
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE STATISTIEK
(DEPARTMENT OF MATHEMATICAL STATISTICS)

R. KAAS

THE COMPLEXITY OF DRAWING AN ORDERED RANDOM
SAMPLE

Preprint

~
MC

SW 51/77 OKTOBER

2e boerhaavestraat 49 amsterdam

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301648261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PJii.nted a.t -the Ma.thema.:Ucal Centll.e,· 49, 2e BoeJthaa.vru.tlriutt, Am6zvulam.

The Ma.thema.:Ucal Centll.e, 6ounded -the 11-,th 06 FebJtutVty 1946, ·,l.6 a. non­
pM 6U w.tltr.Lti..o n a,im,i.ng a.t zhe pJtomo:Uo n o 6 pwr.e ma.thema.:Uc.6 a.nd ..i.:a
a.pp.Uc.a:ti.on6. It; ,l.6 .6pon6oJted by zhe Nezhvci.a.nc:16 GoveJtnment fuou.gh zke
Nuhelli.a.nc:16 01r.ga.niza.:Uon 6oJt zke Adva.nc.ement 06 Pwr.e Rruea.Jtc.h (Z.W.O).

AMS(MOS) subject classification scheme (1970): 62D05,62K99

The complexity of drawing an ordered random sample*)

by

R. Kaas

ABSTRACT

Every random sample of size k from {1,2, ••. ,n} can be drawn in ex­

pected time O(k log k). We prove that, provided a logarithm costs one com­

putation step, O(k) is sufficient to take a random sample without replace­

ment.

Algorithms feasible for implementation on small hand-computers are

given.

KEY WORDS & PHRASES: random sampling, algorithms, complexity.

This report will be submitted for publication elsewhere

I • INTRODUCTION

In this report we consider the average time complexity of drawing

a sorted random sample (r.s.) of size k from an ordered population of known

finite size n, represented by {1,2, .•. ,n}. The second section is devoted to

algorithms that do the sorting only after the whole sample has been drawn.

We prove that in this way O(k log k) average time is sufficient to draw a

sample either with or without replacement. Since sorting the sample requires

that the whole sample resides in memory, these algorithms are not suitable

for small pocket calculators, unless k is very small. Quite often the rele­

vant variables of the population can only be accessed sequentially: it takes

time O(ji-jj) to go from element i to element j, so collecting all the data

in the sample alone requires a time at least proportional ton. If this is

so it is rather pointless to draw the sample in a time shorter than O(n).

The remainder of this report is mainly devoted to O(n) algorithms,

suitable also for small pocket calculators. They directly yield an ordered

sample by deciding for each consecutive element how many times that element

should be included in the sample. It is clear that by this method a sorted

sample can be obtained. In section 3 we give a theorem supplying us with a

method to draw a sorted random sample. BEBBINGTON's [2] algorithm for dra­

wing a sorted r.s. without replacement is a direct consequence of this

theorem. A slight simplification of Bebbington's algorithm results in an

algorithm by HAMAKER [3]. He suggests a method resulting in a random sample­

size following a binomial distribution. This disadvantage can be overcome

by iterating the method until the desired sample-size is reached. The power

of this algorithm lies in the fact, that a trick exists to let it run in

an expected time of O(k) rather than in time O(n). We prove that 2log2log k

iterations with an average length (in computing time) of O(k) suffice to

. · *) · I I obtain a sorted r.s. of size k with E t-k ~ 2. This algorithm, however,

supposesthat a logarithm can be taken in constant time. If we change the

procedure to the effect that, after an iteration resulting in a sample

with size larger thank, we apply Bebbington's algorithm to reduce the sample

to the right size, we obtain an O(k) algorithm.

*) random variables are underlined

2

In the fifth section we return to sampling with replacement •. According

to Hamaker a slight modification of the sequential algorithm described in

section 4 yields a way to obtain an ordered r.s. with replacement. We will

show that the result is actually a random increasing row, cf. section 5.

Theorem 3.1 however, directly provides a method of drawing a sorted random

sample. In the last section we give ALGOL-68 source texts of those sequen­

tial algorithms that can be progranuned on small hand computers, as they do

not need more than a constant number of registers.

We conclude the introduction by giving some examples of practical

situations to illustrate where which of our algorithms might be useful.

