the central idea of the SFS algorithm
is that, at each iteration, a special vertex (called the pivot) is chosen among the
subset of unvisited vertices (i.e., the subset of vertices that have not been a pivot
in prior iterations). Such vertices are ordered in a queue which defines the priorities
for visiting them. Intuitively, the pivot is chosen as the most similar to the visited
vertices, but respecting the visiting priorities imposed by previously visited vertices.
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We now discuss in detail how the algorithm works. In the beginning, all vertices
in V are unvisited, i.e., the queue φ of unvisited vertices is initialized with the unique
class V .

At the iteration i, we are given an element pi−1 (which is the pivot chosen at
iteration i− 1) and a queue φ(pi−1) = (B1, . . . , Br), which is an ordered partition of
the set of unvisited vertices. There are two main tasks to perform: the first task is to
select the new pivot pi, and the second task is to update the queue φ(pi−1) in order
to obtain the new queue φ(pi).

The first task is carried out as follows. As in the standard Lex-BFS, we denote
by S the slice induced by pi−1 (i.e., the last visited vertex), which consists of the
vertices among which to choose the next pivot pi. The slice S coincides exactly with
the first class B1 of φ(pi−1). We distinguish two cases depending on the size of the
slice S. If |S| = 1, then the new pivot pi is the unique element of the slice S. If
|S| > 1, we say that we have ties and, in the general version of the SFS algorithm,
we break them arbitrarily. We will see in section 4 a variant of SFS (denoted by
SFS+) where such ties are broken using a linear order given as additional input to
the algorithm. Once the new pivot pi is chosen, we mark it as visited (i.e., we remove
it from the queue φ(pi−1)) and we set σ(pi) = i (i.e., we let pi appear at position i
in σ).

The second task is the update of the queue φ(pi−1), which can be done as follows.
Intuitively, we update φ(pi−1) according to the similarities of pi with respect to the
unvisited vertices and compatibly with the queue order. Specifically, first we compute
the similarity partition ψpi

= (C1, . . . , Cs) of the neighborhood N(pi) of pi among
the unvisited vertices (see Definition 3.2). Second, we refine the ordered partition
φ(pi−1) \ pi = (B1\{pi}, B2, . . . , Br) by the ordered partition ψpi

(see Definition 3.1).
The resulting ordered partition is the ordered partition φ(pi).

Note that if the matrix has only 0/1 entries then the similarity partition ψpi has
only one class, equal to the neighborhood of pi among the unvisited vertices. Hence,
the refinement procedure defined in Definition 3.1 simply reduces to the partition
refinement operation defined in [19] for Lex-BFS. This is why Lex-BFS is actually a
special case of SFS for 0/1 matrices.

Note also that, by construction, each class of the queue φ(pi) is an interval of σ
(i.e., the elements of the class are consecutive in σ). Furthermore, each of the visited
vertices p1, . . . , pi is homogeneous to every class of the queue φ(pi).

We show a simple example to illustrate how the algorithm works concretely. Con-
sider the following matrix:

A =



1 2 3 5 7 8 9 11 13 14 17 19
1 ∗ 0 7 3 3 3 0 3 3 4 0 3
2 ∗ 0 7 6 3 8 3 3 0 8 6
3 ∗ 3 3 3 0 3 3 8 0 3
5 ∗ 6 5 7 5 5 3 7 8
7 ∗ 5 6 5 5 3 6 7
8 ∗ 4 8 6 5 4 5
9 ∗ 4 3 0 8 6
11 ∗ 7 5 4 5
13 ∗ 5 3 5
14 ∗ 0 3
17 ∗ 6
19 ∗



,
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19 17 14 13 11 9 8 7 5 3 2 1 19 5 7 17 9 2 11 8 13 14 3 1
3 3 0

19 5 7 17 9 2 13 11 8 14 3 1
8 7 6 5 3

19 5 7 17 9 2 11 8 13 14 3 1
8 7 5 3

19 5 7 17 9 2 13 11 8 14 3 1
6 7 5 3

19 5 7 17 9 2 11 8 13 14 3 1
6 5 3

19 5 7 17 9 2 13 11 8 14 3 1
6 5 3

19 5 7 17 9 2 11 8 13 14 3 1
5 3

19 5 7 17 9 2 11 8 13 14 3 1
8 4 3 0

19 5 7 17 9 2 11 8 13 14 3 1
8 4

19 5 7 17 9 2 11 8 13 14 3 1
8 4 3 0

19 5 7 17 9 2 11 8 13 14 3 1
7

Fig. 3. Iterations of SFS algorithm: in bold is the pivot which is chosen at the current iteration,
above the blocks is the similarity between the new pivot and the vertices in the classes of the queue.
The first line on the left shows the initialization step of the algorithm.

which is studied in [26] (we use also their original names for the vertices). In Figure 3
are reported all the iterations of the SFS algorithm using as initial order of the vertices
the reversal of the original labeling of the matrix. At each iteration, the vertices in
the blocks are the univisited vertices in the queue.

3.2. Characterization of SFS orderings. In this subsection we characterize
the linear orders returned by the SFS algorithm in terms of a 3-point condition. This
characterization applies to any (not necessarily Robinsonian) matrix and it is the
analogue of [13, Thm. 3.1] for Lex-BFS.

Theorem 3.3. Given a matrix A ∈ Sn, an ordering σ of [n] is a SFS ordering
of A if and only if the following condition holds:

(3.1)
For all x, y, z ∈ [n] such that Axz > Axy and x <σ y <σ z,
there exists u ∈ [n] such that u <σ x and Auy > Auz.

Proof. (⇒) Suppose σ is a SFS ordering of A. Assume x <σ y <σ z and Axz >
Axy, but Auz ≥ Auy for each u <σ x. Assume first that Auz > Auy for some u <σ x
and let u be the first such vertex in σ. Then Awz = Awy for each w <σ u, and thus
y, z are in the same class of the queue of unvisited vertices when u is chosen as a pivot.
Therefore, z would be ordered before y in σ when computing the similarity partition
of N(u), i.e., we would have z <σ y, a contradiction. Hence, one has Auz = Auy for
each u <σ x. This implies that y, z are in the same class of the queue of unvisited
vertices before x is chosen as pivot. Hence, when x is chosen as pivot, as Axz > Axy,
when computing the similarity partition of N(x) we would get z <σ y, which is again
a contradiction.

(⇐) Assume that the condition (3.1) of the theorem holds, but σ is not a SFS
ordering. Let a denote the first vertex of σ. Let τ be a SFS ordering of A starting
at a with the largest possible initial overlap with σ. Say σ and τ share the same
initial order (a, a1, . . . , ar) and they differ at the next position. Then we have that
σ = (a, a1, . . . , ar, y, . . . , z, . . .) and τ = (a, a1, . . . , ar, z, . . . , y, . . .) with y 6= z.

In the SFS ordering τ , the two elements y, z do not lie in the slice of the pivot ar.
Indeed, if y, z would lie in the slice of ar then one could select y as the next pivot
instead of z, which would result in another SFS ordering τ ′ starting at a and with a
larger overlap with σ than τ . Hence, there exists i ≤ r such that Aaiz > Aaiy. Since
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ai <σ y <σ z, then applying the condition (3.1) to σ we deduce that there exists j < i
such that Aajy > Aajz. Now, we have aj <τ z <τ y with Aajy > Aajz. As τ is a
SFS ordering, as we have just shown it must satisfy the condition (3.1) and thus there
must exist an index k < j such that Aakz > Aaky. Hence, starting from an index
i ≤ r for which Aaiz > Aaiy, we have shown the existence of another index k < i ≤ r
for which Aakz > Aaky. Iterating this process, we reach a contradiction. We will use
in some other proofs this same type of infinite chain argument, based on constructing
an infinite chain of elements.

One can easily show that if σ is a SFS ordering of A and S ⊆ V is a subset
such that any element x /∈ S is homogeneous to S, then the restriction σ[S] of σ
to S is a SFS ordering of A[S]. Note that by construction, if we consider a generic
slice S encountered during the execution of the SFS algorithm returning σ, then each
vertex coming before S in σ is homogeneous to S. Hence, a direct consequence of
Theorem 3.3 is that the restriction of σ to any slice S encountered throughout the
SFS algorithm returning σ is a SFS ordering of the submatrix A[S].

3.3. The path avoiding lemma. In this subsection we discuss a fundamental
lemma which we call the path avoiding lemma. It will play a crucial role throughout
the paper and, in particular, for the characterization of anchors. Differently from the
analysis in the previous subsection, where we did not make any assumption on the
structure of the matrix A, the path avoiding lemma states some important properties
of SFS orderings when the input matrix is Robinsonian.

Before stating this lemma, we need to investigate in more detail the refinement
step in the SFS algorithm. An important operation in the Refine task in Algorithm
1 is the splitting procedure of each class of the queue φ. The following notion of
“vertex splitting a pair of vertices” is useful to understand it. Consider an order
σ = SFS(A) and vertices x <σ y <σ z, where x = pi is the pivot chosen at the ith
iteration in Algorithm 1. We say that x splits y and z if x is the first pivot for which
y and z do not belong to the same class in the queue ordered partition φ(pi). Recall
that φ(pi) denotes the queue of unvisited nodes induced by pivot pi, i.e., at the end
of iteration i (after the refinement step). Hence, saying that y, z are split by x means
that y, z belong to a common class Bj of φ(pi−1) and that they belong to distinct
classes Bh, Bk of φ(pi), where y ∈ Bh, z ∈ Bk, and Bh comes before Bk in φ(pi).
Equivalently, x = pi splits y and z if Axy > Axz and Auy = Auz for all u <σ pi.

Algorithm 1: SFS (A).
input: a nonnegative matrix A ∈ Sn
output: a linear order σ of [n]

1 φ = (V )← queue of unvisited vertices
2 for i = 1, . . . , n do
3 S is the first class of φ
4 choose p arbitrarily in S ← new pivot
5 σ(p) = i ← let p appear at position i in σ
6 remove p from φ
7 N(p) is the set of vertices y ∈ φ with Apy > 0
8 ψp is the similarity partition of N(p) with respect to p
9 φ =Refine (φ, ψp)

10 return: σ
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σ : u w x y z

Fig. 4. Illustrating the proof of Lemma 3.4: (w, x, y, z) and (u, w, x, z) are bad quadruples
(the dotted lines indicate similarities that are strictly smaller than the continuous ones of the same
thickness).

Then, we say that two vertices y <σ z are split in σ if they are split by some
vertex x <σ y. When y and z are not split in σ, we say that they are tied. In this
case, ties must be broken between y and z. In the SFS algorithm we assume that
ties are broken arbitrarily. In section 4 we will see the variation SFS+ of SFS, where
ties are broken using a linear order τ given as input together with the matrix A. The
following lemma will be used as the base case for proving the path avoiding lemma.

