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The complexity of drawing an ordered random sample*) 

by 

R. Kaas 

ABSTRACT 

Every random sample of size k from {1,2, ••. ,n} can be drawn in ex­

pected time O(k log k). We prove that, provided a logarithm costs one com­

putation step, O(k) is sufficient to take a random sample without replace­

ment. 

Algorithms feasible for implementation on small hand-computers are 

given. 

KEY WORDS & PHRASES: random sampling, algorithms, complexity. 
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I • INTRODUCTION 

In this report we consider the average time complexity of drawing 

a sorted random sample (r.s.) of size k from an ordered population of known 

finite size n, represented by {1,2, .•. ,n}. The second section is devoted to 

algorithms that do the sorting only after the whole sample has been drawn. 

We prove that in this way O(k log k) average time is sufficient to draw a 

sample either with or without replacement. Since sorting the sample requires 

that the whole sample resides in memory, these algorithms are not suitable 

for small pocket calculators, unless k is very small. Quite often the rele­

vant variables of the population can only be accessed sequentially: it takes 

time O(ji-jj) to go from element i to element j, so collecting all the data 

in the sample alone requires a time at least proportional ton. If this is 

so it is rather pointless to draw the sample in a time shorter than O(n). 

The remainder of this report is mainly devoted to O(n) algorithms, 

suitable also for small pocket calculators. They directly yield an ordered 

sample by deciding for each consecutive element how many times that element 

should be included in the sample. It is clear that by this method a sorted 

sample can be obtained. In section 3 we give a theorem supplying us with a 

method to draw a sorted random sample. BEBBINGTON's [2] algorithm for dra­

wing a sorted r.s. without replacement is a direct consequence of this 

theorem. A slight simplification of Bebbington's algorithm results in an 

algorithm by HAMAKER [3]. He suggests a method resulting in a random sample­

size following a binomial distribution. This disadvantage can be overcome 

by iterating the method until the desired sample-size is reached. The power 

of this algorithm lies in the fact, that a trick exists to let it run in 

an expected time of O(k) rather than in time O(n). We prove that 2log2log k 

iterations with an average length (in computing time) of O(k) suffice to 

. · *) · I I obtain a sorted r.s. of size k with E t-k ~ 2. This algorithm, however, 

supposesthat a logarithm can be taken in constant time. If we change the 

procedure to the effect that, after an iteration resulting in a sample 

with size larger thank, we apply Bebbington's algorithm to reduce the sample 

to the right size, we obtain an O(k) algorithm. 

*) random variables are underlined 
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In the fifth section we return to sampling with replacement •. According 

to Hamaker a slight modification of the sequential algorithm described in 

section 4 yields a way to obtain an ordered r.s. with replacement. We will 

show that the result is actually a random increasing row, cf. section 5. 

Theorem 3.1 however, directly provides a method of drawing a sorted random 

sample. In the last section we give ALGOL-68 source texts of those sequen­

tial algorithms that can be progranuned on small hand computers, as they do 

not need more than a constant number of registers. 

We conclude the introduction by giving some examples of practical 

situations to illustrate where which of our algorithms might be useful. 

Suppose you are at the beginning of a street containing n houses, k of whicli 

must be visited for an inquiry. Bebbington's algorithm, i.e. deciding with 

varying probability for every house if it will be included in the sample, 

is suggested if you have to walk the distances between the houses (sequential 

access). If you have a car at your disposal, the distances. between the sample­

elements cost a more or less constant amount of time: this is called random 

access. In this case the Hamaker algorithm is suggested, iterating the pro­

cedure, i.e. driving back to the beginning of the street if the sample is 

too small and drawing extra elements, if a fixed sample size must be obtained. 

The iteration is stopped as soon as after an iteration step the sample size 

obtained is not less thank. After this a part of the data is discarded by 

scanning the sample using Bebbington's algorithm (if necessary). 

Another example with sequential access only occurs when the dat~ are 

on a sequential file in a computer. The statistical program library SPSS 

provides a means of drawing a random sample from the data, using the 0(n) 

version of Hamaker's algorithm. Though the non-fixed sample size is not a 

serious disadvantage for reasonably large k, as Hamaker pointed out, 

Bebbington's algorithm would, at the cost of n divisions, result in an r.s. 

of predetermined size. 