Suppose you are at the beginning of a street containing n houses, k of whicli

must be visited for an inquiry. Bebbington's algorithm, i.e. deciding with

varying probability for every house if it will be included in the sample,

is suggested if you have to walk the distances between the houses (sequential

access). If you have a car at your disposal, the distances. between the sample­

elements cost a more or less constant amount of time: this is called random

access. In this case the Hamaker algorithm is suggested, iterating the pro­

cedure, i.e. driving back to the beginning of the street if the sample is

too small and drawing extra elements, if a fixed sample size must be obtained.

The iteration is stopped as soon as after an iteration step the sample size

obtained is not less thank. After this a part of the data is discarded by

scanning the sample using Bebbington's algorithm (if necessary).

Another example with sequential access only occurs when the dat~ are

on a sequential file in a computer. The statistical program library SPSS

provides a means of drawing a random sample from the data, using the 0(n)

version of Hamaker's algorithm. Though the non-fixed sample size is not a

serious disadvantage for reasonably large k, as Hamaker pointed out,

Bebbington's algorithm would, at the cost of n divisions, result in an r.s.

of predetermined size.

2. ORDERING THE SAMPLE AFTER HAVING DRAWN IT

In practice if we want a random sample with replacement we usually

perform k random drawings from {1,2, ..• ,n} and sort the results to obtain

3

an ordered r.s. of size k from {1,2, ... ,n}. For an r.s. without replacement

,,re could draw randomly first from { 1,2, ... ,n} and renumber, then from

{1,2, •.. ,n-l} and renumber, etc., until we have a sample of k distinct ele­

ments. This is realized more conveniently by drawing from {1,2, ... ,n} each

time, and re~drawing should the number drawn already be in the sample.
*)

A/H/U [I] describe a suitable data structure: the binary search tree, to

represent the sample. It must be possible to insert elements in the sample,

and also to test if an element is in the sample. The binary search tree

supports these intructions, and also the intructions min (giving the minimal

element currently in the sample) and delete (the inverse of insert). Using

the instructions min and delete one can easily obtain an ordered r.s. from

the tree. Theorem 4.5 in A/H/U [l] states that m instructions of this kind

can be performed in average time O(m log m). We are now ready to state the

following theorem:

THEOREM 2.1. An ordered random sample of size k from the set {1,2, .•. ,n}

can be drawn in O(k log k) average time 3 either with or without replacement.

PROOF. The case with replacement is easy: the drawings each take constant

time, and k numbers can be sorted in time O(k log k). Let us now consider

sampling without replacement. Consider the following algorithm:

(l) while k 1 < k

(2) do u:= ~;

(3) if not member(u)

(4) then insert(u); kl:= kl+ I

(5) fi

(6) od;

Here :u represents a random drawing from {1,2, ... ,n}, kl is the number of

*) A binary search tree is a labelled binary tree such that for every node
all labels in the left hand subtree are smaller and those in the right
hand subtree are larger than its own label. Starting at the root of the
tree we descend in the tree having a three way choice at every node: go
into the left hand subtree, stop the process or go into the right hand
subtree depending on whether the label of the node is larger, equal to
or smaller than the element looked for.

4

elements already in the sample and is initially O, and k is the required

sample size. Member(u) and insert(u) are routines manipulating the initial­

ly empty binary search tree.

Now let_!. be the ruE;nin.g-time of this algorithm;~ is the number of

times the loop is·executed. Assume without loss of generality that k ~ ½n

(if not, draw a sorted r.s. of size n-k and take its complement, which can

be done in time O(k)). We want to prove 0 EJ:_ = O(k log k). Since k/n ~ ½ the

expected running time of this algorithm certainly does not decrease if we

replace the test at line 3 by a test failing with probability½ each time but,

otherwise taking the same time as a member instruction.

Suppose we change the algorithm in this way, obtaining a running-time

t' and n' executions of the loop. Now~' has a negative binomial (k,½) dis­

tribution. The already mentioned theorem from A/H/U [l] implies the existence

of constants c and d, only dependent of the machine and the manipulating

routines, such that

E(J:.'I ~• = n) ~ c.n.log n + d.

But
00

L n log n P(~' = n) =
n=k

00

= L n log n 1 n t-1) = 2 k-1 n=k

00

= 2k r log n 1n+I (n) = 2
n=k k

00

= 2k r log(m-1) Im (m~ 1). 2
m=k+l

This last sum equals E(log(~-1)), if the r.v. ~ has a negative binomial

(k+I,½) distribution. Now applying Jensen's theorem one obtains directly

So

E(log(~-1)) ~ log(E(~-1)) = log(2k+l).

