
Centrum voor Wiskunde en lnformatica 
Centre for Mathematics and Computer Science 

J. Kok, G.T. Symm 

A proposal for standard basic functions in Ada 

Department of Numerical Mathematics 

EJib!iotheek 
Gl!!lrrtrurn voor \1Vi':!lom1~e en infonri&tlt.$; 

Amslerdam 

Report NM-R8407 June 



A PROPOSAL FOR STANDARD BASIC FUNCTIONS IN ADA 

J. KOK 

Centre for Mathematics and Computer Science, Amsterdam 

G.T. SYMM 

Division of Information Technology and Computing, National Physical Labora

tory, Teddington, Middlesex, U.K. 

This paper contains a proposal for a standard basic mathematical functions 

package for scientific computation in Ada. The package is transportable to 

machines with different floating-point types and its availability will en

hance the portability of numerical software. 

1980 MATHEMATICS SUBJECT CLASSIFICATION: 69D49, 65-04. 

KEY WORDS & PHRASES: Ada, high level language, basic mathematical functions, 

scientific libraries, portability. 

NOTE: This report will be submitted for publication elsewhere. 

Ada is a registered trademark of the US Government (AJPO). 

Report NM-R8407 

Centre for Mathematics and Computer Science ,, 
P~O. Box 4079, 1009 AB .Amsterdam, The Netherlands 



PREFACE. 

During 1982 and 1983 the National Physical Laboratory, Teddington, 
and the Centrum voor Wiskunde en Informatica, Amsterdam, were engaged 
in an investigation of the possibilities of designing large modular 
scientific libraries in Ada. The project was funded by the Commission 
of the European Communities and culminated in the production of a set 
of Guidelines (Symm et al., 1984) which include recommendations on 
the ways in which Ada can and might be used in this context. 

One of the recommendations made was that a standard specification 
of the basic mathematical functions should be adopted as soon as 
possible. In this paper, we present the proposal for such a standard 
with an outline of the several possibilities considered and with 
justification for the options chosen. 

For further details we refer the reader to the full report on the 
project (Symm et al., 1984), which also treats the following 
subjects: types for composite data structures (COMPLEX, VECTOR, 
MATRIX), information passing, error handling, working-space 
organisation, computations in a real-time environment (use of tasks). 

1. INTRODUCTION 

The programming language Ada (ANSI/MIL-STD 1815 A, 1983; hereafter 
referred to by the abbreviation LRM for Language Reference Manual) 
was primarily designed for the production of large portions of 
readable, modular, portable and maintainable software for real-time 
applications. It is generally expected, however, that it will also be 
widely used in large-scale scientific computation. 

For the production of portable, reliable and efficient software 
for scientific computation, the acceptance of a standard 
specification for the basic mathematical functions (like SQRT, LN or 
LOG, EXP, SIN, COS, ARCTAN) is a prerequisite (see, for example, 
Rice, 1983). 

Aspects to be considered when discussing a proposal for such a 
standard are: 

- in what sense calculations may be considered to be portable, 

- the introduction of the available floating-point types and of 
user-defined types into the collection of functions (in the sequel 
we assume this collection to be a package), 

- the choice of the basic mathematical functions, 

- the specification of each function, including: name, types or 
subtypes used for parameters, formal names of parameters and 
possible defaults, result type, 



- hierarchy, if any, of the components of the package of basic 
mathematical functions, 

- use of exceptions and other implementation recommendations. 

2 

A full discussion can be found in the final report on the project 
(Symm et al., 1984), especially in Chapter 3 (on the introduction of 
floating-point types into a package), Chapter 4 (discussion of the 
options and choices made) and Appendix C (concerning argument ranges 
and an exemplary implementation). 

The package proposed here offers users a desirable amount of 
flexibility without any cumbersome preliminaries. The relevant 
considerations are summarized in the following sections. 