2. ORDERING THE SAMPLE AFTER HAVING DRAWN IT 

In practice if we want a random sample with replacement we usually 

perform k random drawings from {1,2, ..• ,n} and sort the results to obtain 
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an ordered r.s. of size k from {1,2, ... ,n}. For an r.s. without replacement 

,,re could draw randomly first from { 1,2, ... ,n} and renumber, then from 

{1,2, •.. ,n-l} and renumber, etc., until we have a sample of k distinct ele­

ments. This is realized more conveniently by drawing from {1,2, ... ,n} each 

time, and re~drawing should the number drawn already be in the sample. 
*) 

A/H/U [I] describe a suitable data structure: the binary search tree, to 

represent the sample. It must be possible to insert elements in the sample, 

and also to test if an element is in the sample. The binary search tree 

supports these intructions, and also the intructions min (giving the minimal 

element currently in the sample) and delete (the inverse of insert). Using 

the instructions min and delete one can easily obtain an ordered r.s. from 

the tree. Theorem 4.5 in A/H/U [l] states that m instructions of this kind 

can be performed in average time O(m log m). We are now ready to state the 

following theorem: 

THEOREM 2.1. An ordered random sample of size k from the set {1,2, .•. ,n} 

can be drawn in O(k log k) average time 3 either with or without replacement. 

PROOF. The case with replacement is easy: the drawings each take constant 

time, and k numbers can be sorted in time O(k log k). Let us now consider 

sampling without replacement. Consider the following algorithm: 

( l ) while k 1 < k 

(2) do u:= ~; 

(3) if not member(u) 

(4) then insert(u); kl:= kl+ I 

(5) fi 

(6) od; 

Here :u represents a random drawing from {1,2, ... ,n}, kl is the number of 

*) A binary search tree is a labelled binary tree such that for every node 
all labels in the left hand subtree are smaller and those in the right 
hand subtree are larger than its own label. Starting at the root of the 
tree we descend in the tree having a three way choice at every node: go 
into the left hand subtree, stop the process or go into the right hand 
subtree depending on whether the label of the node is larger, equal to 
or smaller than the element looked for. 
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elements already in the sample and is initially O, and k is the required 

sample size. Member(u) and insert(u) are routines manipulating the initial­

ly empty binary search tree. 

Now let_!. be the ruE;nin.g-time of this algorithm;~ is the number of 

times the loop is·executed. Assume without loss of generality that k ~ ½n 

(if not, draw a sorted r.s. of size n-k and take its complement, which can 

be done in time O(k)). We want to prove 0 EJ:_ = O(k log k). Since k/n ~ ½ the 

expected running time of this algorithm certainly does not decrease if we 

replace the test at line 3 by a test failing with probability½ each time but, 

otherwise taking the same time as a member instruction. 

Suppose we change the algorithm in this way, obtaining a running-time 

t' and n' executions of the loop. Now~' has a negative binomial (k,½) dis­

tribution. The already mentioned theorem from A/H/U [l] implies the existence 

of constants c and d, only dependent of the machine and the manipulating 

routines, such that 

E(J:.'I ~• = n) ~ c.n.log n + d. 

But 
00 

L n log n P(~' = n) = 
n=k 

00 

= L n log n 1 n t-1) = 2 k-1 n=k 

00 

= 2k r log n 1n+I (n) = 2 
n=k k 

00 

= 2k r log(m-1) Im (m~ 1). 2 
m=k+l 

This last sum equals E(log(~-1)), if the r.v. ~ has a negative binomial 

(k+I,½) distribution. Now applying Jensen's theorem one obtains directly 

So 

E(log(~-1)) ~ log(E(~-1)) = log(2k+l). 

00 

Et~ Et' ~ l (en.log n + d) P(n' = n) = O(k log k). 
n=k 



If after the previous algorithm we execute the following loop: 

for kl:= k step -I until 1 

do intosample(min); delete(min) od; 

we obtained an ordered r.s. without replacement 1.n time O(k log k). D 

3. DRAWING A SAMPLE ELEMENT BY ELEMENT; BEBBINGTON'S ALGORITHM 

kn 
Suppose i_' denotes the frequency of element n in a rm_dom sample 

of size k from {1,2, .•. ,n}. Consider the following procedure for taking a 

sample: 

1. Let f be the result of a drawing from the distribution of fk,n. 

2. Draw a random sample of size k-f from {1,2, .•. ,n-1} and sort it. 

3. Concatenate the result of 2 with f times element n. 

THEOREM 3.1. This procedure results in an ordered random sample of size k 
~ 

from the population {1,2, ... ,n}. 