00

Et~ Et' ~ l (en.log n + d) P(n' = n) = O(k log k).
n=k

If after the previous algorithm we execute the following loop:

for kl:= k step -I until 1

do intosample(min); delete(min) od;

we obtained an ordered r.s. without replacement 1.n time O(k log k). D

3. DRAWING A SAMPLE ELEMENT BY ELEMENT; BEBBINGTON'S ALGORITHM

kn
Suppose i_' denotes the frequency of element n in a rm_dom sample

of size k from {1,2, .•. ,n}. Consider the following procedure for taking a

sample:

1. Let f be the result of a drawing from the distribution of fk,n.

2. Draw a random sample of size k-f from {1,2, .•. ,n-1} and sort it.

3. Concatenate the result of 2 with f times element n.

THEOREM 3.1. This procedure results in an ordered random sample of size k
~

from the population {1,2, ... ,n}.

PROOF. Because of the probability of a sample with f occurrences of

element n is what it should be. Because of 2 all unordered samples with

f occurrences of element n have equal probability, and because of 2 and

3 the sample will be ordered. D

5

It does not make any difference if in step 2 we draw the sorted r.s. by

considering at every stage the distribution of the highest numbered element:

the proof then goes by induction on n. For a sample without replacement the

distribution of fk,n is given by:

This follows by

total number of

= 1) = l - P(fk,n = O) = k
n

n-1 dividing the number of samples containing n: (k_ 1) by the
n samples (k). Now direct application of the above theorem

yields the correctness of the algorithm described by BEBBINGTON [2] for

drawing an ordered r.s. without replacement:

6

ALGORITHM 3 • l •

I. Draw from an alternative (k/n) distribution.

2. In case of a success, lower k by I, and enter the element consi­

dered into the sample.

3. Lower n by 1, and proceed for the next element with 1., applying

the new values of n and k, until k = 0.

4. DRAWING WITH FIXED PROBABILITY OF SELECTION

In algorithm 3.1 we selected elements with probability of selection

equal to the proportion of elements still to be selected. In this section

we consider what happens if we select every element with a fixed probabi­

lity p. Only sampling wihtout replacement is dealt with. The following can

be said about the performance of this modified scheme in drawing an ordered

random sample.

THEOREM 4.1. If we change algorithm 3.1 so that every element will be

selected with fixed probability p, the result is a sample with a binomially

(n,p) distributed size. Under this scheme every sample of size k has an

equal probability.

PROOF. The sample size is equal to the number of successes inn independent

trials, each with probability p of sucess. For a sample size k exactly k

successes must have occurred, and n-k failures. The probability of such a
k n-k sample is equal top (1-p) . D

If the population size is known this scheme in itself is of minor importance.

It can simply be replaced by algorithm 3.1, and then one obtains a predeter­

mined sample size. The disadvantage of a binomially (n,l) distributed sample
n

size must not be overestimated. HAMAKER [3] showed, that the variance of the

sample mean as an estimator of the population mean increases by only a factor

1 +¾,provided the sampling procedure is repeated until a non-empty sample

is obtained. Assuming taking a logarithm can be done in one step, however,

the mean running time of this algorithm can be improved from O(n) to O(k).

In the sequel the random vector (~1,x2 , ,~k) will denote the sample

7

obtained with the algorithm of the preceding theorem with probability of

selection p. Let the r.v. ~ satisfy P(~=O) = l and define for i = 1,2, .• ,~

the r.v. 's d., the distances between sample elements, by
-1.

d.
-l.

def
~i - ~i-1.

The following theorems hold.

THEOREM 4.2. AZZ d. have a geometric(p) distribution.
-1.

PROOF. For a distanced.= d the (i-l)st success must be followed by a
-l.

sequence of d-1 failures and a success. D

THEOREM 4.3. If~ has a uniform (O,l) distribution~ the r.v. i, defined by

def
d =

has a geometric (1-q) distribution~ with O < q < l.

PROOF. Let d be an arbitrary natural number. Then

P(i = d) = P([qlog u] = d - l) =

q [d d-1] = P(log~ E d-1,d)) = P(~ E (q ,q) =

= q d-1 (l-q). □

It is clear that these two theorems yield a method of drawing random distan­

ces in one step, so we can draw an ordered r.s. of binomially (n,p) distri­

buted size~. in a time proportional to~- So we have an algorithm with an

O(k) average running time, if we take k = E~ = n.p.

