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Octonions ru~d related exceptional homogeneous spaces 

by 

H.A. van der Meer 

ABSTRACT 

This paper describes several homogeneous spaces related to the algebra 

of octonions: the projective octonion plane F/Spin(9) and the spheres 

s 15 = Spin(9)/Spin(7), s7 = Spin(7)/G2, s6 = G2/SU(3). In order to make the 

exposition self-contained, the basic properties of the octonions and the 

Jordan algebra of 3x3 Hermitian matrices over the octonions are also 

derived. 

The paper does not contain essentially new results, but it 1.s inten­

ded as a rather elementary introduction to this subject. 

KEYWORDS & PHRASES: Homogeneous space, exceptional homogeneous space, 

corrrposition algebra, non-associative algebra, octonions, 

exceptional Lie group, Jordan algebra. 
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PREFACE. 

This paper is fitting in the research on "Special functions and group 

theory", which is part of the research program of the Department of Applied 

Mathematics. 

The spherical functions on the homogeneous space s15 = Spin(9)/Spin(7) 

(cf. TAKAHASHI [24], SMITH [21] and JOHNSON [17]) turn out to be orthogo­

nal polynomials in two variables, belonging to a known class of special 

functions. In trying to understand this group theoretic interpretation it 

turned out that the algebraic preliminaries on octonions and Jordan algebras, 

as available in literature at the moment, are either rather inaccessible 

for analysts, or incomplete. Our intention in this expose is to make things 

more clear for readers without much algebraic and Lie theoretic background. 

Although our work is mainly aimed at assisting in the above mentioned 

investigations, it may be of some interest for people who are merely interes­

ted in the (introductory) ;heory of non-associative algebra. 

The main subject of this paper is the algebra of octonions 

over the real numbers, which is described in detail and which is used to 

obtain several homogeneous spaces, in particular the one mentioned above and 

the Cayley elliptic plane F4/Spin(9). 

All homogeneous spaces considered are exceptional in the sense that 

they are not contained in any of the classical infinite sequences of homo­

geneous spaces, e.g. Sn-I R1 SQ(~)/SO(n~l). 

Moreover, one might say that they form a complete set of exceptions 

in the classification of all transitive actions of compact connected simple 

Lie groups on simply-connected spaces, as was demonstrated in papers by 

A. BOREL [5],[6] and D. MONTGOMERY & ·H. SAMELSON [19]. 

Throughout, global methods are used, rather than infinitesimal 

methods. 

The applications in the theory of special functions will be considered 

in a forthcoming report by T. Koornwinder and the author. 

ACKNOWLEJ)GEMENT. 

The help of T. Koornwinder, in particular his constructive criticism, 

was indispensable for writing this report. 
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I. THE PROBLEM OF HURWITZ. 

(I.I) With a pair (V,N) we mean a vector space V over a field F of charac­

teristic not two, and a mapping N:V + F, that satisfies: 

NI. 

N2. 

2 N(ax) = a N(x) (aEF,xEV) 

<-1 .): v2 + F, defined by 

(xly):= }[N(x+y) - N(x) - N(y)] 

is bilinear. 

(N is called a quadratic form on.V). 

We say that such a pair (V,N) is a composition algebra (c.a.) if, 

in addition to NI and N2, it enjoys the following properties: 

Cl. V admits a bilinear composition, say xy, that is respected by N, 

i.e: N(xy) = N(x)N(y) Vx,yEV, 

C2. the form (.j .) is nondegenerate, 

C3. Vis finite dimensional and 

C4. there is an identity element in V; I. 

REMARK. It is possible to prove the following assertion: Vis a c.a. 

iff Vis an alternative algebra (i.e. x2y = x(xy) and yx2 = (yx)x 

Vx,yEV) with an identity element and an involution x 1-+ x, such that 

(i) x+xEF, (ii) xx=: N_(x) E F, where Fis the base field. 

(1.2) QUESTION.: (slightly simplified problem of Hurwitz). Given any base 

field F (char(F)l2), determine all composition algebras 

over F. 

ANSWER: There are exactly four types of c.a's over F, of dimensions 

1,2,4 and 8. They can be constructed from F by means of a 

certain doubling process, which is described below. 

The proof of this statement (in [15]) is mainly based on two facts; 

(I) this doubling can be reversed to "halving", which is applicable 

to any c.a. (and must eventually lead to the base field), 

(2) starting with F we would lose alternativity in the fourth doubling 

(see remark above). 



The doubling process looks as follows: let V be a c.a., µ a nonzero 

element of V, "- an element "outside" V, and consider V ' := V (D VA, 

equipped with the following multiplication: 

(I) (a+b1,_) (c+d1,_) :=(ac+µdb)+(da+bc)A; 

the bar denotes the above mentioned involution in V. 

HURWITZ [29] solved the problem himself, in 1898; other proofs 
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are to be found in FREUDENTHAL [9], JORDAN etc. [18] (using represen­

tation theory), and JACOBSON [15]. 

(1.3) The purpose _of this chapter is to show that so-called Cayley algebras 

(or octonion algebras) arise in a natural way in the solution of this 

problem: they are the composition algebras of dimension eight. 

Until further notice we will restrict ourselves to the case F = JR, 

the field of real numbers. 

µ has to be smaller than zero if we want to have division algebras, 

and it is most convenient to setµ= -1. 

Then: 

dim corresponds to JR 

dim 2 corresponds to C (the complex numbers) 

dim 4 corresponds to 1H(the quaternions) 

dim 8 corres~onds to ID (the octonions). 

REMARK: Octonions (or octaves) were first mentioned by HAMILTON [28] 

in 18L~8, after they had been discovered(?) earlier by Graves. 

Sometimes they are called: Graves-Cayley numbers. 

2 . ARITHMETHICS . 

(2. l) We set JK.o = JR, ]Kl = a::, JK.2 = Ill, JK.4 = G); 

Choosing the symbols for "- accordingly, we have 

JK.1 = JK.o ID lKOel 

JK.2 = JK.1 (B JK.1 e2 

JK.4 = JK.2 (B 1K2e4 · 
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From the multiplication rule (1.2.1) (withµ= ~1) one sees: 

2 2 2 
(I) e 1 = e2 = e4 = -1 

(2) Ill is not connnutative (e.g. e 1e2 = - e2e 1) 

(3) © is neither connnutative nor associative 

(e.g. e1 (e2e4) = - (e1e2)e4). 

In ]Ko we put x:= x, N(x) := lxl 2 = 

the following definitions: 

2 
X ' and inductively we give 

(4) x:= x 1 - x2ei (for x E ]Ki' x = x 1 + x2ei' x 1,x2 E lKj, 

(i,j) E {(l,0),(2,1),(4,2)}) 

By induction:~= x and xy = y x. 