PROOF. Because of the probability of a sample with f occurrences of 

element n is what it should be. Because of 2 all unordered samples with 

f occurrences of element n have equal probability, and because of 2 and 

3 the sample will be ordered. D 

5 

It does not make any difference if in step 2 we draw the sorted r.s. by 

considering at every stage the distribution of the highest numbered element: 

the proof then goes by induction on n. For a sample without replacement the 

distribution of fk,n is given by: 

This follows by 

total number of 

= 1) = l - P(fk,n = O) = k 
n 

n-1 dividing the number of samples containing n: (k_ 1) by the 
n samples (k). Now direct application of the above theorem 

yields the correctness of the algorithm described by BEBBINGTON [2] for 

drawing an ordered r.s. without replacement: 
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ALGORITHM 3 • l • 

I. Draw from an alternative (k/n) distribution. 

2. In case of a success, lower k by I, and enter the element consi­

dered into the sample. 

3. Lower n by 1, and proceed for the next element with 1., applying 

the new values of n and k, until k = 0. 

4. DRAWING WITH FIXED PROBABILITY OF SELECTION 

In algorithm 3.1 we selected elements with probability of selection 

equal to the proportion of elements still to be selected. In this section 

we consider what happens if we select every element with a fixed probabi­

lity p. Only sampling wihtout replacement is dealt with. The following can 

be said about the performance of this modified scheme in drawing an ordered 

random sample. 

THEOREM 4.1. If we change algorithm 3.1 so that every element will be 

selected with fixed probability p, the result is a sample with a binomially 

(n,p) distributed size. Under this scheme every sample of size k has an 

equal probability. 

PROOF. The sample size is equal to the number of successes inn independent 

trials, each with probability p of sucess. For a sample size k exactly k 

successes must have occurred, and n-k failures. The probability of such a 
k n-k sample is equal top (1-p) . D 

If the population size is known this scheme in itself is of minor importance. 

It can simply be replaced by algorithm 3.1, and then one obtains a predeter­

mined sample size. The disadvantage of a binomially (n,l) distributed sample 
n 

size must not be overestimated. HAMAKER [3] showed, that the variance of the 

sample mean as an estimator of the population mean increases by only a factor 

1 +¾,provided the sampling procedure is repeated until a non-empty sample 

is obtained. Assuming taking a logarithm can be done in one step, however, 

the mean running time of this algorithm can be improved from O(n) to O(k). 

In the sequel the random vector (~1,x2 , .... ,~k) will denote the sample 
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obtained with the algorithm of the preceding theorem with probability of 

selection p. Let the r.v. ~ satisfy P(~=O) = l and define for i = 1,2, .• ,~ 

the r.v. 's d., the distances between sample elements, by 
-1. 

d. 
-l. 

def 
~i - ~i-1. 

The following theorems hold. 

THEOREM 4.2. AZZ d. have a geometric(p) distribution. 
-1. 

PROOF. For a distanced.= d the (i-l)st success must be followed by a 
-l. 

sequence of d-1 failures and a success. D 

THEOREM 4.3. If~ has a uniform (O,l) distribution~ the r.v. i, defined by 

def 
d = 

has a geometric (1-q) distribution~ with O < q < l. 

PROOF. Let d be an arbitrary natural number. Then 

P(i = d) = P([qlog u] = d - l) = 

q [ d d-1] = P( log~ E d-1,d)) = P(~ E (q ,q ) = 

= q d-1 ( l-q). □ 

It is clear that these two theorems yield a method of drawing random distan­

ces in one step, so we can draw an ordered r.s. of binomially (n,p) distri­

buted size~. in a time proportional to~- So we have an algorithm with an 

O(k) average running time, if we take k = E~ = n.p. 

We will now consider what happens if we try to remove the disadvan­

tage of a non-fixed sample-size by using the same algorithm for either draw­

ing extra elements of for removing elements from the sample, until the 

desired sample-size is obtained. Let us formalize this idea in the following 

algorithm. 