We will now consider what happens if we try to remove the disadvan­

tage of a non-fixed sample-size by using the same algorithm for either draw­

ing extra elements of for removing elements from the sample, until the

desired sample-size is obtained. Let us formalize this idea in the following

algorithm.

ALGORITHM 4.1. (Drawing an r.s. of size k from {1,2, ... ,n}).

8

Step I k Use the method of drawing random distances with parameter q_ = l - n
to obtain a sample of size k 1•

Step i+l Suppose k., the sample size obtained by the first i steps has the
-1

value k .. If k. = k, we can stop the procedure. If k. < k, just as
1 1 1

in step I a sample is drawn from the remaining n - k, population
1

elements, with parameter q = (n-k)/(n-k.). If k.
1 1

> k, we use the

method of step I, to remove elements from the k. sample elements,
k 1

taking q = k-.
1

THEOREM 4.4. Supppose ~ 1,~2, .•• are defined as in the previous algorithm,

then the following properties hold:

a) k 1 has a binomial (n, ~) distribution.
- n k-k.

b) k. I - k. jk.
-1+ -1 -1

= k. < k has a binomial (n-k., -k1) distribution.
i 1 n- .

c) k. - k. I jk.
-1 -1+ 1

k•-k 1
= ki > k has a binomial (ki, ~) distribution.

1

PROOF. This follows directly from theorem 4. 1, the equivalence of the

sampling schemes and the choices of the parameter q. O

We have a row of binomially dis.tributed r.v. 1 s, the expectation of every term

being equal to the absolute deviation from the mean of the preceding term.

Suppose m = r21ol1og kl, where rtl d~f -[-t]. How close do m iterations of

algorithm 4.1 bring us to our goal: a sample of size k. We will prove, that

the resulting sample size k satisfies Elk - kl ~ 2. After them-th step
--m --m

we proceed with an unspecified tail process, and expect to have to do only

a few steps. First we need the following simple lemma:

LEMMA 4. I. For every r.v. X the following inequalities hold: -

(4. 1) Ex~ ;;;;-
(4.2) El~ - E~j ~ vvar(_!).

PROOF. 0 ~ E(~ - E~) 2 = E~2 - (E~) 2, implying (4.1). (4.2) follows from

applying (4.1) to the r.v. x_ = I~ - E~I- 0

THEOREM 4.5. For I~ i ~ m the following inequality holds:

2
ok
-i+I

PROOF.

k-k.
(n-k.) -k1 n-kk < k - k. if k > k.,

1 n-. n- . 1 1
1 1

if k = k.,
1

< k. - k if k < k ..
1 1

so always var(k. 1 lk.=k.) ~ jk. - kj. As for every k.
-1+ -1 1 -1 1

E(k. l lk.=k.) = k,
-1+ -1 1

also

crk2 = E(var(k. 1 lk.)) + var(E(k. 1 lk.)) ~
~+! ~+ ~ ~+ ~

~ El~i - kl ~ crk. because of (4.2). D
-1

COROLLARY 4.1. Elk - kj ~ 2. -m ~

k \lk. PROOF. Let p = Then ok = \!np(l-p) < \!np = By the definition n
-1

2m ((1)m) I m-1
2 ~ k, so k 2 ~ 2, and cv'k/ < 2)) ~ 2.

Because of the preceding theorem, for every 1 = 2,3, ... ,m

so

so again with (4.2) Elk - kl ~ 2. 0
-m

of m,

We have determined the average number of iterations algorithm 4.1 takes,

but we have said nothing about their length. The first step is easily seen

to have an average length of

sample. If Is. I < k, we have
1

O(k). Let i > I and let S. be the "current"
1

to draw elements from {1,2, ... ,n}\S.; if
1

Is. I > k, we draw from S ..
1 1

Our method with jumps permits us to choose the

9

We will prove an interesting lemma, based on the following inequalities

proven by UHLMANN [4]:

P(x k[n,
k

2 P(~ kin, k+l k n-1
I , s n-1) ~ ~ s n+1), s -2-'

n >

P(x k[n, k ! P(~ kin,
k+l

k n-1
1. s n-1 s 2 s s n+1), ~ -2- '

n >

Since clearly P(~ ~ cjn,p 1) > P(x s cln,p2) if P1 < P2• and since

k/n · k k+l k 1,2, ... ,n-l, 2,3, ... , that < mm{ ln-1 • ln+l }, = n = we see

P(x skin,~) > I

- n 2

11

for n = 2,3, ... and k = 1,2, ... ,n-1. Fork= 0 or k = n and for n = 1 this
b . . 1 (n n-k) also clearly holds. By looking at the complementary inomia , n r.v.

we find that also

P(x ~kin,~)>!-
- n

By the above discussion we have proven:

LEMMA 4.2. The median of a binomial (n, ~) r.v. is k. n

But this means that P(i_ > i) s
-1

2 ' and so Ei s 2. We formulate the main

result of this paragraph in the following theorem.