(5) N(x) = lxl 2 :=xx= xx ( = lx 112 + jx2 !2) 

(6) Re(x):= !(x+x) 

(so Re(xy) = Re(yx) and Re(x) = Re(x)) 

(7) (xly):= Re(xy") = Re(yx) 

(= !(jx+yl 2 - lxl 2 - IYl 2)). 

This defines a real inner product in JK .. 
i 

It follows that 

( 8) I xy I = I x I I Y I 
(The proof of this identity is rather computational. In applying the 

induction process it is crucial that one starts with an associative 

algebra.) 

-1 I -2 (9) x := xi x. (xiO) is the two-sided inverse of x in JK .• 
i 

(2.2) Next, we derive a number of identities, which are valid in JK. for 
i 

i = 0,1,2,4, but mostly trivial for i = 0,1,2. The main purpose is 

finding substitutes for associativity in JK4 = ID. 

Let x,y,x' ,y' ,a,z be arbitrary elements of JK .. 
i 

By (2. 1.7) and (2.1.8) we have 

(1) (xlx)(yly) = (xy!xy). 

Linearization leads to 

(2) (xy';x'y) + (xy!x'y') = 2(xlx')(yiy'). 
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With the help of this identity we derive 

(ay' IY) - (y' lay) = (ay' IY) - (y' I (2Re(a)-a)y) 

= (ay'ly) + (y'!ay) - 2Re(a)(y'!y) 

(taking x = a, x' = 1) = 2(al l)(y' IY) - 2Re(a)(y' IY) 

= o. 
Hence, 

(3) (ax!y) = (xlay) and (xaly) = (xlya). 

F:ttom (xllal 2 y - a(ay)) = lal 2 (xly) - (axlay) 

= 0 (by (2)) 

and the nondegeneracy of (.I.) it follows that 

(4) a(ay) = lal 2Y = (ya)a. 

Substituting a= 2Re(a)-a gives 

(5) a2y = a(ay) and ya2 = (ya)a, 

which are the defining relations for alternative algebras (cf. (I.I)). 

Let 

A(x,y,z) := (xy)z - x(yz). 

This expression is called the associator of x,y and z. Linearization 

of (4) and (5) yields 

(6) A(x,y,z) = sign(cr) A(cr(x),cr(y),cr(z)), 

But then A(a,x,a) = A(a,x,a) = O, so 

(7) (ax)a = a(xa) and (ax)a = a(xa). 

Finally, we will derive two important identities, due to Ruth Moufang: 

(8) a(xy)a = (ax)(ya) 

(9) (axa)y = a(x(ay)) 

(in subsequent sections referred to as the first and second Moufang 

identity, respectively.) 

PROOF. (a(xy)a!z) = (a(xy)lza) 

(by (2)) = 2(alz)(xyla) - (la1 2 lz(xy)). 
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((ax)(ya)jz) = (axjz(1f"y)) 

(by (2)) = 2(ajz)(xlay) - <lal 21(zx)y). 

Since (I lz(xy)) = (lj(zx)y), these expressions are equal and, with the 

nondegeneracy_of (.f.), (8) follows. 

Furthermore, (a(x(ay))lz) = (x(ay)la z) 

= <xlra z)(y .a)) 

(by (8)) = (xja(zy)a) 

= ((axa)ylz). D 

(2.3) Summary: 

(2.2.3) (axly) = (xlay),(xaly) = (xlya) 

lal 2Y = (ya)a (2.2.4) 

(2.2.5) 

(2.2.6) 

a(ay) = 
2 

a y = 2 a(ay), ya = (ya)a 

(actually a result from (2.2.6)) 

(xy)z + y(zx) = x(yz) + (yz)x 

(xy)z + (xz)y = x(yz) + x(zy) 

(xy)z + (yx)z = x(yz) + y(xz) 

(2.2. 7) (ax)a = a{xa) ,a(xa) = (~x)a 

(2.2.8) (ax)(ya) = a(xy)a 

(2.2.9) (axa)y = a(x(ay)). 

(2.4) We can easily find orthonormal bases for 1K. (i = 1,2,4), over the 
·1 

real numbers, lKO: 

(1,e 1) for «l, 

(1,e1 ,e2,e1e2) for Ill, and 

(1,e 1,e2,e1e2,e4,e1e4 ,e2e4,(e1e2)e4) for~. 

It is convenient to set e 1e2 = e3, e 1e4 = e5 , e2e4 = e6 and e3e4 = e7• 

(Note that for all i,j we have e.e. = ±e for some r). 
1 J r 

An octonion x can thus be represented as 

x = xo+xle]+ ..•..••.. +x7e7, x. E JR. 

I 12 2 2 1 2 _ 
Now x = x0 + x 1 + •..••..•. +x7 , x = x0 - x1e 1 ...••..• -x7e7, 

Re(x) = x0 and, if y = y0 + y 1e 1+ .••....••• +y7e7: 

(xly) = XoYo + xly]+ .•.•...•..• +X7Y7· 

We will conclude this section with some remarks about the structure 

of this basis. 



( I) 
2 -1, 1 s i s 7 ei = 

(2) e.e. = -e.e., 
1. J J 1. 

1. s i 'F j 

(3),if eiej = er then eo(i)eo(j) = 
(4) e.(e.e) = -e.(e.e ), 1 s i 'f j 

1. J r J 1. r 

s 7 

sign(o)eo(r)' 

s 7 & 1 s r s 

(5) e.(e.e) = -(e.e.)e, 
1. J r 1. J r 

s i :/: j + r :/: i ~ 7. 

(1),(2) and (3) can be found by the multiplication rule (1.2.1), and 

combination of them yields,(4) and (5). 

A corollary is 

(6) A(x,y,z) = 0 ·V x, y EV implies z E IR. 

This will be used in the next section. 

3. TRIALITY. 

(3.1) The orthogonal group of the eight dimensional Euclidean space can 

be identified with that of O, with respect to the bilinear form 

(.!.), defined in the previous chapter. This group is denoted by 

0(8), and its subgroup consisting of matrices X with det(X) = 1 

by S0(8). 

PRINCIPLE OF TRIALITY: 

FoP eaah TE S0(8), thePe aPe T1,T2 E S0(8) suah that: 

V_.X, y E (I). 

MoPeoveP: (T 1,T2) being suah a paiP impZies: the onZy otheP paiP 

satisfying (1) is (-T 1,-T2). 

PROOF. We make use of two facts: 

(i) each TE S0(8) is a product of an even number of reflections in 

seven dimensional subspaces. Such reflections have the form: 

S (x) = x - 2(xla)a, where a E O, lal = 1, so S (x) = -axa a a 
(by (2.1.6) and (2.1.7)). 