ALGORITHM 4.1. (Drawing an r.s. of size k from {1,2, ... ,n}). 
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Step I k Use the method of drawing random distances with parameter q_ = l - n 
to obtain a sample of size k 1• 

Step i+l Suppose k., the sample size obtained by the first i steps has the 
-1 

value k .. If k. = k, we can stop the procedure. If k. < k, just as 
1 1 1 

in step I a sample is drawn from the remaining n - k, population 
1 

elements, with parameter q = (n-k)/(n-k.). If k. 
1 1 

> k, we use the 

method of step I, to remove elements from the k. sample elements, 
k 1 

taking q = k-. 
1 

THEOREM 4.4. Supppose ~ 1,~2, .•• are defined as in the previous algorithm, 

then the following properties hold: 

a) k 1 has a binomial (n, ~) distribution. 
- n k-k. 

b) k. I - k. jk. 
-1+ -1 -1 

= k. < k has a binomial (n-k., -k1 ) distribution. 
i 1 n- . 

c) k. - k. I jk. 
-1 -1+ 1 

k•-k 1 
= ki > k has a binomial (ki, ~) distribution. 

1 

PROOF. This follows directly from theorem 4. 1, the equivalence of the 

sampling schemes and the choices of the parameter q. O 

We have a row of binomially dis.tributed r.v. 1 s, the expectation of every term 

being equal to the absolute deviation from the mean of the preceding term. 

Suppose m = r21ol1og kl, where rtl d~f -[-t]. How close do m iterations of 

algorithm 4.1 bring us to our goal: a sample of size k. We will prove, that 

the resulting sample size k satisfies Elk - kl ~ 2. After them-th step 
--m --m 

we proceed with an unspecified tail process, and expect to have to do only 

a few steps. First we need the following simple lemma: 

LEMMA 4. I. For every r.v. X the following inequalities hold: -

( 4. 1) Ex~ ;;;;-
(4.2) El~ - E~j ~ vvar(_!). 

PROOF. 0 ~ E(~ - E~) 2 = E~2 - (E~) 2, implying (4.1). (4.2) follows from 

applying (4.1) to the r.v. x_ = I~ - E~I- 0 

THEOREM 4.5. For I~ i ~ m the following inequality holds: 

2 
ok 
-i+I 



PROOF. 

k-k. 
(n-k.) -k1 n-kk < k - k. if k > k., 

1 n-. n- . 1 1 
1 1 

if k = k., 
1 

< k. - k if k < k .. 
1 1 

so always var(k. 1 lk.=k.) ~ jk. - kj. As for every k. 
-1+ -1 1 -1 1 

E(k. l lk.=k.) = k, 
-1+ -1 1 

also 

crk2 = E(var(k. 1 lk.)) + var(E(k. 1 lk.)) ~ 
~+! ~+ ~ ~+ ~ 

~ El~i - kl ~ crk. because of (4.2). D 
-1 

COROLLARY 4.1. Elk - kj ~ 2. -m ~ 

k \lk. PROOF. Let p = Then ok = \!np(l-p) < \!np = By the definition n 
-1 

2m ((1 )m) I m-1 
2 ~ k, so k 2 ~ 2, and cv'k/ < 2) ) ~ 2. 

Because of the preceding theorem, for every 1 = 2,3, ... ,m 

so 

so again with (4.2) Elk - kl ~ 2. 0 
-m 

of m, 

We have determined the average number of iterations algorithm 4.1 takes, 

but we have said nothing about their length. The first step is easily seen 

to have an average length of 

sample. If Is. I < k, we have 
1 

O(k). Let i > I and let S. be the "current" 
1 

to draw elements from {1,2, ... ,n}\S.; if 
1 

Is. I > k, we draw from S .. 
1 1 

Our method with jumps permits us to choose the 

9 





We will prove an interesting lemma, based on the following inequalities 

proven by UHLMANN [4]: 

P(x k[n, 
k 

2 P(~ kin, k+l k n-1 
I , s n-1) ~ ~ s n+1), s -2-' 

n > 

P(x k[n, k ! P(~ kin, 
k+l 

k n-1 
1. s n-1 s 2 s s n+1), ~ -2- ' 

n > 

Since clearly P(~ ~ cjn,p 1) > P(x s cln,p2) if P1 < P2• and since 

k/n · k k+l k 1,2, ... ,n-l, 2,3, ... , that < mm{ ln-1 • ln+l }, = n = we see 

P(x skin,~) > I 

- n 2 
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for n = 2,3, ... and k = 1,2, ... ,n-1. Fork= 0 or k = n and for n = 1 this 
b . . 1 (n n-k) also clearly holds. By looking at the complementary inomia , n r.v. 

we find that also 

P(x ~kin,~)>!-
- n 

By the above discussion we have proven: 

LEMMA 4.2. The median of a binomial (n, ~) r.v. is k. n 

But this means that P(i_ > i) s 
-1 

2 ' and so Ei s 2. We formulate the main 

result of this paragraph in the following theorem. 