Lemma 3.4. Assume that A ∈ Sn is a Robinsonian matrix and let σ = SFS(A).
Assume that x <σ y <σ z and that there exists a Robinson ordering π of A such
that x <π z <π y. Then y and z are not split in σ by any vertex u ≤σ x. That is,
Auy = Auz for all u ≤σ x.

Proof. We first show that y, z are not split by any vertex w occurring before x in σ.
Suppose, for contradiction, that y, z are split by a vertex w <σ x. Hence, Awy > Awz.
This implies z <π w for, otherwise, w <π z <π y would imply Awy ≤ Awz, a
contradiction. Hence we have w <σ x <σ z and x <π z <π w. Because π is a
Robinson ordering, we get Awz ≥ Awx and thus Awy > Awz ≥ Awx. Therefore, the
quadruple (w, x, y, z) satisfies the following properties (a)–(d): (a) w <σ x <σ y <σ z,
(b) x <π z <π w for some Robinson ordering π, (c) w is the pivot splitting y, z, and
(d) Awy > Awx, Awz. Call any quadruple satisfying (a)–(d) a bad quadruple (see
Figure 4).

We now show that if (w, x, y, z) is a bad quadruple then there exists u <σ w for
which (u,w, x, z) is also a bad quadruple. Hence, iterating we will get a contradiction
(so we use here too an infinite chain argument). We now proceed to show the existence
of u <σ w for which (u,w, x, z) is also a bad quadruple. Since Awx < Awy, the vertices
x, y are already split before w becomes a pivot; otherwise, if they would belong to
the same class when w is chosen as new pivot, then we would get y <σ x. Let
u = pi the pivot splitting x, y, i.e., u <σ w and Aux > Auy. Thus x, y belong to the
same class (say) B ∈ φ(pi−1) when u is chosen as new pivot at iteration i, but in
different classes of φ(pi). Since w is the pivot splitting y, z and u <σ w, it follows
that y, z belong to the same class when u is chosen as pivot, and thus x, y, z ∈ B.
Therefore, u is also the pivot splitting x and z and thus Aux > Auy = Auz. In turn
this implies that u <π z for, otherwise, x <π z <π u would imply Aux ≤ Auz, a
contradiction. Therefore, u <π z <π w and by definition of Robinson ordering we
have Auw ≤ Auz and, as Aux > Auz, this implies that Auw < Aux. Summarizing,
we have shown that the quadruple (u,w, x, z) is bad since it satisfies the conditions
(a)–(d): (a) u <σ w <σ x <σ z, (b) w <π−1 z <π−1 u for the Robinson ordering π−1,
(c) u splits x and z, and (d) Aux > Auw, Auz. Thus we have shown that there cannot
exist a bad quadruple and therefore that y, z are not split by any vertex w appearing
before x in σ.

We now conclude the proof of the lemma by showing that y, z are also not split
by x. For this, we need to show that Axz = Axy. Suppose for contradiction that
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Axz 6= Axy. As x <π z <π y, it can only be that Axz > Axy. Let x = pi, i.e., x is
the pivot chosen at iteration i of Algorithm 1. Since we have just shown that y, z are
not split before x, then at the iteration i when x is chosen as pivot, we would order
z <σ y as Axz > Axy, which is a contradiction because y <σ z by assumption.

A first direct consequence of Lemma 3.4 is the following.

Corollary 3.5. Let A ∈ Sn be a Robinsonian matrix, let σ = SFS(A), and
consider distinct elements x, y, z ∈ V such that x <σ y <σ z. The following holds:

(i) Axy ≥ min{Axz, Ayz}.
(ii) If x <π z <π y for some Robinson ordering π, then the path P = (x, z) does

not avoid y.

Proof.
(i) Assume, for contradiction, that Axy < min{Axz, Ayz}. Pick a Robinson

ordering π of A such that x <π y. Then we must have x <π z <π y. Indeed,
if x <π y <π z then we would have Axy ≥ Axz, and if z <π x <π y we
would have Axy ≥ Ayz, leading in both cases to a contradiction. Applying
Lemma 3.4, we conclude that Axy = Axz, contradicting our assumption that
Axy < Axz.

(ii) If (x, z) avoids y then Axz > min{Axy, Ayz), where min{Axy, Ayz) = Axy
since x <π z <π y. Hence this contradicts Lemma 3.4.

Note that the above result is the analogue of the P3-rule for chordal graphs in [13,
Thm. 3.12], which claims that, for any distinct x, y, z ∈ V such that x <σ y <σ z
while x <π z <π y for some Robinson ordering π, the path (x, z) does not avoid y.
The next lemma strengthens the result of Corollary 3.5 (ii), by showing that there
cannot exist any path from x to z avoiding y and appearing fully before z in σ. We
will refer to Lemma 3.6 below as the path avoiding lemma (PAL) for ease of reference
in the rest of the paper.

Lemma 3.6 (Path avoiding lemma (PAL)). Assume A ∈ Sn is a Robinsonian
matrix and let σ = SFS(A). Consider distinct elements x, y, z ∈ V such that x <σ
y <σ z. If x <π z <π y for some Robinson ordering π, then there does not exist a
path P = (x, u1, . . . , uk, z) from x to z avoiding y and such that u1, . . . , uk <σ z.

Proof. The proof is by induction on the length |P | = k + 2 of the path P . The
base case is |P | = 2, i.e., P = (x, z), which is settled by Corollary 3.5. Assume then,
for contradiction, that there exists a path P = (x, u1, . . . , uk, z) from x to z avoiding y
with u1, . . . , uk <σ z and |P | ≥ 3, i.e., k ≥ 1. Let us call a path Q short if it is shorter
than P , i.e., if |Q| < |P |. By the induction assumption, we know that the following
holds:

(3.2)
If u <σ v <σ w and u <τ w <τ v for some Robinson ordering τ,
then no short path Q = (u, v1, . . . , vr, w) from u to w avoiding v
and with v1, . . . , vr <σ w exists.

Set u0 = x and uk+1 = z. As P avoids y, the following relations hold:

(3.3) Aui−1ui > min{Ayui−1 , Ayui} ∀ i ∈ [k + 1].

Recall that since x <σ y <σ z and x <π z <π y, then in view of Lemma 3.4
we have Axy = Axz. Furthermore, we know that u1, . . . , uk <σ z by assumption. In
order to conclude the proof, we use the following claim.

Claim 3.7. ui <π x and y <σ ui for each i ∈ [k].



1780 MONIQUE LAURENT AND MATTEO SEMINAROTI

Proof. The proof is by induction on i ≥ 1. For i = 1 we have to show that

(3.4) u1 <π x and y <σ u1.

We first show that u1 <π x. Suppose this is not the case and x <π u1. Recall
that in view of (3.3) for i = 1 we have Axu1 > min{Ayx, Ayu1}, and thus the path
(x, u1) avoids y. Hence, since x <π y and y cannot appear between x and u1 in any
Robinson ordering in view of Lemma 2.4, it must also be that u1 <π y. We then have
two possibilities, depending whether u1 comes before or after z in π.

(i) Assume first that u1 appears before z in π. Then we have x <π u1 <π z <π y.
We discuss where can u1 appear in σ. If u1 <σ y then we have u1 <σ y <σ z,
u1 <π z <π y, and (u1, . . . , uk, z) is a short path from u1 to z avoiding y with
u2, . . . , uk <σ z, which contradicts (3.2). Hence y <σ u1, in which case we have
x <σ y <σ u1, x <π u1 <π y, and (x, u1) is a short path from x to u1 avoiding y,
which again contradicts (3.2).

(ii) Assume now that u1 appears after z in π. Then we have x <π z <π u1 <π y.
By (3.3) applied to i = 1 and using the Robinson ordering π, we have that
Au1x > min{Ayx, Ayu1} = Ayx. Recall that Axy = Axz. Then Au1x > Axz.
On the other hand, by the Robinson property of π, Axu1 ≤ Axz, yielding a
contradiction.

Therefore, we have shown that u1 <π x. Finally, we show that y <σ u1. Suppose not,
i.e., u1 <σ y. Then we would have u1 <σ y <σ z and, as just shown, u1 <π z <π y,
while (u1, . . . , uk, z) is a short path from u1 to z avoiding y with u2, . . . , uk <σ z.
This contradicts (3.2) and thus shows y <σ u1, which concludes the proof for the base
case i = 1.

Assume now that i ≥ 2 and that uj <π x and y <σ uj for all 1 ≤ j ≤ i − 1
by induction. We show that also ui <π x and y <σ ui. First we show ui <π x.
Suppose, for the sake of contradiction, that x <π ui. Recall that in view of (3.3) the
path (ui, . . . , uk, z) is a path from ui to z avoiding y with ui+1, . . . , uk <σ z. Hence,
since z <π y in view of Lemma 2.4 it must also be ui <π y, because y cannot appear
between z and ui in any Robinson ordering. We then have two possibilities to discuss,
depending on whether ui comes before or after z in π.

(i) Assume that ui appears before z in π. Then u1, . . . , ui−1 <π x <π ui <π z <π y.
First we claim that y <σ ui. Indeed, if by contradiction ui <σ y, then we would
have ui <σ y <σ z and ui <π z <π y, while (ui, . . . , uk, z) is a short path from
ui to z avoiding y with ui+1, . . . , uk <σ z, contradicting (3.2).

Hence, y <σ ui holds. Recall that y <σ uj for j ∈ [i − 1] by induction.
Hence, for j = i − 1 we have y <σ ui−1. To recap, we are therefore in the case
ui−1 <π x <π ui <π z <π y and we have shown that x <σ y <σ ui, ui−1 <σ z.
We thus have y <σ ui−1 <σ z and y <π−1 z <π−1 ui−1. Then, in view of
Lemma 3.4, one must have Ayui−1 = Ayz. From the Robinson ordering we
obtain Ayz ≥ Axy ≥ Ayui−1 = Ayz and therefore we get the equality Ayz = Axy.
Analogously, because x <σ y <σ ui and x <π ui <π y, by Lemma 3.4 we obtain
Axy = Axui . Hence, we have

(3.5) Ayui−1 = Ayz = Axy = Axui
.

Finally, using relation (3.3) we get:

(3.6) Aui−1ui > min{Ayui−1 , Ayui} = Ayui−1 .
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In view of (3.5), the right-hand side in (3.6) is Ayui−1 = Axui
. On the other hand,

as ui−1 <π x <π ui in the Robinson ordering π, then Ayui−1 = Axui
≥ Aui−1ui

,
which contradicts (3.6). Hence ui cannot appear before z in π.