THEOREM 4.6. A sorted random sample of size k from the population {1,2, ... ,n}

can be dra:um in time O(k) 3 provided we assume taking a logarithm is a basic

computation step.

5. SAMPLING WITH REPLACEMENT

A sample with replacement arises with a sampling method admitting an

element already in the sample again to he chosen in the sample. To obtain

such a sample with methods similar to those of algorithm 3.1 and theorem

4.1 after having selected an element we do not proceed with the next element,

but decide by a random drawing if the same element is to be included again.

We start to process an element only after the rejection of the previous

12

element. Proceeding this way we get a,non-decreasing row of elements from

the population. Suppose~ is the length of the row we get by each time rejec­

ting with fixed probability q. Now the r.v. k + n has a negative binomial

(n,q) distribution, since it equals the number of independent experiments we

have to perform to obtain then-th success, a rejection being a success. By

a suitable choice of q a row of expected size k results. If dis the diffe­

rence between two successive row elements, the r.v. ~ + 1 has a geometric(q)

distribution. Just as in the preceding section we may simulate the random

drawing procedure by drawing random distances d' = [qlog ~],~being uniform­

ly (0,1) distributed. A distance~,= 0 means that the same element has to be·

put in the sample once again.

After r21og2log kl iterations we have a non-decreasing row of a length

~ with El~ - kl s 2, in a total computing time O(k) on the average. It is

also possible to obtain a non-decreasing row of a predetermined length k

directly by rejecting in the j th drawing with probability

n - n. -

n-n.-l+k-r.'
-J -J

'-

if before the j th drawing r. elements are in the row and n. elements have
-J -J

been rejected. It can be proved that with the methods described above all

rows of a given length have the same probability.

Unjustly HAMAKER [3] presents the above method as a way to draw an

r.s. with replacement. It is clear that, given the resulting length,~ random

element of the set of non-decreasing rows of population elements results.

The definition of an ordered r.s., however, requires that a sorted random

sample is delivered. It may occur that a non-decreasing row has more than

one original (under the operation of sorting) in the set of unordered samples.

What is wrong can be understood from the following simple example:

EXAMPLE 5.1. Suppose we want an ordered r.s. of size 2 from the set {1,2}.

The following unordered samples may arise:

(1,1), (1,2), (2,1), and (2,2).

So the probability of the ordered random sample 1,2 equals½, Hamaker's

method gives all-non-decreasing rows of length 2

1 , 1 , 1 , 2 and 2 , 2

equal probability. D

This difficulty does not exist for drawing without replacement, since in

this case every increasing row of length k has exactly k! originals under

the operation of ordering in the sample space.

13

It is possible to derive a correct algorithm from our theorem 3.1.
kn

The frequency!.' of element n in an r.s. with replacement of size k has a

binomial (k, ..!.) distribution. So our problem has been reduced to generating
n

random drawings from binomial distributions. This might be done by perform-

ing alternative (..!.) drawings k times and counting the number of successes.
n

In this way, however, O(nk) computing time is used. A more efficient way to

do it is by computing the inverse of the binomial d.f, in an argument that

is obtained by a random drawing from (0,1), using a recurrence relation

between binomial probabilities. The correctness of the following algorithm

is a direct consequence of the already mentioned theorem 3. l and the above

discussion.

ALGORITHM 5.1 (Drawing an r.s. with replacement from {l, ..• ,n}).

l. Let u be a pseudo random number between O and I.
2 Lt O d t (1 _nl)k = p(!_k,n = .') . e 1 = an compu e p = qo = - 1 •

3. if p > u, proceed with 6.

4. Add 1 to i, compute q. = P(fk,n = i) by using the binomial
1

recurrent relation

q.
1

(k-i+l)
= qi-I . i(n-1)

5. Add q. top, sop=
1 I

j~i
q., and proceed with 3.

J

6. Include the current element i times in the sample, replace

k by k-i and n by n-1 and continue with I, using the new values

of k and n.