7 

(ii) If L denotes the left translation by a (L (x) = ax) and !al = 1, a a 
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then L E SO(S) (analogous for R and T; respectively the mappings: a a a 
x ~ xa and x-+ axa). 

Suppose (T,T 1,T2) and (T',T 11 ,T2') satisfy (1), then 

(TT',T 1T11 ,T2T21 ) does so, whence we only have to prove the existence 

of (T 1 ,T2) for T being the product of two reflections, say sash. 

Starting from (1), T1 and T2 will be chosen along the way: 

T2(xy) = SaSb(x)T 1(y) 

= [a(bxb)a] T1(y) 

= a[(bxb)(aT 1(y))J (*) 

(the second Moufang identity is used; (2.2.9)). 

A sensible choice for T1 seems to be LL: 
ab 

(*) = a[(bxb)(by)] 

= a[b(xy)J (again by (2.2.9)), 

with the obvious conclusion: T2 =LL-. 
ab 

Regarding the uniqueness: suppose TE S0(8) admits two pairs; 

(.T 1 , T2). and (T 11 , I 2 '), then the identity matrix I admits the pair 

(T 'T -l 'T -l) N' 1 1 ' 'f2 2 • ow: 

. . , -I -1 taking x = 1 leads to: T1 T1 = T2'T2 = say T3 • 

xT3(I) = T3(x) implies x(yT3(t)) = (xy)T3 , whence (by (2.4.6)) 

T3(I) E lR and, with ITil)I = 1: T3(1) = ±1. Hence T3 = ±I and 

(T1',T2') = (±Tl,±T2). □ 

REMARK. There is a geometrical interpretation of triality in the 

case that O is split (i.e. no division algebra). This, and the 

proof above can be found in VAN DER BLIJ & SPRINGER [4]. 

(3.2) If TE 0(8)\SO(S), (that is, if det T = -1), then Tis made up by 

an odd number of reflections. It is not difficult to show (with the 

help of the first Moufang identity) that T satisfies the so-called 



second kind of triality: 

3Tl ,T2 E 0(8)\S0(8): T(y)T 1 (x) = T2(xy), Vx,ye:a). 

REMARK .. Since T can satisfy only one kind of triality at the time, 

we have here a criterion for the determinant of T. 

(3.3) Let!::.:== {(T,T 1,T2 ) E (S0(8)) 3 iT(x)T 1(y) = T2 (xy) Vx,ye:O}, 

and I::.:== { (T, T 1, T 2) E A I '.C (I) = I}. (T ( 1) = 1 ~ T 1 = T 2). 

Identifying S0(7) with the subgroup of S0(8) consisting of matrices 

T with T(l) = 1, we find two continuous epimorphisms: 

TI I::. --. S0(8) 

TI !::.'--. S0(7), 

defined by TI (T, Tl , T 2 ) = T and TI' (T, TI , Tl ) = T. 

9 

TI and n' have discrete kernels: ker(TI) = ker(TI') = {(I,I,I),(l-I,-I)}; 

therefore they are 2-1 coverings. 

To show that I::. and!::.' are pathwise connected, it obviously 

suffices to find an arc connecting (I,I,I) and (I,-I,-I). 

LE!t T : 0 --. II> be defined by T (x) = axa, and 
a a 

c(I) := cos TT(I) + e 1 sin 1rtp; a norm-one octonion. Then the arc 

tp - (T , L_ , L ) 
C C C 

(j) (j) (j) 

has the required property. 

((I) E [Q,J]) 

We concilude that I::. and I::.' are isomorphic with Spin(8) and Spin(7), 

respecUvely., where Spin(n) denotes the universal covering group 

of SO(n). 

4. THE AUTOMORPHISM GROUP OF©. 

(4. I) The automorphism group of ID consists of those invertible JR-linear 

transformations of© which satisfy 
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(1) a(x)a(y) = a(xy) Vx,yEd). 

2 
Hence a(1) = I and a(e.) = -1, 

1. •. 
~-,-

its turn yields a(e.) = -a(~.), 
1. 1. 

1 ~ i ~ 7, so Re(a(e.)) = 0 which in 
1. 

and, in general a(x) = a(x). Then 

Conclusion: a E 0(7), so Aue (ID) c 0(7) 

( a E 0(7) iff a E 0(8) and a(1) = I). 

( 4. 2) Let X: = { (a, b) E (I) 2 I ( a I I) = (b I 1 ) = ( a I b) = 0 and I a I = I b I = I } • 

S0(7) is transitive on X (i.e. V(a, b), (c,d)EX 3TES0(7): 

(Ta,Tb) = (c,d)), and the stabilizer of (e 1,e2) EX is S0(5). 

(i.e. TE S0(5) iff (Te 1,Te2) = (e 1,e2)). 

Hence X ~ S0(7)/SO(S) as a homogeneous,space. 

For (a,.b) E 2' choose c E O such th~t (cjab) = (cl 1) = (cja) = (c[b) = 0 

and I c I = I. 

(Such an element exists). Then the linear transformation S, defined 

by S(1) = 1, S(e 1) = a, S(e2) = b, S(e3 ) = ab, S(e4) = c, 

S(e5) =• ac, S(e6) = be, S(e7) = (ab)c is an automorphism, as can 

be seen from the multiplication rules for the basis elements, in 

a mostly trivial way. (One has to realize that for purely imaginary 

octonioins x,y: xy = -yx and x2 E JR.) 

For this reason, the automorphism group of ID, which we will 

denote by G for a while, is also transitive on X. 

(Note that each automorphism of O will act on {1,e 1, .••.. ,e7} 

as S does, for some a,b,c.) 

The stabilizer of (e 1,e2) in G is the subgroup G0 , consisting of 

all automorphisms that leave D:= <e 1,e2> c (I) pointwise fixed. 

(< .... >:= subalgebra generated by ....•.... ). 



Concerning GD it can be observed: 

.L 
(i) a E GD:::;> a is determined by a(e4) E D , lo:(e4) I = 1; 

(ii) conversely, if c E D.L, lei = 1, an automorphism can be 

defined such that o:ID = idD and a(e4) = c . 

.L .L We have D R$ D R$ Ill (D = Ille 4) , so we could loo~ upon GD as the 

unit sphere in Ill; s3 . (The action of GD on D.L equals the action 
.L of SU(2) on Ill: x ED , a(xe4) = x(x0e4) = (x0x)e4 (by (2.4.4) and 

(2.4.5)) for a certain x0 ED with lx0 1 = 1. Hence a E GD acts on 

Ill by left multiplication with a unit vector) 

We conclude that (1) X R$ G/GD, 

(2) since X and GD (R$ s3) are (sirrrply) connected, G 1.-s (sirrrply) 

connected and 

(3) Dim(G) = Dim(X) + Dim(GD) = 11+3 = 14. 