(ii) Assume ui appears after z in π. Then u1, . . . , ui−1 <π x <π z <π ui <π y.
Observe that the path (x, u1, . . . , ui−1, z) is a short path from x to z with
u1, . . . , ui−1 <σ z and thus it cannot avoid y, otherwise we would contradict
(3.2). Since the path (x, u1, . . . ui−1) avoids y (as it is a subpath of P ), it follows
that the path (ui−1, z) does not avoid y. Hence Aui−1z ≤ min{Ayui−1 , Ayz}
which, using the Robinson ordering π, in turn implies Aui−1z = Ayui−1 . Then,
using relation (3.3), we get Aui−1ui > min{Ayui−1 , Ayui} = Ayui−1 . Now com-
bining with Ayui−1 = Aui−1z, we get Aui−1ui

> Aui−1z, which is a contradiction,
since from the Robinson ordering π one must have Aui−1ui

≤ Aui−1z. Therefore,
we have shown also that ui cannot appear after z in π.

In summary, we have shown that ui <π x, as desired. Finally we now show that
y <σ ui. Indeed, if ui <σ y then we would have ui <σ y <σ z and ui <π z <π y,
while (ui, . . . , uk, z) is a short path from ui to z avoiding y with ui+1, . . . , uk <σ z,
which contradicts (3.2). This concludes the proof of the claim.

We can now conclude the proof of Lemma 3.6. By Claim 3.7 we have the following
relations for any i ∈ [k]: x <σ y <σ ui <σ z and y <π−1 z <π−1 x <π−1 ui.
By Lemma 3.4, this implies Ayui = Ayz for all i ∈ [k] which, using the Robinson
ordering π, in turn implies Ayui

= Ayz = Ayx. Now, use relation (3.3) for i = k+1 to
get the inequality Aukz > min{Ayuk

, Ayz} = Ayuk
. Recall that in view of Lemma 3.4,

we have that Axy = Axz. Then as Ayui
= Ayx for all i, the right-hand side is equal

to Ayuk
= Axz while, using the Robinson ordering π, the left-hand side satisfies

Aukz ≤ Axz, which yields a contradiction. This concludes the proof of the lemma.

3.4. End-vertices of SFS orderings. In this subsection we show some funda-
mental properties of SFS orderings, using the results in subsection 3.3. First we show
that if A is Robinsonian then the last vertex of a SFS ordering of A is an anchor of A.
We will see later in Corollary 4.4 that, conversely, any anchor can be obtained as an
end-vertex of a SFS ordering.

Theorem 3.8. Let A be a Robinsonian matrix and let σ = SFS(A). Then the
last vertex of σ is an anchor of A.

Proof. Let z be the last vertex of σ; we show that z is an anchor of A. In view
of Theorem 2.7 it suffices to show that z is valid. Suppose for contradiction that, for
some x 6= y ∈ V \ {z}, there exists a path P from x to z avoiding y and a path Q
from y to z avoiding x. We may assume without loss of generality that x <σ y <σ z.
Moreover, let π be a Robinson ordering of A such that x <π z. Then, in view of
Lemma 2.4, we must have x <π z <π y, since y must come either before or after
both x and z (because of the path P ) and x must come before or after both y and z
(because of the path Q). As z is the last vertex, then P <σ z and thus we get a
contradiction with Lemma 3.6 (PAL).

The above result is the analogue of [13, Thm. 4.5] for Lex-BFS applied to interval
graphs. We now introduce the concept of good SFS.

Definition 3.9 (Good SFS ordering). We say that a SFS ordering σ of A is
good if σ starts with a vertex which is the end-vertex of some SFS ordering.

Note that the analogous definition in [13] for Lex-BFS is stronger, as it requires
the first vertex of each slice to be an end-vertex of the slice itself. However, in our



1782 MONIQUE LAURENT AND MATTEO SEMINAROTI

discussion we do not need such a strong definition and the above notion of good SFS
will suffice to show the overall correctness of the multisweep algorithm. In the case
when A is Robinsonian, in view of Theorem 3.8 (and Corollary 4.4 below), σ is a good
SFS ordering precisely when it starts with an anchor of A. For good SFS orderings
we have the following stronger result for their end-vertices.

Theorem 3.10. Let A ∈ Sn be a Robinsonian matrix and let σ be a good SFS
ordering whose first vertex is a and whose last vertex is b. Then a, b are opposite
anchors of A.

Proof. By assumption, σ is a good SFS ordering and thus its first vertex a is an
anchor of A. In view of Theorem 3.8, its last vertex b is also an anchor of A. Suppose,
for the sake of contradiction, that a and b are not opposite anchors of A. Then, in
view of Theorem 2.9, there exists a vertex x ∈ V and a path P from a to b such that P
avoids x. Let π be a Robinson ordering of A starting with a (which exists since a is
an anchor of A). Using Lemma 2.4 applied to the path P , we can conclude that x
cannot appear between a and b in any Robinson ordering, and thus we must have
a <π b <π x. But then, using Lemma 3.6 (PAL), there cannot exist a path from a
to b avoiding x and appearing before b in σ, which contradicts the existence of P .

4. The SFS+ algorithm. In this section we introduce the SFS+ algorithm.
This is a variant of the standard SFS algorithm, and it is the analogue of the variant
Lex-BFS+ of Lex-BFS introduced by Simon [31] in the study of multisweep algorithms
for interval graphs (although the multisweep algorithm itself in [31] is actually flawed;
see [13] for more details). The algorithm SFS+ will be the main ingredient in our
multisweep algorithm for the recognition of Robinsonian matrices. It takes as input a
matrix A and a linear order σ, and it returns another linear order σ+. After describing
SFS+, we will first present its main properties, most importantly the fact that the
SFS+ algorithm flips anchors when applied to a Robinsonian matrix A and a good
SFS order σ: if σ starts at a and ends at b, then σ+ starts at b and ends at a. We
will also introduce the useful concept of similarity layers of a matrix, which will play
a crucial role in the correctness analysis of our multisweep SFS-based algorithm.

4.1. Description of the SFS+ algorithm. Consider again the SFS algorithm
as described in Algorithm 1 in section 3. The first main task is selecting the new
pivot. In case of ties, as done at Line 4 of Algorithm 1, the ties are broken arbitrarily
(choosing any vertex in the slice S). We now introduce a variant of SFS(A), which
we denote by SFS+(A, σ). It takes as input a matrix A ∈ Sn and a linear order σ of
V , and it returns a new linear order σ+ of V . In the SFS+ algorithm, the input linear
order σ is used to break ties at Line 4 in Algorithm 1. Specifically, among the vertices
in the slice S of the current iteration, we choose as new pivot the vertex appearing
last in σ. Notice that a SFS+ ordering is still a SFS ordering and thus it satisfies all
the properties discussed in section 3.

If A is a Robinsonian matrix and the input linear order σ is a SFS ordering, then
the SFS+ ordering σ+ has some important additional properties. In fact, since in the
beginning of the SFS algorithm all the vertices are contained in the universal slice (i.e.,
the full ground set V ), the order σ+ starts with the last vertex of σ, which in view of
Theorem 3.8 is an anchor of A. Therefore, in this case σ+ is a good SFS ordering by
construction. Furthermore, in view of Theorem 3.10, when A is Robinsonian then the
first and last vertices of σ+ are opposite anchors of A. If the input linear order σ is a
good SFS ordering, then we have an even stronger property: the end-vertices of σ+ are
the end-vertices of σ but in reverse order. We call this the anchors flipping property,
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which is shown in the next theorem. This property will be crucial in section 5 when
studying the properties of the multisweep algorithm.

Theorem 4.1 (Anchors flipping property). Let A ∈ Sn be a Robinsonian simi-
larity, σ be a good SFS ordering of A, and σ+ = SFS+(A, σ). Suppose that σ starts
with a and ends with b. Then σ+ starts with b and ends with a.

Proof. By definition of the SFS+ algorithm, the returned order σ+ starts with the
last vertex b of σ. Hence, we only have to show that a appears last in σ+. Suppose,
for the sake of contradiction, that a is not last in σ+ and let instead y be the vertex
appearing last in σ+. Then we have a <σ y <σ b and b <σ+ a <σ+ y. This implies
that y and a must be split in σ+. Indeed, if y and a would be tied in σ+ then, as
we use σ to break ties and as a <σ y, the vertex y would be placed before a in σ+,
a contradiction. Thus let x <σ+ a be the pivot splitting a and y in σ+, so that
Axa > Axy. Then we have:

(4.1) Axa > min{Axy, Aya}.

Hence the path P = (x, a) avoids y. As b is the first vertex of σ+, we have:

b <σ+ x <σ+ a <σ+ y.

In view of Theorem 3.10 applied to σ, we know that a and b are opposite anchors of A.
Therefore, there exists a Robinson ordering π starting with a and ending with b. In
view of (4.1) and using Lemma 2.4, y cannot appear between a and x in any Robinson
ordering and therefore we can conclude:

(4.2) a <π x <π y <π b.

Consider now σ. We have that a <σ y <σ b. Where can x appear in σ? Suppose
y <σ x. Then we would have a <σ y <σ x and a <π x <π y, and in view of
Lemma 3.6 (PAL) there cannot exist a path from a to x avoiding y and appearing
before x in σ, which is a contradiction as the path P = (x, a) avoids y in view of (4.1).
Hence, we must have:

a <σ x <σ y <σ b.(4.3)

Therefore, starting from the pair (a, y) satisfying a <σ y and a <σ+ y, we have
constructed a new pair (x, y) satisfying x <σ y and x <σ+ y, with x <σ+ a. Iterating
this construction we get an infinite sequence of such pairs, yielding a contradiction.
(Here too we have used an infinite chain argument.)

The flipping property of anchors is the analogue of [13, Thm. 4.6] for Lex-BFS.
An important consequence of this property is that if the linear order σ given as input
is a Robinson ordering of A, then σ+ = SFS+(a, σ) is equal to σ−1, i.e., the reversed
order of σ.

Lemma 4.2. Let A ∈ Sn be a Robinsonian matrix and let σ, τ be two SFS order-
ings of A. The following holds:
(i) If x <τ y <τ z and z <σ y <σ x then the triple (x, y, z) is Robinson.
(ii) If τ is a Robinson ordering of A and σ = SFS+(A, τ), then σ = τ−1.

Proof.
(i) Suppose for contradiction that the triple (x, y, z) is not Robinson. Then we

have Axz > min{Axy, Ayz}, and thus the path (x, z) avoids y. Let π be a
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Robinson ordering of A with (say) x <π y. In view of Lemma 2.4, y cannot
appear between x and z in any Robinson ordering and therefore we have
x <π z <π y or z <π x <π y. In both cases we get a contradiction with
Lemma 3.6 (PAL) since x <τ y <τ z and z <σ y <σ x.