2. PORTABILITY OF COMPUTATIONS 

In general, programmed floating-point computations are never fully 
transportable as regards their results, because of the differences, 
between machines, in the accuracy of the available hardware types and 
in the performance of the hardware real arithmetic. 

In Ada one can use predefined types, such as FLOAT, LONG_FLOAT, 
etc., which presumably (but not necessarily) exploit the available 
hardware types as well as possible. However, one can also declare 
real types which are independent of the predefined types, e.g. 

type REAL is digits 10 range -1.0E+40 .. +1.0E+40; 

If all computations (e.g. in the basic mathematical functions) are 
programmed for this type REAL, then they will be transportable to all 
machines where the definition of such accuracy and range constraints 
is allowed (i.e. where the resources requested by the type definition 
can be met by the hardware types). However, the results will still 
differ because of the differences in the floating-point arithmetic. 
Moreover, for the source code to be transportable between even two 
machines, one may be forced to choose a small number of digits in the 
accuracy constraint. For many applications this is not a desirable 
approach. 

The portability which numerical analysts would like can be 
described as follows: 

An algorithm should perform as well as possible on any machine to 
which it may be moved without the need for large adaptations of 
its source text. Good performance here includes efficient and 
accurate computation. 



Such . portability may be obtained for source code which uses 
sufficient information about the hardware types, this information 
being extracted from a standard set of environment parameters. This 
set should consist of constants and manipulative functions (see, for 
example, Ford, 1978; Cody, 1982). The language Ada offers environment 
parameters which describe the floating-point types through the 
so-called type attributes (e.g. REAL'DIGITS or REAL'MANTISSA) and 
additional information is given in the standard package SYSTEM 
(LRM 3.5.8 and 13.7). 

Whether computations in Ada use a predefined type like FLOAT or a 
user-defined floating-point type, the algorithms should not depend on 
the specific accuracy and range of this real type. Instead, they 
should contain source code which will perform well on a range of 
intended target machines. This may be achieved by implementing 
algorithms which are branched with respect to values of the real type 
attributes. (We do not discuss the sufficiency of the Ada environment 
parameters.) 

We believe that for some mathematical functions (e.g. SQRT) it is 
possible to design portable bodies yielding function results with 
accuracy deviating little from the accuracy of the definition of the 
type used. Such bodies can be implemented completely in Ada and in 
such a way that, for two different floating-point types, function 
evaluations require less computational effort for the type with the 
smaller accuracy constraint. For other functions, however, this 
design, which requires the numerical stability of the function as 
well as of the available methods, cannot be achieved. For these 
functions, we have to accept larger differences in performance when 
we move source code. 

If installations have hardware functions available for the 
different hardware floating-point types, they will (usually) provide 
implementations of the basic mathematical functions by connecting the 
declarations to these hardware functions. The effect to the user 
should be the same as if the bodies were (portable) Ada source text, 
ignoring the expected differences in computational effort which are 
insignificant for the basic mathematical functions. However, this is 
only true if the hardware functions are sufficiently accurate and if 
out-of-bounds values are or can be trapped (equivalent to raising an 
exception in Ada). These requirements should always be checked. 

3. PARAMETRIZING WITH DIFFERENT FLOATING-POINT TYPES 

From the previous section, it is clear that the use of FLOAT or 
LONG FLOAT in calculations does not automatically yield portable 
mathematical functions. Attempts to achieve a certain accuracy with 
FLOAT might raise an exception on one machine, where the required 
accuracy may be available through LONG FLOAT, whereas on a different 
machi'ne FLOAT may be sufficient (or even more than adequate). Use of 
the predefined types gives no flexibility at all. 

3 



If a user desires to calculate with LONG FLOAT, he cannot apply a 
mathematical function using the type FLOAT-(see, e.g., Whitaker and 
Eicholtz, 1982). He can of course write explicit type conversions 
everywhere, but these do not yield more accuracy in the function 
values. 