(The dimension of X can be found by counting parameters). 

Those three facts point to a well-known fact in Lie theory: G is a 

compact real form of the exceptional simple Lie group G2• 

(This was first observed by CARTAN (1925), who did however not 

prove it. Complete demonstrations can be found in e.g. 

FREUDENTHAL [9] (calculation of the root-system of G) or 

SPRINGER [23] (on which paper the part above was inspired)). 

Henceforth, we will write G2 = Aut(©). 

(4.3) 0 contains the field of complex numbers as a subalgebra: 
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C = {x+ye 1 lx,y E IR} c O. It is easily verified that z(wei) = (zw)ei 

for z,w EC and i > 1. Therefore, we can consider ID as a left vector 

space over C. As a basis we take {l,e2 ,e4 ,e6}. Rules for multipli­

cation in this space are found by means of those for thee. 's. They 
l. 

are (z ,w E II:; i,j E {2,4,6}): 

(i) (ze.) w = 
l. 

(zw)e.' 
l. 

(2) (ze. )(we.) = (z w) (e. e.) i 'f 
J ' l. J l. J 
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(3) (ze.)(we.) = -zw, 
1 1 

(4) z0Je.) = (zw)e .. 
1 1 

«; 
Let (.I.) denote the Hermitean inner product on O with respect to 

{I,e2,e4 ,e6}. This form can be expressed in terms of the real one: 

where x >--+ Co(x) denotes the orthogonal projection of O on its sub­

space ]R. © lR.e 1 • 

Let U(4) be defined as the group of unitary transformations 

of O with respect to (.l.)c, and let U(3) ={TE U(4)jT(I) = 1}. 

From (5) it follows that {a. E G2 j a(e 1) = e 1} c U(3). 

The contents of (4.4) were suggested to the author by T. Koornwinder. 

(4.4) Using the notation of (3.3) we have two groups A and A', which are 

isomorphic with Spin(8) and Spin(7), respectively. Let us identify 

SO(n), for n ~ 7, with 

{TE SO(B)IT(I) = I and T(ei) = ei, for 1 = 1,2, •••• ,7-n}. 

Then the group 

is isomorphic with Spin(n). We can (and will, in the following) 

identify Spin(n) (for n ~ 7) also with a subgroup of S0(8): 

Spin(n) = {T 1 E S0(8)13 TE SO(n): (T,T 1 ,T 1) EA'}. 

LEMMA l. Spin(6) = U(4) n Spin(7). 

PROOF. " c ": For T E Spin(6) we have T 1 (x)T (y) = T (xy), for a certain 

T1 E S0(6) and all x,y E ©. 



Then T1(xy)T(y) = jyj 2T(x) · 

Tl(xy)IT(y)l 2 = IYl 2T(x)T(y) 

(I) T1(xy) = T(x)T(y). 

Further, we have (xly)t = Co(xy) = Co(T 1(xy)) 

by (I) = Co(T(x)T(y)) 

= (T(x) IT(y))4\ 

so TE U(4). Clearly Spin(6) c Spin(7). 

"=>":TE U(4) n Spin(7) implies: 3 T1 E SO(7) such that 

T1(x)T(y) = T(xy), Vx,yEID. 

By applying (1) we find: Co(T1(e1)) = Co(T(e 1)T(l)) = 

Since IT 1(e 1)1 = 1: T1(e1) = e 1• Thus TE Spin(6). 

Co(e 1) = 

□ 

Let SU(4) c U(4) be the subgroup that is composed of matrices with 

determinant one. (In general: TE U(4) => det(T) = ei(I)). 

REMARK: We use two symbols to denote the same element of~: i = e1• 

This will, however, not be confusing. 

PROPOSITION 2. Spin(6) = SU(4). 

PROOF. In view of the previous lennna it only has to be proved that 

SU(4) = U(4) n Spin(7). 

13 

Let TE U(4), with eigenvalues ei(I) ((I)= (1)1,(1)2 ,(1)3 ,(1)4) and corres­

ponding eigenvectors a= a 1,a2 ,a3,a4• Then Tis the product of four 

pairs of reflections (see appendix I): 

s 1 • I s , 
. :.i l.(I) a e a 

(where the a.'s are normalized to: la.I = I). 
J J 

(L 1 • L , R 1 • R, S 1 • S) is an element of fl (by (2.2.8)). 
e 21(j)a a e 21(j)a a e 21(j)a a 

Taking the product of four of such elements for (a,(I)) = (a.,(I).), 
J J 

j = 1,2,3,4; we obtain (T 1,T2,T3) E fl with T = T3. 
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1 iq, ½H<P1+q)2+<P3+<P4) 
But L 1 • L (I)= e 2 , hence T1(1) = e • We mention 

;;1(p -i::1 e·· a 
two possibilities: I) T1(1) = I, then T = T3 E Spin(7), and 

2) T1 (II) = -1, then -T 1 E S0(7), whence (-T 1 ,-T2 ,T3) E I}. and still 

T E Spin(7). 

Conversely, TE Spin(7) implies I) or 2), so we have 

proved:: 

TE Spin(7) iff T1(1) = ±I if£ i(<Pl+q)2·+<.p3+q>4) = I if£ TE SU(4) 

(since T1(1) 2 = det(T)). D 

C4:S) COROLLARY I. The stabilizer of e 1 in G2 is SU(3). 

PROOF. Stab(e 1) = G2 n S0(6) = Spin(6) n S0(6) = SU(4) n S0(6) = 

The set of purely imaginary octonions of norm one: 

{x E oJ (xi I)= O, lxl = I} is obviously homeomorphic with s6 c 
the six-dimensional unit sphere. Since G2 is transitive on X 

(define!d in (4. 2)), it is also transitive on s6 . Hence we have 

G 
PROPOSITION 2. s 6 ~ 2/SU(3). 

Identifying the set of all norm one octonions with the seven­

dimensional unit sphere·s7 , we obtain 

PROPOSITION 3. S 7 ~ Spin(7) /G2 . 

SU(3). □ 

JR.7 • , 

PROOF. We have proved that SU(4) is contained in Spin(7). Therefore, 

SU(4) being transitive on s7 implies that Spin(7) has the same property. 

The stabilizer of I E s 7 in Spin(7) is: 

{TE Spin(7) c SO(B)I T(I) = I}. But, if in in a triple (T 1,T,T) E !}.' 

we have TI (I) = T (I) = I , then TI = T and T E G2 □ 

(cf. (6.5), remark 3). 