(ii) Say τ starts at b and ends at a. Then σ starts at a. Assume that σ 6= τ−1.
Let (a = x0, x1, . . . , xk) be the longest initial segment of σ whose reverse
(xk, . . . , x1, a) is the final segment of τ , with k ≥ 0. Let y be the successor of
xk in σ. Then y is not the predecessor of xk in τ (by maximality of k). Let
z be the predecessor of xk in τ . Then a <σ x1 <σ · · · <σ xk <σ y <σ z and
y <τ z <τ xk <τ · · · <τ x1 <τ a. Hence, y, z cannot be tied in σ (otherwise
we would choose z before y in σ as y <τ z). Therefore, there must exist a
vertex x <σ y such that Axy > Axz. Hence, x = xi for some 0 ≤ i ≤ k and
thus y <τ z <τ x. As τ is a Robinson ordering this implies Axy ≤ Axz, a
contradiction.

In other words, in a multisweep algorithm applied to a Robinsonian matrix, ev-
ery triple of vertices appearing in reverse order in two distinct sweeps is Robinson.
Moreover, once a given sweep is a Robinson ordering, the next sweep will remain a
Robinson ordering (precisely the reverse order). As a direct application of Lemma 4.2,
we have the following characterization for Robinsonian matrices.

Corollary 4.3. Let A ∈ Sn, let τ be a SFS ordering of A, and let σ =SFS+(A, τ).
Assume that σ = τ−1. Then A is Robinsonian if and only if σ is Robinson.

We will see in section 6 how to exploit the above result to check if a given SFS
ordering is a Robinson ordering during a multisweep algorithm. Furthermore, com-
bining Lemma 4.2 with Theorem 3.8, we obtain the following characterization for
anchors.

Corollary 4.4. Let A ∈ Sn be a Robinsonian matrix. A vertex is an anchor
of A if and only if it is the end-vertex of a SFS ordering of A.

4.2. Similarity layers. In this subsection we introduce the notion of similarity
layer structure for a matrix A ∈ Sn and an element a ∈ V (then called the root),
which we will use later to analyze properties of the multisweep algorithm.

Specifically, we define the following collection L = (L0, L1, . . . , Lr) of subsets of V ,
whose members are called the (similarity) layers of A rooted at a, where L0 = {a}
and the next layers Li are the subsets of V defined recursively as follows:

(4.4) Li = {y /∈ L0∪· · ·∪Li−1 : Axy ≥ Axz ∀x ∈ L0∪· · ·∪Li−1, ∀z /∈ L0∪· · ·∪Li−1}.

Note that this notion of similarity layers can be seen as a refinement of the notion
of BFS layers for graphs, which are obtained by layering the nodes according to their
distance to the root. Hence, the two concepts are similar but different. We first show
that this layer structure defines a partition of V when A is a Robinsonian matrix and
the root a is an anchor of A.

Lemma 4.5. Assume that A ∈ Sn is a Robinsonian matrix and that a ∈ V is an
anchor of A. Consider the similarity layer structure L = (L0 = {a}, L1, . . . , Lr) of A
rooted at a, as defined in (4.4), where r is the smallest index such that Lr+1 = ∅. The
following holds:

(i) If y ∈ Li, z 6∈ L0 ∪ . . . ∪ Li with i ≥ 1, then there exists a path P from a to
y avoiding z. Moreover, any path of the form P = (a, a1, . . . , ai = y), where
al ∈ Ll for 1 ≤ l ≤ i, avoids z.
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(ii) V = L0 ∪ L1 ∪ . . . ∪ Lr.
Proof.
(i) Using the definition of the layers in (4.4) we obtain that Aaa1 > Aaz and

Aa1a2 > Aa1z, . . . , Aai−1y > Aai−1z, which shows that the path (a, a1, . . . , ai−1,
ai = y) avoids z.

(ii) Suppose L0, L1, . . . , Lr 6= ∅, Lr+1 = ∅, but V 6= U := L0 ∪ . . .∪Lr. Consider
an element z1 ∈ V \U . As z1 6∈ Lr (since this set is empty) there exist elements
x1 ∈ U and z2 6∈ U such that Ax1z1 < Ax1z2 . Analogously, as z2 6∈ Lr there
exist elements x2 ∈ U, z3 6∈ U such that Ax2z2 < Ax2z3 . Iterating we find
elements xi ∈ U , zi 6∈ U for all i ≥ 1 such that Axizi < Axizi+1 for all i.
At some step one must find one of the previously selected elements zi, i.e.,
zj = zi for some i < j.

As a is an anchor of A, there exists a Robinson ordering π of A starting at
a. We first claim that xi <π zj for all i, j. This is clear if xi = a. Otherwise,
as xi ∈ U and zj 6∈ U , it follows from (i) that there is a path from a to
xi avoiding zj , which in view of Lemma 2.4 implies that a ≤π xi <π zj .
Next we claim that zi+1 <π zi. Since xi <π zi and Axizi

< Axizi+1 , then
(xi, zi+i) avoids zi and in view of Lemma 2.4 it must indeed be zi+1 <π zi.
Summarizing, we have shown that zi+1 <π zi <π · · · <π z1 for all i, which
contradicts the fact that two of the zi’s should coincide.

Intuitively, each layer Li will correspond to some slices of a SFS algorithm starting
at a. As we see below, there is some compatibility between the layer structure L rooted
at a with any Robinson ordering π and any good SFS ordering σ starting at a.

Lemma 4.6. Assume A ∈ Sn is a Robinsonian matrix and a is an anchor of A.
Let σ be a good SFS ordering of A starting at a and let π be a Robinson ordering of A
starting at a. Then the similarity layer structure L = (L0 = {a}, . . . , Lr) of A rooted
at a is compatible with both π and σ. That is,

L0 <π L1 <π · · · <π Lr,
L0 <σ L1 <σ · · · <σ Lr.

Proof. Let x ∈ Li and y ∈ Lj with i < j; we show that x <π y and x <σ y. This
is clear if i = 0, i.e., if x = a. Suppose now that i ≥ 1. Then, by Lemma 4.5, there
exists a path from a to x avoiding y. This implies that a <π x <π y, as y cannot
appear between a and x in any Robinson ordering in view of Lemma 2.4 and since π
starts with a. Furthermore, if a <σ y <σ x then we would get a contradiction with
Lemma 3.6 (PAL). Hence a <σ x <σ y holds, as desired.

Furthermore, the following inequalities hold among the entries of A indexed by
elements in different layers.

Lemma 4.7. Assume A ∈ Sn is a Robinsonian matrix and a is an anchor of A.
Let L = (L0 = {a}, L1, . . . , Lr) be the similarity layer structure of A rooted at a. For
each u ∈ Li, x, y ∈ Lj, and z 6∈ L0 ∪ L1 ∪ . . . ∪ Lj with 0 ≤ i < j the following
inequalities hold:

Axy ≥ Aux = Auy ≥ Auz.

Furthermore, if x ∈ Lj , z /∈ L0∪L1∪· · ·∪Lj, then there exists u ∈ L0∪L1∪· · ·∪Lj−1
such that Aux > Auz.
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Proof. The inequalities Aux = Auy > Auz follow from the definition of the layers
in (4.4). Suppose now that Axy < Aux = Auy. Then u must appear between x and y
in any Robinson ordering π, since x <π y <π u implies Axy ≥ Aux and y <π x <π u
implies Axy ≥ Auy. But in view of Lemma 4.6, if π is a Robinson ordering starting
at a then u <π x and u <π y, and thus we get a contradiction.

As an application of Lemma 4.7, it is easy to verify that if A is the adjacency
matrix of a connected graph G, then each layer is a clique of G.

We now show a flipping property of the similarity layers with respect to a good
SFS ordering σ starting at the root and the next sweep σ+ = SFS+(A, σ). Namely,
we show that the orders of the layers are reversed beween σ and σ+, i.e., Li <σ Lj
and Lj <σ+ Li for all i < j.

Theorem 4.8 (Layers flipping property). Let A ∈ Sn be a Robinsonian matrix
and a ∈ V be an anchor of A. Let L = (L0 = {a}, . . . , Lr) be the similarity layer
structure of A rooted at a, let σ be a good SFS ordering of A starting at a, and let
σ+ = SFS+(A, σ). If x ∈ Li, y ∈ Lj with 0 ≤ i < j ≤ r then y <σ+ x.

Proof. Let x ∈ Li, y ∈ Lj with i < j. Assume for contradiction that x <σ+ y.
By Lemma 4.6, we know that L is compatible with σ and thus x <σ y. As x <σ+ y
and x <σ y, we deduce that x, y are not tied in σ+. Hence there exists x1 <σ+ x
such that Ax1x > Ax1y. Let L` denote the layer of L containing x1. We claim that
` < j. Indeed, if ` = j then x1, y are in the same layer and, by Lemma 4.7, it must
be Ax1y ≥ Ax1x = Axy, which is impossible because Ax1x > Ax1y. Assume now that
` > j. By Lemma 4.6, if π is a Robinson ordering starting at a, then we would get
x <π y <π x1, which implies Ax1y ≥ Ax1x, again a contradiction. Therefore, we have
x1 ∈ L` with ` < j. Recall that x1 <σ+ y. Hence, starting with the pair (x, y) which
satisfies x ∈ Li, y ∈ Lj with i < j and x <σ+ y, we have constructed another pair
(x1, y) satisfying x1 ∈ Ll, y ∈ Lj with l < j and x1 <σ+ y. As x1 <+ x, iterating this
construction we will reach a contradiction.

5. The multisweep algorithm. We now introduce our new SFS-based multi-
sweep algorithm and we show that in at most n− 1 sweeps it permits us to recognize
whether a given matrix of size n is Robinsonian. This is the main result of our pa-
per, which we will prove in this section. First, in subsection 5.1 we will describe the
algorithm and its main features. Then in subsection 5.2 we introduce the notion of
3-good sweep, which plays a crucial role in the correctness proof, and we investigate
its properties. In subsection 5.3 we complete the proof of correctness of the multi-
sweep algorithm. Finally, in subsection 5.4 we present an infinite family of n × n
Robinsonian matrices whose recognition needs exactly n− 1 sweeps.

5.1. Description of the multisweep algorithm. Our multisweep algorithm
consists of computing successive SFS orderings of a given nonnegative matrix A ∈ Sn.
The first sweep is SFS(A), whose aim is to find an anchor of A. Each subsequent sweep
is computed with the SFS+ algorithm using the linear order returned by the preceding
sweep to break ties. As it starts with the end-vertex of the preceding sweep, which is
an anchor of A, each subsequent sweep is therefore a good SFS ordering of A (in the
case when A is Robinsonian). The algorithm terminates either if a Robinson ordering
has been found (in which case it certifies that A is Robinsonian), or if the (n − 1)th
sweep is not Robinson (in which case it certifies that A is not Robinsonian). The
complete algorithm is reported below.