Even if the implementation of a mathematical function takes 
account of the actual precision of FLOAT, by exploiting the available 
floating-point attributes (see Wallis, 1983), and uses different 
approximations for different values of the MANTISSA attribute for 
example, application to values of the type LONG_FLOAT is invalid. 

A first attempt to obtain some flexibility might lead to packages 
which use floating-point types appropriate to the machine, these 
types being declared in a library package such as: 

package REAL TYPES is 
type REAL-is new FLOAT; 
type DOUBLE is new LONG FLOAT; 
-- or other suitable implementations for REAL and DOUBLE 

end REAL_TYPES; 

Then a user's program, or a library package, e.g. for providing basic 
mathematical functions, can use these types through a context clause, 
thus: 

with REAL TYPES; use REAL TYPES; 
package BASIC_MATHEMATICAL_FUNCTIONS is 

end BASIC_MATHEMATICAL_FUNCTIONS; 

However, a disadvantage of the latter package is that it cannot be 
used for user-defined floating-point types (except for derived 
types). 

A better solution, which is more in keeping with Ada Style (Nissen 
and Wallis, 1984), is to write library packages which are generic 
with respect to the real type(s) to be used within th~m. For the 
basic mathematical functions, we then have: 

generic 
type REAL is digits <>; 

package GENERIC MATH FUNCTIONS is 

end GENERIC_MATH_FUNCTIONS; 

This library unit can be used with any user-defined floating-point 
type but we recommend that an installation should also provide a 
standard instance as a library unit for those users who do not want 
to give further thought to the possibilities which Ada offers here. 
This ~would avoid the need for separate instantiations in all 
dependent packages, possibly yielding many copies of an instance. The 
standard instantiation would read: 

4 



with.GENERIC_MATH_FUNCTIONS; 
package STD MATH FUNCTIONS is 

new GENERIC_MATH_FUNCTIONS(FLOAT); 
-- or possibly with LONG_FLOAT. 

A particular installation may, for reasons of efficiency, effect 
an instantiation of the above generic package by calling an 
equivalent non-generic version (which may even be on a special
purpose chip). As far as t.he user is concerned, the fact that this is 
not an instantiation in the normal sense will not be evident and will 
not matter. 

In the generic package above it is assumed, for simplicity, that 
only one floating-point type is needed by the implementation. We 
leave the generalisation, for different particular needs, to the 
reader. The situation where a different floating-point type (with 
presumably a higher accuracy) is needed by the package body (the 
implementation of the functions) but not by the package specification 
(the visible part) is a subject of continuing concern to the 
Ada-Europe Numerics Working Group. 

4. CONTENTS OF THE PROPOSED PACKAGE 

Unlike many other common programming languages, Ada does not 
include elementary functions (other than the usual arithmetical 
operations) in the language definition. However, provision for these 
functions can be readily made through packages written in Ada and 
such packages, if sufficiently standardized, may be viewed as 
extensions to the language. 

For the contents of the basic mathematical functions package we 
have chosen those functions which are available in most languages, 
assuming that other (special) mathematical functions are less 
frequently required. We have included in this package number 
declarations for the mathematical constants PI and e (the base of 
natural logarithms, which we have named EXP 1). Also, one exception 
declaration is proposed, viz ARGUMENT _ERROR. This exception can be 
raised by functions which detect that the argument given is not in 
the prescribed domain (see below). 

The source text which follows contains all the function 
specifications, and hence provides complete information regarding 
standard naming, types or subtypes used for parameters, formal names 
of parameters and possible defaults, and the type of each function 
result. 

5 



In thi.s package specification we have taken the opportunity to 
incorporate more general versions of the usual EXP, LN (natural 
logarithm), SIN, COS, TAN, COT, ARCTAN and ARCCOT functions (as 
explained in the following section). We may regard their declarations 
as being overloaded with both the usual functions (calls with default 
second parameter) and related functions, viz. a power or logarithm 
with arbitrary base, circular functions with arbitrary period, and 
inverse circular functions ARCTAN and ARCCOT with two parameters for 
accurate results near PI/2. Correspondingly, we have taken the more 
general name LOG instead of' LN. Traditional calls like SIN(X) are 
allowed and yield the usual results. We consider it appropriate to 
have complete sets of circular and hyperbolic functions, as otherwise 
additional packages might arise with less logical structure. 