5. THE EXCEPTIONAL JORDAN ALGEBRA Jr (0). 
3 
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(5.1) An important class of algebras was introduced by P. JORDAN [30] in 

1933. One year later, in their joint paper "On the algebraic genera­

lization of the quantummechanical formalism" [18], JORDAN, VON NEUMANN 

and WIGNER presented a detailed description of these algebras; the 

"~tmmber systems" as they were it.al led by these authors. Later they 

were named after Jordan. 

General definition of a:Jordan algebra: 

any al~;ebra with identity, whose multiplication satisfies: 

(1) xy = yx 

(2) x2(xy) = x(x2y) 

for all elements x,y. 

Wei will now define a number of Jordan .algebras, that are in a 

way representative for all Jordan algebras (cf. [1],[16] or [18]). 

Let {lK. (i = 0,1,2,4)} be the composition algebras over lR (cf.(2.1)). 
1. 

We recall that a square matrix T over an algebra with involution 

(x ....-+ 21~) is selfadjoint (or Hermitian) if T = Tt (the conjugate and 

the transpose of T, respectively). 

Consider. the sets S (TIC) of self adjoint nxn-matrices over lK. 
n 1. 1. 

(n = 1 , 2, ••••. ) • 

Instead of the usqal matrix product (denoted by XY) that does 

.not gelilerally .preserve selfadjointness, we provide S (lK.) with the 
n i. 

following product: 

(3) X o Y = ½ (XY+YX), 

which is 

1) commutative but 

2) in general not associative and 

3) preserves selfadjointness, whence S (lK.) has become an algebra. 
n i 

For i == 0, 1, 2 and all n, S (lK.) is a Jordan algebra, denoted by 
n 1. 

Jf (lK.) • (This is easy to check). 
n 1. 

Regarding i = 4, there is the following result: 

.S (©) is not a Jordan algebra if n > 3 (see e.g. JACOBSON [16] 
n 

p. 126/127). The case n = 1 1.s trivial; s2 (<D) and s3 (<D), denoted by 

Jr 2(ID) and Jr 3 (o), respectively, are indeed Jordan algebras, as will be 

stated in a corollary of proposition (5.4). 
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(5.2) 

The automorphism groups of Jr (TIC) are: n . l. 

S0(n) modulo its centre for i = 0 

SU(n) modulo its centre for i = 

Sp(n) modulo its centre for i = 2, 

(the last group being that of all symplectic matrices). 

For Jr2 (~) it is S0(9) (see (6.5.4)). Finally, for J 3 (0) it can be 

proved(*) that the automorphism group is a compact, real form of the 

exceptional simple Lie group F4• Henceforth we will write accordingly: 

F4 = Aut (J3 (0)). 

The algebras J 3(A), with A an eight dimensional composition algebra 

over any base field of characteristic not two, play an outstanding role 

in the classification of Jordan algebras, and are therefore called 

exceptional Jordan algebras (cf. [1],[18]). 

An element of J 3(o) looks as follows: 

X = (;; 

c3 
0 2

) 

]R3 3 
x2 cl , X = (xi ,x2 ,x3) E C = (cl,c2,c3) E G) • , 

c2 cl x3 

This is abbreviated by X = X(~,£_). 

We distinguish six elements: 

El:= G 
0 

D 
(0 0 

D 0 E2 := \~ 
0 ·o 

E3:= G 
0 ;) C (0 0 0\ 
0 0 

F 1 := \ ~ ;; 0 C 

(° 0 

I) (° 
C ~) 

F~:= : 0 C - 0 F3:= : 
0 0 o/ 

(*) CHEVALLEY & SCHAFER [8]; also [9] and [25]. 



Multiplication in J 3(©) can be described in terms of these six 

elements: 

(1) E. o E. = 0 and E. o E. = E., 5 i -I j 5 3 
1 J 1 1 1 

F? 
d 1 cd 

} 
(2) () F • 1 = :zF i+2' 1 i+ 

(indices mod 3) 
F? d 

(E. 1 + E. 2Hcld) o F. = 
1 1 i+ i+ 

F? I C C 
(3) E. 0 = :zF. ' E. 0 F. = 0, 5 1 -I j 5 3 

1 J J 1 1 

(5.3) We will now examine some subgroups of F4 . 
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Let Sp:i.n(8) and Spin(7) denote the groups /1 and /1 1 (defined in (3.3)) 

respectively, and G2 the diagonal in /1 (i.e. the triples (T,T,T)). 

For TE S0(8), let T* be the transformation T*(x) = T(x}, which is 

also an element of 80(8). 

PROPOSITION I . (TAKAHASHI [ 24], . p. I 5) : 

Let a E F 4 . Then a( E 1) = EI and a( Ez) = E2 iff there is a triple 

(T 1,T2 ,T;) E Spin(8) with: 

PROOF. The identity element of J 3 (m) is I= E1+E2+E 3 . Since a is an 

automorphism: a.(I) = I, ·so E3 = I-E 1-E2 = a.(I-E 1-E2) = a.(E3). 
C 1 cl Suppose a.(F 1 ) = Y(I_,~), then a.(E2 o F1 ,) = E2 oy = ½Y (5.2.3). 

E oY = (:d 2 ' 2 3 

0 

! 

Consequently d2 = y 1 = y 2 ; y 3 = 0 .c1In the same way E3 o Y = ! Y 

implies d3 = O. Hence a.(F 1 1 ) ·= 1'' 1 1; a. induces only a transformation 

of c 1, which is orthogonal, as can be seen from 
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The same 

write: 
C• 
·1 

a(F. ·) = 
1 

cl cl 
=a(F 1 )oa(F1 ) 

= a [(E2+E3)lc1l2J 

= (E2+E3)lc1l2, 

argument is valid for F2 

T- (c,) 
1 1 

0(8), F. T. E 
1 1 

From (5.2.2), 1 = l : 

(5.2.2) 

c2 and F3 
c3 Accordingly we can . 

1 = 1,2,3. 

* Therefore, T1(c) T2(d) = T3(cd) = T3 (cd) for all c,d E (I); and 

T1,T2 ,T3 E S0(8), (cf (3.2)); (T 1,T2,T/) E Spin(8). 

* Regarding the converse: if for a triple (T 1,T2 ,T3 ), a is 

defined as in (I), it is easy to check, with the rules in (5.2), 

that a E F4 . D 

Identifying Spin(8) with the automorphisms (1), we emphasize two 

consequences of the proposition 1. 

COROLLARY 2: Let a E Spin(8) c F4. Then: a E Spin(7) iff 
I l 

a(F I ) = FI . 