As already mentioned earlier, the SFS algorithm applied to binary matrices re-
duces to Lex-BFS. As a warm-up we now show that our SFS multisweep algorithm
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terminates in three sweeps to recognize whether a binary matrix A is Robinsonian.
As a binary matrix A is Robinsonian if and only if the corresponding graph is a unit
interval graph [27], this is coherent with the fact that one can recognize unit interval
graphs in three sweeps of Lex-BFS [8, Thm. 9]. Hence we have a new proof for this
result, which has similarities but yet differs from the original proof in [8].

Theorem 5.1. Let G be a connected graph and let A be its adjacency matrix.
Consider the orders σ0 = SFS(A), σ1 = SFS+(A, σ0), and σ2 = SFS+(A, σ1). Then G
is a unit interval graph (i.e., A is Robinsonian) if and only if σ2 is a Robinson ordering
of A.

Proof. Clearly, if σ2 is Robinson then A is Robinsonian. Assume now that A is
Robinsonian; we show that σ2 is Robinson. Suppose, for contradiction, that there
exists a triple x <σ2 y <σ2 z which is not Robinson, i.e., Axz > min{Axy, Ayz}. Then
the path (x, z) avoids y and thus, in view of Lemma 3.6 (PAL), in any Robinson
ordering π one cannot have x <π z <π y. We may assume without loss of generality
that z <π x <π y in some Robinson ordering π. Because A is a binary matrix,
then Axz = 1, Ayz = 0, and thus {x, z} ∈ E, {y, z} /∈ E. By construction, σ1 is a
good SFS ordering of A starting (say) at the anchor a. Let L = {L0, L1, . . . , Lr} be
the similarity layer structure of A rooted at a. By Lemma 4.6, we know that L is
compatible with σ1, i.e., a <σ1 L1 <σ1 · · · <σ1 Lr. Using Theorem 4.8 we obtain that
Lr <σ2 Lr−1 <σ2 · · · <σ2 L1 <σ2 a. Moreover, using Lemma 4.7 and the fact that G
is connected, it is easy to see that each layer Li is a clique of G. Hence, y, z cannot
be in the same layer of L, as {y, z} /∈ E. Since y <σ2 z, it follows that z ∈ Li, y ∈ Lj
with i < j, and thus z <σ1 y. Say x ∈ Lh. One cannot have h < j since this would
contradict x <σ2 y. If h = j then x, y ∈ Lj and thus Azx = Azy by definition of the
layers, contradicting the fact that Axz = 1, Ayz = 0. Hence one must have j < h.
Then z ∈ Li, y ∈ Lj , x ∈ Lh with i < j < h, and thus z <σ1 y <σ1 x. Now we get a
contradiction with Lemma 3.6 (PAL), as z <π x <π y and the path (x, z) avoids y.

The proof of Theorem 5.1 outlines a fundamental difference between unit interval
graphs and Robinsonian matrices. Indeed, using Lemma 4.7, it is easy to see that,
for 0/1 Robinsonian matrices, each layer Li of the similarity layer structure L rooted
at an anchor a is a clique of G. This property in fact permits us to bound by three
the number of sweeps needed to recognize 0/1 Robinsonian matrices. However, for
Robinsonian matrices with at least three distinct values we do not have any analogous
structural property for the vertices lying in a common layer, which explains why we
might need n− 1 sweeps in the worst case.

We now formulate our main result, namely that the SFS multisweep algorithm
terminates in at most n−1 steps to recognize whether an n×n matrix is Robinsonian.

Theorem 5.2. Let A ∈ Sn and let σ0 = SFS(A), σi = SFS+(A, σi−1) for i ≥ 1
be the successive sweeps returned by Algorithm 2. Then A is a Robinsonian matrix if
and only if σn−2 is a Robinson ordering of A.

We will give the full proof of Theorem 5.2 in subsection 5.3 below. What we need
to show is that if A is Robinsonian then the order σn−2 in Algorithm 2 is a Robinson
ordering of A. We now give a rough sketch of the strategy which we will use to prove
this result. The proof will use induction on the size n of the matrix A.

As was shown earlier, the sweep σ1 is a good SFS ordering of A with end-vertices
(say) a and b, and all subsequent sweeps have the same end-vertices (flipping their
order at each sweep) in view of Theorem 4.1. A first key ingredient will be to show
that if we delete both end-vertices a and b and set S = V \ {a, b}, then the induced



1788 MONIQUE LAURENT AND MATTEO SEMINAROTI

Algorithm 2: Robinson(A).
input: a matrix A ∈ Sn
output: a Robinson ordering π of A, or stating that A is not Robinsonian

1 σ0 = SFS(A)
2 for i = 1, . . . , n− 2 do
3 σi = SFS+(A, σi−1)
4 if σi is Robinson then
5 return: π = σi

6 return: ‘A is NOT Robinsonian’

order σ3[S] is a good SFS ordering of the principal submatrix A[S]. A second crucial
ingredient will be to show that the induced order σn−2[S] can be obtained with the
multisweep algorithm applied to A[S] starting from σ3[S]. This will enable us to
apply the induction assumption and to conclude that σn−2[S] is a Robinson ordering
of A[S]. Hence all triples (x, y, z) in σn−2 that are contained in S = V \ {a, b} are
Robinson. The last step is to show that all triples (x, y, z) in σn−2 that contain a or
b are also Robinson.

As we see in the above sketch, the sweep σ3 plays a special role. It is obtained
by applying three sweeps of SFS+ starting from the good SFS ordering σ1. For this
reason we call it a 3-good SFS ordering. We introduce and investigate in detail this
notion of 3-good SFS ordering in subsection 5.2 below.

5.2. 3-good SFS orderings. Consider a Robinsonian matrix A ∈ Sn. Recall
that a SFS ordering τ of A is said to be good if its first vertex is an anchor of A
(see subsection 4.1). We now introduce the notion of 3-good SFS ordering. A linear
order τ is called a 3-good SFS ordering of A if there exists a good SFS ordering τ ′ of
A such that if we set τ ′′ = SFS+(A, τ ′), then τ = SFS+(A, τ ′′) holds. In other words,
a 3-good SFS ordering is obtained by performing three consecutive good sweeps. Of
course any 3-good SFS ordering is also a good SFS ordering. Furthermore, if we
consider Algorithm 2, then any sweep σi with i ≥ 3 is a 3-good SFS ordering by
construction. First we report the following flipping property of layers which follows
as a direct application of Theorem 4.8.

Corollary 5.3. Assume A ∈ Sn is a Robinsonian matrix. Let τ ′ be a good SFS
ordering of A, τ ′′ = SFS+(A, τ ′), and τ = SFS+(A, τ ′′). Let L = {L0, . . . , Lr} be the
similarity layer structure of A rooted at the first vertex of τ . If x ∈ Li, y ∈ Lj with
i < j then y <τ ′′ x.

We now show some important properties of 3-good SFS orderings, that we will
use in the proof of correctness of the multisweep algorithm. First we show that some
triples in a 3-good SFS ordering can be shown to be Robinson.

Lemma 5.4. Assume A ∈ Sn is a Robinsonian matrix. Let τ be a 3-good SFS or-
dering starting at a and ending at b. Let L = {L0 = {a}, L1, . . . , Lr} be the similarity
layer structure of A rooted at a. Then the following holds:

(i) If x <τ y <τ z and (x, y, z) is not Robinson, then x, y, z ∈ Li with 1 ≤ i ≤ r.
(ii) Every triple (a, x, y) with x <τ y is Robinson.
(iii) Every triple (x, y, b) with x <τ y is Robinson.
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Proof. Let τ ′ be a good SFS order such that τ ′′ = SFS+(A, τ ′), τ = SFS+(A, τ ′′).
Let L′′ = {L′′0 = {b}, L′′1 , . . . } denote the similarity layer structure of A rooted at b,
which is compatible with τ ′′.

(i) Let x <τ y <τ z such that x, y, z do not all belong to the same layer of L and
assume that (x, y, z) is not Robinson. Then Axz > min{Axy, Ayz} and the
path (x, z) avoids y. Let π be a Robinson ordering and assume, without loss
of generality, that x <π z. Then, since (x, z) avoids y, in view of Lemma 2.4 y
cannot appear between x and z in any Robinson ordering. If y appears after
z in π then we have x <π z <π y and x <τ y <τ z, and we get a contradiction
with Lemma 3.6 (PAL), as there cannot exist a path from x to z avoiding y.
Therefore, y <π x <π z and thus Axz > min{Axy, Ayz} = Ayz. In view of
Lemma 4.6, x, y, z do not belong to three distinct layers of L (since otherwise
(x, y, z) would be Robinson). Moreover, one cannot have x ∈ Li and y, z ∈ Lj
with i < j (since this would imply Axy = Axz ≤ Ayz, a contradiction). Hence
we must have x, y ∈ Li and z ∈ Lj with i < j.

Consider now τ ′′; applying Corollary 5.3, we derive that z <τ ′′ x, y. More-
over, we cannot have that z <τ ′′ y <τ ′′ x, since we would get a contradiction
with Lemma 3.6 (PAL) as z <π−1 x <π−1 y and the path (x, z) avoids y.
Hence we have z <τ ′′ x <τ ′′ y. Summarizing, the triple (x, y, z) satisfies the
properties:

(5.1) x, y ∈ Li, z ∈ Lj , x <τ y <τ z, x <τ ′′ y, y <π x <π z.

We will now show that the properties in (5.1) (together with the inequality
Axz > Ayz) permit us to find an element x1 <τ x for which the triple (x1, y, z)
again satisfies the properties of (5.1), replacing x by x1. Then, iterating this
construction leads to a contradiction.

We now proceed to show the existence of such an element x1. As x <τ ′′ y
and x <τ y, x, y are not tied in τ , there exists x1 <τ x such that

Ax1x > Ax1y.

This implies x1 ∈ Li (recall Lemma 4.7). Moreover, the path (x1, x, z) avoids
y, since Ax1x > Ax1y and Axz > Ayz. By construction we have x1 <τ x <τ
y <τ z. We claim that

y <π x1 <π z.

Indeed, if x1 <π y, then x1 <π y <π x and thus Ax1x ≤ Ax1y, a contradiction.
Moreover, if z <π x1 then y <π x <π z <π x1, which implies Ax1z ≥
Ax1x > Ax1y and thus the triple (x1, y, z) is not Robinson. Then Ax1z >
min{Ax1y, Ayz} and the path (x1, z) avoids y. Now, as x1 <τ y <τ z and
x1 <π−1 z <π−1 y, we get a contradiction with Lemma 3.6 (PAL). So we have
shown that y <π x1 <π z.

Next we claim that x1 <τ ′′ y. Indeed, if y <τ ′′ x1 then z <τ ′′ y <τ ′′ x1
which, together with z <π−1 x1 <π−1 y and the fact that the path (x1, x, z)
avoids y, contradicts Lemma 3.6 (PAL). Hence we have shown that the triple
(x1, y, z) satisfies (5.1), which concludes the proof of (i).