THEOREM 4.6. A sorted random sample of size k from the population {1,2, ... ,n} 

can be dra:um in time O(k) 3 provided we assume taking a logarithm is a basic 

computation step. 

5. SAMPLING WITH REPLACEMENT 

A sample with replacement arises with a sampling method admitting an 

element already in the sample again to he chosen in the sample. To obtain 

such a sample with methods similar to those of algorithm 3.1 and theorem 

4.1 after having selected an element we do not proceed with the next element, 

but decide by a random drawing if the same element is to be included again. 

We start to process an element only after the rejection of the previous 
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element. Proceeding this way we get a,non-decreasing row of elements from 

the population. Suppose~ is the length of the row we get by each time rejec­

ting with fixed probability q. Now the r.v. k + n has a negative binomial 

(n,q) distribution, since it equals the number of independent experiments we 

have to perform to obtain then-th success, a rejection being a success. By 

a suitable choice of q a row of expected size k results. If dis the diffe­

rence between two successive row elements, the r.v. ~ + 1 has a geometric(q) 

distribution. Just as in the preceding section we may simulate the random 

drawing procedure by drawing random distances d' = [qlog ~],~being uniform­

ly (0,1) distributed. A distance~,= 0 means that the same element has to be· 

put in the sample once again. 

After r21og2log kl iterations we have a non-decreasing row of a length 

~ with El~ - kl s 2, in a total computing time O(k) on the average. It is 

also possible to obtain a non-decreasing row of a predetermined length k 

directly by rejecting in the j th drawing with probability 

n - n. -

n-n.-l+k-r.' 
-J -J 

'-

if before the j th drawing r. elements are in the row and n. elements have 
-J -J 

been rejected. It can be proved that with the methods described above all 

rows of a given length have the same probability. 

Unjustly HAMAKER [3] presents the above method as a way to draw an 

r.s. with replacement. It is clear that, given the resulting length,~ random 

element of the set of non-decreasing rows of population elements results. 

The definition of an ordered r.s., however, requires that a sorted random 

sample is delivered. It may occur that a non-decreasing row has more than 

one original (under the operation of sorting) in the set of unordered samples. 

What is wrong can be understood from the following simple example: 

EXAMPLE 5.1. Suppose we want an ordered r.s. of size 2 from the set {1,2}. 

The following unordered samples may arise: 

(1,1), (1,2), (2,1), and (2,2). 

So the probability of the ordered random sample 1,2 equals½, Hamaker's 

method gives all-non-decreasing rows of length 2 

1 , 1 , 1 , 2 and 2 , 2 

equal probability. D 



This difficulty does not exist for drawing without replacement, since in 

this case every increasing row of length k has exactly k! originals under 

the operation of ordering in the sample space. 
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It is possible to derive a correct algorithm from our theorem 3.1. 
kn 

The frequency!.' of element n in an r.s. with replacement of size k has a 

binomial (k, ..!.) distribution. So our problem has been reduced to generating 
n 

random drawings from binomial distributions. This might be done by perform-

ing alternative (..!.) drawings k times and counting the number of successes. 
n 

In this way, however, O(nk) computing time is used. A more efficient way to 

do it is by computing the inverse of the binomial d.f, in an argument that 

is obtained by a random drawing from (0,1), using a recurrence relation 

between binomial probabilities. The correctness of the following algorithm 

is a direct consequence of the already mentioned theorem 3. l and the above 

discussion. 

ALGORITHM 5.1 (Drawing an r.s. with replacement from {l, ..• ,n}). 

l. Let u be a pseudo random number between O and I. 
2 Lt O d t ( 1 _nl)k = p(!_k,n = .') . e 1 = an compu e p = qo = - 1 • 

3. if p > u, proceed with 6. 

4. Add 1 to i, compute q. = P(fk,n = i) by using the binomial 
1 

recurrent relation 

q. 
1 

(k-i+l) 
= qi-I . i(n-1) 

5. Add q. top, sop= 
1 I 

j~i 
q., and proceed with 3. 