1 
COROLLARY 3: Far a E Spin(7) c F4: a. E G2 iff a(F2) 

The proofs are trivial. 

(5.4) PROPOSITION l: (FREUDENTHAL [9] & [IO]) 

Each element of J 3 (ID) can be brought to diagonal form by an element 

of F 4. 

Moreove1"., the coefficients of this diagonal matrix are unique 

up to permutations. 



If J 3(o) is divided into equiyalence classes: 

(1) [X] := {a(X)ja E F4} = OrbitF (X), 
4 

we can thus characterize these classes by unordered triples 
3 (A 1,A 2,A3) E lR • 

LEMMA 2. Let T E SU(3), and define 

PROOF. T can be replaced by a product of three different kinds of 

matrices: 

(i) elements of S0(3), (ii) . (: 

(:i~ 0 

and (iii) 
-itp 

e 

0 

0~) 

Q 

icp 
e 

0 

E SU (3) 

: \ e SU{3) 

e-iJ 
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(for a proof, see appendix II). The reader will find no difficul­

ties in proving that the lemma is correct for a T of type (i), 

(ii) or (iii). Further, we have (by (4.3.1/4)): (T1T2)* = (T 1)*(T2)* 

for r 1,r2 E SU(3). Now the.proposition follows easily. D 

REMARK. If Tis of type (ii) or (iii), we have T* E Spin(8) •. 

Proof of the proposition (5.4.1): 

Let X = X(x,.£_) E J 3 (~) and assume that ci IO, i = 1,2,3 (if this is 

false, there is only less work to be done). In a number of steps X 

will be transformed to a diagonal matrix, merely by applying elements 

of Spin(8) and automorphisms of type T . 
* 
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Step 1: T - ) E Spin(8) to obtain 
~ 
I c 1 I 

Step 2: Find a TE S0(2) such that 

x2 

-1 
T 

(·01 TO) E S0(3). Then 

C 
C " 3 

= T (X ) = c " x' 
* I 3 2 

II 0 c2 

. Identify T with 

Step 3: With a 2 E Spin(8) we make c2' real (like in step I), 

obtaining 

(' 
C 111 

3 

X3:= a2(X2) = C3 Ill x' 
2 

\ic2"1 0 

lcz"I) 
0 • 

x' 
3 

Step 4: We know that G2 is transitive on spheres of purely imaginary 

octonions. Hence, there is a a E G a (c '") = Re(c 111 ), + 3 2' 3 3 3 
+ lc 3"' - Re(c3111 )je 1, and a corresponding element of F4 , which we 

will call also a 3 . Thus: 
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XI z lcz" I 

X4:= a3(X3) = z x' 0 with z E a::. 2 

I c2" I 0 X I 
3 

Step 5: The Hermitian complex matrix x4 can be_ transformed to diago­

nal form by a T*' with TE SU(3) (see e.g. CHEVALLY [7] p.12/13). 

Proof of the uniqueness of this diagonal matrix: 

= (0:>..01 Suppose we have aX(X) 

where a is the combination of all steps above. The trace of X has 
X 

not changed during this process, hence 

3 
(3) I L = tr(ax(X))· = Tr(X), 

i=l l. 

3 
:>.. ~ 2 ' 2 2 

(4) I = tr(ax(X) ) = tr(ax(X )) = tr(X ), 
i=l l. 

since 2 2 o X) is we have and, ax(X ox) = ax(X and °x 1-_1, 

o x2 2 
X =: x3 X = X o ' 

so 

3 
A.3 3 3 

(5) I = tr(ax(X )) = tr(X ). 
i=l l. 

The :>...'s are determined up to permutations by (3),(4) and (5), and 
l. 

these permutations can easily be accomplished by· 'I' 's. 
* 

E.g: 

r-l 0 0\ 
for T = 0 0 - I I€ S0(3), T interchanges :>.. 2 and :>.. 3• I * 

\ 0 -I o/ 

f1f3Ul) 1 t'li~t).;. i\~: .. r In: ri,~;~ l :;cH Ci-f~ 1 B\Ji. 
AMSIUWAM 

D 
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COROLLARY 2. J 3 (©) and J 2 (©) cire Jordan algebras. 

~- For XE Jr3 (©) we denote the diagonalizing automorphism by 

ax (ax is not uniquely determined by X). If y E 13 (0), clearly 

ax(X O cx2 0 Y)) ~ ax(x2 0 (XO Y)), 

which yields the result, since ax is injective. As concerns J/0); 

this is in an obvious way a subalgebra of J 3(©) (cf. (6.5)). O 

REMARK • .Jf /©) possesses a real inner product, defined by (Xj Y) := tr (XD Y) 

which is invariant for F 4 by proposition (5. 4. I). H a symmetric tri­

linear form is defined by (XIYIZ) := (X o Y Z), it c.an be p.roved that 

F 4 is ,the .subgroup of all linear transformations of J 3 (©), consisting 

of those that leave cx!Y) and (XIYIZ) invariant (cf. CHEVALLY & 

SCHAFER [8]). 

(5.5) Suppose that [X] is characterized by (A 1,\2 ,A 3). The characteristic 

equation of aX(X) is 

3 
TT 

i= l 
(L - A) = 0 

1. 
or 

But A1+A 2+A3 = tr(aX(X)) = tr(X), 

I 2 2 
A1A2+A 2A3+Ail = 2((tr(X)) -- tr(X )) and 

I 3 I 2. I 3 
A1A2A3 = 3 tr(X) - 2 tr(X )tr(X) + 6 (tr(X)) . 

Substituting this in (1) and writing out the traces explicitly in 

the co,~fficients of X = X(~,£) yields 



This equation can be considered as a characteristic equation for 

elements of .u- 3(0). 

For A= 0 we obtain a generalized definition of the notion of 

a determinant: 

1 3 1 2 1 ', 3 
det(X) := J tr(X) - I tr(X )tr(X) + l (tr(X)) • 

6. IRREDUCIBLE IDEMPOTENTS IN J3 (0). 

(6.1) XE J 3(o) is said to be an irreducible idempotent if the following 

two conditions are satisfied. 

(i) 2 
X = X. 

(ii) X = x 1+x2 with x2 
I = xi, x2 

2 = X 2 and 

xi o X = 0 implies: xi = O or x1 = x. 2 

Let lP denote the set of all irreducible idempotents in J3'0). 

LEMMA I. For X = X(~,.£.) the following assertions are equivalent: 

lPI: XE lP. 
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JP2: tr(X) = I and xici = ci+lci+2 

with lcil 2 = xi+lxi+2• 

(i = 1,2,3, indices mod. 3) 

lP3: XE [E 1]( = [E2] = [E3]) (cf. prop. (5.4.1)). 

lP 4: tr(X) = tr(X2) = tr(X3) = t. 