(ii) This follows directly from (i), since any triple containing a is not contained
in a unique layer, and thus it must be Robinson.

(iii) Assume for contradiction that (x, y, b) is not Robinson for some x <τ y, i.e.,
Abx > min{Aby, Axy}. Then the path (b, x) avoids y. If π is a Robinson
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ordering ending at b (which exists since b is an anchor) then we must have
y <π x <π b because, in view of Lemma 2.4, y cannot appear between x and
b in any Robinson ordering. Hence, Abx > Aby. Since τ ′′ is compatible with
L′′ which is rooted at b, we must have b <τ ′′ x <τ ′′ y, and moreover x, y
belong to distinct layers of L′′. Thus x ∈ L′′i , y ∈ L′′j with i < j which, in
view of Theorem 4.8, implies y <τ x, a contradiction.

As a first direct application of Lemma 5.4(i), we can conclude that the multisweep
algorithm terminates in at most four steps when applied to a matrix A, whose similar-
ity layers rooted at the end-vertex of the first sweep σ0 all have cardinality at most 2.

Consider a 3-good SFS ordering τ of a Robinsonian matrix A with end-vertices a
and b and consider the induced order τ [S] of the submatrix A[S] indexed by the subset
S = V \ {a, b}. In the next lemmata we show some properties of τ [S]. First, we show
that τ [S] is a good SFS ordering of A[S] (Lemma 5.6). Second, we show that applying
the SFS+ algorithm to τ and then deleting a and b yields the same order as applying
the SFS+ algorithm to the induced order τ [S] (Lemma 5.7). These properties will be
used in the induction step for the proof of correctness of the multisweep algorithm in
the next subsection. We start with showing a flipping property of the second smallest
element of τ .

Lemma 5.5. Assume A ∈ Sn is a Robinsonian matrix. Let τ ′ be a good SFS
ordering of A, τ ′′ = SFS+(A, τ ′), and τ = SFS+(A, τ ′′). Let a be the first vertex of
τ . Then the successor a1 of a in τ is the predecessor of a in τ ′′.

Proof. As before, L = {L0 = {a}, L1, . . . , Lr} is the layer structure of A rooted
at a, which is compatible with τ . The slice of a in τ is precisely the first layer L1 in L.
By definition, a1 is the element of L1 coming last in τ ′′. By the flipping property
in Corollary 5.3, we know that the layer L1 comes last but one in τ ′′, just before
the layer L0 = {a}. Then a1 is the element of L1 appearing last in τ ′′, and thus it
coincides with the predecessor of a in τ ′′.

Lemma 5.6. Assume A ∈ Sn is a Robinsonian matrix. Let τ be a 3-good SFS
ordering of A with end-vertices a and b and set S = V \ {a, b}. Then τ [S] is a good
SFS ordering of A[S].

Proof. Say that a is the first element of τ and that b is its last element. Let
L = (L0, L1, . . . , Lr) be the similarity layer structure rooted at a, which is compatible
with τ . First we show that τ [S] is a SFS ordering of A[S]. For this consider elements
x, y, z ∈ S such that Axz > Axy. Then (x, y, z) is not Robinson and thus x, y, z ∈ Li
with i ≥ 1 in view of Lemma 5.4. As τ is a SFS ordering, then in view of Theorem
3.3 there exists u <τ x such that Auy > Auz. We have u 6= a (since u = a would
imply Auy = Auz) and thus u ∈ S. This shows that τ [S] is a SFS ordering of A[S].
Finally τ [S] is good since, in view of Lemma 5.5, it starts at a1, the successor of a
in τ , which is an anchor of A[V \ {a}] (and thus also of A[S]) using Theorem 3.8.

Lemma 5.7. Assume A ∈ Sn is a Robinsonian matrix. Let τ be a 3-good SFS
ordering with end-vertices a and b. Let τ+ = SFS+(A, τ) and S = V \ {a, b}. Then
τ+[S] = SFS+(A[S], τ [S]).

Proof. Say b is the first element of τ and a is its last element. Then a is the first
element of τ+ and b is its last element (Theorem 4.1). Lets consider the similarity
layer structure L = (L0 = {a}, L1, . . . , Lr) of A rooted at a, which is compatible
with τ+ (and thus we denote here by L+).

Set σ = SFS+(A[S], τ [S]). Let a1 be the predecessor of a in τ . As τ+ is clearly
also a 3-good SFS ordering then, in view of Lemma 5.5, a1 is the successor of a
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in τ+ and thus both τ+[S] and σ start at a1. Assume that σ and τ+[S] agree on
their first p elements a1, . . . , ap, but not at the next (p + 1)th element. That is,
τ+[S] = (a1, . . . , ap, x, . . . , y, . .), while σ = (a1, . . . , ap, y, . . . , x, . . .), where x, y are
distinct elements. We distinguish three cases.

Assume first that x, y are tied in τ+ (and thus in σ too). Then one must have
y <τ x (to place x before y in τ+[S]) and x <τ y (to place y before x in σ), a
contradiction. Assume now that x, y are not tied in τ+, but they are tied in σ. Then
Aax > Aay. Hence, since the similarity layer structure L of A is rooted at a, then we
have x ∈ Lj , y ∈ Lk for some j < k. This implies y <τ x (by Corollary 5.3) and thus,
since x, y are tied in σ, one would place x before y in σ, a contradiction.

Assume finally that x, y are not tied in τ+ and also not in σ. Let aj be the pivot
splitting x and y in σ so that Aajy > Aajx, with 1 ≤ j ≤ p. We claim that a is the
pivot splitting x and y in τ+[S]. For this, suppose that ai is the pivot splitting x and y
in τ+[S] for some 1 ≤ i ≤ p, so that Aaix > Aaiy and i 6= j. It is now easy to see that
i > j would imply y <τ+ x, while i < j would imply x <σ y, a contradiction in both
cases. Hence, a is the pivot splitting x, y in τ+[S] and thus Aax > Aay. Then, as L+
is the similarity layer structure of A rooted at a, x and y belong to distinct layers
of L+. Moreover, aj <τ+ x <τ+ y and the triple (aj , x, y) is not Robinson. As τ+
is a 3-good SFS ordering, we can apply Lemma 5.4 and conclude that aj , x, y must
belong to a common layer of L, contradicting the fact that x, y belong to distinct
layers of L+.

5.3. Proof of correctness of the multisweep algorithm. We can finally put
all ingredients together and show the correctness of our multisweep algorithm. We
show the following result, which implies directly Theorem 5.2.

Theorem 5.8. Let A ∈ Sn be a Robinsonian matrix, let τ1 be a good SFS ordering
of A, and let τi = SFS+(A, τi−1) for i ≥ 2. Then τn−2 is a Robinson ordering of A.

Proof. The proof is by induction on the size n of A. For n < 3 there is nothing
to prove and for n = 3 the result holds trivially. Hence, suppose n ≥ 4. Then, by the
induction assumption, we know that the following holds:

If σ1 is a good SFS ordering of a Robinsonian matrix A′ ∈ Sk with k ≤ n− 1
and σi = SFS+(A′, σi−1) for i ≥ 2, then σk−2 is a Robinson ordering of A′.

Suppose τ1 starts with a and ends with b. By Theorem 4.1, the end-vertices of any
τi with i ≥ 2 are a and b (flipped at every consecutive sweep). For any i ≥ 3, τi is a
3-good SFS ordering of A. Hence, setting S = V \ {a, b}, in view of Lemma 5.7, we
obtain that τi+1[S] = SFS+(A[S], τi[S]) for each i ≥ 3.

Consider the order σ1 := τ3[S] and the successive sweeps σi = SFS+(A[S], σi−1)
(i ≥ 2) returned by the multisweep algorithm applied to A[S] starting from σ1.

As τ3 is a 3-good SFS ordering of A, in view of Lemma 5.6 we know that σ1 is a
good SFS ordering of A[S]. Hence, using the induction assumption applied to A[S]
and σ1, we can conclude that the sweep σ|S|−2 = σn−4 (returned by the multisweep
algorithm applied to A[S] with σ1 as first sweep) is a Robinson ordering of A[S].

We now observe that equality τi+2[S] = σi holds for all i ≥ 1, using induction on
i ≥ 1. This is true for i = 1 by the definition of σ1. Inductively, if τi+2[S] = σi then
τi+3[S] = SFS+(A[S], τi+2[S]) = SFS+(A[S], σi) = σi+1. Hence, we can conclude that
τn−2[S] = σn−4 is a Robinson ordering of A[S].

Finally, using Lemma 5.4, we can conclude that all triples (x, y, z) in τn−2 that
contain a or b are Robinson. Therefore we have shown that τn−2 is a Robinson
ordering of A, which concludes the proof.
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In other words, starting with a good SFS ordering of a Robinsonian matrix A∈Sn,
after at most n − 2 sweeps we find a Robinson ordering of A. Finally, we can now
prove Theorem 5.2, since the last vertex of the first sweep σ0 in Algorithm 2 is an
anchor of A (Theorem 3.8) and thus the second sweep σ1 is a good SFS ordering.
Hence, if A ∈ Sn is a Robinsonian matrix, in view of Theorem 5.8 the multisweep
algorithm returns a Robinson ordering in at most n− 2 sweeps starting from σ1, and
thus in at most n− 1 sweeps counting also the initialization sweep σ0.

5.4. Worst case instances. We present a class of n × n Robinsonian matri-
ces, communicated to us by S. Tanigawa, for which the SFS multisweep algorithm
(Algorithm 2) needs n− 1 sweeps to terminate.

Definition 5.9. Let A ∈ Sn be the Robinson matrix defined as follows:

A1n = 0, A1i = 1 for 2 ≤ i ≤ n− 1,(5.2)
A2n = 1, Ain = 2 for 3 ≤ i ≤ n− 1,(5.3)
Aij = Ai−1,j+1 + 1 for 2 ≤ i < j ≤ n− 1.(5.4)

We will refer to (5.4) as the shifting property.

We give below an example of such a matrix A for n = 11:

A =



1 2 3 4 5 6 7 8 9 10 11

1 ∗ 1 1 1 1 1 1 1 1 1 0
2 ∗ 2 2 2 2 2 2 2 1 1
3 ∗ 3 3 3 3 3 2 2 2
4 ∗ 4 4 4 3 3 3 2
5 ∗ 5 4 4 4 3 2
6 ∗ 5 5 4 3 2
7 ∗ 5 4 3 2
8 ∗ 4 3 2
9 ∗ 3 2
10 ∗ 2
11 ∗



.