The complete package declaration reads as follows: 

generic 
type REAL is digits <>; 

package GENERIC_MATH_FUNCTIONS is 

-- Declare constants. 

PI: constant :: 3.1415 92653 58979 32384 62643 38327 95029; 
EXP_1 : constant := 2.ff82_81828_45904_52353_60287_47135_26625; 

-- Declare the basic mathematical functions. 

function SQRT(X : REAL) return REAL; 
function LOG(X REAL; BASE : REAL:: EXP 1) return REAL; 
function EXP(X REAL; BASE : REAL :: EXP-1) return REAL; 
function SIN(X REAL; CYCLE REAL·- 2.0*PI) return REAL; 
function COS(X REAL; CYCLE REAL :: 2.0*PI) return REAL; 
function TAN(X REAL; CYCLE REAL := 2.0*PI) return REAL; 
function COT(X REAL; CYCLE REAL :: 2.0*PI) return REAL; 
function ARCSIN(X REAL) return REAL; 
function ARCCOS(X REAL) return REAL; 
function ARCTAN(X REAL; Y : REAL :: 1.0) return REAL; 
function ARCCOT(X REAL; Y: REAL:: 1.0) return REAL; 
function SINH(X REAL) return REAL 
function COSH(X REAL) return REAL; 
function TANH(X REAL) return REAL; 
function COTH(X REAL) return REAL; 
function ARCSINH(X REAL) return REAL; 
function ARCCOSH(X REAL) return REAL; 
function ARCTANH(X REAL) return REAL; 
function ARCCOTH(X REAL) return REAL; 

-- Declare exception. 

ARG'tJMENT_ERROR : exception; 

end GENERIC_MATH_FUNCTIONS; 

6 



The 35 digits given for the declarations of the two mathematical 
constants should be sufficient for most purposes. The results to be 
expected from function calls follow from the usual mathematical 
definitions, except for the extended calls (i.e. the calls with a 
second actual parameter) of ARCTAN and ARCCOT. For full details of 
the latter see Symm et al. (1984), where we have also given 
guidelines (for the package body) regarding the delivered accuracy 
and the raising of exceptions. No textual error messages should be 
issued. 

The requirements for the parameters of all the functions are: 

Function 

SQRT 
LOG 
EXP 
SIN 
cos 
TAN 
COT 

ARCS IN 
ARCCOS 
ARCTAN 
ARCCOT 

SINH 
COSH 
TANH 
COTH 

ARCSINH 
ARCCOSH 
ARCTANH 
ARCCOTH 

Argument and range 

x >= o.o 
X > 0.0, BASE > 0.0 and I= 1.0 
X unrestricted, BASE > 0.0 
X unrestricted, CYCLE I= 0.0 
X unrestricted, CYCLE I= 0.0 
X unrestricted, CYCLE I= 0.0 
X unrestricted, CYCLE I= 0.0 
abs X <= 1.0 
abs X <= 1.0 
not (X = 0.0 and Y = 0.0) 
not (X = 0.0 and Y = 0.0) 
X unrestricted 
X unrestricted 
X unrestricted 
X unrestricted 
X unrestricted 
x >= 1. 0 
abs X < 1.0 
abs X > 1.0 

We recommend that implementations raise the exception ARGUMENT_ERROR 
of the package if an argument violates these requirements. Note that 
predefined exceptions can still be raised during computations, e.g. 
when REAL has an uncommon range constraint or if division by zero 
occurs. We assume that overflow (arising, for example, from too large 
an argument for EXP) will cause the raising of NUMERIC ERROR if Ada 
implementations are used for the function bodies. Unfortunately, if 
the functions are hardware-provided, this cannot be expected. 