PROOF. First, it should be mentioned that lP2 is equivalent with 

lP2': tr(X) = 
2 

and X = X, which is easy to verify. 

Then, all implications follow from a consideration of the eigenvalues 

of an irreducible idempotent: 

If XE .u-3 (0) is an idempotent, we have 

.. - x2 
A - = x3 , so 
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which implies, if [X] ~ (A 1,A2 ,A 3) (cf. (5.4.1)), 

2 3 A.= A. = A. for i = 1,2,3. Therefore, A.= 0 or A.= 1. 
1 1 1 1 1 

When Xis moreover irreducible, aX(X) must be so too, which leaves 

the only possibilities: 

Ai= 1 and Ai+l = Ai+2 = O, where i = 1,2 or 3. O 

(6.2) Let the stabilizer of E1 in F4 be denoted by S. For X = X(2£,~) and 

Y = Y(y ,d) being elements of lP, we have the following 

LEMMA I. 3 a. E S a(X) = Y iff xl = y l. 

Apply a to obtain 

1 c2 c3 1 d l 1 d2 (*) x 1E1 + 2n(F2 +F3 ) = E1o a. (X) = E1 o Y = y 1Et2F l +2F2 

Suppose Z = one of aFtz and aF3c3 . Then E1 o Z = ½Z implies that the 

coefficient of E1 in Z must be zero. Thus aFt2 and aF 3c3 do not 

contribute to the coefficient of E in Y. With(*) it follows that 
1 

xl = y l. 

11 <= ": With the first two steps of the proof of (5.4. l) we can trans­

form X into a matrix 

C ' 
3 

x' 
2 

0 

by a certain a E s. But a(X) E lP, so (by JI>2) c 1 = 0 implies 

x2'. x31 = 0. 

case one: x2' =XI 
3 

a 1S 

= 0 => a(X) = E1, whence, since a ES and 

1-1, X =El= Y. 

case two: say x2' 1 0 and x3• = 0 (without loss of generality), 

then c' = U and 
2 
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a'(a(X)) = 

0 

1-x 
I 

0 :) 
for a certain a' E Spin(8) c S. 

If we do the same for Y, we get the same matrix, since x 1 = y 1 and 

lc3'12 = xl(l-xl) = yl(I-yl) = jd3'l2. D 

PROPOSITION 2. The orbits of S in 1P are characterized by a number: 

0 ~ x 1 ~ I, which is the coefficient of E1 in all elements of an orbit. 

2 PROOF. X = X ~ x 1 (X = X(_!,_£)), so 

Now thei proposition is merely a corollary of the lennna (6.2.1). D 

(6.2.2) I 
PROOF; Orbg (E2) === {X(_!,.£) E 1P x 1 = 0}. But x 1 = 0 implies 

c 2 = c3 = 0 (cf. ]Pi (6.1)). Hence, Orbs(E2) is composed of the matrices 

which have the form 

(~ 0 

1-x 

C 

with 1~1 2 = x(I-x) or, 

rewritten: l2cJ 2 + (2x-I) 2 = I. D 

PROPOSITION 2. The stabilizer of E1 in F4 is isomorphic to Spin(9), 

the universal covering group of S0(9). 

PROOF. From the lemma it follows that Sis transitive on s 8 • If we 

look for the stabilizer of E2 in S, we find (by (5.3)) 

Spin(8) = (Sn StabF (E 2)). 
4 

Hence s8 ~ 8/Spin(8); in particular: 

Sis connected and Dim(S) = 8 + Dim(Spin(8)) = 8 + Dim(S0(8)) = 
Dim(S0(9)). 
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The action of Son s8 is obviously the same as that of 0(9). 

Consequently, there is a continuous homomorphism~= S ~ 0(9), 

representing this action. 

If a ES induces the identity on s8 , we have 

a(E.) = E., 
l. l. 

i = 1,2,3 and V c EID: 

Hence a= (T 1,T2,T3) E Spin(8), with T1 =id.Thus, the kernel of~ 

consists of (I,I,I) and (I,-I,-I). Furthermore: 

(i) The image of~ is lying in S0{9) since Sis connected, and 

(ii) is even equal to S0(9), since Dim(S) = Dim(S0(9)) and since 

the kernel of~ is discrete. D 

(6.4) Henceforth we will write Spin(9) = StabF4 (E 1) 

LEMMA 1. Let x0 = x0 (~,~) E lP such that O < x 1 < 1. Then 

15 
OrbSpin(9)(XO) R$ S . 

PROOF. 

Then, by ( 6. 1 • 3) lP 2, we have: 

YE lP (and thus, by (6.2.1), E OrbSpin( 9)(X0)) iff 

dl = d2d3' Y2 = ld3'2, Y3 = ld2"i2 and ld2l2 + ld3l2 

PROPOSITION 2. s15 ~ Spin( 9)/Spin(7). 

PROOF. 

The stabilizer of x1 0 

0 

0 

0 

f!::1) xi 

0 

l-x1 / 
/ 

1 • 
= - - I. 

E SIS 

D 



in Spin(9) has to be the invariance group of E1 ,E3 and F / , 

which equals Spin(7) (cf (5.3)). D 

(6. 5) LEMMA I. Let X, Y E 1P. Then 

PROOF. 

II~ II : 0 = El O E2 = f3XY(X O Y). 

11 .. 11 : From E1 o °:x (Y) = 0 it follows that 

0 

y 

cf 

: ) < 1P • But then: 

1-y 
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aX(Y) E OrbSpin(g)(E2), so there is a Yy E Spin(9) with Yy(Y) = E2 • 

Thus f3XY = Yyax. 0 

COROLLARY 2. Let X, Y ,z be three non.:...ze:r>o elements of 1P. Then 

X o Y =Yo Z = Z o X = 0 implies X + Y + Z = I. 

PROOF. f3XY(Z) = E3, as can be seen easily. D 

In general: 

REMARK 1. By abuse of language _we spoke about F4 as being the group 

of automorphisms of J 3(o) restricted to lP. But this rectriction is 

obviously injective, so we are justified. 

REMARK 2. It should be clear from the foregoing that the automor­

phism g,roup of J 2 (o) is Spin(9) modulo {(I,I,I),(I,-I,-I)} c Spin(8), 

where J2 (o) is identified with all matrices 
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0 

This group is equal to SO(9), of course. 

REMARK 3. Another proof of cor. (4.6.1): 

C :) ' ~} 

Spin(7) is transitive on this set, when considered as the stabilizer 

of F/ in Spin(S) (cf (5.3.1)). 