6. SOURCE-TEXTS OF ALGORITHMS

In this section we give ALGOL-68 source-texts of those algorithms

described in sections 3, 4 and 5, that are suitable for small hand computers.

The following identifiers must have been declared in an outer block:

14

f, n, and k are integer variables; n initially equals the size of

the population, k equals the required sample-size;

- u, p and q are real variables;

- intosample(n,f) is a procedure that causes element n to be included

in the sample with frequency f; the second parameter is omitted in

the case of sampling without replacement, and then it is supposed

to be l;

- random is a real procedure computing the next number in a row of

pseudo independently uniformly (0,1) distributed numbers.

PROGRAM 6.1. (Source-text of algorithm 3.1, Bebbington's algorithm for

drawing an r.s. wihtout replacement)

begin for n:= n step -I until 1 while k > 0

do if random< k/n --

od

then intosample(n); k:= k - I

fi

end

This algorithm is reconnnended if the data organization is sequential; it

takes O(n) time, but the result always is an ordered r.s. of size k. For

progrannning simplicity all programs in this section deliver the sample in

reversed order. The following two programs are descr,ibed theoretically in

section 4; the first one should never be used, since it is hardly simpler

than the

a sample

previous one, it has the same O(n) running time, but it results in

with binomially (n,~) distributed size. The second program 6.3 has
n

the same disadvantage, but its expected running time is O(k).

PROGRAM 6.2. (Drawing an r.s. without replacement of expected size k).

begin p:= k/n;

end

for n:= n step -1 until l

do if random< p

then intosample(n)

fi

od

PROGRAM 6.3. (Faster implementation of program 6.2)

begin f:= n + 1; q:= 1 - k/n;

end

while f > n do f:= entier(log(l - random)/log(q)) + 1 od;

while f ~ n

do intosample(f);

f:= f + entier(log(l - random)/log(q)) + 1

od

15

The second line of the program ensures that the resulting sample-size is

unequal to zero. Instead of random we use 1 - random, since random may be

zero. This program works best if the data-organization permits easy forward

access, by which we mean that the time needed to go from data-item l Jto data­

item l+ m lies between 0(1) and O(m). If the resulting sample-size is ~' the

running time of this algorithm is O(k), so the average running time equals

E(O(k)) = O(E(k)) = O(k).

Our last program, described theoretically in section 5, draws an r.s.

of size k with reulacement. The running time is O(n+k), as we,will show, so

it requires a sequential organization of the data.

PROGRAM 6.4. (Drawing a s~ple with repla5'.ement of fixed size)

begin while k > 0 & n >

end

do f:= O; p:= q:= (1

while p < u

1 k -) ; u:= random;
n

do q:= q * (k-f) / ((f+l) * (n-1));

f:= f + I;

p:= p + q

od;

intosample(n,f); k:= k - f; n:= n - 1

od;

into sample (I , k)

Line 1 of this program ensures that the sampling is stopped when either

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

the sample is full (k=O) or only one element is left to be considered (n=I).

In the second line the frequency f, the left-hand tail probability u and p

16

and q are initialized, with

q = P(fk,n = f), and p = 2
j~f

q.,
J

with fk,n as in the previous section, fas in the program. In the loop of

lines 4-8 the inverse binomial (k, ..!..) distribution function is computed n
for argument u, using a recurrence relation between binomial probabilities

(line 4). The number of times the check in line 3 is performed is equal to

one plus the resulting f. So the total running time of the algorithm is

proportional ton plus the sum of the resulting f-values, so the algorithm

runs in time O(n+k).

We conclude by remarking that all programs of this section can easily

be adapted to run on small pocket calculators. Random number generators are

often available as a subroutine, but are easily programmed anyhow. The into­

sample procedure can be implemented by e.g. displaying n followed by its

frequency, whenever it is positive.

REFERENCES

[1] AHO, A.V., J.E. HOPCROFT & J.D. ULLMAN, The design and Analysis of

Computer Algorithms, Addison Wesley, Reading Mass. (1974).

[2] BEBBINGTON, A.C., A simple method of Drawing a Sample Without RepJacement,

Applied Statistics 24 (1975), 1, p.136.

[3] HAMAKER, H., An Alternative Procedure for taking a Random Sample, Statis­

tica Neerlandica 29 nr. 2 (1975).

[4] UHLMANN, W., Vergleich der hypergeometrischen mit der Binomial-Verteilung

Metrika, IO (1966), p.145-148.