J 

6. Include the current element i times in the sample, replace 

k by k-i and n by n-1 and continue with I, using the new values 

of k and n. 

6. SOURCE-TEXTS OF ALGORITHMS 

In this section we give ALGOL-68 source-texts of those algorithms 

described in sections 3, 4 and 5, that are suitable for small hand computers. 

The following identifiers must have been declared in an outer block: 
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f, n, and k are integer variables; n initially equals the size of 

the population, k equals the required sample-size; 

- u, p and q are real variables; 

- intosample(n,f) is a procedure that causes element n to be included 

in the sample with frequency f; the second parameter is omitted in 

the case of sampling without replacement, and then it is supposed 

to be l; 

- random is a real procedure computing the next number in a row of 

pseudo independently uniformly (0,1) distributed numbers. 

PROGRAM 6.1. (Source-text of algorithm 3.1, Bebbington's algorithm for 

drawing an r.s. wihtout replacement) 

begin for n:= n step -I until 1 while k > 0 

do if random< k/n --

od 

then intosample(n); k:= k - I 

fi 

end 

This algorithm is reconnnended if the data organization is sequential; it 

takes O(n) time, but the result always is an ordered r.s. of size k. For 

progrannning simplicity all programs in this section deliver the sample in 

reversed order. The following two programs are descr,ibed theoretically in 

section 4; the first one should never be used, since it is hardly simpler 

than the 

a sample 

previous one, it has the same O(n) running time, but it results in 

with binomially (n,~) distributed size. The second program 6.3 has 
n 

the same disadvantage, but its expected running time is O(k). 

PROGRAM 6.2. (Drawing an r.s. without replacement of expected size k). 

begin p:= k/n; 

end 

for n:= n step -1 until l 

do if random< p 

then intosample(n) 

fi 

od 



PROGRAM 6.3. (Faster implementation of program 6.2) 

begin f:= n + 1; q:= 1 - k/n; 

end 

while f > n do f:= entier(log(l - random)/log(q)) + 1 od; 

while f ~ n 

do intosample(f); 

f:= f + entier(log(l - random)/log(q)) + 1 

od 

15 

The second line of the program ensures that the resulting sample-size is 

unequal to zero. Instead of random we use 1 - random, since random may be 

zero. This program works best if the data-organization permits easy forward 

access, by which we mean that the time needed to go from data-item l Jto data­

item l+ m lies between 0(1) and O(m). If the resulting sample-size is ~' the 

running time of this algorithm is O(k), so the average running time equals 

E(O(k)) = O(E(k)) = O(k). 

Our last program, described theoretically in section 5, draws an r.s. 

of size k with reulacement. The running time is O(n+k), as we,will show, so 

it requires a sequential organization of the data. 

PROGRAM 6.4. (Drawing a s~ple with repla5'.ement of fixed size) 

begin while k > 0 & n > 

end 

do f:= O; p:= q:= (1 

while p < u 

1 k -) ; u:= random; 
n 

do q:= q * (k-f) / ((f+l) * (n-1)); 

f:= f + I; 

p:= p + q 

od; 

intosample(n,f); k:= k - f; n:= n - 1 

od; 

into sample ( I , k) 

Line 1 of this program ensures that the sampling is stopped when either 

( 1) 

( 2) 

( 3) 

( 4) 

( 5) 

( 6) 

( 7) 

( 8) 

( 9) 

(10) 

(11) 

the sample is full (k=O) or only one element is left to be considered (n=I). 

In the second line the frequency f, the left-hand tail probability u and p 
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and q are initialized, with 

q = P(fk,n = f), and p = 2 
j~f 

q., 
J 

with fk,n as in the previous section, fas in the program. In the loop of 

lines 4-8 the inverse binomial (k, ..!..) distribution function is computed n 
for argument u, using a recurrence relation between binomial probabilities 

(line 4). The number of times the check in line 3 is performed is equal to 

one plus the resulting f. So the total running time of the algorithm is 

proportional ton plus the sum of the resulting f-values, so the algorithm 

runs in time O(n+k). 

We conclude by remarking that all programs of this section can easily 

be adapted to run on small pocket calculators. Random number generators are 

often available as a subroutine, but are easily programmed anyhow. The into­

sample procedure can be implemented by e.g. displaying n followed by its 

frequency, whenever it is positive. 
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