The stabilizer of 

Spin(7) is {(T,T 1,T 1) E Spin(7)IT 1(1) = 1} = G2 . 

Hence s7 ~ Spin(l)/G2. D 

7. THE PROJECTIVE OCTONION PLANE. 

(7. 1) To start with, we will show some properties of lP, which will make 

proposition (7.2.1) more plausible. 

LEMMA 1. There is a continuous epimorphism: 

~: (Spin(9)) 3 _ __,_ 

PROOF. Say (Spin(9)) 3 = Stab(E 1) x Stab(E2) x Stab(E 1) c F43 

and let~ be defined by 

We will see how any a E F4 can be factorized in this manner. 
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Suppose a(E 1) = X(~,~). There are a 1 E Stab(E1) and a 2 E Stab(E2), 

such that: 

0 

0 

0 

(cf. (6.2.1): this lennna is also valid for Stab(E2)). 

Thus a 2a 1a E Stab(E1), say a 2a 1a = a3 • But then 

a= a 1- 1a 2- 1a 3 E (Spin(9))3. D 

COROLLARY 2. F4 is aorrrpaat and aonneated3 and so cu>e all of its orbits 

in J/0). 

(The first half of this statement is one of the things we took for 

granted in the previous section; though we did not use it). 

LEMMA 3. Dim(IP) = 16. 

PROOF. Dim(IP) = Dim(F i) - Dim(Spin(9)) = 52 - 36 = 16. 0 
a 

(7.2) We recall a global (not complet~) definition of a projective plane: 

"An aggregate of two families: one being composed of points and one 

of lines. In this set an incidence relation between members of diffe­

rent families is defined, satisfying: 

(i) A line is incident with at least three points, and 

(ii) two different lines (points) are incident with exactly one 

point (line)." 

If a projective plane over the octonions is to be constructed, con­

ventional methods break down on the lack of associativity. (This 

is the case, for example, with the method of decrease of dimension). 

The following construction was carried out in detail by FREUDENTHAL 

[9]. 

DEFINITION. Let the set of points P and the set of lines L both 

be copies of IP, and let an incidence relation be defined as 
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XE P and YE Lare incident iff X o Y = O. 

PROPOSITION I. Being the "union" of P and L., 1P is provided with the 

structure of a projective plane (over OJ. 

For complete demonstrations the reader should consult e.g. FREUDENTHAL 

[9], TITS [25] (this last author has a remarkable geometric approach) 

or to SPRINGER [22] (for an extensive and purely algebraic (general) 

presentation). 

We will prove here only a part of the proposition. 

- Two different lines (points) are incident with at most one point (line). 

PROOF. Let X,Y E L(P) and z1,z2 E P(L), assuming that 

(i) X :f Y (ii) X o Z. =Yo Z. = O, 
1 1 

i = 1,2. 

Using the type of automorphism of which we proved the existence in 

(6.5.1) we obtain: 

Furthermore, Bxz (x o Z2) = El O Bxz (Z2) so 
I I 

C 
0 0 

~ Bxzl(Z2) = X d for some x,d. 

cf 1-x) 

(C 
de ( 1-x)c \ 

I 

Bxz (Y o z2) = I 0 (1-y)d ) 2 
I 

\(J-x)c < 1-y)d 2 ( I -y )( I -x) 

and this must be the zero matrix. 



If y = 1 then Sxz (Y) = E1 (since it is 

which implies X = Y (S~ 1 is injective). The 

is x = 1, but then SXZ1(Z2) = E2, so zl = z2. 

an element of 1P) , 

only other possibility 

□ 
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REMARK. The projective plane over O is also related to the exceptional 

Lie groups E6 ,E7 and E8 • We mention a few references considering these 

matters: 

E6 FREUDENTHAL [9], TITS [26], CHEVALLEY & SCHAFER [8]. 

E7 & E8 : FREUDENTHAL [ 1 _I], TITS [26]. 

(There are, of course, many more) 

For a survey, see FREUDENTHAL [12], or (very concise) VAN DER BLIJ [2]. 

APPENDIX I. 

LEMMA. A unitary ti>ansformation is a pi>oduct of i>efZections. 

PROOF.TE U(n) implies that there is an Hermitian orthonormal basis 
n of eigenvectors for C, say (v1, •••• ,vn), with 

(1) !> k !> n. 

We can write T in the form 

n 
T = TT T.' 

j=I J 

were T. is defined by 
J 

(2) - ilp· and T/vk) = vk, j f k. T.(v.) - e Jv. 
J J J 

Consider Cn as a real vector sp~ce, lR2n, with inner product 

(xly)lR := Re(xly)t. The set of vectors (v1,iv1,v2, •••. ,ivn) forms 

an orthonormal basis of JR 2n. 

For Tj we find, in this language: 

T.(v.) = v. cos <.p. + (iv.) sin <.p., 
J J J J J J 

T.(iv.) = - v. sin <.p. + (iv.) cos <.p., 
J J J J J J 

and if j f k. 
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A reflection in the Euclidean space 1R.n is known to be defined for 

any a E JR.n with I a I = 1 by 

S (x) = x - 2(xja)1R.a. 
a 

Applying the pair S ½ilpJ· SvJ. to our basis (v1 ,iv1 ,iv2, •..• ,ivn) 
e v. 

J 
leads to the conclusion that its action is equal to the action of T.. D 

J 

APPENDIX II. 

DEFINITIONS: 

D(n) := set of complex, diagonal nxn-matrices 

UD(n) := U(n) n D(n) 

SUD(n) := se(n) n D(n). 

PROPOSITION. For every TE U(n), there can be found T1,T2 E O(n) 

and A E UD(n), such that 

PROOF. (by T. Koornwinder) 
(Tt * . t := transpose of T, T := conJugate of T) 

t· 
Let TE U(n). Then TT E U(n), and 

t Hence, TT = C+iD, with C and D real and CD= DC (since, in U(n): 

T* = T- 1). 

Moreover, we have C = Ct a~d D = Dt. A commuting pair of square, 

real, symmetric matrices can be diagonalized simultaneously: 

-1 -1 
3 Tl E SO(n): Tl C Tl, Tl D Tl E D (n). 

-1 t But then: T1 (TT )T 1 E UD(n). 

2 -I t 
Choose A E UD(n) with A = T1 (TT )T 1. 

Let T2 := A- 1T1-IT E U(n). 



= I, 

it follows that T2 E O(n). Now we have T1,T2 and A satisfying 

the conditions of the proposition. D 

COROLLARY(~ LEMMA (5.4.2)): VT E SU(n) 3 T1,T2 E SO(n} and 

3 A E SUD(n), with: 
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