Note that the matrix A in Definition 5.9 is Robinson by construction, and therefore
(1, . . . , n) is a Robinson ordering of A. We consider the ordering

(5.5) σ0 = (2, 3, . . . , n, 1),

which can easily be checked to be a SFS ordering of A. We will consider the SFS mul-
tisweep algorithm (Algorithm 2) applied to the matrix A when taking the ordering σ0
as initial ordering. As we show below, the algorithm needs n−1 sweeps to terminate.

Theorem 5.10. Let A be as in Definition 5.9, let σ0 = (2, . . . , n, 1), and let
σi = SFS+(A, σi−1) for 1 ≤ i ≤ n − 2. Then the smallest index j for which σj is a
Robinson ordering of A is j = n− 2.

We first group properties of the matrix A needed for the proof of Theorem 5.10.



SIMILARITY-FIRST SEARCH AND ROBINSONIAN MATRICES 1793

Lemma 5.11. The following relations hold for the matrix A from Definition 5.9:

Aj,j+1 = · · · = Aj,n−j > Aj,n−j+1 for 1 ≤ j ≤ (n− 1)/2,(5.6)
Aj,n−j+1 < Aj+1,n−j+1 < Aj+2,n−j+1 = · · · = An−j,n−j+1 for 1 ≤ j ≤ n/2,(5.7)

Aj,n−j+3 > Aj,n−j+4 for 5 ≤ j ≤ (n+ 2)/2.(5.8)

Proof. Relations (5.6) and (5.7) hold for j = 1 and we use the shifting prop-
erty (5.4) to get the general case. This is analogous for relation (5.8), since it holds
for j = 5.

As a key ingredient for proving Theorem 5.10 we give the explicit description of
the successive orderings σ1, . . . , σn−2 returned by the multisweep algorithm.

Lemma 5.12. Let A be as in Definition 5.9 and let σ0 = (2, . . . , n, 1). Then the
successive orderings σi = SFS+(A, σi−1) for 1 ≤ i ≤ n−2, returned by the multisweep
algorithm applied to the matrix A, have the form

(5.9) σ2k = ((n, n− 1, . . . , n− k + 1), (k + 2, . . . , n− k − 1, n− k), (k + 1, . . . , 1)),

for even order 2k and the form

(5.10) σ2k+1 = ((1, . . . , k+ 1), (n− k− 1, . . . , k+ 2), (n− k, n− k+ 1, . . . , n− 1, n)),

for odd order 2k + 1.

Proof. We show that the successive sweeps have the desired form using induction
on the order of the sweep. In a first step, let 0 ≤ k ≤ (n− 3)/2 and assume that σ2k
has the form (5.9), i.e.,

σ2k = ((n, n− 1, . . . , n− k + 1)︸ ︷︷ ︸
τ

, (k + 2, . . . , n− k − 1)︸ ︷︷ ︸
π

, (n− k), (k + 1, . . . , 1)︸ ︷︷ ︸
ψ

);

we show that σ2k+1 = SFS+(A, σ2k) has the form (5.10), i.e.,

σ2k+1 = ((1, . . . , k + 1)︸ ︷︷ ︸
ψ−1

, (n− k − 1, . . . , k + 2)︸ ︷︷ ︸
π−1

, (n− k), (n− k + 1, . . . , n)︸ ︷︷ ︸
τ−1

).

First we claim that for any 1 ≤ j ≤ k + 1 the jth pivot is pj = j, with corresponding
ordered partition:

((1, 2, . . . , j), {j + 1, . . . , n− j}, (n− j + 1, . . . , n)︸ ︷︷ ︸
φ(j)

).

Recall from section 3.1 that, given a pivot pj at the current iteration of the SFS
algorithm, we let φ(pj) denote the queue of unvisited nodes induced by pj . Hence,
the set {j + 1, . . . , n − j} represents the current slice, i.e., the first block of φ(pj),
whose elements are not yet ordered. The claim is true for j = 1 (easy to see). Assume
this is true for j ≤ k; we show this also holds for j + 1. Indeed the next pivot is j + 1
(the vertex in the slice {j+1, . . . , n−j} appearing last in σ2k), which splits the vertex
n− j from the rest of the slice, leading to the new slice {j + 2, . . . , n− j − 1} (since
Aj+1,j+2 = · · · = Aj+1,n−j−1 > Aj+1,n−j by (5.6)). Hence, the ordered partition
becomes:

((1, 2, . . . , j, j + 1), {j + 2, . . . , n− j − 1}, (n− j, . . . , n)︸ ︷︷ ︸
φ(j+1)

).
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Hence, after the selection of the first k + 1 pivots, the ordered partition is

((1, . . . , k + 1){k + 2, . . . , n− k − 1}, (n− k, . . . , n))

= (ψ−1, {k + 2, . . . , n− k − 1}, (n− k), τ−1).

The next pivot is n− k− 1 (the vertex in the slice appearing last in σ2k). Using (5.7)
(applied to j = k+2) we know that An−k−1,k+2 < An−k−1,k+3 < An−k−1,k+4 = · · · =
An−k−1,n−k−2, so that the ordered partition becomes

(ψ−1, (n− k − 1), {k + 4, . . . , n− k − 2}, (k + 3, k + 2), (n− k), τ−1).

The next pivot is n − k − 2. As An−k−2,k+4 < An−k−2,k+5 = · · · = An−k−2,n−k−3
(using again (5.7), now applied to j = k + 3), the next ordered partition is

(ψ−1, (n− k − 1, n− k − 2), {k + 5, . . . , n− k − 3}, (k + 4, k + 3, k + 2), (n− k), τ−1).

Iterating this process one can easily see that the ordering returned by the SFS+
algorithm has indeed the form (5.10).

In a second step, let 1 ≤ k ≤ (n − 2)/2 and assume σ2k−1 is as in (5.10) (after
shifting indices), i.e.,

σ2k−1 = (1, . . . , k)︸ ︷︷ ︸
τ

, (n− k, . . . , k + 2)︸ ︷︷ ︸
π

, (k + 1), (n− k + 1, . . . , n)︸ ︷︷ ︸
ψ

.

We show that SFS+(A, σ2k−1) has the form (5.9), i.e., that it is equal to

σ2k = ((n, . . . , n− k + 1)︸ ︷︷ ︸
ψ−1

, (k + 2, . . . , n− k)︸ ︷︷ ︸
π−1

, (k + 1), (k, . . . , 1)︸ ︷︷ ︸
τ−1

).

First we claim that for j ≤ k the jth pivot is pj = n− j + 1 with ordered partition

((n, n− 1, n− j + 1), {n− j, . . . , j + 2}, (j + 1, j, . . . , 2, 1)︸ ︷︷ ︸
φ(n−j+1)

).

This is true for j = 1, because n appears last in σ2k−1 and An,1 < An,2 < An,3 = · · · =
An,n−1. Assume this is true for some j ≤ k−1; we show this also holds for j+1. Indeed
the next pivot is n− j. Moreover, by (5.7), An−j,n−j−1 = · · · = An−j,j+3 > An−j,j+2.
Hence the new pivot n − j splits the element j + 2 from the rest of the slice, and
the next ordered partition has the claimed form. Hence, after k steps, we have the
following ordered partition:

(ψ−1, {k + 2, . . . , n− k}, (k + 1), τ−1).

It remains to show that the current slice {k + 2, . . . , n− k} gets reordered as π−1 in
the next steps. The next pivot is k + 2. By (5.6) (applied to j = k + 2), Ak+2,k+3 =
Ak+2,k+4 = · · · = Ak+2,n−k−2 > Ak+2,n−k−1 ≥ Ak+2,n−k. Hence the two elements
n−k−1 and n−k are split by k+2, but as we cannot yet decide on their relative order
they are both placed in the same block after the new slice in the queue of unvisited
vertices. (Note indeed that, e.g., if k = 1, then A3,n−1 = A3,n−2 = 2.) So we get the
ordered partition:

(ψ−1, (k + 2), {k + 3, . . . , n− k − 2}, {n− k − 1, n− k}, (k + 1), τ−1).
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The next pivot is k+3. By (5.6) (applied to j = k+3), Ak+3,k+4 = · · · = Ak+3,n−k−3 >
Ak+3,n−k−2. Hence k+3 splits n−k−2 from the rest of the slice and the next ordered
partition is

(ψ−1, (k + 2, k + 3), {k + 4, . . . , n− k − 3}, (n− k − 2){n− k − 1, n− k}, τ−1).

The next pivot is k + 4, which splits n − k − 3 from the rest of the slice (using
again (5.6)). Moreover, by (5.8) (applied to j = k + 4), Ak+4,n−k−1 > Ak+4,n−k
and thus the two elements n − k − 1 and n − k get ordered with n − k − 1 coming
before n− k. Thus the ordered partition becomes

(ψ−1, (k+2, k+3, k+4), {k+5, . . . , n−k−4}, (n−k−3, n−k−2, n−k−1, n−k), τ−1).

Iterating, one can easily conclude that the final ordering returned by the SFS+ algo-
rithm indeed has the form (5.9).

We can now prove Theorem 5.10.

Proof of Theorem 5.10. Using Lemma 5.12, we find that σn−2 = (n, n− 1, . . . , 1)
for even n and σn−2 = (1, 2, . . . , n) for odd n. Hence σn−2 is a Robinson ordering of A
in both cases. Furthermore, observe that σ2k 6= σ−1

2k−1 if 2k−1 ≤ n−3 (because n−k
comes before k + 1 in both σ2k−1 and σ2k), and σ2k+1 6= σ−1

2k if 2k ≤ n− 3 (because
k + 2 comes before n− k in both σ2k+1 and σ2k). Therefore, σ1, . . . , σn−3 cannot be
Robinson orderings of A in view of Lemma 4.2. This implies that the first index j for
which σj is Robinson is indeed j = n− 2, which concludes the proof.

It is important to remark that, for the class of matrices from Definition 5.9, the
fact that n − 1 sweeps are required depends strongly on the choice of the initial
ordering σ0 from (5.5).

6. Complexity. In this section we discuss the complexity of the SFS algorithm.
Throughout we assume that A ∈ Sn is a nonnegative symmetric matrix, which is
given as the adjacency list of an undirected weighted graph G = (V = [n], E). So G is
the support graph of A, whose edges are the pairs {x, y} such that Axy > 0 with edge
weight Axy, and N(x) = {y ∈ V : Axy > 0} is the neighborhood of x ∈ V . We assume
that each vertex x ∈ V = [n] is linked to the list of vertex/weight pairs (y,Axy) for
its neighbors y ∈ N(x), and we let m denote the number of nonzero entries of A.

Theorem 6.1. The SFS algorithm (Algorithm 1) applied to an n× n symmetric
nonnegative matrix with m nonzero entries runs in O(n+m log n) time.

Proof. As in [8] for Lex-BFS, we may assume that we are given an initial order τ
of V and that the vertices and their neighborhoods are ordered according to τ (in
increasing order). This assumption is useful also for the discussion of the implemen-
tation of SFS+.