No exception is proposed for the situation where the argument in a 
function call is such that the function cannot be evaluated with 
useful accuracy. Incorporation of such an exception, to be called 
SIGNIFICANCE_ERROR, was considered but was rejected. The problem is 
that it is difficult, or at least rather cumbersome in Ada, to 
specify the accuracy expected for each function (see Symm et al., 
1984, ·Chapter 4, for more details). 

7 



5. DISCUSSION 

The function names are mostly in agreement with those familiar in 
Algol 60 and Pascal (and in mathematics of course) and we have 
ignored the sometimes anomalous naming which arises, due to implicit 
type conventions, in Fortran. One exception is the logarithmic 
function LOG whose definition is more general than that of the 
natural logarithm indicated by 'ln' in other languages (see previous 
section). 

We have no particular preference for the names of the formal 
parameters of the standard basic functions. These have been chosen to 
be as simple as possible, except for the names of the second 
parameters of the more general functions. The name E for the 
mathematical constant e was rejected as a potential source of much 
confusion. 

We considered, but rejected, the possibility of letting the 
package consist of several subpackages, for e.g. transcendental, 
circular, inverse circular and hyperbolic functions, all packages 
possibly with their own subtypes for arguments and their own 
exceptions. In such a structure the ease of use would be completely 
lost. 

For some of the functions (e.g. LOG, SIN) we propose more general 
declarations, thus combining related functions which differ only by a 
scale factor. The user of the traditional form of the basic functions 
need not be troubled by this, as calls with one parameter are 
allowed. The most natural alternative, of providing the more general 
versions (e.g. SIN for arbitrary or specific other periods) in a 
dependent special purpose package, would be very wasteful, since the 
number of bodies needed would be doubled. Moreover, we have shown (in 
Appendix C of Symm et al. , 1984) that portable general 
implementations can be readily designed. The Ada Style alternative 
(of providing generic functions, such as a SIN with a generic in 
parameter for the period) differs too much from the way basic 
functions are usually available, and is actually not needed. 

6. CONCLUSIONS 

We have already mentioned our recommendation that a standard 
instance of the proposed package should be available at every 
installation, with the common floating-point type as the generic 
actual parameter. Also, one might substitute for this instance an 
equivalent non-generic version. We assert that portable and efficient 
implementations of the package constituents can be written in Ada and 
that the proposal presented here will then supply an essential tool 
for programming numerical computations in Ada. 

8 



REFERENCES 

ANSI/MIL-STD 1815 A. Reference manual for the Ada programming 
language, January 1983. 

Cody, W.J. Floating-point parameters, models and standards. The 
relationship between numerical computation and programming languages, 
edited by J.K. Reid, North Holland, Amsterdam, 1982, 51-64. 

Cody, W.J. and Waite, W. Software manual for the elementary 
functions, Prentice Hall, New Jersey, 1980. 

Ford, B. Parametrization of the environment for transportable 
numerical software. ACM Trans. Math. Softw., 1978, !, 100-103. 

Nissen, J.C.D. and Wallis, P.J.L., eds. Portability and style in 
Ada, Cambridge University Press, Cambridge, 1984. 

Rice, J.R. Remarks on software components and packages in Ada. ACM 
SIGSOFT Software Engineering Notes, 1983, ~(2), 9-10. 

Symm, G.T., Wichmann, B.A., Kok, J. and Winter, D.T. Guidelines for 
the design of large modular scientific libraries in Ada, NPL Report 
DITC 37/84 and CW! Report NM-N8401, March 1984. 

Wallis, P.J.L. Ada floating-point arithmetic as a basis for portable 
numerical software. Proceedings of the 6th Symposium on Computer 
Arithmetic, IEEE, Computer Society Press, Silver Spring, 1983, 79-81. 

Whitaker, W.A. and Eicholtz, T.C. An Ada implementation 
Cody-Waite "Software manual for the elementary functions", 
Force, 1982. 

of the 
US Air 

9 