In order to run Algorithm 1, we need to update the queue φ consisting of the
unvisited vertices at each iteration. The update consists in computing the similarity
partition ψp with respect to the current pivot p and then refining φ by ψp.

To maintain the priority among the unvisited vertices, the queue φ = (B1, . . . , Bp)
is stored in a linked list, whose elements are the classes B1, . . . , Bp. Moreover, each
vertex has a pointer to the class Bi containing it and a pointer to its position in
the class, which are updated throughout the algorithm. This data structure permits
constant time insertion and deletion of a vertex in φ.

Initially, the queue φ has only one class, namely the full set V . At an iteration
of Algorithm 1, there are three main tasks to be performed: choose the next pivot,
compute the similarity partition ψp, and refine the queue φ by ψp.
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(1) Choose the new pivot p = pi. Since in Algorithm 1 the choice of the new pivot
is arbitrary in case of ties, we will choose the first vertex of the first block in φ.
This operation can be done in constant time. We then remove p from the queue φ
of unvisited vertices and we update the queue φ by deleting p from the class B1.

(2) Compute the similarity partition ψp = (C1, . . . , Cs) of the set Nφ(p) with respect
to p = pi (as defined in Definition 3.2). Here Nφ(p) = N(p) ∩ φ denotes the
set of unvisited vertices in the neighborhood N(p) of p. First we order the ver-
tices y in Nφ(p) for nonincreasing values of their similarities Apy with respect to
p, which can be done in O(|Nφ(p)| log |Nφ(p)|) time using a sorting algorithm.
Then we create the similarity partition ψp = (C1, . . . , Cs) simply by passing
through the elements in Nφ(p) in the order of nonincreasing similarities to p,
which has just been found. This task can be done in O(|Nφ(p)|) time. Finally,
we order the elements in each class Cj (increasingly) according to τ , which can
be done in O(|Nφ(p)| log |Nφ(p)|). So we have constructed the ordered partition
ψp = (C1, . . . , Cs) of Nφ(p) as a linked list, where all classes of ψp are ordered
according to τ . To conclude, the overall complexity of this second task is bounded
by O(|Nφ(p)| log |Nφ(p)|).

(3) The last task is to refine φ = (B1, . . . , Bp) by ψp = (C1, . . . , Cs) (as defined in
Definition 3.1). In order to obtain the new queue of unvisited vertices we proceed
as follows: starting from j = 1, for each class Cj of ψ, we simply remove each
vertex of Cj from its corresponding class (say) Bi in φ and we place it in a new
class B′i, which we position immediately before Bi in φ. Since both Cj and Bi are
ordered according to τ , the initial order τ in the new block B′i is preserved. Using
the above described data structure, such tasks can be performed in O(|Cj |). Once
a vertex is relocated in φ, its pointers to the corresponding block and position
in φ are updated accordingly. Hence this last task can be performed in time
O(

∑s
j=1 |Cj |) = O(|Nφ(p)|).

Recall that at iteration i we set p = pi. Then the complexity at the ith iteration
is O(1 + |Nφ(pi)| log |Nφ(pi)|). Since we repeat the above three tasks for each vertex,
then the overall complexity of Algorithm 1 is O(

∑n
i=1 (1 +Nφ(pi)| log |Nφ(pi)|)) =

O(n+m log n).

Using the same data structure as above, we can show that the SFS+ algorithm
can be implemented in the same running time as the SFS algorithm. In fact, the only
difference between the SFS algorithm and the SFS+ algorithm lies in the tie-breaking
rule. In the SFS+ algorithm, in case of ties we choose as the next pivot the vertex
in the slice appearing last in the given order σ. Recall we assumed V to be initially
ordered according to a given linear order τ , which can be easily done in linear time in
the size of the graph. Then, we showed in the proof of Theorem 6.1 that the initial
order τ is always preserved in the classes of φ throughout the algorithm. Therefore,
if we choose τ = σ−1, then the first vertex in each slice S is exactly the vertex of S
appearing last in σ.

Corollary 6.2. The SFS+ algorithm applied to an n×n symmetric nonnegative
matrix with m nonzero entries runs in O(n+m log n) time.

It follows directly from Corollary 6.2 that any SFS multisweep algorithm with k
sweeps can be implemented in O(k(n + m log n)). Indeed the only additional tasks
we need to do are the following: when we start a new SFS+ sweep we need to reorder
the vertices and their neighborhoods according to the reversal of the previous sweep,
and we need to check if the current sweep σi is a Robinson ordering, which can both
be done in O(m+ n) time.
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Alternatively, one can check at each iteration i ≥ 1 if σi = σ−1
i−1 holds, which

requires only O(n) time. Then, if this is the case, in view of Corollary 4.3 we know
that A is Robinsonian if and only if σi is a Robinson ordering. Hence, one only needs
to check once whether a given sweep is a Robinson ordering, namely when it is the
reverse of the previous one.

Another similar approach is inspired by the one used in [15] for their multisweep
algorithm to recognize cocomparability graphs. Specifically, every time we compute
an SFS ordering σi with i ≥ 2, we check if σi = σi−2. If this is the case, then we stop
(because the algorithm will loop between σi−2 and σi−1) and we check whether σi is
Robinson. In any case, as the multisweep algorithm (Algorithm 2) needs k ≤ n − 1
sweeps, it runs in time O(n2 + nm log n).

As already mentioned in section 3, if the matrix has only 0/1 entries, then there
is no need to order the neighborhood N(p) of a given pivot p, because the similarity
partition ψp has only one class, equal to N(p). For this reason, in this case the SFS
algorithm can be implemented in linear time O(m + n). Furthermore, as shown in
Theorem 5.1, three sweeps suffice in the multisweep algorithm to find a Robinson
ordering. Therefore, if A is a binary matrix, the multisweep algorithm in Algorithm
2 has an overall running time of O(m + n). This is coherent with the fact that in
the 0/1 case SFS reduces to Lex-BFS.

When the graph G associated to the matrix A is connected the complexity of
SFS and SFS+ is O(m log n). Of course we may assume without loss of generality
that we are in the connected case since we may deal with the connected components
independently. Indeed a matrix A is Robinsonian if and only if the submatrices A[C]
are Robinsonian for all connected components C of G, and Robinson orderings of the
connected components A[C] can be concatenated to give a Robinson ordering of the
full matrix A.

Finally we observe that we may also exploit the potential sparsity induced by the
largest entries of A. While G is the graph whose edges are the pairs {x, y} with entry
Axy > 0 (where 0 is the smallest possible entry as A is assumed to be nonnegative), we
can also consider the graphG′ whose edges are the pairs {x, y} with entry Axy < Amax,
where Amax is the largest possible entry of A. Let N ′(p) denote the neighborhood of
a vertex p in G′ and let m′ denote the number of entries with Axy < Amax. We claim
that the SFS (SFS+) algorithm can also be implemented in time O(n+m′ log n).

For this we modify the definition of the similarity partition of a vertex p, which
is now a partition of N ′(p) (so that the vertices y 6∈ N ′(p) have entry Apy = Amax)
and the refinement of the queue φ by it. While we previously built the queue φ of
unvisited vertices using a push-first strategy (put the vertices with highest similarity
first), we now build the queue with a push-last strategy (put the vertices with lowest
similarity last).

7. Conclusions. In this paper we have introduced the new search algorithm
similarity-first search (SFS) and its variant SFS+, which are generalizations to weighted
graphs of the classical Lex-BFS algorithm and its variant Lex-BFS+. The algorithm is
entirely based on the main task of partition refinement, and it is conceptually simple
and easy to implement. We have shown that a multisweep algorithm can be designed
using SFS and SFS+, which permits us to recognize if a symmetric n × n matrix is
Robinsonian and if so to return a Robinson ordering after at most n− 1 sweeps. We
believe that this recognition algorithm is substantially simpler than the other existing
algorithms. Moreover, to the best of our knowledge, this is the first work extending
multisweep graph search algorithms to the setting of weighted graphs (i.e., matrices).
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Our algorithm can also be used to recognize Robinsonian dissimilarities. Recall
that a matrix D ∈ Sn is a Robinson dissimilarity matrix if Dxz ≥ max{Dxy, Dyz} for
all 1 ≤ x < y < z ≤ n, and a Robinsonian dissimilarity if its rows and columns can
be simultaneously reordered to get a Robinson dissimilarity matrix. Clearly D is a
Robinsonian dissimilarity matrix if and only if the matrix A = −D is a Robinsonian
similarity matrix. Therefore, one can check whether D is a Robinsonian dissimilarity
by applying the SFS-based multisweep algorithm to the matrix A.

Alternatively, one may also modify the SFS algorithm so that it can deal directly
with dissimilarity matrices. Say D is a nonnegative dissimilarity matrix and G is
the corresponding weighted graph with edges the pairs {x, y} with Dxy > 0. Then
we can modify the SFS algorithm as follows. First, we now order the vertices in
the neighborhood N(p) of a vertex p for nondecreasing values of the dissimilarities
Dpy (instead of nonincreasing values of the similarities Apy as was the case in SFS).
Then we construct the (dis)similarity partition ψp of N(p) by grouping the vertices
with the same dissimilarity to p, in increasing values of the dissimilarities. Finally,
when refining the queue φ by ψp, we apply a push-first strategy and place the ver-
tices with lowest dissimilarity first. The resulting algorithm, which we name DiSFS,
standing for dissimilarity-search first, has the same running time in O(n + m log n).
Moreover, as explained above at the end of section 6, it can also be implemented
in time O(n + m′ log n), where m′ denotes the number of entries of D satisfying
Dxy < Dmax and Dmax denotes the largest entry of D. Using DiSFS we can de-
fine the analogous multisweep algorithm for recognizing Robinsonian dissimilarities
in time O(n2 + nm log n) (or O(n2 + nm′ log n)).

As we have seen in subsection 5.4, there exists a family of n × n Robinsonian
matrices where n−1 sweeps are needed. It is an open question whether the multisweep
algorithm can be modified in such a way that it would need only a constant number
of sweeps, in which case it might become competitive with the optimal algorithm of
[26]. For this one would need to define another variant of SFS. A possible variant
is when ties are broken using the SFS orderings returned by two previous sweeps
(instead of only one as in the SFS+ variant). This approach has been succesfully
applied to Lex-BFS in [13] for the recognition of interval graphs in five Lex-BFS
sweeps; there the last sweep used is the variant Lex-BFS∗, which breaks ties using
the linear order returned by two previous sweeps. Dusart and Habib [15] conjecture
that a similar approach applies to recognize cocomparability graphs with a constant
number of sweeps. Investigating whether such an approach applies to Robinsonian
matrices will be the subject of future work.

Finally, it will be interesting to investigate whether the new SFS algorithm can be
used to study other classes of structured matrices and in the general area of similarity
search and clustering analysis.
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